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Abstract

In this work a new benchmark of hard instances for the permutation
flowshop scheduling problem with the objective of minimising the makespan
is proposed. The new benchmark consists of 240 large instances and 240 small
instances with up to 800 jobs and 60 machines. One of the objectives of the
work is to generate a benchmark which satisfies the desired characteristics
of any benchmark: comprehensive, amenable for statistical analysis and dis-
criminant when several algorithms are compared. An exhaustive experimental
procedure is carried out in order to select the hard instances, generating
thousands of instances and selecting the hardest ones from the point of view
of a gap computed as the difference between very good upper and lower
bounds for each instance. Extensive generation and computational experi-
ments, which have taken almost six years of combined CPU time, demonstrate
that the proposed benchmark is harder and with more discriminant power
than the most common benchmark from the literature. Moreover, a website
is developed for researchers in order to share sets of instances, best known
solutions and lower bounds, etc. for any combinatorial optimisation problem.
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1. Introduction

Advancements in algorithms in the field of operational research frequently
require careful and comprehensive computational comparisons against well
known and established benchmarks of instances. Once a standard set of
problems is recognised as the de facto standard, different proposed techniques
can be easily compared using this set. As per the recommendations of Beasley
(1990)), such benchmarks are nowadays shared easily through the Internet and
the best known solutions (usually in the form of best known upper bounds in
minimisation problems) are shared and used in order to compare presented
algorithms against such bounds.

The importance of benchmarks cannot be overstated. A result is published
only after showing better performance for a given problem in the standard
benchmark accepted by peers most of the time. Therefore, the quality of
the benchmark is of paramount importance. Poorly designed benchmarks
might not be representative of real problems. Furthermore, other problems
might arise. The set of instances might be of a limited size, too easy or
specific for a given combination of input parameters. In such cases, if a given
method outperforms another in the benchmark, it is not guaranteed that the
performance can be generalised over the population of real instances.

One of the major fields in operational research is scheduling. This is recognised
by [Potts and Strusevich| (2009) where it is stated that hundreds of papers
are published per year in all relevant journals in the field. In scheduling,
the pioneering work is the paper of |Johnson| (1954) where the famous two
machine flowshop scheduling problem with makespan minimisation criterion
was studied. Therefore, flowshop scheduling has been in the spotlight ever
since. This prolific field is summarised in the reviews of Framinan et al.
(2004), [Ruiz and Maroto| (2005), |[Hejazi and Saghafian (2005) or in (Gupta
and Stafford (2006). Reviews for other objectives apart from makespan are
given in [Vallada et al|(2008) for tardiness related criteria and in [Pan and
Ruiz| (2013)) for flowtime objectives. Literally hundreds of papers have been
proposed just for the minimisation of the makespan in flowshop problems,
even more if one considers all other studied objectives. This paper focuses
specifically on the flowshop problem.

The most widely used benchmark for flowshop scheduling is that of
Taillard (1993). There are other much less employed benchmarks, like the
ones of |Demirkol et al.| (1998)) or Reeves (1995) or older benchmarks that are
not currently being used, like the ones of (Carlier| (1978)) and [Heller| (1960)).



Taillard’s benchmark comprises 120 instances for the flowshop problem that
range from 20 jobs and 5 machines all the way up to 500 jobs and 20 machines.
At the time of writing, only 28 instancesﬂ in the benchmark are “open” meaning
that the optimum solution has not yet been found. As we will show, several
authors have recently been unable to assess outperformance in Taillard’s
benchmark due to several factors that we will later point out. Notable examples
are Dong and Ping Chen| (2008) and Kalczynski and Kamburowski (2008)).
These authors could not find statistically better performance using Taillard’s
benchmark and showed that using other randomly generated instances of
their own, better performance was observed. In a sense, Taillard’s benchmark
is reaching exhaustion.

The previous potential problems, along with other shortcomings motivate
this research. In this paper we present a new, computationally challenging
and comprehensive benchmark for the flowshop scheduling problem with
makespan criterion. First, we define the flowshop problem and study the
existing literature in an attempt at characterising the hardness of flowshop
instances in Section [2| Then, following a large computational campaign, we
present the new benchmark in Section |3l Contrary to existing research, where
benchmarks are simply presented, we carry out a comprehensive computational
and statistical testing of the presented benchmark in Section 4] We compare
the statistical capability of the new benchmark against the benchmark of
Taillard with successful results. Another contribution of this research is the
new website of instances with many potentially useful features for other
researchers to use. This web 2.0 portal contains different benchmarks along
with historical data of best results, lower bounds and all types of information
as the data is held in a database and in a content management system. All
this is explained in Section [} Finally, Section [6] concludes the paper and gives
further research directions.

2. Flowshop scheduling problem and the hardness of the instances

The problem consists of determining a processing sequence of n jobs in
a set of m machines that are disposed in series. All jobs must be processed
sequentially in all machines. This processing sequence is, without loss of
generality, {1,...,m}. Each job j, 7 = {1,...,n} needs a processing time

IThe list of best known solutions is found at http://mistic.heig-vd.ch/taillard/
problemes.dir/ordonnancement.dir/flowshop.dir/best_lb_up.txt
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of p;; units at each machine 4, ¢ = {1,...,m}. This processing time is a
non-negative, deterministic and known amount. A flowshop is a common
production setting in factories where products start processing at machine or
stage 1 and continue processing until they are finished in the last machine
m. The determination of a production sequence for all machines needs the
exploration of (n!)™ sequences, as there are n! possible job permutations at
each machine and this permutation can be changed from machine to machine
with what is known as job passing. However, a common simplification in the
flowshop literature is to consider only n! schedules and once the production
sequence of jobs for the first machine is determined, is kept unaltered for
all other machines. This simplified problem is known as the permutation
flowshop scheduling problem or PFSP in short. The completion time of a job
in the factory is denoted as ;. The most common objective for the PFSP is
the minimisation of the maximum C;. This is referred to as makespan and
denoted as Cpax.

Johnson| (1954) represents the earliest known contribution in the literature,
where the author studied the two machine flowshop problem with makespan
minimisation. From this work, the well known Johnson’s algorithm can be
used to optimally solve the problem. In general, for m machines, the problem
is denoted as F'/prmu/Cpayx using the well known a/ 3/~ notation of |(Graham
et al| (1979). When m > 3 the flowshop problem is known to be N'P-hard
for Clax minimisation as per the results of (Garey et al.| (1976).

According to the results of the computational comparison of |Ruiz and
Maroto| (2005)), the NEH heuristic of Nawaz et al.| (1983)) is a clear performer.
More recent methods, such as those of Dong and Ping Chen (2008), Kalczynski
and Kamburowski| (2008) or Rad et al. (2009)) have shown NEH outperforming
algorithms. As regards metaheuristics, the list is also long. In this case, some
of the best performing methods are the Hybrid Genetic Algorithm of Ruiz
et al. (2006) and the Iterated Greedy of Ruiz and Stutzle| (2007). With
Taillard’s benchmark, the state-of-the-art as regards metaheuristics for the
PFSP has reached a high level of maturity. For example, |Vallada and Ruiz
(2009) managed to obtain, with a parallel iterated greedy method, an average
percentage deviation over the best known solutions of Taillard’s benchmark
of only 0.25%. However, this small deviation might just be another sign of
Taillard’s benchmark aging. From the 120 instances of Taillard, the optimum
solution is known today for 92 instances. For the remaining 28, the average
gap between the best known solution and the highest known lower bound
is just 0.94%. Therefore, given the current state-of-the-art performance and
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how close to the best known solutions are for Taillard’s instances, there is a
big potential problem in the near future: New and better methods might end
up being disregarded due to it not being possible to show better performance
than existing algorithms in Taillard’s benchmark. However, the fact that
method A does not give better solutions than method B in a benchmark that
has been practically solved does not mean that in another harder and/or
bigger benchmark, method A would not give better solutions.

Let us note that other existing benchmarks for the PFPS and C\,,.« criterion

are not more difficult than Taillard’s. For example, Demirkol et al.| (1998)
proposed a total of 600 instances for different flow and job shop problems,
including objectives with due dates. As regards flowshop scheduling, the paper
presented 120 instances for makespan minimisation. The problem with these
instances is that they only reach 50 jobs and 20 machines, which is a much
smaller size than the benchmark of Taillard.
In order to come up with a new benchmark one has to make sure that the
instances are varied, numerous, representative of real-life situations and, above
all, hard. The reason behind the needed hardness is that the benchmark needs
to have discriminant power, i.e., given two methods A and B, we need to
conclude if A is better than B. If both A and B are very good performers, they
might be able to solve easy instances to almost optimality in most cases and
thus, the benchmark will be of no use. In summary, the desired characteristics
of a good benchmark are the following:

e Exhaustive: large number of instances, small and large sized instances,
different combinations of instance size.

e Amenable for statistical analysis: equidistant, that is, the number of
jobs and machines go up by a uniform quantity each time.

e Discriminant: statistically significant differences can be easily found
when several algorithms are compared.

Benchmark instances have been constructed almost exclusively from uni-
form random distributions. It has been customary to draw the processing
times from a U[1,99] distribution. This is the case of Taillard’s benchmark. It
is also known that uniformly distributed processing times result in instances
that are harder to solve by algorithms. This has created a number of debates.
In real-life it is expected to have correlations in the processing times, i.e., “big”
jobs have large processing times in all machines and/or slow/fast machines



have larger/shorter processing times for all jobs. This results, according to
Watson et al.| (2002), in instances that are very easy to solve. Given this,
one could think that then the concept of lowshop scheduling with random
instances is a moot issue. However, let us recall that a flowshop is a simplifi-
cation of reality and as indicated by [Dudek et al.| (1992), real problems have
many more additional constraints. In any case, using hard random instances
in benchmarks is an accepted norm in the field of operations research. The
same is being routinely done in the travelling salesman problem, location,
assignment and in the majority of studied problems. Furthermore, when an
algorithm excels in a difficult random problem, it is expected to also excel
in more difficult problems and or instances. As a matter of fact, the good
performance of the iterated greedy method presented in [Ruiz and Stiitzle
(2007) is translated in |Ruiz and Stiitzle (2008) to flowshops with sequence
dependent times and tardiness criterion. In|Urlings et al.| (2010) is also applied
to complex hybrid flowlines with many side constraints of application in real
industries. In all these works the iterated greedy algorithm that showed good
performance in random flowshop instances also resulted in state-of-the-art
results for much more difficult and complex problems.

When generating good instances, Taillard| (1993) carried out an unspecified
number of runs in which he selected hard instances by minimising the gap
between a trivial lower bound and the upper bound obtained with taboo
search methods. While this might seem unsophisticated, we will later see that
elaborating on this procedure is the only known approach.

Characterising hard instances is extremely difficult. While in other areas
of computation and optimisation this has been studied in detail, (see for
example |Lutz et al 2000| or Borenstein|, 2008 for a general discussion), this
has been seldom studied for flowshop problems in particular. The work in
fitness landscape analysis is a big effort in this direction (see Reeves, 2005
or [Reeves|, 2007). However, and as pointed out in Reeves| (2007)), the fitness
landscape is not an invariant of the problem instance, i.e., it depends on the
algorithm that is being used in the optimisation. For example, |Watson et al.
(2005)) study the search space topology linked to taboo search algorithms for
the job shop problem. Marmion et al. (2011b) study the concept of neutrality
of the flowshop fitness landscape. This is the property that the flowshop has
when different permutations result in the same makespan value. The paper
proposes strategies to take advantage of this property in solution methods.
This is further detailed in Marmion et al.| (2011a). However, neither paper
proposes alternatives for generating harder instances.
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As a result of all of the above, nowadays it is not clear what makes a flowshop
instance difficult beyond the fact that uniformly distributed processing times
yield harder instances. Therefore, our approach is that of extensive compu-
tation. Similar to what Taillard| (1993) did, we generate instances randomly
and select those that show a high gap between lower and upper bounds. The
difference is that we use state-of-the-art lower bounds and extremely effective
PESP algorithms for generating high quality upper bounds. This process,
iterated thousands of times, generates extremely hard instances as we will
show in later sections.

3. New benchmark

In this section we detail the generation of the new benchmark of instances
for the PFSP with C,,., minimisation. The objective is to obtain a new hard
benchmark with the characteristics explained previously. Some of the new
features of the benchmark are: two separated sets of instances (large and
small), instances with up to 800 jobs and 60 machines, ease of carrying out
statistical analysis and a large number of instances, etc. In the following
subsections details about the structure, characteristics and generation of the
new benchmark are given.

3.1. Structure and characteristics

The new benchmark consists of 240 large instances and 240 small instances.
Small instances are necessary when exact algorithms are proposed for the
defined problem since large instances are not suitable for exact methods. In this
case, it is important to evaluate both, the exact and heuristic/metaheuristic
methods using a set of small instances in order to compare the results and
to check the good behaviour of the heuristic/metaheuristic algorithms, when
exact solutions are obtained by the exact methods.

Small instances are a set of 240 with the following combinations of number
of jobs (n) and number of machines (m): n = {10, 20, 30,40, 50,60}, m =
{5,10,15,20}. For each combination 10 instances are generated, so in total
we have 6 x 4 x 10 = 240 small instances. Note that small instances are
up to 60 jobs and 20 machines, so we can consider this set to be actually
small-medium sized. If we compare with Taillard’s, the smallest size is 20 jobs
and 5 machines, after 20 jobs, the next size is 50 jobs, so there is an important
gap. Regarding the number of machines, there are also gaps, from 10 to 20
machines in some of the instances. Moreover, Taillard’s instances are not



equidistant, which means, the difference between the number of jobs/machines
between two consecutive instances is not the same. For example, from 20 jobs
and 5 machines to 20 jobs and 10 machines and 20 jobs and 20 machines. The
difference between the two first instances is 5 machines and from the second
to the third is 10 machines. All these differences make the statistical analysis
of the results when several algorithms are compared difficult. In the same way,
our benchmarks allow the orthogonal analysis in design of experiments, i.e.,
all combinations of n and m are present. That way, two-factor interactions
between the number of jobs and machines can also be studied. This is not
possible with Taillard’s, as some n X m combinations are missing, like 200 x 5,
500 x 5 and 500 x 10.

Regarding the large instances, they are also a set of 240 where n = {100,
200, 300, 400, 500, 600, 700, 800} and m = {20, 40,60}. For each combination
10 instances are generated, in total 8 x 3 x 10 = 240 large instances.

In this way, two of the three desired characteristics are satisfied: they are
exhaustive and amenable for statistical analysis.

Each instance is saved in a text file following the same structure as
Taillards’ instances for compatibility: the first row of the file is the number
of jobs and number of machines. Then, a matrix with the processing times
of each job in each machine is given. The processing times are generated
following a uniform distribution between 1 and 99 as usual in the literature
and in most existing benchmarks.

3.2. Generation

The generation of the new benchmark is one of the most important parts
of this work. A random selection seems not to be a suitable procedure, that is,
to generate randomly 240 instances with the processing times to construct the
benchmark. In the original paper of Taillard| (1993)) it is not fully clear how
the instances were selected and generated. The author used a taboo searh
algorithm to solve several instances and after some experiments he chose the
problems that seemed to be the hardest ones, which means, those problems
of which the computed makespans are further from a trivial lower bound.
Details about how many instances were generated before the selection or how
the computational evaluation was carried out are not given.

In this work, an exhaustive and detailed experimental procedure is carried
out in order to generate a new benchmark of hard instances. The process
is the same for both, small and large instances, and consists of generating
thousands of instances and to select the hardest ones.



Specifically, for small instances, 2,000 instances are generated for each
combination. From these 2,000 instances per combination, the hardest 10 are
chosen to be part of the new benchmark. For large instances, the procedure is
the same, but a 1,000 instances are generated for each combination instead of
2,000. Therefore, a total of 48,000 small instances and 24,000 large instances
are generated. From these ones, 240 small and 240 large will be chosen to be
part of the new benchmark, those that result as the hardest to solve.

The difference between two instances of the same size (n x m) is the
matrix of processing times, so an instance is more difficult to solve than other
instances depending on the processing times of the jobs in the machines. To
test how difficult it is to solve an instance we have on the one hand, two
effective algorithms for the permutation flowshop scheduling problem with the
objective to minimise the makespan (Ruiz et al.| 2006 and Ruiz and Stttzle,
2007). On the other hand, four lower bounds, one from Taillard| (1993) and the
three best polynomial bounds of |Ladhari and Haouari| (2005), proposed for
the same problem, are computed for each instance. All the generated instances
(48,000 small and 24,000 large) are solved by the two effective algorithms,
denoted as HGA (Ruiz et al., 2006) and IG (Ruiz and Stutzle, [2007)), since
they are considered the most effective for this problem. Both algorithms are
metaheuristics so each one is run three times on each instance. Regarding the
stopping criterion for the methods, a maximum elapsed CPU time is set to
n - (m/2) - 120 milliseconds (small instances) and n - (m/2) - 90 milliseconds
(large instances), that is, the computational effort inside each group increases
as the number of jobs and/or machines increases. For small instances, the time
employed ranges from 3 seconds (10 x 5) to 72 seconds (60 x 20). Regarding
large instances, the amount of time varies from 90 seconds (100 x 20) to 2,160
seconds (800 x 60).

Therefore, for each instance we have six makespan values (three for each
run of both algorithms) and four lower bounds. We obtain, for each instance,
an upper bound (UB) from the minimum makespan among the six makespan
values, and a lower bound (LB) from the maximum value among the four
computed lower bounds. The objective is to obtain the gap between the upper
bound and the lower bound for each instance, following the expression:

UB—-LB
LB

The higher the GAP value, the harder the instance is, that is, the best
known solution is further from the theoretical lower bound. If the upper bound

GAP = 100, (1)



is very close or equal to the lower bound, a gap near zero will be obtained,
which means, the instance is easier to solve.

In order to obtain the hardest instances per combination, GAP values
for the 2,000 instances (small case) or 1,000 instances (large case) are sorted
from highest to lowest. The 10 first instances per combination are selected to
be part of the new benchmark.

The same procedure is applied for both, small and large instances, and
as a result of the experimental process, the new benchmark with 240 small
instances and 240 large instances is generated.

It is important to note the amount of time needed in total to carry out all
the instance generation experiments. For small instances, a total of 87.48 days
were needed to obtain the hardest instances. This amount of days is much
higher for large instances, 1,350 days. That is, in total, 1,437 days, which is
the same as almost four years, only for the generation experiments in order
to select the instances. The time needed for the experimental evaluation of
the benchmark (to be discussed in Section [4)), was about 670 days. So in
total, 2,107 days for all the experimental section, which is the same as almost
6 years. Fortunately, we did not spend 6 years on the experiments. All of
them were carried out on a cluster of 52 blade servers each one with two
Intel XEON E5420 processors running at 2.5 GHz and with 16 GB of RAM
memory, reducing drastically the computational time needed. Each processor
has four cores and the experiments were carried out in virtualised Windows
XP machines, each one with two virtualised processors and 2 GB of RAM
memory. The algorithms and lower bounds were coded in Delphi XE.

4. Computational evaluation of the new benchmark

In this section, the objective is to test, empirically, that the new benchmark
is harder to solve than the most used benchmark for this problem, Taillard’s
benchmark. That is, to satisfy the third desired characteristic: to obtain
a discriminant benchmark. In order to check how hard the new proposed
benchmark is, several experiments were carried out. In order to make the
computational evaluation understandable, firstly a brief summary of all the
experiments and instances used is given. Remember that the objective of this
work is to propose two new hard benchmarks, small and large. In order to
check empirically that the new one proposed benchmarks are really hard,
it is necessary to compare the behaviour of some algorithms when solving
the new proposed benchmarks and also other benchmarks generated in a
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different way. That is, to test if the procedure to select the instances for
the new benchmarks, explained in Section [3.2] is working, it is necessary to
compare with other procedures of instance selection. Furthermore, several
benchmarks, apart from the new proposed, are used in the computational
evaluation section. In the following, we enumerate the different benchmarks
used throughout the paper, as well as the way they are denoted.

e VRF hard large benchmark: new proposed benchmark consisting of
240 large instances selected following the procedure explained in Section

e VRF hard small benchmark: new proposed benchmark consisting of
240 small instances selected following the procedure explained in Section

e Taillard benchmark: benchmark proposed by Taillard (1993) with 120
instances.

e VRF hard large short benchmark: in order to be comparable with
Taillard’s benchmark, a short version of the new proposed benchmark
is used, where only 120 instances are selected instead of 240.

e VRF random_ large benchmark: this benchmark consists of 240 in-
stances randomly selected instead of following the process explained in

Section 3.2

e VRF random_large short benchmark: similar to the previous one
but in order to be comparable with Taillard’s benchmark, this random
benchmark consists of 120 instances instead of 240.

e VRF random_small benchmark: as in the previous case, the objective
of the use of this benchmark is to test if the exhaustive procedure to
select the small instances is working.

In the following subsections details about all the experiments are given.

4.1. Heuristics

First, two heuristics were chosen to solve Taillard’s instances and the new
proposed hard benchmarks, denoted as VRF _hard large and VRF _hard small
for large and small instances, respectively. Specifically the NEH developed by
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Nawaz et al.| (1983)) and NEHD, which is a modification and improvement
of NEH, proposed by Dong and Ping Chen| (2008) were selected since they
are considered the most effective ones. According to |[Ruiz and Maroto| (2005)),
the NEH heuristic was the most successful. Dong and Ping Chen| (2008) pro-
posed an improvement of the NEH and the authors already needed another
benchmark of instances for the comparison since with Taillard’s instances
they could not show statistically significant differences.

Results of the heuristic methods will be compared against an upper bound
for each instance. In order to obtain good upper bounds, the most effective
algorithm for this problem, the iterated greedy (IG) proposed by |[Ruiz and
Stutzle (2007), is run 20 times with the stopping criterion set to n - (m/2) -t
milliseconds (¢t = 600) of CPU time. With this amount of time (in the original
paper it was ¢ = 60) we can obtain an extreme solution and furthermore a good
upper bound. The minimum makespan value for each instance is selected as an
upper bound. The same procedure is applied to all the benchmarks, Taillard,
VRF hard large and VRF_hard small, in order to have a comparable
scenario.

To measure the effectiveness of the heuristic methods, the Average Relative
Percentage Deviation (RPD) is computed for each instance according to the
following expression:

Methods, — Bests,
Relative Percentage Deviation(RPD) = c OB lt sl 100, (2)
€Slsol

where Best,, is the best known solution, the upper bound obtained fol-
lowing the previous explanation, and Method, is the solution obtained with
the heuristic method. Remember the algorithms are deterministic heuristics,
so only one run is needed.

First, we analyse the large instances, comparing with Taillard’s benchmark.
After this, we will see the behaviour of the heuristic methods for small
instances.

4.1.1. Large instances and Taillard instances

In Tables [Ij and [2| (left side) we can see the results for Taillard’s and
VRF hard large benchmarks, respectively, where the 10 instances of each n x
m group have been averaged. We can observe that, on average, results are very
similar for both benchmarks. Heuristic NEHD seems to be more effective than
NEH. In order to check if these differences in the RPD values are statistically
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significant, we apply an analysis of variance (ANOVA), (Montgomery, [2012]),
once the three hypotheses for this statistical test are checked: normality,
homoscedasticity and independence of the residuals. Figure [1] show the means
plot with HSD Tukey intervals («=0.01) for both benchmarks. If we focus
our attention on the tables, differences, on average, seem to be very similar
for both benchmarks. However, the statistical analysis states that these
differences are not statistically significant for Taillard’s benchmark (intervals
are overlapped and p-value is greater than 0.01, specifically 0.07). Results
are very different for VRF_hard large benchmark, we can clearly see that
there are statistically significant differences between the average RPD values
(p-value close to zero). The result with our independent coding and testing
of the NEHD matches that of the original authors as they used their own
benchmark since there were no differences using Taillard’s. So the conclusion
is that we have been able to obtain statistically significant differences with
our new benchmark which Taillard’s benchmark could not.

Instance NEH NEHD
20 x 5 3.35 2.81
20 x 10 5.02 3.75
20 x 20 3.73 3.64
50 X 5 0.84 0.73
50 x 10 5.12 4.66
50 x 20 6.35 5.85
100 x 5 0.46 0.40
100 x 10 2.13 1.70
100 x 20 5.23 4.98
200 x 10 1.43 0.96
200 x 20 4.53 3.77
500 x 20 2.24 1.65
Average 3.37 2.91

Table 1: Average Relative Percentage Deviation (RPD) for the heuristic methods (Taillard’s
benchmark).
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VRF__hard__large benchmark VRF__hard__large_ short benchmark

Instance NEH NEHD Instance NEH NEHD Instance  NEH NEHD Instance NEH NEHD

100 x 20 5.63 5.25 500 x20 1.98 1.62 100 x 20 5.52 5.11 500 x20 1.83 1.59
100 x 40 5.44 5.00 500 x40 3.24 2.56 100 x 40 5.45 5.12 500 x 40 3.40 2.64
100 x 60 4.80 4.51 500 x 60 3.47 3.01 100 x 60 4.66 4.66 500 x 60 3.44 3.03
200 x 20 4.24 3.66 600x20 1.78 1.27 200 x 20 4.53 3.87 600 x20 1.77 1.37
200 x 40 4.54 4.34 600 x40 3.17 248 200 x 40 4.70 447 600x40 3.11 2.55
200 x 60 4.61 4.17 600 x60 2.99 2.53 200 x 60 4.47 4.33 600x60 2.95 249
300 x20 291 238 700x20 1.40 0.94 300 x 20 3.28 2.68 700x20 1.48 0.95
300 x 40 4.06 3.60 700x40 2.85 2.25 300 x 40 4.03 3.47 700 x40 2.76 2.23
300 x 60 3.92 3.84 700x60 289 235 300 x 60 3.96 3.90 700x60 282 2.30
400 x 20 2.42 1.87 800x20 1.32 0.89 400 x 20 2.32 1.80 800x20 1.47 1.08
400 x 40 3.55 3.08 800 x40 2.61 2.02 400 x 40 3.53 3.18 800 x40 2.62 2.04
400 x 60 3.70 3.16 800x 60 2.74 2.36 400 x 60 3.72 3.16 800x 60 2.70 231

Average NEH 3.35 NEHD 2.88 Average NEH 3.35 NEHD 2.93

Table 2: Average Relative Percentage Deviation (RPD) for the heuristic methods
(VRF_hard_large and VRF_hard_large short benchmarks).
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Figure 1: Means Plot and Tukey HSD intervals at 99% confidence level for the heuristic
methods (Taillard’s instances left side, VRF_hard_large benchmark right side).

At this point, one can think that the only reason for obtaining this result is
that the VRF _hard large benchmark is larger (240 instances) than Taillard’s
(120 instances). Therefore, a short version of VRF _hard_ large benchmark
was created as a subset of the original one. In the original VRF __hard_ large
benchmark, 10 instances were chosen per combination. In the short ver-
sion, 5 instances were selected, so in total, the short version (denoted as
VRF__hard_large short) has 120 instances. Therefore, this new reduced
benchmark is comparable in the number of instances with Taillard’s bench-
mark. In Table [2] (right side) we can see the results for the short version. On
average, results are very similar to the previous ones. In order to check the
differences, an ANOVA analysis is applied, as previously. In Figure [2] (left
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side) we can see the means plot with HSD Tukey intervals («=0.01). From
the results, we can conclude that there are statistically significant differences
between the average RPD values of the heuristic methods. So in conclusion,
we can state that the new benchmark is harder to solve despite reducing the
size to 120 instances in order to be comparable to Taillard’s size.
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Figure 2: Means Plot and Tukey HSD intervals at the 99% confidence level for the heuris-
tic methods (VRF__hard_large short benchmark left side, VRF_random_ large short
benchmark right side).

Another question that arises is what would happen if we selected the
instances randomly instead of carrying out the process explained in Section|3.2]
i.e., selecting only the instances with the largest GAP. In this case, for large
instances, once 1,000 instances are generated for each combination, 10 of
them are randomly selected for the benchmark. In this way, we can check if
the exhaustive process to generate the “hard” instances is working, that is, if
the instances from VRF _hard large short benchmark are really “harder”
to solve.

We carry out a new experiment using a new benchmark with instances
randomly selected. In order to be comparable to Taillard’s size, the random
benchmark (denoted as VRF_random_ large short) consists of 120 instances,
that is, 5 instances are randomly selected per each n x m combination. In
Table |3| and Figure [2[ (right side) we can see the results and the means plot
with HSD Tukey intervals (a«=0.01), respectively. We can observe that there
are no statistically significant differences between the average RPD values of
the heuristic methods. Notice that in Figure [2| (left side), these differences
were significant, so we can conclude that the process for the generation of
the new benchmark is working. Obviously in order to compute the Relative
Percentage Deviation for the VRF_random_large short benchmark, the
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same procedure as VRF_large hard is applied (as explained at the beginning
of Section , that is, the IG algorithm (Ruiz and Stutzle, 2007)) is run 20
times for a very long time to obtain good upper bounds.

Instance NEH NEHD Instance NEH NEHD
100 x 20 5.36 4.42 500 x 20 1.19 0.77
100 x 40 5.53 4.97 500 x 40 3.15 2.75
100 x 60 4.90 5.14 500 x 60 3.40 3.06
200 x 20 3.72 2.99 600 x 20 0.75 0.56
200 x 40 4.87 4.63 600 x 40 2.94 2.49
200 x 60 4.50 4.50 600 x 60 3.09 2.82
300 x 20 1.92 1.53 700 x 20 0.73 0.37
300 x 40 4.07 3.53 700 x 40 2.61 2.15
300 x 60 4.01 3.51 700 x 60 2.94 2.35
400 x 20 1.41 1.23 800 x 20 0.56 0.32
400 x 40 3.57 3.02 800 x 40 2.38 2.04
400 x 60 3.85 3.14 800 x 60 2.85 2.29
Average NEH 3.10 NEHD 2.69

Table 3: Average Relative Percentage Deviation (RPD) for the heuristic methods
(VRF_random_ large short benchmark).

4.1.2. Small instances

It is more difficult to find statistically significant differences between the
two tested heuristic methods when small instances are used. Remember, small
instances are a set of 240 with the following combinations of number of jobs (n)
and number of machines (m): n = {10, 20, 30, 40, 50,60}, m = {5, 10, 15, 20}.
It is clear that an instance with 10 jobs and 5 machines will be very easy to
solve using any of the heuristic methods. In this case, benchmarks denoted as
VRF hard small and VRF_ random small are used, where the instances are
selected following the procedure explained in or randomly, respectively.

NEH and NEHD are run to solve both benchmarks and after the analysis,
the conclusions are that there are no statistically significant differences between
the heuristics (NEH, NEHD) for either of the benchmarks. This result is quite
expected, NEH and NEHD are very similar methods, NEHD is a modification
of NEH. For this reason it is very difficult to find statiscally significant
differences between the methods, especially when small instances are used.

Therefore, a more powerful analysis is carried out in order to compare
the Relative Percentage Deviation obtained by the methods using both
benchmarks. The higher the RPD is, the harder the instance it is trying
to solve, that is, the solution obtained by the heuristic is further from the
best known solution. A factorial analysis of variance (ANOVA) is carried out
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where we consider the following factors: Algorithm (NEH, NEHD), number
of jobs (n), number of machines (m), type of instance (Hard if the instance
belongs to VRF__hard_small benchmark, Random if the instance belongs to
VRF_random_ small benchmark.)

In this way, we can see the effect of the type of instance in the Relative Per-
centage Deviation, that is, if hard instances (VRF__hard_small benchmark)
result in higher RPD values than random instances (VRF_random_ small
benchmark), we can conclude that hard instances from VRF__hard_small
benchmark are more difficult to solve. In Table [ results for both benchmarks
are shown. In Figure [3| we can see the means plot and Tukey HSD intervals
at the 99% confidence level for the Relative Percentage Deviation (RPD)
according to the type of instance: hard or random. We can observe that the
RPD computed when hard instances are solved is much higher than for the
random case, and the differences between the RPD according to the two
types of instances are statiscally significant (intervals are not overlapped).
Then, the conclusion is hard instances are more difficult to solve since the
solution obtained by the methods are further from the best known solu-
tion. This means that VRF hard small benchmark is harder to solve than
VRF random small benchmark and therefore, the exhaustive procedure to
generate VRF__hard small benchmark explained in Section @ is working
also for small instances.

VRF__hard__small benchmark VRF_ random_ small benchmark
Instance  NEH NEHD Instance NEH NEHD Instance  NEH NEHD Instance NEH NEHD

10x5 4.09 354 40x5 0.93 0.74 10 x5 1.81 1.85 40x5 0.59 0.32
10x10 218 148 40x10 493 4.04 10x10 243 2.03 40x10 4.33 3.24
10x 15 4.55 4.53 40x15 592 5.30 10 x 15 197 179 40x15 5.55 5.26
10x20 443 390 40x20 5.50 5.14 10x20 1.21 190 40x20 5.80 5.30
20 x5 5.51 5.03 50x5 0.56  0.39 20 X 5 1.26 124 50x5 0.60 0.41
20x 10 1.87 287 50x10 4.66 3.78 20 x 10 4.08 3.52 50x10 3.66 3.05
20x 15 458 4.61 50x15 6.59 5.47 20x 15 3.8 3.87 50x15 5.79 5.27
20x20 6.04 455 50x20 594 5.89 20x20 417 347 50x20 5.77 5.38
30 x5 5.55 5.00 60x5 0.70  0.43 30 x5 1.02 1.09 60x5 0.26 0.23
30x10 209 1.65 60x10 4.59 3.32 30x 10 5.056 3.85 60x10 3.08 2.46
30x15 443 366 60x15 579 582 30x15 536 494 60x15 571 4.45
30x20 590 524 60x20 6.19 5.65 30x20 5.65 4.58 60x20 5.67 5.62

Average NEH 3.87 NEHD 3.49 Average NEH 3.53 NEHD 3.13

Table 4: Average Relative Percentage Deviation (RPD) for the heuristic methods
(VRF_hard_small and VRF_random_ small benchmarks).
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Figure 3: Means Plot and Tukey HSD intervals at the 99% confidence level for the type of
instance factor, heuristic methods (small instances).

4.2. Metaheuristics

The objective of this section is to test the new benchmarks (VRF _hard_large
and VRF__hard_small) with metaheuristic methods. Specifically, two of the
most effective algorithms available in the literature for this problem: the
Genetic Algorithm proposed by Ruiz et al. (2006 and denoted as HGA and
the Iterated Greedy method by Ruiz and Stutzle| (2007)) denoted as IG are
selected in order to test the proposed benchmarks and to obtain a comparison
with Taillard’s. The procedure is the same as that for heuristic methods,
several experiments are carried out using all the benchmarks and results are
compared.

In this case, metaheuristic methods are run until a stopping criterion is
met: maximum CPU time is set to n- (m/2) - 60 milliseconds. The effectiveness
of the methods is measured following the same expression as that for heuristic
methods, but in this case five replicates of each algorithm are run as both
methods are stochastic. The same computers used for the generation of the
instances are used for the rest of the experiments of the paper.

4.2.1. Large instances and Taillard instances

First, both algorithms are run five times to solve Taillard’s intances.
Results can be seen in Table [5| (left side), where we observe both algorithms
are very effective, less than 0.5% from the computed upper bound used in this
paper. As before, a statistical analysis (ANOVA) is applied to check whether
the differences are statistically significant or not. The means plot at the 99%
confidence level is shown in Figure {4 (left side), where we can see that the
differences are statistically significant.
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Taillard benchmark Taillard benchmark, 1 rep.

Instance HGA 1G Instance HGA 1G

20 x5 0.04 0.04 20 x 5 0.04 0.04
20 x 10 0.10 0.03 20 x 10 0.11 0.04
20 x 20 0.08 0.03 20 x 20 0.04 0.04
50 x 5 0.01 0.00 50 x 5 0.00 0.01
50 x 10 0.47 0.22 50 x 10 0.51 0.28
50 x 20 0.93 0.64 50 x 20 1.01 0.61
100 x 5 0.01 0.01 100 x 5 0.01 0.01
100 x 10 0.22 0.16 100 x 10 0.19 0.13
100 x 20 1.01 0.72 100 x 20 1.06 0.73
200 x 10 0.13 0.08 200 x 10 0.07 0.08
200 x 20 0.85 0.75 200 x 20 0.84 0.70
500 x 20 0.46 0.31 500 x 20 0.48 0.29
Average 0.36 0.25  Average 0.36 0.25

Table 5: Average Relative Percentage Deviation (RPD) for the metaheuristic methods
(Taillard’s instances and Taillard’s instances when only one replicate for each algorithm is
run).
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Figure 4: Means Plot and Tukey HSD intervals at the 99% confidence level for the
metaheuristic methods (Taillard’s instances left side, VRF__hard_large benchmark right
side).

The same procedure is applied for the proposed benchmark (VRF _hard_ large).

Five replicates of each algorithm are run with the same stopping conditions
as those previously. Results can be seen in Table |§] (left side). The statistical
analysis is shown in Figure {| (right side), where we can observe that the
differences are much larger than those obtained for Taillard’s and they are
also statistically significant. We see that with both benchmarks we otain
statistically significant differences but with our proposed benchmark, the
differences are much larger.
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VRF__hard__large benchmark VRF__random__large benchmark
Instance HGA IG Instance HGA 1IG Instance HGA IG Instance HGA IG

100 x 20 1.22 0.85 500 x20 0.53 0.37 100 x 20 1.10 0.73 500 x 20 0.23 0.15
100 x 40 1.17 0.96 500 x 40 1.05 0.80 100 x 40 1.13 0.91 500 x40 1.07 0.80
100 x 60 0.96 0.80 500 x 60 1.11 0.90 100 x 60 1.04 0.93 500 x 60 1.22 0.84
200 x 20 1.03 0.84 600 x 20 0.41 0.28 200 x 20 0.64 0.50 600 x 20 0.13 0.10
200 x 40 1.09 0.93 600 x40 1.12 0.82 200 x 40 1.17 0.92 600 x40 1.06 0.75
200 x 60 1.04 0.87 600 x 60 1.09 0.82 200 x 60 1.07 0.80 600 x 60 1.13 0.82
300 x 20 0.69 0.52 700 x20 0.39 0.30 300x20 0.40 0.30 700x20 0.17 0.11
300 x 40 1.07 0.86 700 x40 1.03 0.77 300x40 1.09 0.91 700x 40 1.03 0.68
300 x 60 1.12 0.84 700 x60 1.11 0.83 300x60 1.12 0.91 700x 60 1.20 0.85
400 x 20 0.55 0.38 800 x 20 0.32 0.22 400 x 20 0.30 0.22 800 x 20 0.10 0.09
400 x 40 1.08 0.83 800 x40 1.05 0.74 400 x 40 1.08 0.80 800 x 40 1.02 0.63
400 x 60 1.04 0.88 800 x 60 1.24 0.87 400x 60 1.10 0.95 800 x 60 1.17 0.81

Average HGA 0.94 IG 0.72 Average HGA 0.87 IG 0.65

Table 6: Average Relative Percentage Deviation (RPD) for the metaheuristic methods
(VRF_hard_large and VRF_random_ large benchmarks).

At this point, the objective is to check if these statistically significant
differences can be obtained earlier (with less computational effort) with the
new proposed benchmark. We want to check if instead of five replicates run
for each algorithm, results where only one replicate is run give statistically
significant differences. In Tables [5| (right side) and [7] (left side) we can see
the results where only one replicate is run for each algorithm, for Taillard’s
and VRF__hard_large benchmarks, respectively. In Figure [5| (left side) the
means plot at the 99% confidence level for Taillard benchmark with only one
replicate of each algorithm, is shown. We can observe that the differences are
not statistically significant (intervals are overlapped). The same analysis is
carried out for the new VRF hard_large benchmark, the means plot is shown
in Figure |5| (right side). In this case, we can see that the differences are statis-
tically significant, so the conclusion is that we can obtain the differences with
less replicates of the algorithms, that is, with less data and less computational
effort. In order to be comparable to Taillard’s size, we also analyse the results
for the short version of the proposed benchmark (VRF__hard_large short)
also with only one replicate. In Table [7] (right side) results are shown. In
Figure [0] (left side) we can observe the means plot, where the differences are
statiscally significant as well. Then, the conclusion after all the experiments
is that the new benchmark VRF hard large can be considered “harder” and
differences are obtained earlier than with Taillard benchmark, even when the
size of both benchmarks is the same (VRF__hard_large short benchmark).
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Figure 5: Means Plot and Tukey HSD intervals at the 99% confidence level for the
metaheuristic methods when only one replicate for each algorithm is run (Taillard’s
instances left side, VRF__hard_ large benchmark right side).

VRF__hard_ large benchmark, 1 rep. VRF__hard_ large_ short benchmark, 1 rep.
Instance HGA IG Instance HGA IG Instance HGA IG Instance HGA 1G
100 x 20 1.09 0.94 500 x 20 0.51 0.36 100 x 20  1.01 1.00 500 x 20 0.56 0.36
100 x 40 1.14 0.85 500 x40 1.05 0.77 100 x 40 1.14 0.84 500 x40 1.13 0.81
100 x 60 0.98 0.89 500 x 60 1.12 0.95 100 x 60 0.92 0.84 500 x 60 1.13 0.94
200 x 20 1.07 0.78 600 x 20 0.40 0.28 200 x 20 1.16 0.83 600 x 20 0.46 0.30
200 x 40 1.03 1.06 600 x 40 1.11 0.85 200 x 40 1.16 1.05 600 x 40 1.11 0.91
200 x 60 1.07 0.91 600 x 60 1.09 0.77 200 x 60 1.04 0.97 600 x 60 1.02 0.75
300 x 20 0.67 0.49 700 x20 0.40 0.30 300 x 20 0.79 0.55 700 x 20 0.43 0.38
300 x 40 1.05 0.86 700 x40 1.02 0.77 300 x40 0.96 0.90 700 x 40 0.98 0.80
300 x 60 1.13 0.82 700 x 60 1.08 0.87 300 x 60 1.01 0.81 700 x 60 1.08 0.86
400 x 20 0.54 0.39 800 x 20 0.33 0.25 400 x 20 0.49 0.35 800 x 20 0.37 0.25
400 x 40 1.10 0.87 800 x40 1.05 0.78 400 x 40 1.06 0.90 800 x 40 1.04 0.83
400 x 60 1.13 0.81 800 x 60 1.24 0.88 400 x 60 1.13 0.80 800 x 60 1.24 0.86
Average HGA 0.93 I1G 0.73 Average HGA 0.93 IG 0.75

Table 7: Average Relative Percentage Deviation (RPD) for the metaheuristic methods when
only one replicate for each algorithm is run (VRF__hard_large and VRF_hard_large short
benchmarks).
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Figure 6: Means Plot and Tukey HSD intervals at the 99% confidence level for the
metaheuristic methods when only one replicae for each algorithm is run, left side
(VRF_hard_large short benchmark). Means plot for the type of instance, right side
(large instances)

Finally, a last experiment is carried out in order to confirm that the exhaus-
tive procedure to select the “hard” instances is working. In this case, as in Sec-
tion we carry out experiments using both benchmarks, VRF hard_large
and VRF_random_large. At this point, remember we have two new bench-
marks: one where the instances are randomly selected among a 1,000 instances
generated per each combination (VRF_random_ large) and the other one
where the instances are selected following the process explained in Section
(VRF__hard_ large). The objective of the analysis is to check if there
are statistically significant differences in the RPD between the two types of
instances (Hard and Random). An analysis of variance (ANOVA) is carried
out where the following factors are considered: Algorithm (HGA, IG), number
of jobs (n), number of machines (m) and type of instance (Hard if the instance
belongs to VRF hard large benchmark, Random if the instance belongs to
VRF_random_ large benchmark).

In Table [0 results for HGA and IG algorithms are shown according to
the hard and random benchmark, respectively. In Figure @ (right side) we
can see the means plot and Tukey HSD intervals at the 99% confidence level
for the type of instance. We can observe that the type of instance (Hard,
Random) affects the RPD, and moreover these differences are statistically
significant (no overlapped intervals). The RPD when hard instances are
considered is much higher than for random instances, which means that the
two methods (HGA, IG) are further from the best known solution when they
solve instances from the “hard” benchmark. In other words, instances from
the “hard” benchmark are more difficult to solve than instances from random
benchmark, which means that the procedure to select the instances (Section
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is working.

4.2.2. Small instances

The objective of this section is to compare the performance of the meta-
heuristc methods (HGA and IG) when solving small instances. Remember
small instances are a set of 240 with the following combinations of number
of jobs (n) and number of machines (m): n = {10, 20, 30, 40, 50,60}, m =
{5,10,15,20}. It is clear, and it has been shown in previous experiments that
IG and HGA show very differing results. Specifically, the IG method shows a
much better performance than the HGA method, regardless of the benchmark
used. Small instances are not an exception, if IG and HGA are run to solve
small instances, results are quite expected, IG outperforms HGA. At this
point we do not focus our attention on looking for differences between the
methods, but rather, looking for differences between the type of instance.
As before, we test the two metaheuristic methods (HGA and IG) using
the “hard” benchmark (VRF_hard_small) and also the random benchmark
(VRF_random_ small), as in Section , in order to compare the RPD.
A full factorial design of experiments and analysis of variance (ANOVA) is
carried out where the following factors are considered: Algorithm (HGA, IG),
number of jobs (n), number of machines (m), type of instance (Hard if the
instance belongs to VRF__hard small benchmark, Random if the instance
belongs to VRF_random_ small benchmark). In this way, we can see the
effect of the type of instance on the RPD, that is, if hard instances result
in higher RPD values than random instances, we can conclude that hard
instances are more difficult to solve. In Figure [7| we can see the means plot
and Tukey HSD intervals at the 99% confidence level for the type of instance.
We can observe that when hard instances are solved, the Relative Percentage
Deviation is much higher than with random instances. Moreover, in Table
results for both benchmarks are shown.
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VRF__hard_ small benchmark VRF_ random__small benchmark
Instance HGA IG Instance HGA IG Instance HGA IG Instance HGA IG

10 x5 0.00 0.00 40 x5 0.04 0.03 10 x5 0.00 0.00 40 x5 0.00 0.00
10 x10 0.00 0.00 40 x 10 0.67 0.47 10x10 0.00 0.00 40 x10 0.25 0.11
10 x 15 0.00 0.00 40 x 15 0.80 0.66 10 x 15 0.00 0.00 40 x 15 0.87 0.64
10x20 0.00 0.00 40x20 0.74 0.64 10x20 0.00 0.00 40x20 0.75 0.50
20 x5 0.04 0.02 50 x5 0.00 0.00 20 x5 0.02 0.00 50 x5 0.00 0.00
20 x 10 0.15 0.05 50x 10 0.57 0.54 20x10 0.01 0.02 50x 10 0.22 0.18
20 x 15 0.06 0.05 50x 15 1.16 0.86 20x 15 0.06 0.03 50x15 0.82 0.78
20x20 0.11 0.01 50x20 1.05 0.82 20x20 0.06 0.01 50x20 0.95 0.65
30 x5 0.05 0.03 60 x5 0.00 0.00 30x5 0.03 0.01 60x5 0.00 0.00
30x10 0.58 0.34 60x10 049 034 30x10 0.29 0.22 60x10 0.11 0.08
30 x 15 0.46 0.22 60x 15 1.04 0.81 30x15 031 0.20 60x15 0.97 0.64
30x20 052 031 60x20 1.19 098 30x20 0.41 0.20 60x20 1.06 0.90

Average HGA 0.40 IG 0.30 Average HGA 0.30 IG 0.22

Table 8: Average Relative Percentage Deviation (RPD) for the metaheuristic methods
(VRF_hard_small and VRF_random_ small benchmarks).
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Figure 7: Means Plot and Tukey HSD intervals at the 99% confidence level for the type of
instance (small instances).

Together with this paper there is available an on-line materials with raw
results for all proposed benchmarks (small and large). The author is kindly
requested to consult them for further reference.

5. Web of instances

There are many examples on the Internet about webs of instances. However,
as regards the new development with the so called web 2.0 and content
management systems (CMS) little has been done in relation to this. The very
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famous OR-Libraryf], maintained by professor J. E. Beasley and collaborators
is a clear example. It is basically a static file repository, little more than a
front-end for an FTP server where all instances are held or links to other
websites are found. There is little or no information about the best known
objective function values, what the complete solutions are, who obtained the
best solutions or when.

It is well known that when an algorithm is proposed in the literature,
an exhaustive work related to computational experiments is carried out. For
these experiments, it is necessary to have sets of instances available in order to
make a comparison with other methods from the literature. It is an essential
requirement when a comparison between algorithms is carried out, that the
set of instances is the same, in order to make sure of the generalisation
and reproducibility of the results. However, the accessibility to the instances
and the results from the literature is not always easy, in some cases almost
impossible.

One of the objectives of this work is to develop a website for the scientific
community (www.webofinstances.com), where sets of instances, including
best known solutions and lower bounds, etc., can be uploaded and downloaded.
One important question when a scientist wants to make a comparison is not
only how to access the set of instances, but also how to access the results
obtained from different authors at the date when they carried out their
experiments. Let us give an example: we propose and develop an algorithm
(denoted as A) to solve a combinatorial optimisation problem. First, we study
all the literature available for the same problem. We find a method (denoted
as B) published 6 years ago and we want to compare the results of A with B.
In this case, we should compare the results of A with those obtained with B
6 years ago. The question is, where are these 6 years old results? Probably
nobody knows. Tables with RP D values are not helpful since the best solutions
with which these RPD values were calculated might have changed. Therefore,
one of the most important features of the proposed website is the possibility
to save results according to a date. In this way, scientists will be able to access
the results according to their interests. Moreover, the new website allows us
to store full solutions (not just the objective function value). We even allow
php code to compute the objective value of any provided full solution so as
to check the validity of claimed results. It is also important to remark that

Zhttp://people.brunel.ac.uk/~mastjjb/jeb/info.html
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best lower bounds are also accessible as well as bibliography referred to lower
bounds. Among other features, the website permits the creation of forums
for the different benchmarks where researchers can share information about
the instances. Finally it is important to remark that the website is not only
focused on the permutation flowshop problem with makespan objective, it
is available for any combinatorial optimisation problem. In Figures [§ and [9]
we can see pictures for the home page and the best known solution history,
respectively.

| welcome MAIN

WEB OF INSTANCES sem ™
Forum

Contact form

© CONTENTS

ONLINE

Figure 8: Home page of the web of instances.
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Figure 9: Best known solutions history report.

6. Conclusions

Comprehensive benchmarks are needed in order to cement advancements
in algorithmics in general and in scheduling in particular. New solution
methodologies must rely on the results obtained with benchmarks in order to
assess their performance. Ideally, hard benchmarks with great discriminant
power are preferred so that with little experimentation, researchers can
ascertain if a given method outperforms the existing state-of-the-art. Sadly,
for flowshop problems we still do not know what makes an instance hard.
Additionally, existing flowshop benchmarks have already shown problems
regarding discriminant power and also present challenges as regards the
statistical analysis of results. In this paper, and after more than 6 years worth
of CPU time in experiments, we have obtained a new benchmark that we
have shown empirically to be hard. The new proposed benchmark complies
with the desired characteristics of a good benchmark, that is, it is exhaustive,
amenable for statistical analysis and discriminant when several algorithms
are compared. The new benchmark consists of two separated sets of instances,
small and large, with 240 instances each one. After an exhaustive generation of
the instances and a comprehensive computational evaluation we can conclude
that the new benchmark is harder to solve than the most commonly used for
the same problem, Taillard’s benchmark (Taillard, [1993). Moreover, a website
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for the scientific community has been developed with the objective of sharing
benchmarks of instances, best known solutions and historical solutions, etc.
for any combinatorial optimisation problem. With this contribution, we hope
that the new benchmark will foster new developments in flowshop scheduling
in particular and in other optimisation problems in general.
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