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Evaluating the Impact of Data Transfer Time in
Contact-based Messaging Applications

Enrique Hernández-Orallo, Jorge Herrera-Tapia, Juan-Carlos Cano, Carlos T. Calafate, Pietro Manzoni

Abstract—In this paper we propose an analytical model based
on Delay Differential Equations (DDEs) to evaluate the diffusion
of messages in groups taking into account the transmission time
of the messages. This model was validated through simulation
studies using the ONE simulator.

Evaluation results show that considering the impact of data
transfer time is of utmost importance, as when message size
increases (for example when transmitting short videos), the
diffusion is bounded by this transmission time, and the result
is that the diffusion time increases slightly when the number of
nodes increases (as opposed to the always decreasing diffusion
time of the epidemic diffusion with no delay).

Index Terms—Opportunistic networks, Contact-based Messag-
ing, Performance Evaluation, Epidemic diffusion

I. INTRODUCTION

Messaging applications are used to instantly share and/or
retrieve multimedia data, such as text, images, audio and video
through mobile devices. Nevertheless, the problem of these
messaging applications is twofold. First, a stable infrastructure
is needed in order to provide this communication. Second,
as messages are transmitted (and stored) in public networks,
privacy is threatened. Furthermore, the messages can be traced
in order to obtain its origin and destination, so the privacy of
communication can be seriously affected. A solution to these
problems is to use opportunistic networks. Instead of using
the established Internet infrastructure, the communication in
opportunistic networks takes place upon the establishment
of opportunistic contacts among mobile nodes using direct
communication (i.e. Bluetooth or WiFi Direct). By relying
on well designed security mechanisms, opportunistic networks
can increase the confidentiality and privacy of communica-
tions. Note, that direct communications are more robust to
remote scanning and inspection.

The application of opportunistic networking to mobile
devices such as smartphones has not been fully exploited,
as communication is based in well established 3G/4G or
WiFi infrastructure and cloud services. For example, instant
messaging applications (such as Whatsapp, Vibe, etc.) use
established local Internet connections in order to access to
the centralised services responsible for message management.
Their main advantage is supporting seamless communication
between devices regardless of their location.

Based on the concept of opportunistic networks, new
contact-based messaging applications have recently been de-
veloped, such as FireChat (developed by Open Garden -
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http://opengarden.com/FireChat/). FireChat, a messaging ap-
plication meant for festivals, that became popular in 2014
in Iraq following government restrictions on Internet use,
and thereafter during the Hong Kong protests. There are
other options, such as, Briar (see https://briarproject.org) and
Netsukuku (http://netsukuku.freaknet.org), and the so called
Floating Content approach [1].

In this paper, we study the performance of these oppor-
tunistic contact-based messaging strategies in city squares or
meeting places. A common approach is to combine a network
simulation tool with realistic mobility traces. Nevertheless,
simulation can be very time consuming and restricted to the
limited scenarios of available mobility traces. In order to
avoid these drawbacks, analytical models can provide a fast
and broader performance evaluation. Two classes of analytical
models have been developed: Markovian models [2]–[5] and
deterministic models based on ODEs [3], [6]. Nevertheless,
these models cannot evaluate the delay incurred on message
transmission. Thus, we introduce a new deterministic model,
based on Delay Differential Equations (DDEs). DDEs are
similar to ODEs, but their evolution involves past values
of the state variable. DDEs have been used for modelling
population dynamics in many disciplines such as biology,
ecology, epidemics [7], and network protocol analysis [8].

II. A CONTACT-BASED MESSAGING APPROACH

The basis of contact-based messaging is to establish a short-
range communication directly between mobile devices, and
to store the messages in these devices in order to achieve
a full dissemination of such messages. No messages are
sent or stored in servers (that is, no cloud service is used).
Instead, all information is stored on the mobile devices in a
given area. Message spreading is based on epidemic diffusion,
a concept similar to the spreading of infectious diseases,
when an infected node (the one that has a message) contacts
another node to infect it (transmit the message). Epidemic
routing obtains the minimum delivery delay at the expense
of increased usage of local buffer and increased number of
transmissions. There are different variations to this diffusion
scheme (that is, the infection process), that attempt to reduce
resource utilisation e.g, 2-hop forwarding [2], probabilistic
forwarding [9] and multiple copy [4].

The diffusion of messages among users is typically based
on groups. Users can join (and leave) a group, and their
members receive the messages that are sent to the group.
The mechanisms for group management are, anyway, outside
the scope of this paper. The dissemination scheme works as
follows. Mobile devices have a messaging application that
notifies and shows to the user the received messages for the
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subscribed groups. The application is also cooperative: it must
store the received messages and performs the diffusion of
such messages to other nearby nodes. Each node has a limited
buffer where it can store the messages it receives from other
nodes. When two nodes establish a pair-wise connection, they
exchange the messages they have in their buffer, and check
whether some of the newly received messages are suitable
for notification to the user device. In order to complete this
exchange the devices are forced to stop. That is, the owners
of the mobiles devices control this exchange and wait until
the message transmission is completed. This is a commonly
used scheme in several existing short-range mobile protocols
such as Apple iOS Airdrop and Google Android Copresence.
Finally, all nodes in the network (not only the members of the
group) collaborate in storing and forwarding messages.

III. PERFORMANCE MODEL

In this section we propose an analytical performance model
to evaluate the dissemination of messages considering the
data transmission time. The performance model presented here
is based on biological epidemic models [10]. The number
of nodes (population) N remains constant, and nodes move
freely in a given area with a given contact rate between
pairs λ. We assume short-range wireless communication (for
example, Bluetooth), so network congestion and interferences
do not have a strong impact. In the basic epidemic model
[6], when a node carrying the message (a infected node)
contacts with another node that does not have the message
(a susceptible node), it transmits this message immediately,
without further delay. From that moment on, both nodes carry
the message. As we will prove, this model is valid only when
the transmission time is low. Following the epidemic model
notation, the population is divided in two groups: the infected
nodes (I) and the susceptible nodes (S), so population remains
constant: N = I + S.

We extend this basic model by considering the transmission
time of the messages and the existence of groups with Ng
members (Ng ≤ N ). The message communication time can be
expressed as Tc = Ts+m/Bw, and includes two components:
a fixed set-up time Ts for two nodes to establish a connection;
and a transmission time m/Bw, that depends on the message
size (m) and the available bandwidth (Bw). In this model,
when an infected node contacts a susceptible node, both nodes
establish a connection and transmits a message. During the
communication time Tc, the nodes involved cannot infect
other nodes, so a new class of nodes is introduced: the
communicating (C) nodes. Thus, when a contact occurs, C
is increased by two, one coming from the class of infected
nodes, and another one from the class of susceptible nodes.
When transmission ends, these two nodes are moved to the
infected nodes class. Note that, in this model, the infected class
is defined as the nodes that can infect other nodes (represented
by letter J). Thus, the dynamics of this system are expressed
through the following DDEs:

S′(t) = −λS(t)J(t)
C ′(t) = 2λS(t)J(t)− 2λS(t− Tc)J(t− Tc)
J ′(t) = 2λS(t− Tc)J(t− Tc)− λS(t)J(t)

(1)

with S(t) = 0, J(t) = 0 ∀t < 0. As stated previously, J(t)
represents the nodes able to infect other nodes at time t. Since
half of the communicating nodes are also infected at time t,
then, the actual number of infected nodes at time t is:

I(t) = J(t) + 0.5C(t) (2)

Analysing this model, we can see that it is bounded by two
components. When the communication time is near to zero
(Tc = 0) it is equivalent to the basic epidemic model, that
have a simple analytical solution [6]:

Iλ(t) =
N

1 + (N − 1)e−λNt
(3)

And when the contact rate tends to be high, the number of
infected nodes doubles after each message transmission with a
period Tc, and can be approximated by the following function:

ITc
(t) = min(2bt/Tcc, N) (4)

Note that Iλ(t) and ITc
(t) are minimum values, so I(t) of

expression 2 will be always greater or equal to Iλ(t) + ITc
(t).

These components will be clearly evidenced in the experiments
presented in the evaluation section.

From expression 2, we can obtain the number of nodes of
the group (G(t)) that received the message as:

G(t) =
Ng
N
I(t) (5)

Finally, note that this model evaluates the diffusion of one
message. Thus, considering the exchange of several messages
when a contact occurs will increase this transmission time.

Another metric of interest is the delivery time Td, that is
the time when all the nodes in a group receive the message.
Although G(t) gives an asymptotic value for the number
of nodes in a group carrying the message, we introduce an
expression for obtaining the average delivery time E[Td].
Given that I(t) is the number of nodes that received the
message up to time t, the probability that x members of a
group have received a message from I(t) is given by the
hypergeometric distribution, that models the probability of x
from K successes, in a fixed-size sample n drawn without
replacement from a finite population (N ). Thus, we have that:

H(t) = H(x = Ng;N,n = I(t),K = Ng) =

(
K
x

)(
N−K
n−x

)(
N
n

)
(6)

is the cumulative probability that all Ng members of a group
have received the message when I(t) nodes have the message.
In order to obtain the expected delivery time, we calculate the
values of ti when I(t) is increased by one (that is, a new node
receives a message), so ti corresponds to the delivery time of
the ith node of I(t). Then, the expected value of Td is:

E[Td] =

N∑
i=2

ti ∗ (H(ti)−H(ti−1)) (7)

where H(ti)−H(ti−1) is the probability for event ti
In order to study the message diffusion process, we evaluate

the two components that generate this delivery time:
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1) Message communication delay (Dm), that is caused by
the message transmission time. In the absence of contact
delay, the number of infected nodes doubles after each
message transmission as stated in expression 4, where
t represents the communications delay. Solving for t =
Td, we have Dm = Tc log2(I(Td)), where I(Td) is the
number of nodes that have the message up to the delivery
time Td.

2) Contact waiting delay (Dc), that is caused by waiting
for new contacts. This component does not have a direct
expression, and it is calculated as the difference between
E[Td] and Dm.

Finally, the DDEs of expression 1 does not have a simple
analytical solution. Thus, we can solve the DDEs numerically
using Euler’s method, with a step size of h and time ti = hi:

Si+1 = Si + h(−λSiJi)
Ci+1 = Ci + h(2λSiJi − 2λSi−tcJi−tc)

Ji+1 = Ji + h(2λSi−tcJi−tc − λSiJi)
(8)

with Ci = 0, Ji = 0 ∀i ≤ 0, J1 = 1 and tc = dTc/he.
Since Gi = (Ng/N)(Ji + 0.5Ci), iterating over the previous
expression while Gi ≤ Ng allows obtaining the infected nodes
of a group (Gi) up to the time when all nodes of the group
are infected.

This model was validated using a procedure similar to the
one described in [6] comparing the results obtained with our
analytical model with those obtained using a custom simulator
that implements the contact-based message diffusion.

IV. EVALUATION RESULTS

This section is devoted to evaluating the diffusion of
messages based on the model introduced in the previous
section. For the following evaluations we consider a square
area with side l = 100m. In this area we consider 500
individuals (N = 500) that move freely, following the Random
Waypoint (RWP) model with a mean speed E[V ] = 0.5m/s
and no pause time. The communication range (r) is 7.5 m
with mean bandwidth of Bw = 2.1Mb/s and setup time
Ts = 0.1s, that are practical values of Bluetooth 2.0, Class 2
communication. In [2], it is shown that in a bounded domain
(such as the one adopted in this paper) the pairwise inter-
contact distribution between pairs of nodes following a RWP
model is nearly exponential with a contact rate given by the
following expression: λ ≈ 2.7366rE[V ]

l2 when r << l. Using
this expression, we obtain λ = 0.001s−1.

The goal of the first experiment, is to compare (and validate)
the results of our model with the ones obtained with the ONE
simulator. For our experiment, we used epidemic routing, all
nodes are destinations of the message (that is, Ng = N )
and the mobility model was set to RWP. Regarding the
communication time, the message size m was set to 512KB,
so Tc = 2.1s. The simulation was repeated 100 times, in order
to obtain the mean and confidence intervals. In figure 1 we can
see the cumulative number of nodes with copy (I(t)), using
the DDE model, the custom simulator and the ONE simulator
(with mean and 95% confidence intervals). The results show
that the DDE model results are close to the experimental
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Fig. 1: Number of nodes with copy, for a message size m = 512KB.

time (s)
0 10 20 30 40 50 60 70 80

N
o
d
e
s 

w
ith

 c
o
p
y

0

50

100

150

200

250

300

350

400

450

500
Simulation
Model
E[T

d
]

N
g
=350

N
g
=200

N
g
=50

N
g
=100

N
g
=N=500

Fig. 2: Message diffusion for different group sizes (Ng = 50, 100, 200, 350).
The marks in the plots represent the average delivery time E[Td].

result, validating again our model. More experiments were
performed with the ONE simulator with different sizes and
mobility parameters obtaining similar results.

The next experiment evaluates the impact of group size
on message diffusion. The message size was set to 1MB (so
Tc = 4.1s) and the number of members in the group was set
to 50, 100, 200 and 350 members, respectively. Figure 2 show
the results for the model and our custom simulator. First of all,
we can see that the curves for the simulation and our model
are similar, validating the results of the model. Regarding
diffusion, the pattern is very similar for all curves, being
characteristic of a typical exponential spread of the message,
and the average delivery time increases with the group size.

In the third experiment, we evaluate the impact of message
size on diffusion in a group (Ng = 100). Specifically, we plot
I(t) and G(t), until all nodes in the group are infected (receive
the message). The results are shown in figure 3. The first
three curves have the following message sizes: m = 1KB (a
typical text message); m = 512KB (a photo, for example); and
finally m = 2MB (a short video). The diffusion of messages
follows an exponential curve typical of epidemic diffusions,
following expression 3. The curve at the right corresponds
to a message size of m = 10MB. In this curve, we can see
clearly the effect of the message communication time, and how
the number of infected nodes doubles approximately every Tc
seconds (Tc ≈ 40s). This effect is very important because,
when the communication time is high, message spreading is
delayed by this time and not by the contact rate. In fact, we
can see that the number of infected nodes doubles after each
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Fig. 3: Diffusion of one message for different sizes.

period, as represented by expression 4.
The goal of this final experiment is to evaluate the average

delivery time E[Td] in a group depending on the number of
nodes, and for different group sizes. Figure 4 shows the results
for two message sizes (1MB and 10MB). For m = 1MB, the
delivery time decreases exponentially when N < 500. For
higher values of N , the delivery time decreases very slowly,
so the epidemic diffusion to these nodes does not produce a
significant improvement. For m = 10MB (a diffusion bounded
by the message communication delay), we can see that the
delivery time is higher, and it does not decrease with the
number of nodes; in fact, it slightly increases with the number
of nodes. In order to explain this behaviour we plot the two
components of the delivery time in figure 4b, for group size
Ng = 50. We can see that for m = 1MB, the message
communication delay is nearly constant, so the whole diffusion
time decreases when the contact waiting delay decreases.
Nevertheless, for m = 10MB, we can see that although the
contact waiting delay decreases exponentially for N < 200,
then, as the message communication delay increases, it slightly
increases the whole delivery time.

Finally, repeating the previous experiments for different
network parameters and message sizes, we can see that when
the message delay Dm is greater than approximately 75% of
E[Td], the effect of the message communication constrained
delay is clearly evidenced, thus producing an increase of the
delivery time when the number of nodes increases.

V. CONCLUSIONS

In this paper, we study the diffusion of messages in a group,
based on direct contact transmission, using an DDE based
model. This model takes into account the communication time
which is shown to be a key aspect in the diffusion of messages.
No previous evaluation model takes into account this delay.

Based on the evaluation results, we can see that, when
the message communication time (Tc) is high, the overall
message diffusion is bounded by this time (when message
transmission delay is greater than 75% of the delivery time)
and the effect is that the diffusion time increases slightly when
the number of nodes increases (as opposed to the always
decreasing diffusion time of the epidemic diffusion with no
delay). In this situation, the epidemic diffusion is not optimal
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Fig. 4: Delivery time depending on the number of nodes. a) Results for
message sizes 1MB and 10MB. For the curves labeled (Ng = 5, Ng = 50)
the nodes in the group are constant (5 and 50) and for Ng = N , the size of
the group is N (all nodes). b) Components of delay for group size Ng = 50.

since it loses time transmitting the message to all the nodes,
so alternative diffusion protocols must be considered.
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