
 

Document downloaded from: 

 

This paper must be cited as:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The final publication is available at 

 

 

Copyright 

 

Additional Information 

 

https://dx.doi.org/10.1016/j.agee.2015.08.001

http://hdl.handle.net/10251/64309

Elsevier Masson

Calabuig Gomar, A.; Garcia Marí, F.; Pekas, A. (2015). Ants in citrus: impact on the
abundance, species richness, diversity and community structure of predators and
parasitoids. Agriculture, Ecosystems and Environment. 213:178-185.
doi:10.1016/j.agee.2015.08.001.



Running head: ants and natural enemies 

 

Title: Ants in citrus: impact on the abundance, species richness, diversity and community 

structure of predators and parasitoids 

 

Authors: Altea Calabuiga, Ferran Garcia-María, Apostolos Pekasa 

aInstituto Agroforestal Mediterráneo (IAM), Universitat Politècnica de València, Camí de 
Vera s/n, 46022, València, Spain 

 

Corresponding author:  

Altea Calabuig Gomar, alteac@outlook.com Tel. +34651995119, Fax +34963877331 

E-mail address: alteac@outlook.com 

 

 

 

 

 

 

 

 

 

 

  

mailto:alteac@outlook.com


Abstract 

Although ants act as plant biotic defences, in agricultural ecosystems they are often associated 

with outbreaks of honeydew-producing pests mainly due to the protection they offer to the 

plant feeders in exchange for honeydew. In such an interaction ants may alter the abundance, 

diversity and community structure of predators and parasitoids. In the present study, we 

conducted ant-exclusion experiments in three commercial citrus orchards, each one 

dominated by one ant species (Pheidole pallidula, Lasius grandis or Linepithema humile) 

during two consecutive years (2011 and 2012). We then compared the abundance, species 

richness, diversity and community structure of predators and parasitoids between the ant-

allowed and ant-excluded treatments. A total of 176,000 arthropods belonging to 81 taxa 

were captured and identified. Regarding abundance, our results showed a species specific 

response between treatments. When examining functional groups, in the ant-allowed 

treatment, seven species of predators decreased and four increased in abundance, whereas 

four species of parasitoids decreased and 18 increased in abundance. The species richness (S) 

was significantly lower for predators and higher for parasitoids in the ant-allowed treatment. 

The Shannon diversity index (H) was not different between treatments in the case of 

predators, whereas in the case of parasitoids diversity was significantly higher in the ant-

allowed treatment. Finally, the community structure of predators and parasitoids was not 

significantly different between treatments. These results suggest that ants in the citrus 

agroecosystem are not associated with a dramatic decrease in natural enemy abundance or 

biodiversity; on the contrary ants were associated with increased parasitoid species richness 

and diversity. Despite the fact that ants have no negative impact on the abundance and 

diversity of predators and parasitoids at the community level their impact on specific natural 



enemy species, mainly predators, may explain the highest pest densities associated with ants 

in citrus. 

 

 

Keywords: biodiversity, biological control, ant exclusion, citrus agroecosystems, multitrophic 

interactions   



1. Introduction 

Ants are keystone species affecting directly and indirectly the ecosystem structure and 

functioning. Ants may act as soil tillers, seed dispersers, pollinators (Beattie, 1985), predators 

(Karhu, 1998; Olotu et al., 2013) and are involved in various mutualisms (Rosumek et al., 2009; 

Way, 1963). Especially mutualisms have been found to have broader effects on the wider 

arthropod community affecting eventually plant health (Eubanks and Finke, 2014; Kaplan and 

Eubanks, 2005). One of the best studied mutualisms involving ants is the relationship with 

honeydew producing hemipterans, in which ants use the honeydew excreted as an important 

carbohydrate source and, in turn, protect hemipterans from their natural enemies (Bartlett, 

1961; Carroll and Janzen, 1973; Hölldobler and Wilson, 1990; Way, 1963). As a result, ant-

tending may have wider community-level consequences by altering the abundance and 

distribution of predators and parasitoids (Styrsky and Eubanks, 2007; Tena et al., 2013). These 

interactions play an important role in natural and most crucially in agricultural ecosystems 

since biological pest control provided by predators and parasitoids, an important ecosystem 

service (Naylor and Ehrlich, 1997), may be negatively affected by ant activity (DeBach et al., 

1951; Martínez-Ferrer et al., 2003) 

The impact of ants on natural enemy abundance, diversity or community structure varies 

considerably depending on the natural enemy species as well as on the species of ants 

involved or the ecosystem where the study took place (Table 1 and references therein). 

Whereas several studies have demonstrated a negative impact of ants on the abundance of 

natural enemies (Eubanks, 2001; James et al., 1999; Kaplan and Eubanks, 2005; Piñol et al., 

2012a) others find no effect (Chong et al., 2010; Gibb, 2003; Offenberg et al., 2005) or even 

find positive effects of ants on the community of natural enemies (Peng and Christian, 2013; 

Stewart-Jones et al., 2007). The same or even greater variability is reported at the species 

http://www.sciencedirect.com/science/article/pii/S0921800907001462#bib40


level; natural enemies, even species belonging to the same taxonomic order, may be affected 

differently by ants. For example, several studies have shown that ants have a negative impact 

on certain coccinellid species (Bartlett, 1961; Itioka and Inoue, 1996; Kaplan and Eubanks, 

2002), but other coccinellid species are not affected (Flanders, 1958; Vanek and Potter, 2010) 

or even increase their densities under ant presence (Daane et al., 2007; Völkl and Vohland, 

1996). Likewise, the activity of several parasitoid species is disrupted by ants (Bartlett, 1961; 

Martínez-Ferrer et al., 2003; Mgocheki and Addison, 2009) while others are able to parasitize 

ant-tended plant feeders (Barzman and Daane, 2001; Flanders, 1958; Völkl, 1994).  

Several studies have examined the multitrophic interactions involving ants and natural 

enemies in citrus in different parts of the world (Dao et al., 2014; James et al., 1999; Piñol and 

Espadaler, 2010; Piñol et al., 2012a; Yoo et al., 2013) yet again there are no studies examining 

the impact of ants simultaneously on predator and parasitoid species. Most of the studies 

focus on predators from different taxa but little is known about the impact of ants on the 

diversity and abundance of parasitoids, which are often studied as a single group in the order 

Hymenoptera. Knowledge about the impact of ants on the abundance, diversity and 

community structure of natural enemies in the citrus agroecosystem will provide useful 

insights and can help us to clarify the role of ants in biological control. 

Thus, our research focuses on determining the impact of ants on the abundance, diversity and 

community structure of predators and parasitoids in Mediterranean citrus orchards. We 

performed an ant-exclusion experiment during two consecutive years in three commercial 

citrus orchards each one with a different dominant ant species. The main objectives of the 

study were: (1) to know, describe and quantify the community of predators and parasitoids in 

the three citrus orchards (2) to test whether ants impact the abundance of predators and 



parasitoids and (3) to test whether ants impact the species richness, diversity and community 

structure of predators and parasitoids. 

 

2. Materials and methods 

2.1 Study sites 

The study was conducted during two consecutive growing seasons, from April 2010 to 

November 2011, in three commercial citrus orchards located in an extensive citrus-growing 

area located 30 km south of Valencia, eastern Spain (39º 12’ N, 0º 20’ W; 39º 11’ N, 0º 20’ W 

and 39º 14’ N, 0º 15’ W). The climate is Mediterranean, with a rainy spring and autumn and a 

dry winter and summer. The orchards were flood irrigated and weeds were controlled by local 

application of herbicides (Glyphosate®, Bayer CropScience, Spain). Two orchards were of 

sweet orange Citrus sinensis (L.) Osbeck (cv. Navelina) and one of a mixture of two species, 

sweet orange C. sinensis (cv. Navelina) and Clementine mandarin Citrus reticulata Blanco (Cv. 

Clementina Fina). In all orchards trees were more than 10 years old.  No insecticides were 

sprayed in the previous five years or during the two-year experimental period. In each 

orchard, a behaviourally dominant ant species was present. From now on we will refer to the 

orchards according to the acronym of the predominant ant species present. Thus, in the 

orchard PP the predominant ant species was Pheidole pallidula (Nylander), in the orchard LG 

the predominant ant species was Lasius grandis Forel and in the orchard LH Linepithema 

humile (Mayr) was the only ant species present and foraging on the tree canopies (for details 

see Calabuig et al., 2013). 

2.2 Experimental design 



At each orchard, the experimental design was a randomized block with four replicates (blocks) 

of two adjacent treatments (plots): ant-allowed and ant-excluded trees. Each plot contained 

16 trees (four rows by four trees per row). Ants were excluded in the 16 trees of the ant-

excluded plots and left unaffected in the 16 trees of the ant-allowed plots. Only the four 

central trees of each plot were used for the samplings. With that method we ensure that 

arthropods captured came from the trees of the same plot and corresponding treatment. Ant-

exclusion began in April 2011 and was maintained until November 2012 (19 months). During 

the first season (2011), ant exclusion was achieved by painting a 25-cm wide band of 

insecticidal paint in a micro-encapsulated formulation (Inesfly FITO© (chlorpyrifos 3%)), 

Industrias Químicas Inesba S.L., Paiporta, Spain) on the trunk. To ensure that no ants reached 

the tree canopies, ant-excluded trees were inspected every month and the band was 

repainted if ants were observed crossing the band. Due to the fact that we observed ants 

crossing the painted bands in some of the trees during the first growing season we changed 

the ant exclusion method during the subsequent season. Thus, during 2012, ant exclusion was 

conducted by applying Tangle-trap® (Tanglefoot, Biagro, Valencia, Spain) sticky barrier on the 

tree trunks. Sticky barriers were inspected every month and, if necessary, the Tanglefoot was 

renewed; in any case, Tanglefoot was renewed routinely every two months. Trees were 

pruned periodically and ground vegetation was trimmed to prevent alternative ways for ants 

to reach the canopies. 

2.3 Arthropod sampling and classification 

Arthropods on the tree canopies were sampled with yellow sticky traps and by using an 

aspiration vacuum device. In each plot, one yellow sticky trap (Bug-scan, Biobest®), 100 mm x 

250 mm, was placed at 1.60 m high in the middle of the plot by hanging it on a twig. Aspiration 



samples were taken from the four central trees of each plot using a modified vacuum sampler 

(Komatsu Zenoah Co. HBZ2601) consisting on a reversed leaf-blower with a mesh bag to retain 

the sample. The vacuum sampler was applied on the canopies during one minute on each one 

of the four central trees of the plot. The sticky traps were replaced monthly, from April 2011 

to November 2012 whereas aspiration samples were taken monthly from April to August and 

bimonthly from September to December in 2011 and 2012. Samples were transferred to the 

laboratory and maintained in a freezer until their identification. 

All natural enemies captured were counted and identified. Most of them were identified to 

species or morphospecies level, while a few natural enemies were identified to genera or 

families. The use of morphospecies is a useful tool for studies that require taxonomic 

identifications of a great number of invertebrates without compromising scientific accuracy 

(Oliver and Beattie, 1996).  

2.4 Predator and parasitoid diversity 

The natural enemy diversity was measured in each sampling date by calculating the species 

richness S (number of species or morphospecies) and the Shannon diversity index H’  (Shannon 

and Weaver, 1949): 

𝐻′ = − ∑ 𝑝𝑖 ∙ 𝑙𝑜𝑔𝑒 𝑝𝑖

𝑖=𝑆

𝑖=1

 

where 𝑝𝑖 is the proportion of individuals of each species (up to a total of S species) in each 

sample. In the calculation of species richness and diversity we included the natural enemies 

identified to species or morphospecies level. Hyperparasitoid species and species belonging 

to the fourth trophic level were not included in these analyses.  



2.5 Statistical analysis 

All analysis were performed using all the captures of each month with both traps and 

aspiration samples (i.e. May, June, July, August, October and December for 2011 and April, 

May, June, July, August, September and November in 2012). 

To compare the abundance of specific natural enemies in ant-allowed and ant-excluded 

treatments we included only those species with more than 40 individuals captured in total 

during the two seasons of the study in the three orchards. We applied repeated measures 

ANOVA on the abundance of every species, either at each orchard or globally, i.e. considering 

the three orchards together. Treatment (ant-excluded versus ant-allowed) was the fixed 

factor and orchard (in the global analysis), bloc (nested into orchard) and sampling date were 

random factors. Data were log-transformed in order to meet normality assumptions. All 

ANOVAS were conducted using Statgraphics 5.1 software (Statgraphics, 1994). 

Repeated measures analysis of variance (ANOVA) were applied to compare the species 

richness (S) and the Shannon diversity index (H’) in ant-allowed and ant-excluded treatments 

in each orchard and globally. Treatment (ant-excluded versus ant-allowed) was the fixed 

factor and orchard (in the global analysis), bloc (nested into orchard) and sampling date were 

random factors. For the community structure analysis we included all natural enemies 

identified to species or morphospecies. To compare the community structure of natural 

enemies in ant-allowed and ant-excluded treatments, permutational multivariate analyses of 

variance (PERMANOVA) were applied to predators and parasitoids abundances using the 

adonis function in the vegan package (Anderson, 2001; Oksanen et al., 2009) in R (R 

Development Core Team, 2014). A separate PERMANOVA was conducted in each orchard for 

each year. Distance matrices for use in PERMANOVA were constructed using the Bray-Curtis 



index, and P-values were generated using F-tests based on sequential sums of squares from 

99999 permutations of the raw data. Additionally, a nonmetric multidimensional scaling 

(NMDS) was conducted to analyse the natural enemy community composition at each orchard 

and year in ant-excluded and ant-allowed treatments. NMDS analysis applied a square-root 

transformation and calculated the Bray-Curtis distances for the community matrix. NMDS 

analyses were conducted using R (R Development Core Team, 2014).  

 

3. Results 

A total of 176,000 arthropods belonging to 81 taxa were captured and identified in all 

samplings in the three orchards, including sticky traps and aspiration of the canopies. Of them, 

53 taxa contained more than 40 individuals: 18 taxa of predators, 31 of parasitoids and 4 

belonging to the fourth trophic level. These were the taxa included in the comparative 

analyses of abundance (Table 2). Among predators, the most abundant order was Neuroptera 

and the most abundant species were Semidalis aleyrodiformis Stephens and Conwentzia 

psociformis (Curtis) (both Neuroptera: Coniopterygidae). In the case of parasitoids, all of them 

belonging to the order Hymenoptera, the most abundant group was the superfamily 

Chalcidoidea, being Aphytis chrysomphali (Mercet) and Cales noacki Howard (Aphelinidae) the 

most abundant species (Table 2). 

 

3.1 Abundance of parasitoids and predators 

When comparing the abundance of specific species or arthropod taxa between treatments we 

observed different responses depending on the functional group and species of the natural 



enemy examined. From the 53 global comparisons of particular taxa of natural enemies 

between ant-allowed and ant-excluded trees, 21 (40%) showed a significant differences 

between treatments. When separated according to functional groups, 44% of the predator 

and 37% of the parasitoid taxa were affected by ants (Table 1). Further, in the comparisons 

obtained considering orchards individually, the percentage of taxa of natural enemies 

significantly affected by ants was 38% in orchard LH, 31% in orchard PP and 27% in orchard LG 

(Table 1). 

In those cases where we detected significant differences between treatments we observed a 

general pattern. In the ant-allowed treatment predator abundance was significantly lower 

(seven species decreased and four increased in at least one orchard) whereas parasitoid 

abundance was higher (four species decreased and 18 increased in at least one orchard).  

The abundance of natural enemies in ant-allowed and ant-excluded treatments also varied 

depending on the species of natural enemy (Table 1). This can be clearly seen for the following 

species by examining their seasonal population development in the ant-allowed and ant-

excluded trees in the three orchards. The abundance of the generalist predators Chrysoperla 

carnea sensu lato (Stephens) (Neuroptera: Chrysopidae) and Cardiasthetus sp. (Heteroptera: 

Anthocoridae) was significantly lower in the ant-allowed trees. On the contrary, the 

abundance of parasitoids such as Aphytis hispanicus (Mercet) attacking Parlatoria pergandii 

Comstock (Hemiptera: Diaspididae), and Anagyrus sp. (Girault) (Hymenoptera: Encyrtidae) 

attacking pseudococcids, was significantly higher in the ant-allowed trees (Fig. 1).  

Among true bugs (Heteroptera) the abundance of the myrmecomorphic Pilophorus sp. 

(Heteroptera: Miridae) was significantly higher in the ant-allowed treatment, especially in the 

orchard dominated by L. grandis (LG), whereas the abundance of other true bug species such 



as Cardiasthetus sp. (Heteroptera: Anthocoridae) or Campyloneura virgula (Herrich-Schäffer) 

(Heteroptera: Miridae) was significantly lower in the ant-allowed treatment (Fig. 2).  

We captured several species belonging to the 4th trophic level (most of them identified as 

morphospecies) in the citrus canopies. Marietta sp. (Hymenoptera: Aphelinidae), 

hyperparasitoid of coccid parasitoids, and Ablerus sp. (Hymenoptera: Aphelinidae), 

hyperparasitoid of diaspidid partasitoids, were significantly more abundant in the ant-allowed 

treatment. The abundance of Pachyneuron sp. (Hymenoptera: Pteromalidae), hyperparasitoid 

of aphid parasitoids, was not significantly different between treatments. Helorus sp. 

(Hymenoptera: Heloridae), a parasitoid of chrysopid eggs, was less abundant in the ant-

allowed treatment. 

3.2 Species richness, diversity and community structure of predators and parasitoids 

Overall, in the ant-allowed treatment the species richness (S) was significantly lower for 

predators and higher for parasitoids when compared with the ant-excluded trees. This impact 

of ants observed globally was, nevertheless, significant only in one orchard for predators and 

two orchards for parasitoids when examining the three orchards separately (Table 3). 

The Shannon diversity index (H) was not different between the ant-allowed and ant-excluded 

treatments in the case of predators, whereas in the case of parasitoids diversity was 

significantly higher in the ant-allowed treatment both in the global analysis and in the three 

orchards analyzed individually (Table 3). 

The multivariate test showed that the community of parasitoids changed significantly in the ant—

allowed treatment in 2012 in the orchard LH (Table 4). In the other orchards and/or years the 

community structure was not different between treatments. Moreover, the ordination plot NMDS did 



not show a clear separation between ant-allowed and ant-excluded treatments in the community 

structure of the natural enemies (Fig. 3). 

 

4. Discussion 

Our results show that the community structure of predators and parasitoids was not 

significantly different between the ant-allowed and the ant-excluded treatments. However, 

when analyzing the effect of ants on the abundance of different species of natural enemies 

the results differ across species or taxa. The abundance of some species was lower in the ant-

allowed treatment while for others it was unaffected or even higher. In general terms, we 

observed lower predator and higher parasitoid abundance in the ant-allowed treatment 

compared to the ant-excluded treatment. Most crucially, the species richness and diversity of 

parasitoids was higher in the ant-allowed treatment whereas the diversity of predators was 

not different between treatments.  

4.1 Abundance of predators and parasitoids 

It has been largely assumed that ant attendance offers hemipterans a protective service 

against parasitoids (Buckley, 1987; Flanders, 1951; Steyn, 1954). However, the abundance of 

most species of parasitoids in our study was either not affected by ants or was higher in the 

ant-allowed treatment. This effect seems to be related, at least in some cases, with the impact 

of ants on the parasitoids host populations and/or with the ability of the concrete species to 

cope with ant aggression. Often, honeydew producing pests are more abundant under ant 

protection and eventually this might explain the higher abundance of their parasitoids in the 

ant-allowed treatment. Parasitoids of honeydew producing pests, such as the soft scale 



parasitoids Metaphycus helvolus Compere, Metaphycus flavus Howard and Encyrtus sp. 

(Hymenoptera: Encyrtidae) or the mealybug parasitoid Anagyrus sp. were, in general, more 

abundant in the ant-allowed treatment, especially in the orchard LH. The overall abundance 

of Aphidiinae (Hymenoptera: Braconidae), parasitoids of aphids, was similar between 

treatments. However, when examining the response of different species within Aphidiinae the 

picture was different: Lysiphlebus sp. was significantly more abundant and Aphidius sp. was 

significantly less abundant in the orchard PP in the ant-allowed treatment. Völkl (1992) and 

Liepert and Dettner (1993) showed that ants attacked and killed Trioxys angelicae 

(Hymenoptera: Braconidae) while ignored Lysiphlebus cardui Marshall (Hymenoptera: 

Braconidae) due to chemical mimicry. On the other hand, Powell and Silverman (2010) 

reported that Aphidius colemani Viereck (Hymenoptera: Braconidae) were negatively 

impacted by L. humile and Tapinoma sessile (Say). In general, we may have two contrasting 

effects of ant attendance on parasitoids: ants disturb parasitoids but, on the other hand, 

increased populations of Hemiptera might result in potentially more hosts and eventually to 

higher parasitoid populations. 

It was surprising to see that Encarsia inquirenda Silvestri and A. hispanicus (Hymenoptera: 

Aphelinidae), parasitoids of P. pergandii, that does not produce honeydew and therefore is 

not tended by ants, were more abundant in the ant-allowed treatment both globally and on 

each orchard individually (except in the orchard LG for E. inquirenda). Apparently, ant 

presence is associated with increased abundances of P. pergandii, as already found for other 

armored scales (Calabuig et al., 2013; Pekas et al., 2010; Yoo et al., 2013). Other parasitoid 

species of non-honeydew producers did not follow this trend. In the case of Aphytis melinus 

DeBach (Hymenoptera: Aphelinidae) and A. chrysomphali, parasitoids of Aonidiella aurantii 

Maskell (Hemiptera: Diaspididae), we observed no differences in their abundance between 



treatments except in the orchard LH where the populations of A. chrysomphali were 

significantly higher in the ant-allowed treatment. 

Predator abundance, at least for the most common species, was lower in the ant-allowed 

treatment. It is important to highlight the case of the chrysopids (green lacewings), C. carnea 

sensu lato and C. septempunctata. These species are considered important biological control 

agents in many agroecosystems (Senior and McEwen, 2001) and are among the most 

abundant predators in Mediterranean citrus orchards, preying upon a wide range of pests 

(Garcia-Marí, 2012). Our results are in agreement with other studies which have also found 

lower densities of chrysopids in ant-allowed treatments (James et al., 1999; Kaplan and 

Eubanks, 2002; McPhee et al., 2012; Vanek and Potter, 2010). Several authors reported 

aggressive behavior of different ant species against chrysopids (Bartlett, 1961; Vanek and 

Potter, 2010) or ant predation on chrysopid eggs (Dreistadt et al., 1986; Morris et al., 1998) 

which may result in lower chrysopid populations. 

Regarding the impact of ants on coccinellids (Coleoptera) our results show great variability 

depending on the species examined. Stethorus punctillum Weise and Rodolia cardinalis 

Mulsant were less abundant in the ant-allowed treatment in orchard PP while Delphastus 

catalinae Horn and Scymnus subvillosus Goeze were more abundant in the ant-allowed 

treatment in orchard LH. The response of coccinellids to ant attacks differs between species 

(Jiggins et al., 1993) and some coccinellid species can cope with ant agression through 

morphological, behavioural or chemical adaptations. For example, Völkl and Vohland (1996) 

found higher populations of Scymnus sp. in ant attended resources due to the protective wax 

cover of the Scymnus larvae which allow them to predate upon honeydew producers tended 

by ants.  



For the two most abundant species of predatory Heteroptera (true bugs) Cardiasthetus sp. 

and Campyloneura virgula we registered lower populations in the ant-allowed treatment. In 

an 8-year study, (Piñol et al., 2012b) also found lower abundance of predatory Heteroptera 

especially Cardiasthetus fasciiventris in ant-allowed trees. It is interesting to mention the 

higher populations of Pilophorus sp. in the ant-allowed treatment. These results are in 

agreement with other studies reporting a strong positive association between the ant L. 

grandis and Pilophorus sp. (Piñol et al., 2012b; Sanchez and Ortín-Angulo, 2012).This species 

exhibits mirmecomorphy that allows it to benefit from ant presence.  

The abundance of some species from the 4th trophic level was also found to be different 

between the ant-allowed and ant-excluded treatments. This is apparently related with the 

abundance of their primary hosts. The hyperparasitoid of diaspidids Ablerus sp., which was 

present only in the orchard LH, was more abundant in the ant-allowed treatment, following 

the effect observed for its primary host A. chrysomphali. The hyperparasitoid Marietta sp. was 

also more abundant in the ant-allowed treatment, following the effect observed for the 

encyrtid parasitoids of coccids. The parasitoid of chrysopid eggs Helorus sp., on the other 

hand, was less abundant in the ant-allowed trees following the trend observed for its host. 

Several studies have demonstrated that some parasitoids benefit from ant attendance 

because ants may reduce hyperparasitism by disturbing hyperparasitoids (Sanders and Frank 

Van Veen, 2010; Völkl, 1992). On the other hand, intraguild predation caused by higher 

abundance of predators in ant excluded trees, which may predate upon parasitized hosts, may 

decrease the populations of some parasitoids and eventually hyperparasitoids (Kaneko, 2006, 

2002; Novak, 1994). 

4.2 Species richness, diversity and community structure of predators and parasitoids 



Previous studies in several ecosystems showed a decrease of arthropod diversity as a result of 

ant activity (Human and Gordon, 1997; Wimp and Whitham, 2001). Nevertheless, it is difficult 

to compare these results with ours given that the previous studies focused on overall 

arthropod communities including different guilds such as herbivores. On the other hand, 

(Peng and Christian, 2013) found that weaver ants either had no impact or increased the 

diversity of natural enemies in cashew and mango trees. To our knowledge, the present study 

is the first to demonstrate a significant increase on the species richness as well as on the 

Shannon diversity index for parasitoids in the ant-allowed treatment. 

Our results show that the community structure of predators and parasitoids on the citrus 

canopies were similar between treatments. Previous studies also found that ants did not affect 

the overall arthropod communities in vineyards (Chong et al., 2010), peaches (Mathews et al., 

2009) or coffee (Philpott et al., 2008). Conversely, Piñol et al. (2012a), in an 8-year exclusion 

experiment, reported that ants changed the arthropod community in a citrus orchard in some 

years of the study. Differences in the results obtained in the different studies might be 

attributed to the different species of ants and/or the characteristics of the experimental 

orchards.  

Despite L. humile having been described as an aggressive and very disruptive ant species for 

biological control (Markin, 1970), in our study we found no significant effects on the 

community structure of natural enemies. The same can be deduced for the native to the 

Mediterranean species in our study, L. grandis and P. pallidula. In fact, the impact of the three 

species on the community structure of natural enemies was quite similar. In a previous study 

it was found that the three ant species induced similar increases of the herbivore populations 

A. aurantii and A. floccossus (Calabuig et al., 2013).  



In conclusion, our ant exclusion study reveals that ants in citrus are not associated with a 

dramatic decrease in natural enemy abundance or biodiversity at the community level. The 

impact of ants on the natural enemies depends mostly on the species of natural enemy; even 

closely related species showed different or opposite responses to ant activity. In spite of the 

species specific response of natural enemies, we detected a general tendency related to 

functional groups: predator abundance and diversity decreased whereas parasitoid 

abundance and diversity increased in the ant-allowed treatment. These results may have 

practical implications for biological pest control. Despite the fact that ants have no negative 

impact on the abundance and diversity of predators and parasitoids at the community level 

their impact on specific natural enemy species may explain the highest pest densities 

associated with ant presence in citrus (Calabuig et al., 2013; Dao et al., 2014; Pekas et al., 

2010; Yoo et al., 2013). This would also highlight the importance of certain species, especially 

predators, rather than natural enemy assemblages on regulating pest populations as recently 

was demonstrated in olive groves in the Mediterranean (Paredes et al., 2015). 
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Table 1. Studies examining the impact of ants on the diversity, community structure or 

abundances of natural enemies in different ecosystems. 

Reference Ecosystem 
IMPACT OF ANTS  

Diversity index Community structure Natural enemy abundance 

James et al., 1999 1 Citrus orchard n.d.* n.d 
Negative impact (in some seasons) on predatory 
beetles, lacewings, parasitic wasps and spiders. 

Piñol et al., 2012 1 Citrus orchard n.d 
Impacted (includes 

herbivores) 
Negative impact on several orders (analyzed at 

order level) 

Philpott et al., 2008 3 Coffee farms n.d 
Impacted (includes 

herbivores) 
No impact (order level). 

Philpott et al., 2004 1 Coffee farm n.d 
Impacted depending on 
the ant species (includes 

herbivores) 

Negative impact on Araneae and Coleoptera, but 
not other orders depending on the ant species. 

Mody and 
Linsenmair, 2004 

Pseudocedrela 
kotschyi trees 

n.d n.d 
Negative impact on Araneae, Coleoptera, and 

Hymenoptera. 

Peng and Christian, 
2013 

1 Cashew and 1 
Mango orchard 

Ants increased 
diversity of natural 
enemies in Cashew 

n.d 
No effect of ants in Mango and higher 

abundances in ant presence in Cashew (all 
natural enemies pooled). 

Offenberg et al., 
2005 

Mangrove trees n.d No impact (only predators) Negative impact on predators 

Eubanks, 2001 3 Cotton fields n.d n.d 
Negative impact on numerous predator species 

and Hymenoptera (grouped as wasps). 

Human and 
Gordon, 1997 

Variable vegetation 
types 

No statistical 
analysis 

n.d 
Slightly negative impact on Araneae, Hemiptera 

and Cynipidae. 

Wimp and 
Whitham, 2001 

Poplar trees 
Ants reduced 

diversity (includes 
all arthropods) 

n.d 
Negative impact on generalist predators; 

positive impact on aphid natural enemies. 

Kaplan and 
Eubanks, 2002 

4 Cotton fields n.d n.d Negative impact on Chrysopids and Coccinellids,  

Kaplan and 
Eubanks, 2005 

2 Cotton fields n.d n.d Negative impact on predators 

Stewart-Jones et 
al., 2007 

2 Apple orchards n.d n.d Positive impact (all natural enemies pooled). 

Chong et al., 2010 1 Vineyard n.d No impact No impact 

Vanek and Potter, 
2010 

Maple trees and 
Magnolias 

n.d. n.d. 
Negative impact on Aranae, Crysopa rufilabris 

Burmeister and parasitic wasps (several species 
grouped) depending on the sampling date 

*n.d. Not determined 

 

  



Table 2. Total arthropods captured, arthropods captured in ant-allowed and ant-excluded 

trees (mean ± SE) and effect of ants, globally and for the three orchards separately, during two 

years, 2011 and 2012, in three citrus orchards.  

    Global  *Ant effect / 
Orchard 

Arthropods 
Total 

arthropods 
Principal prey 

 Arthropods / sample *Ant 
 effect 

 

 Ant-allowed Ant-excluded  LG LH PP 

Neuroptera           
Chrysopidae           

 Chrysoperla carnea (Stephens) 591 generalist  1.39 ± 0.19 2.70 ± 0.33 - -  - - - - - - 
 Chrysopa septempuctata Wesmael 39 generalist  0.07 ± 0.02 0.21 ± 0.04 - -  n.p. - - - - 

Coniopterigidae           
 Semidalis aleyrodiformis Stephens 29987 spider mites  107.39 ± 11.37 101.68 ± 10.46 0  0 0 0 
 Conwentzia psociformis (Curtis) 4395 spider mites  14.77 ± 3.65 15.84 ± 3.39 0  0 - 0 
 Coniopteryx sp. 65 spider mites  0.20 ± 0.04 0.25 ± 0.06 0  0 n.p. 0 

Coleoptera           
 Ragonycha sp.  235 generalist  0.59 ± 0.23 1.03 ± 0.32 0  0 n.p. 0 
 Cybocephalus sp. 131   0.67 ± 0.12 0.25 ± 0.05 +  0 + 0 

Coccinellidae           
 Scymnus subvillosus (Goeze) 1242 aphids  4.85 ± 0.41 3.83 ± 0.32 0  0 ++ 0 
 Rodolia cardinalis (Mulsant) 803 Icerya purchasi  2.54 ± 0.41 3.05 ± 0.50 0  0 0 - - 
 Delphastus catalinae Horn 626 whiteflies  2.22 ± 0.38 2.15 ± 0.49 ++  0 0 0 
 Clitosthetus arcuatus Rossi 258 whiteflies  1.57 ± 0.13 2.18 ± 0.18 0  0 0 0 
 Rhizobius lophantae Blaisdell 89 whiteflies  0.36 ± 0.10 0.26 ± 0.10 0  n.p. 0 n.p. 
 Stethorus punctillum Weise 82 spider mites  0.26 ± 0.07 0.31 ± 0.05 - -  0 0 0 

Diptera           
 Platypalpus sp.  1338   3.07 ± 0.83 6.20 ± 1.88 0  0 0 0 

Heteroptera           
Campyloneura virgula Herrich-Schäffer 745 generalist  2.04 ± 0.62 3.13 ± 0.71 - -  0 - - 
Cardiasthetus sp.  368 generalist  1.03 ± 0.15 1.53 ± 0.17 - -  - - 0 0 
Ploearia sp. 78 spider mites  0.27 ± 0.07 0.28 ± 0.06 0  0 0 0 
Pilophorus sp. 43 generalist  0.21 ± 0.04 0.09 ± 0.02 ++  + 0 0 

Hymenoptera           
Chalcidoidea           

Aphelinus sp.  127 aphids  0.21 ± 0.04 0.09 ± 0.02 0  0 0 0 
Aphytis hispanicus (Mercet) 7534 Parlatoria pergandii  35.34 ± 6.08 17.47 ± 1.92 ++  ++ ++ ++ 
Aphytis melinus DeBach 11694 Aonidiella aurantii  39.96 ± 5.53 41.50 ± 7.12 0  0 0 0 
Aphytis chrysomphali (Mercet) 50638 Aonidiella aurantii  167.94 ± 20.29 184.64 ± 21.83 0  + ++ 0 
Encarsia inquirenda (Silvestri) 3662 Parlatoria pergandii  15.21 ± 2.16 10.39 ± 1.22 ++  - - ++ ++ 
Encarsia sp. 1 59   0.26 ± 0.05 0.15 ± 0.03 ++  0 ++ 0 
Encarsia sp. 2 178   0.69 ± 0.34 0.55 ± 0.19 0  n.p. 0 n.p. 
Encarsia sp. 3 1029   4.50 ± 0.63 2.71 ± 0.32 ++  ++ ++ 0 
Cales noacki 18448 whiteflies  67.66 ± 8.16 61.01 ± 6.71 0  0 + + 
Marietta sp. ** 313 coccid parasitoids  1.36 ± 0.32 0.83 ± 0.21 ++  0 n.p. ++ 
Ablerus sp.** 645 diaspidid parasitoids  3.65 ± 0.96 0.90 ± 0.23 ++  n.p. ++ n.p. 
Eretmocerus sp. 102 whiteflies  0.35 ± 0.09 0.37 ± 0.09 0  n.p. 0 0 
Citrostichus phyllocnistoides 

(Naranayan) 
659 Phyllocnistis citrella  2.74 ± 0.86 1.86 ± 0.29 +  0 0 ++ 

Metaphycus helvolus (Compere) 4355 coccids  18.83 ± 3.58 11.64 ± 1.56 ++  0 ++ ++ 
Metaphycus flavus (Howard) 8005 coccids  29.43 ± 4.32 26.40 ± 4.03 0  0 ++ 0 
Metaphycus lounsburyi (Howard) 75 coccids  0.35 ± 0.12 0.17 ± 0.05 0  n.p. 0 n.p. 
Microterys nietneri  (Motschulsky) 184 coccids  0.54 ± 0.11 0.73 ± 0.13 0  0 + 0 
Anagyrus sp. 281 pseudococcids  1.43 ± 0.36 0.54 ± 0.11 ++  ++ ++ ++ 
Encyrtus sp. 62 coccids  0.33 ± 0.08 0.10 ± 0.04 ++  n.p. ++ n.p. 
Pachyneuron sp.** 65 aphid parasitoids  0.22 ± 0.08 0.23 ± 0.07 0  n.p. 0 n.p. 
Mymaridae 4932 cicadellidae  19.65 ± 2.09 14.80 ± 1.81 ++  + 0 + 
Trichogramma sp.  75 lepidoptera  0.29 ± 0.05 0.23 ± 0.05 0  + 0 0 

Ichneumonoidea           
Ichneumonidae 1038   3.70 ± 0.44 3.54 ± 0.43 0  ++ 0 0 
Microgastrinae 587 lepidoptera  1.82 ± 0.23 2.26 ± 0.30 0  0 0 - - 
Lysiphlebus sp. 93 aphids  0.42 ± 0.13 0.24 ± 0.08 0  0 0 ++ 
Aphidius sp. 45 aphids  0.15 ± 0.04 0.17 ± 0.05 0  - 0 - - 
Trioxys sp. 3451 aphids  11.94 ± 3.33 12.11± 3.09 0  0 0 0 
Alysinae: Alysinii 172 leaf miners  0.59 ± 0.08 0.69 ± 0.08 0  0 0 0 
Other Braconidae 270   1.01 ± 0.17 0.87 ± 0.14 0  0 0 0 



Proctotrupoidea           
Helorus sp.** 309 crisopids  0.80 ± 0.14 1.34 ± 0.18 - -  0 - - 0 

Chrysidoidea           
Chrysis sp. 62 hymenoptera  0.21 ± 0.09 0.22 ± 0.07 0  n.p. 0 n.p. 

Cynipoidea 286   1.03 ± 0.17 0.97 ± 0.18 0  0 0 0 
Ceraphronoidea           

Ceraphronidae 1083   4.26 ± 0.54 3.30 ± 0.34 ++  ++ 0 n.p. 
Megaspilidae 349   1.18 ± 0.18 1.25 ± 0.22 0  0 0 0 

Platygastroidea           
Scelionidae 10897   39.73 ± 4.00 36.27 ± 3.11 0  0 0 0 

* Repeated measures analysis of variance (ANOVA) was used, with treatment as fixed factor and time and block 
as random factors. In global analysis, orchard was set as random factor as well. The + indicates a slightly positive 
effect of ants on the abundance of the natural enemy (P<0.1); ++ indicates a significant positive effect of ants 
(P<0.05); - indicates a slightly negative effect of ants (P<0.1); - - indicates a significant negative effect of ants 
(P<0.05); n.p. indicates no presence of the natural enemy. LG: Lasius grandis orchard; LH: Linepithema humile 
orchard; PP: Pheidole pallidula orchard.  

** Species belonging to the 4th trophic level. 

  



Table 3. Impact of ants on Species richness (S) (mean ± SE) and Shannon diversity index (H) 

(mean ± SE) of predators and parasitoids, globally and for the three orchards separately. 

Species richness (S) 

 Predators  Parasitoids 

Orchard Ant-excluded Ant-allowed d.f. F P  Ant-excluded Ant-allowed d.f. F P 

LG 7.61 ± 0.37 6.96 ± 0.35 1,71 4.34 0.059*  11.02 ± 0.30 11.76 ± 0.33 1,71 5.50 0.037** 
LH 8.42 ± 0.43 8.55 ± 0.42 1,56 0.05 0.828  13.54 ± 0.56 15.50 ± 0.60 1,56 14.08 0.003** 
PP 7.35 ± 0.34 7.10 ± 0.38 1,75 0.76 0.401  11.58 ± 0.30 11.27 ± 0.31 1,75 0.78 0.396 

Global 7.77 ± 0.22 7.44 ± 0.23 1,250 4.93 0.045**  12.03 ± 0.24 12.59 ± 0.28 1,250 14.02 0.003** 

 

Shannon diversity (H) 

 Predators  Parasitoids 

Orchard Ant-excluded Ant-allowed d.f. F P  Ant-excluded Ant-allowed d.f. F P 

LG 0.66 ± 0.06 0.62 ± 0.07 1,71 0.16 0.699  1.41 ± 0.04 1.51 ± 0.03 1,71 5.98  0.031** 
LH 1.32 ± 0.08 1.45 ± 0.06 1,56 1.99 0.183  1.40 ± 0.05 1.54 ± 0.04 1,56 6.67  0.022** 
PP 0.69 ± 0.06 0.60 ± 0.06 1,75 1.50 0.245  1.37 ± 0.05 1.45 ± 0.05 1,75 5.28  0.040**  

Global 0.88 ± 0.04 0.84 ± 0.05 1,250 0.09 0.773  1.39 ± 0.03 1.49 ± 0.02 1,250 33.58 <0.001** 

Repeated measures analysis of variance (ANOVA) was used, with treatment as fixed factor and time and block as 
random factors. In global analysis, orchard was set as random factor as well. ** indicates a significant effect of 
ants (P<0.05) and * indicates a marginally significant effect (P<0.1). LG: Lasius grandis orchard; LH: Linepithema 
humile orchard; PP: Pheidole pallidula orchard.  

  



 

Table 4. Summary of the PERMANOVA results of the effect of ants on the predators and parasitoids 

communities in 2011 and 2012 in orchards LG, LH and PP.  

   Predators  Parasitoids 

Year Orchard  R2 P  R2 P 

2011 LG  0.077 0.742  0.105 0.630 

LH  0.301 0.059  0.210 0.288 

PP  0.372 0.057  0.199 0.200 

2012 LG  0.050 0.828  0.107 0.544 

LH  0.166 0.371  0.332     0.029** 

PP  0.395 0.085  0.043 0.943 

 

  



Figure legends 

Figure 1. Abundance of C. carnea s.l., Cardiasthetus sp., A. hispanicus and Anagyrus sp. in ant-allowed 

and ant-excluded trees during 2011 and 2012. Abundance is measured as the mean number of 

individuals captured in one sticky trap and four aspirations (one/tree) in each experimental plot (each 

plot consisted in 16 trees and only the four central trees were sampled; each orchard contained 8 plots, 

4 ant-allowed and 4 ant-excluded). 

Figure 2. Abundance of C. virgula and Pilophorus sp. in ant-allowed and ant-excluded trees during 2011 

and 2012. Abundance is measured as the mean number of individuals captured in one sticky trap and 

four aspirations (one/tree) in each experimental plot (each plot consisted in 16 trees and only the four 

central trees were sampled; each orchard contained 8 plots, 4 ant-allowed and 4 ant-excluded). 

Figure 3. Nonmetric multidimensional scaling (NMDS) diagram of predators and parasitoids mean 

abundances in ant-allowed and ant-excluded trees in the three orchards and two years of the study. 

Straight lines connect ant-allowed and ant-excluded results for each case. Circles connect the results 

for each year of the study. LG: Lasius grandis orchard; LH: Linepithema humile orchard; PP: Pheidole 

pallidula orchard.  
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