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Abstract.  
In this work we propose using phase diagrams for explaining the dynamical behavior of simple 
mechanical systems. First the motion of the system 𝑥𝑥(𝑡𝑡) is experimentally measured and then, 
the derivatives, 𝑣𝑣(𝑡𝑡) and 𝑎𝑎(𝑡𝑡), are obtained from it and the motion equation 𝑓𝑓(𝑥𝑥, 𝑣𝑣, 𝑎𝑎) = 0 is 
represented graphically. This idea is applied to the study of a system with linear viscous drag, 
explaining the evolution of the system towards the dynamical equilibrium point corresponding to 
the limit velocity. The phase diagrams of the viscous drag are compared with those of the 
Coulomb drag, which is not continuous and does not necessarily lead to a uniformly accelerated 
motion.The method is illustrated by an experiment in a dynamic track with magnetic damping. 
The use of phase diagrams allows checking the linearity of this damping. Moreover it allows 
identifying the existence of a small Coulomb drag between the track and the cart that appears as a 
small discontinuity of the function 𝑎𝑎(𝑣𝑣) when the direction of the movement changes.  
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1. Introduction 
 
Friction is an important part in the study of mechanics in the first year university. In high 

school, the Coulomb drag is studied in the context of constant forces and uniformly accelerated 

motions [1, 2]. 

The study of viscous friction is introduced in first year university courses. The simplest case 

is the linear friction 𝐹𝐹𝑟𝑟 =  − 𝐾𝐾 𝑣𝑣  that is applied to the analysis of problems like the fall of a 

sphere in a fluid in laminar regime (Stokes law) or the magnetic damping or the study of 

damped oscillations. Another kind of friction is the quadratic friction associated to the 

movement of objects inside a fluid in turbulent regime, such as the drag force in the air. 

The analysis of problems with viscous friction has a great docent interest, because it allows 

introducing important concepts such as the dynamical equilibrium and the limit velocity. In this 
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line, several experiences oriented to the study of the air drag in falling objects have been 

proposed [3-6].  

Despite its pedagogical interest, this kind of experiences presents some difficulties, both at 

the experimental and the methodological levels. From the experimental point of view, it is 

difficult to produce repeatable movements when working with light objects subject to the air 

drag. Even under very controlled conditions, the onset of turbulences or of the Magnus effect 

[7] may alter the measurement conditions quite. Besides, the dependence on the velocity of the 

viscous drag is not constant, and even may not follow a simple model. In fact, in turbulent 

regime, the relation force-velocity is statistic, and replicating the same experiment in the same 

conditions may produce different movements, which can be detected by measuring with enough 

precision [8,9]. 

 Magnetic damping is a good alternative for producing repeatable linear friction. If one puts 

magnets in a cart on an aluminum dynamical track, the Eddy currents associated to the flux 

variation generate a viscous friction of linear type and turbulence free, 𝐹𝐹𝑟𝑟 = −𝐾𝐾𝐾𝐾 , tending to 

compensate the flux variation (Lenz law). 

Besides the experimental drawbacks, one also must consider some methodological limitations. 

In most of the examined works, the dynamical analysis stands on stating Newton’s second law 

and integrating the differential equation for obtaining the movement equation, 𝑥𝑥(𝑡𝑡), which is 

tested against the experimental results. This procedure presents two important shortcomings. On 

one hand, it does not make much sense assuming a given dependence of the friction force when 

the objective is just determining a model for that force. This is especially important in the 

viscous friction case, where, in many instances, the model is not clear or even can vary along 

the motion [10]. Furthermore, as shown in [11], very different differential equations can give as 

result similar movement equations. 

On the other hand, in order to obtain the equation of the trajectory, one has to integrate 

differential equations that, sometimes, exceed the knowledge of first year students. For 

example, certain movements such as the parabolic shot with friction do not have explicit 

analytic solution and it must be obtained numerically [12-14].  

An alternative that avoids these limitations consists in checking the differential equation of 

the motion with the direct measurement of position, velocity and acceleration. This strategy has 

been used in former works by using photogrammetry and efficient techniques of numerical 

differentiation for estimating the values of the position and its derivatives [11, 15]. 

In this way, one can introduce in the first year syllabus some tools of great interest, such as 

phase diagrams. Traditionally, the phase diagrams have been frequently used in the study of 

nonlinear dynamics in different fields: economics [16], biological systems evolution [17], as 

much as in many specific physical phenomena such as non-linear coupled oscillations [18] or 

the non-linear dynamics of a pendulum [19]. In general, these kinds of diagrams are interesting 
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for the study of systems with complex dynamics, because they allow analyzing their evolution 

from expressions of the form 𝑓𝑓(𝑥𝑥, 𝑣𝑣,𝑎𝑎) = 0 without having to integrate any differential 

equation. Nevertheless, these diagrams have been scarcely used in the undergraduate physics 

laboratory, possibly due to the difficulty of measuring directly and with enough precision the 

involved variables. 

 In this line, the objective of the present work is to present a laboratory experiment for the 

first year of physics consisting in the analysis of mechanical systems subject to viscous friction 

by using phase diagrams. This procedure allows easily identifying the dependence of the 

friction force on the velocity, as much as deepening in important concepts such as limit velocity 

and dynamical equilibrium. For the experimental estimation of the relevant variables of the 

process, we propose a video photogrammetry system and advanced techniques of numerical 

differentiation [15]. This measurement system is adequate for the level of the undergraduate 

physics laboratory and has been utilized in former works for analyzing complex movements, 

obtaining satisfactory results [11]. 

 The use of the measurement technique alongside the phase diagrams allows detecting the 

coexistence of Coulomb and viscous frictions in the same experiment. This is difficult to 

observe from the fit of 𝑥𝑥(𝑡𝑡) so that it has not been considered in other works on the same 

experiment that used conventional measurement techniques. 

 

2. Material and Methods 

 

2.1. Theoretical frame 

The phase diagram is a graphic showing the relation between the different variables that define 

the dynamics of a movement, that is to say, relations of the form 𝑓𝑓(𝑥𝑥, 𝑣𝑣,𝑎𝑎) = 0. A point of the 

curve corresponds to a dynamical state of the system at a given time instant and the temporal 

evolution of the system is obtained moving along the curve. The phase diagrams allow 

qualitative studies of the differential equation without needing to solve it and provide insight 

into important characteristics such as dynamical equilibrium, periodicity or stability [20]. In 

summary, they are an interesting tool for analyzing complex problems in first year university 

courses, allowing the students to focus on the dynamical details instead of on solving an 

involved mathematical problem.  

 Now, we explain the 𝑎𝑎(𝑣𝑣) diagrams in different situations where linear viscous or Coulomb 

frictions appear in order to interpret the results of the experiment of movement with friction. 

2.1.1. Linear viscous friction. 

Figure 1 shows the forces scheme and the phase diagram 𝑎𝑎(𝑣𝑣) for the cases of a particle subject 

to linear viscous friction (a.1) and (a.2), respectively, and for the particle subject to linear 
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viscous friction plus a constant force, (b.1) and (b.2). From these diagrams it is easy to interpret 

the dynamics of the movement. Namely, the movement of a mobile launched with initial 

velocity on a horizontal plane with viscous friction (a.1) corresponds to segment BL in the 

phase diagram (a.2). The particle has positive speed and negative acceleration, and so the 

velocity decreases until reaching the equilibrium point, 𝑎𝑎 = 0, corresponding in this case to 

𝑣𝑣 = 0. If the particle is launched with negative velocity (towards the left), the movement 

corresponds to segment CL in the phase diagram. 

 Figure 1.b.1 shows the case where besides the friction force, there is a constant force, like 

the weight component in an inclined plane 𝐹𝐹𝑊𝑊 sin𝛼𝛼. Releasing the mobile with initial speed 

zero, the motion corresponds to segment 𝒂𝒂𝟎𝟎𝑳𝑳, which starts with velocity zero and positive initial 

acceleration. As the velocity increases, the friction makes the acceleration to decrease until 

reaching the dynamical equilibrium at point L where 𝑎𝑎 = 0 and 𝑣𝑣 = 𝑣𝑣𝑙𝑙𝑙𝑙𝑙𝑙. The starting point B 

means launching the mobile downwards with velocity greater than the limit velocity. On the 

contrary, to start from C implies launching the particle upwards (negative 𝑣𝑣). The particle 

climbs with decreasing velocity until stopping and then descends with increasing velocity 

tending to 𝑣𝑣𝑙𝑙𝑙𝑙𝑙𝑙 . 

 

 

Figure 1. Examples of movements with linear viscous friction. Forces scheme (a.1) and phase plane (a.2) 

of the motion in the horizontal plane. Forces scheme (b.1) and phase plane (b.2) of the motion in the 

inclined plane. 

 

If the model were not linear, instead of the line, we would have another curve, but always 

with negative slope at 𝑣𝑣 = 0 (or null, depending on the model).  The negative slope condition is 
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a characteristic of the dissipative forces that guarantees the existence of a limit velocity. 

Actually, if the intersection of 𝑎𝑎(𝑣𝑣) with the 𝑣𝑣-axis has negative slope, then, departing from 𝑳𝑳, 

the acceleration has opposite sign to the velocity and tends to return to this dynamical 

equilibrium point. A positive slope means that the particle accelerates if 𝑣𝑣 > 𝑣𝑣𝑙𝑙𝑙𝑙𝑙𝑙 or decelerates 

if 𝑣𝑣 < 𝑣𝑣𝑙𝑙𝑙𝑙𝑙𝑙, so that 𝑣𝑣 =  𝑣𝑣𝑙𝑙𝑙𝑙𝑙𝑙 is an unstable equilibrium point. 

Traditionally, this problem is solved by integrating the equation of the motion  

𝑚𝑚𝑚𝑚 sin𝛼𝛼 − 𝐾𝐾 𝑣𝑣 = 𝑚𝑚
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 (1) 

 
which allows obtaining 𝑣𝑣(𝑡𝑡) and 𝑥𝑥(𝑡𝑡). 

𝑣𝑣(𝑡𝑡) = 𝑣𝑣𝑙𝑙𝑙𝑙𝑙𝑙 �1 − 𝑒𝑒−
𝐾𝐾
𝑚𝑚𝑡𝑡� + 𝑣𝑣𝑜𝑜𝑒𝑒

−𝐾𝐾
𝑚𝑚𝑡𝑡 (2) 

𝑥𝑥(𝑡𝑡) = 𝑥𝑥𝑜𝑜 +
𝑚𝑚
𝐾𝐾

(𝑣𝑣𝑜𝑜 − 𝑣𝑣𝑇𝑇) �1 − 𝑒𝑒−
𝐾𝐾
𝑚𝑚𝑡𝑡� + 𝑣𝑣𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡 

(3) 

  

where 𝑥𝑥0 and 𝑣𝑣0 are the initial conditions for position and velocity. As the coefficients of the 

exponents show, the speed of convergence to the limit depends on 𝐾𝐾/𝑚𝑚. 

Moreover, the limit velocity 𝑣𝑣𝑙𝑙𝑙𝑙𝑙𝑙, given by (4) is obtained by imposing the equilibrium 

condition 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 0 on (1) and solving for 𝑣𝑣. In the horizontal plane case (figure 1 a.1) the limit 

velocity is 0. 

𝑣𝑣𝑙𝑙𝑙𝑙𝑙𝑙 =
𝑚𝑚𝑚𝑚 sin𝛼𝛼

𝐾𝐾
 (4) 

  

The experimental check of equation (3) is not a simple task for first year students, because they 

must know how to integrate the equation (this is easy in the linear case, but more difficult for 

quadratic friction or frictions of other type). Moreover, the fit of 𝑥𝑥(𝑡𝑡) to the experimental data is 

nonlinear. 

2.1.2. Coulomb friction. 

Figure 2 represents two configurations of a mobile gliding on a plane under the action of 

Coulomb friction. Scheme (a.1) corresponds to a body launched with positive initial velocity 𝑣𝑣0 

on a horizontal plane. The trajectory in the phase plane (a.2) is 𝑩𝑩𝒂𝒂𝟎𝟎+. The constant negative 

acceleration lasts until the body stops. If the initial velocity is negative, the acceleration is 

positive describing the trajectory 𝑪𝑪𝒂𝒂𝟎𝟎− in the phase plane. In both cases, the limit velocity is 

null. 
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Figure 2. Examples of movements with Coulomb friction. Forces scheme (a.1) and phase plane (a.2) of 

the motion in the horizontal plane. Forces scheme (b.1) and phase plane (b.2) of the motion in the inclined 

plane. 

Diagrams b of figure 2 correspond to a similar setting, but now the motion takes place in the 

inclined plane. In this case, besides the friction force, we have to consider the term 𝑚𝑚𝑔𝑔 sin𝛼𝛼. 

The result is a diagram similar to the former one, but displaced upwards 𝑎𝑎1 = 𝑔𝑔 sin𝛼𝛼. The 

onset of Coulomb friction complicates quite the analytic resolution of the problems of dynamics 

due to the discontinuity at 𝑣𝑣 = 0, that prevents having a unique analytic expression for the 

whole range of the movement. For example, in the case of the inclined plane, assuming 

tan𝛼𝛼 > 𝜇𝜇, one has the following equation 

𝑚𝑚𝑚𝑚 sin𝛼𝛼 − sign(𝑣𝑣)𝜇𝜇 𝑚𝑚𝑚𝑚 cos𝛼𝛼  = 𝑚𝑚𝑚𝑚  
 

(5) 

Observe that, for 𝑣𝑣0 < 0, there is a positive acceleration 𝑎𝑎0− that makes the (negative) velocity 

increase to 0. From this point on, the body is subject to a different acceleration 𝑎𝑎0+ that 

increases 𝑣𝑣 further. Then, it is not a true uniformly accelerated movement because there are two 

different accelerations. This is an important detail that is generally omitted and the inclined 

plane is presented as a typical example of uniformly accelerated movement. In fact the students 

think that Coulomb friction and constant acceleration come together.  

  In the simplest case, for 𝑣𝑣0 > 0, the sign of the velocity does not change and one gets 

the classic solution of a uniformly accelerated movement according to the equations: 

𝑣𝑣(𝑡𝑡) = 𝑣𝑣0 + 𝑔𝑔[sin𝛼𝛼 − 𝜇𝜇 cos𝛼𝛼] 𝑡𝑡 (6) 

𝑥𝑥(𝑡𝑡) = 𝑥𝑥0 + 𝑣𝑣0 𝑡𝑡 +
1
2
𝑔𝑔[sin𝛼𝛼 − 𝜇𝜇 cos𝛼𝛼] 𝑡𝑡2 (7) 

6 
 



2.1.3. Viscous and Coulomb friction. 

We finally consider the general case of a movement subject simultaneously to viscous and 

Coulomb friction. Figure 3 shows the free body diagrams and the trajectories in the phase plane 

for two cases: body launched on a horizontal plane and launched on an inclined plane. 

 

 

Figure 3. Examples of movements with linear viscous friction and Coulomb friction. Forces scheme (a.1) 

and phase plane (a.2) of the motion in the horizontal plane. Forces scheme (b.1) and phase plane (b.2) of 

the motion in the inclined plane. 

The differential equation is  

𝑚𝑚𝑚𝑚 sin𝛼𝛼 − 𝐾𝐾𝐾𝐾 – sign(𝑣𝑣)𝜇𝜇𝜇𝜇𝜇𝜇 cos𝛼𝛼  = 𝑚𝑚
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 
(8) 

  
 This equation is similar to the differential equation of the viscous friction in the inclined 

plane (1), but modifying the ordinate at the origin in the phase plane. In fact, to the constant 

acceleration term 𝑔𝑔 sin𝛼𝛼 one has to add the term associated to Coulomb friction 

sign(𝑣𝑣)𝜇𝜇𝜇𝜇 cos𝛼𝛼, whose sign depends on the sign of the velocity and that introduces a 

discontinuity at 𝑣𝑣 = 0. The limit velocity is also different, including a term due to Coulomb 

friction, 

𝑣𝑣𝑙𝑙𝑙𝑙𝑙𝑙 =
𝑚𝑚𝑚𝑚 sin𝛼𝛼 − sign(𝑣𝑣)𝜇𝜇𝜇𝜇𝜇𝜇 cos𝛼𝛼

𝐾𝐾
 

 (9) 

 

 It is important to point out that Coulomb friction introduces a discontinuity in the 

differential equation when the sign of the velocity changes. When the mobile is launched 
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upwards on the inclined plane, while ascending (𝑣𝑣 < 0) the component of the weight in the 

movement direction and the friction force have the same sign and produce a positive 

acceleration 𝑎𝑎0− = 𝑔𝑔(sin𝛼𝛼 + 𝜇𝜇 cos𝛼𝛼) that finally stops the mobile (𝑣𝑣 = 0). At this point, the 

descent begins only if the weight component in the movement direction is bigger than Coulomb 

friction. In that case, initial descent acceleration is 𝑎𝑎0+ = 𝑔𝑔(sin𝛼𝛼 − 𝜇𝜇 cos𝛼𝛼), which produces a 

discontinuity in 𝑎𝑎(𝑣𝑣). As the velocity grows, due to the viscous friction the resulting 

acceleration decreases to zero, reaching the dynamical equilibrium point where the mobile 

descends at constant limit speed 𝑣𝑣𝑙𝑙𝑙𝑙𝑙𝑙.  

 

2.2. Experimental Setup 
In order to generate a movement with linear viscous friction, we propose the experimental setup 

shown in figure 4. It consists in an aluminum cinematic track with variable inclination, what 

allows adjusting the system acceleration to values as small as desired. The X axis has been 

taken in the movement direction, taking the positive axis in the descent direction. The 

inclination of the track has been measured by means of a plumb. 

 

Vertical 
Reference

Calibration 
Pattern

Glide
x

 
Figure 4. Experimental setup for the generation of a 

movement with linear viscous friction. Observe the 

cinematic track with the glider, the plumb to ascertain the 

vertical direction and the calibration pattern [23]. 

 
Figure 5. Glider detail. Observe the 

reflective marker used for the digital image 

tracking, the magnet and the weights located 

in the frontal part of the glider. 

 

Figure 5 shows the glider in detail. Four magnets have been symmetrically located in the ends 

of the glider, as explained in [21, 22]. The mass of the system has been modified by placing 

additional weights of 100 g. 

The movement has been recorded with a digital video camera Mikrotron EoSens_CL_MC1362, 

with 800×600 pixel spatial resolution and frame rate 200 fps. A spherical reflective marker has 

been attached to the frontal part of the glider in order to facilitate the tracking of the image. The 

marker detection and the position measurement have been performed according to the procedure 
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described in [23]. The 2D restitution technique used corrects the effects of perspective and 

optical distortion, so that the precision of the position measurements is 0.1%. 

 

2.3 Analyzed movement  

We have measured the slider motion on the track for two different inclination angles: 0º and 4º. 

For each inclination, we have considered different glider masses (m1=335g, m2=435g and 

m3=535g). For each inclination-mass combination, a launch in each direction has been 

measured. The glider has been launched manually, and so, the initial velocities of each 

movement are different. 

 

2.4 Data processing 

The measurement system provides positions in terms of time, 𝑥𝑥𝑟𝑟(𝑡𝑡𝑗𝑗) at given time instants 

𝑡𝑡𝑗𝑗, 𝑗𝑗 = 1, … ,𝑁𝑁. The positions are affected by random errors, which prevent the computation of 

the derivatives by using finite differences. Then, for the computation of velocities and 

accelerations, we use the smoothing and numerical differentiation technique based on the local 

fit of a kernel described in [15]. This system allows the direct estimation of the first and second 

derivatives at each time instant without using any predefined parametric model. The procedure 

consists in fitting locally a third degree polynomial about each point 𝑥𝑥𝑟𝑟(𝑡𝑡𝑗𝑗), that minimizes the 

error function defined by  

[ ]{ }223

1
)()()()( jijjijjijjjr

N

i
ijj dttcttbttatxwSSE +−+−+−−= ∑

=
 

 

 
(10) 

where 𝑤𝑤𝑖𝑖𝑖𝑖 is the weight of the 𝑖𝑖-th observation in the fit about 𝑥𝑥(𝑡𝑡𝑗𝑗). This weight depends on the 

difference (𝑡𝑡𝑗𝑗 − 𝑡𝑡𝑖𝑖). Concretely, we use the following Gaussian kernel 

)
2

)(
exp()2( 2

2
2/1

h

tt
w ji

ij
−

−= −p  

 

 
(11) 

where ℎ is the bandwidth, a parameter that controls the smoothing degree. A small value of h 

implies that only the closest neighbors to 𝑡𝑡𝑗𝑗 have a significant weight, whereas a big value of ℎ 

means that the local fit takes into account points located at certain distance of 𝑡𝑡𝑗𝑗. Correctly 

selecting the value h is critical in the smoothing process. Small bandwidths produce a poor 

smoothing that produces sharpness in the fitted function and its derivatives. On the contrary, big 

bandwidths suppose an excess of smoothing that can eliminate part of the useful information. 

Here we have estimated the suitable value for h according to the method described in [15].  

Once fitted the parameters 𝑎𝑎𝑗𝑗 , 𝑏𝑏𝑗𝑗, 𝑐𝑐𝑗𝑗 and 𝑑𝑑𝑗𝑗 according to (10), the values of the position 𝑥𝑥�𝑡𝑡𝑗𝑗� 

and its derivatives 𝑣𝑣�𝑡𝑡𝑗𝑗� and 𝑎𝑎�𝑡𝑡𝑗𝑗� can be obtained from 
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𝑥𝑥�𝑡𝑡𝑗𝑗� = 𝑑𝑑𝑗𝑗 

(12) 𝑣𝑣�𝑡𝑡𝑗𝑗� = 𝑐𝑐𝑗𝑗 

𝑎𝑎�𝑡𝑡𝑗𝑗� = 2𝑏𝑏𝑗𝑗 

 

The resulting velocities and accelerations for each mass configuration have been represented 

in an a-v diagram and a linear fit of type 𝑎𝑎(𝑣𝑣) = − 𝐾𝐾
𝑚𝑚
𝑣𝑣 + 𝑎𝑎0 has been computed. The fit has 

been performed separately for the zones 𝑣𝑣 < 0 and 𝑣𝑣 > 0, which has permitted identifying 

discontinuities at 𝑣𝑣 = 0 and consequently, the existence of Coulomb friction. The goodness of 

the fit has been measured by the squared correlation coefficient 𝑅𝑅2. Finally, the limit velocity 

has been obtained as the zero intercept of 𝑎𝑎(𝑣𝑣). 

. 

 3. Results 

 

3.1. Horizontal track 

In the horizontal track, we have taken 6 independent measurements, corresponding to 3 different 

masses and 2 launch directions. 

 Figure 6 shows the obtained values for 𝑎𝑎(𝑣𝑣) marked with dots and the fitted linear model in 

solid lines for each movement. Table 1 shows the numerical values of the linear fit. 
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Figure 6.  𝑎𝑎(𝑣𝑣) diagrams for the horizontal track. The points correspond to the experimental values and 

the lines to the fits. Observe the linear dependence of the acceleration on the velocity and that the slope is 

lower for higher mass values. 

Table 1 shows that the measured acceleration values closely follow a linear model in all the 

cases, with 𝑅𝑅2 > 0.9998. It is also shown that the slope decreases as the glider mass increases, 

with similar values for both directions of the launch (differences lower than 2%). 

Table 1. Linear fit coefficients for the 3 mass configurations and 2 movement directions in 

the horizontal track. 

 a(v)= -(K/m) v + a0 

 Mass   a0 (m/s2) K/m (1/s) R2 

m1: 335 g  v<0 0,0770 2,8998 0,9999 
v>0 -0,0692 2,8608 1,0000 

m2: 435 g  v<0 0,0703 2,1671 1,0000 
v>0 -0,0614 2,1098 0,9999 

m3: 535 g  v<0 0,0548 1,7427 0,9998 
v>0 -0,0443 1,7159 0,9999 
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Observe that, in the fit, the values of the independent term 𝑎𝑎0 are small but nonzero and that 

their signs change systematically with the movement direction. This result is coherent with the 

existence of a small Coulomb friction. 

Figure 7 shows a detail of the a-v observations for small velocities. According to the 

theoretical model, the intersection with the axis of ordinates, 𝑣𝑣 = 0, should be located at ±𝜇𝜇𝜇𝜇, 

independently of the mass value. Nevertheless, the figure shows a dependence on the glider 

mass. Concretely, there is a slight increase of 𝜇𝜇 as the mass decreases. 

 

Figure 7. Detail of the zone of small velocities in the a-v diagram. Observe that the fitted lines do not 

touch the origin, but there is a systematic deviation of the intersection with the ordinate axis depending on 

the mass of the glider and with different sign according to the movement direction. 

The value of the friction coefficient µ and the angle α for each mass configuration has been 

estimated from the mean of the accelerations at 𝑣𝑣 = 0 and the size of the discontinuity, 

according to equation  

αµα cos
2

;sin
2

0000 gααgαα
=

−
=

+ +−+−                                         (13) 

The estimated coefficients are shown in Table 2. 
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Table 2. Values of the inclination and the Coulomb friction coefficient in terms of the glider mass. 

 𝛼𝛼[º] 𝜇𝜇 

m1: 335 g  0,0229 0,0075 

m2: 435 g  0,0261 0,0067 

m3: 535 g  0,0307 0,0051 

 

 

 It is important to point out that the estimated value of the friction coefficient is very 

small, 𝜇𝜇 < 0.01, and that, at this order of magnitude, any variation in the system configuration, 

such as the glider mass, can affect the experimentally obtained numerical values. Anyway, the 

obtained results are of the same order as the ones obtained in other works for the same 

configuration of the track and the glider, 0.004 in [1] and 0.007 in [2]. 

3.2 Inclined track 

In this case, we have used the same configurations as in the previous subsection except for the 

track inclination that is now 4 degrees, which introduces a constant force due the component of 

the weight in the descent direction, whose values is 𝐹𝐹𝑤𝑤 =  𝑚𝑚𝑚𝑚 sin𝛼𝛼 . 

Figure 8 shows the measured values of 𝑎𝑎(𝑣𝑣) and the linear fits for the case of the inclined track.  
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Figure 8.  a-v diagrams for a track with 4 degrees inclination. The experimental values are marked by 

points and the fits by solid lines.  

 Table 3 shows the fitting coefficients for the 6 different configurations of the inclined track. 

Table 3. Fitting coefficients for the 6 different configurations of the inclined track. 

 a(v)= -(K/m) v + a0 
Mass  a0 (m/s2) K/m (1/s) R2 

m1: 335 g v<0 0,8063 2,7792 0,9999 
v>0 0,6670 2,7568 0,9998 

m2: 435 g v<0 0,7803 2,1346 0,9999 
v>0 0,6874 2,1268 0,9999 

m3: 535 g v<0 0,7739 1,7212 1,0000 
v>0 0,6950 1,7430 0,9996 

 
 

Notice that, in this case, the range of positive velocities is composed of two intervals 

corresponding to different movements. The interval 0 < 𝑣𝑣 < 𝑣𝑣𝑙𝑙𝑙𝑙𝑙𝑙 corresponds to the descent 

phase when the glider is launched upwards from the lower part of the track, whereas the interval 

𝑣𝑣 > 𝑣𝑣𝑙𝑙𝑙𝑙𝑙𝑙 corresponds to launching the glider from the upper part of the track with initial 

velocity higher than the limit velocity. Nevertheless, the joint fit of both intervals produces good 

results with 𝑅𝑅2 > 0.9996. In fact, the values of 𝐾𝐾 𝑚𝑚⁄  are similar to that of the horizontal track. 

Figure 9 shows the detail of the a-v diagram at low velocities, where the discontinuity at 

𝑣𝑣 = 0 produced by Coulomb friction can be observed. With the same idea as in the former 

section, the track inclination and the friction coefficient have been obtained and are shown in 

Table 4. We can observe the same dependence of 𝜇𝜇 on the glider mass as in the case of the 

horizontal track. Observe also that the inclination angle for each case is very close to the value 

of 4 degrees initially measured by the plumb. 
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Figure 9. Detail of the a-v diagram for the track inclined 4 degrees in the range of low velocities. Observe 

the discontinuity introduced by the Coulomb friction for 𝑣𝑣 = 0 and the equilibrium points at 𝑎𝑎 = 0.  

Table 4. Inclination angle, Coulomb friction coefficient and limit velocity for different glider masses. 

 𝛼𝛼[°] 𝜇𝜇 𝑣𝑣𝑙𝑙𝑙𝑙𝑙𝑙[𝑚𝑚 𝑠𝑠⁄ ] 

m1: 335 g 4.3110 0.0071 0.2420 

m2: 435 g 4.2944 0.0048 0.3232 

m3: 535 g 4.2980 0.0040 0.3988 

 

The a-v diagram in figure 9 shows that the system has a stable dynamical equilibrium point with 

positive limit velocity that grows with the glider mass. The values of 𝑣𝑣𝑙𝑙𝑙𝑙𝑙𝑙 shown in Table 4 

have been obtained as the v intercept of the fit of the interval of positive velocities. 

It is interesting to point out to the students that, using two independent movements, where 

the glider is launched with different velocities and even in different directions, the system 

evolves towards the same stable dynamical state with the same limit velocity. 
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4. Discussion 

 
In this work we present an experiment that illustrates the application of the phase diagrams to 

the study of a dynamical system with viscous friction. We have utilized a mechanical system 

with magnetic damping by Eddy currents. This setup produces linear friction [21, 24] avoiding 

the turbulences that appear when using fluids. Moreover it allows adjusting quite well the 

desired degree of friction, facilitating the work at low velocities. This aspect may be critical 

when using video analysis, because of the limitation in frame rate. 

In order to obtain the phase diagrams, we have recorded the movement with video analysis 

obtaining 𝑥𝑥(𝑡𝑡), which has been numerically differentiated to compute 𝑣𝑣(𝑡𝑡) and 𝑎𝑎(𝑡𝑡), without 

imposing any predefined model to the data. A linear fit of these results produces a function 𝑎𝑎(𝑣𝑣) 

that is represented with the experimental data. 

The use of this kind of graphics allows analyzing the movement evolution without having to 

integrate differential equations. In the case of glider with magnetic damping, the expected 

model is a linear relation 𝑎𝑎(𝑣𝑣), which is in good agreement with the experimental data. 

Moreover, it is shown that the intersection of the line 𝑎𝑎(𝑣𝑣) with the axis 𝑎𝑎 = 0 gives the limit 

velocity, corresponding to the dynamical equilibrium point. This point has been obtained for 

different masses, verifying that, for the same configuration of the track, the limit velocity 

increases with the mass. 

The determination of the limit velocity for each mass has been performed with different 

initial conditions (𝑣𝑣0 < 𝑣𝑣𝑙𝑙𝑙𝑙𝑙𝑙 and 𝑣𝑣0 > 𝑣𝑣𝑙𝑙𝑙𝑙𝑙𝑙). Nevertheless, for any configuration, the fit can be 

made with all the data, offering a precise estimation of 𝑣𝑣𝑙𝑙𝑙𝑙𝑙𝑙. 

Moreover, we have analyzed the discontinuity that appears when the movement changes the 

direction (𝑣𝑣 = 0). This discontinuity does not respond to the viscous friction and is explained by 

the existence of a small Coulomb friction. 

The present analysis has a high formative value for the students, which have the 

preconception of associating Coulomb friction to constant acceleration. By analyzing the 

movement dynamics with the phase diagram, it is obvious that the Coulomb friction has a 

mathematical behavior more complex than expected. Indeed, it is not a constant force, but it 

introduces a discontinuity in the acceleration, which can make very complex the analytical 

solution of the problems with Coulomb friction. Only in the particular cases where the 

movement does not change its direction, one can assume that the force is constant. 

The utilization of phase diagrams in the teaching of first year mechanics is not habitual. 

Although, it can offer a complementary vision to the traditional experiments, which are usually 

based on the experimental measurement of the movement, 𝑥𝑥(𝑡𝑡) and the comparison of these 

results with the formulas obtained by integrating the movement equations associated to a 

16 
 



particular dynamical model. In our opinion, this traditional approach limits quite the scope of 

the experiments. 

On one hand, it implies that the students know how to integrate the differential equation of 

the movement and how to perform the nonlinear fits corresponding to expressions involving 

exponential and hyperbolic functions. 

On the other hand, the direct comparison between the measured functions 𝑥𝑥(𝑡𝑡) and the 

functions of the model can be few sensitive to the discrepancies between them. As it has been 

proved in [11], important changes in the differential equations can result in small modifications 

in the solution 𝑥𝑥(𝑡𝑡). For example, in our case, the effect of Coulomb friction could be explained 

by a slight variation of the slope in the fitting results. In the same way, it is difficult to know 

from a fit of 𝑥𝑥(𝑡𝑡) if the movement is produced by a friction linear, quadratic or of another order. 

In contrast, the phase diagrams allow working directly with the differential equation of the 

movement. Thereby, the students’ attention is focused on the comprehension of the relations 

between the movement variables that define the system dynamics instead of the resolution of a 

mathematical problem. In our case, we check the linearity of the force of magnetic damping, 

analyze the meaning of limit velocity and verify that it depends not only on the friction, but also 

on the mass. 

The main difficulty of the procedure is the need for determining with precision the velocity 

and the acceleration, which requires having a video camera with enough frame rate and using 

efficient methods of numerical differentiation. 

Our experiment has been recorded at 200 fps, frequency quite higher than that of the 

conventional cameras. Nevertheless, there are affordable industrial cameras working at these or 

even higher frequencies. Anyway, it is not necessary that each student has a photogrammetry 

device, because the videos can be recorded in a unique device and then individually used for 

their processing. 

Regarding to the smoothing and numerical differentiation algorithm, it is a computing 

procedure not difficult to explain at qualitative level and that can be understood as a black box 

that receives an input, the raw data, and produces an output, the smoothed data end their two 

first derivatives. In fact, many video analysis systems embody some smoothing and 

differentiation procedure that could be used as long as the frame rate is high enough. 

 

5. Conclusions 

 
The phase diagrams can be a useful tool in the mechanics teaching of first-year university. On 

one hand, they allow interpreting the dynamical behavior of a system without having to solve 

complex equations. On the other hand, they are a very sensitive method for checking the 

validity of the methods, because they allow checking the relations between the movement 
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variables and not only the position function, as in the usual experiments. Applied to systems 

with friction, they ease the comprehension of the limit velocity as dynamical equilibrium point 

and allow analyzing the differences between different kinds of friction. 
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