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Abstract

A new predictor-corrector iterative procedure, that combines Newton’s method as
predictor scheme and a fifth-order iterative method as a corrector, is designed for solving
nonlinear equations in Banach spaces. We analyze the local order of convergence and
the regions of accessibility of the new method comparing it with Newton’s method, both
theoretical and numerically.
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1 Introduction

Many scientific and engineering problems can be brought in the form of a nonlinear equation

F (x) = 0, (1)

where F is a nonlinear operator defined on a non-empty open convex subset Ω of a Banach space
X with values in a Banach space Y . Problems where scalar equations, systems of equations,
differential equations, integral equations, etc, can be formulated in terms of finding roots of
equations of type (1). In general, the roots cannot be expressed in a closed form and this
problem is commonly carried out applying iterative methods. So, starting from one or several
initial approximations of a solution x∗ of equation (1), a sequence {xn} of approximations
is constructed so that it converges to x∗. We can get the sequence {xn} of different ways,
depending on the iterative method that is applied.

The best-known iterative scheme is Newton’s method,

x0 given in Ω, xn+1 = xn − [F ′(xn)]−1F (xn), n ≥ 0.

∗This work was supported in part by the project MTM2011-28636-C02-{01,02} of the Spanish Ministry of
Science and Innovation.
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Observe that we need the operator F to be differentiable Fréchet in order to apply Newton’s
method. This is one of the most used iterative method because of its good computational
efficiency and accessibility to the solution x∗ of equation (1).

There are two known indices that analyze the efficiency of an iterative method. The classic
efficiency index I = p

1
d , defined by Ostrowski in [9], provides a balance between the order of

convergence p and the number of functional evaluations d. If (1) represents a system of n
nonlinear equations, then, for one evaluation of F , n functional evaluations are required, mean-
while the evaluation of the associated jacobian matrix F ′ requires n2 functional evaluations, so
that the evaluations of F and F ′ cannot be considered in the same way. Consequently, in this
case, the computational efficiency index ([10]) is usually used, which is defined as the order
of convergence to the inverse power of the operational cost, where the operational cost is the
number of the operations involved in the application of the iterative method.

The efficiency is generally the most important aspect that has been taken into account
when choosing an iterative method to approximate a solution of an equation (see [2, 5, 6, 7, 8]),
forgetting usually the accessibility of the iterative method, which shows the domain of starting
points from which the iterative method converges to the solution of the equation. This fact has
led to construction of iterative methods with high efficiency, but difficult to apply in practice,
since the location of starting approximations, from which the iterative methods converge to a
solution of the equation, is a difficult problem to solve.

In this work, we extend to Banach spaces the M5 iterative method studied for finite-
dimensional problems in [1]. The M5 method has higher classic efficiency and computational
efficiency indices than Newton’s method (see [1]), but it presents problems of accessibility to
the solution x∗ of equation (1), as we can see in Section 2. In Section 3, we prove that the
local order of convergence of the M5 method is five in Banach spaces. Next, in Section 4,
taking into account that a procedure to know the accessibility of an iterative method to x∗ is
to estimate the ball of convergence of the method from a local convergence result, we obtain a
local convergence result for the M5 method in Banach spaces. Note that the radius of the ball
of convergence, which is centered in x∗, shows the largest domain of approximations close to
x∗ that guarantees the convergence of the iterative method when it starts at them. From the
local convergence result, we observe that the size of the ball of convergence of the M5 method
is limited with respect to the ball of convergence of Newton’s method. We solve this problem in
Section 5 by constructing a predictor-corrector iterative method, where the predictor scheme is
Newton’s one and the corrector is M5 method. This procedure allows to have the accessibility
region of Newton’s method and the efficiency of the M5 method. Finally, in the last section, a
numerical test confirms the theoretical results obtained.

Throughout the paper we denote B(x, %) = {y ∈ X; ‖y − x‖ ≤ %} and B(x, %) = {y ∈
X; ‖y − x‖ < %}.

2 Statement of the problem

In [1], the authors propose the M5 iterative method,
x0 given in Ω,

yn = xn − [F ′(xn)]−1F (xn), n ≥ 0,

zn = yn − 5[F ′(xn)]−1F (yn),

xn+1 = zn − 1
5
[F ′(xn)]−1 (−16F (yn) + F (zn)) ,
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for solving systems of nonlinear equations, and prove that its R-order of convergence is at
least five. Moreover, from the operational cost needed to apply Newton’s and M5 methods
for solving systems of equations, the authors prove that the computational efficiency and the
classic efficiency indices of the M5 method are higher than those of Newton’s method.

As we have written in the Introduction, we must not think only of the efficiency to choose the
M5 method instead of Newton’s method for approximating the solution x∗ of equation (1). We
must also analyze the accessibleness of both methods to x∗. We can observe this experimentally
by means of the attraction basins of the iterative methods. The attraction basin of an iterative
method is the set of all starting points from which the iterative method converges to x∗, once
a tolerance and a maximum number of iterations is fixed.

In Figures 1 and 2, we show the attraction basins associated with the two solutions, z∗ =
arctan (1/(2

√
2)) = 0.33983 . . . and z∗∗ = π − arctan (1/(2

√
2)) = 2.80176 . . ., of the complex

equation F (z) = sin z− 1
3

= 0, where F : C −→ C, when they are approximated respectively by
Newton’s and M5 methods. To do this, we take a rectangle D ⊂ C to represent the regions such
that iterations start at every z0 ∈ D. In every case, a grid of 512×512 points in D is considered
and these points are chosen as z0. We use the rectangle [0, 3] × [−2.5, 2.5] which contains the
two solutions. The chosen iterative method, starting in z0 ∈ D, can converge to any solution or
diverge. In all the examples, the tolerance 10−3 and the maximum of 25 iterations are used. We
do not continue if the required tolerance is not obtained with 25 iterations and we then decide
that the iterative method does not converge to any solution starting from z0. The pictures
of the attraction basins are painted using the following strategy. A colour is assigned to each
attraction basin according to the root at which an iterative method converges starting from
z0. The colour is made lighter or darker according to the number of iterations needed to reach
the root with fixed precision. In particular, cyan and magenta are assigned respectively for
the solutions z∗ and z∗∗. Finally, black is assigned if the method does not converge to any
solution with a fixed tolerance and a maximum number of iterations. The graphics have been
generated with Mathematica 5.1 [12]. For other strategies, reference [11] can be consulted and
the references therein given.

From Figures 1 and 2, we observe that the M5 method is much more demanding with respect
to the starting approximations than Newton’s method, see the black colour. This clearly justifies
that the M5 method is less used than Newton’s method to approximate solutions of equations.

We can do a more rigorous analysis of the accessibility of an iterative method to the solution
x∗ of equation (1) from a local (or semilocal) convergence result of the iterative method. From
the local (or semilocal) convergence conditions, we can compare the regions of accessibility of
the two methods. The region of accessibility of an iterative method provides the domain of
starting points from which we have guaranteed the convergence of the iterative method. In
other words, the region of accessibility represents the domain of starting points that satisfies
the convergence conditions required to the iterative method.

In this paper, we fix the region of accessibility of Newton’s method from the local conver-
gence result given by Dennis and Schnabel in [4], which is a classic and known convergence
result. Next, we obtain the region of accessibility of the M5 method from the same conditions
as those given by Dennis and Schnabel for Newton’s method and we see that it is smaller than
that of Newton’s one. After that, we construct a predictor-corrector iterative method, where
Newton’s method is the predictor and M5 is the corrector, with higher efficiency than that of
Newton’s method, but with the same region of accessibility. In consequence, the new iterative
method will be more appropriate than Newton’s method for approximating the solution x∗ of
equation (1).
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Figure 1: Attraction basins of Newton’s
method when it is used to approximate the
two solutions of the equation F (z) = sin z −
1
3

= 0.
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Figure 2: Attraction basins of the M5
method when it is used to approximate the
two solutions of the equation F (z) = sin z −
1
3

= 0.

3 Local order of convergence of the M5 method

In the following, we remember some known notions and results that we need in order to study
the local order of convergence of the M5 method (see [3]).

Let F : Ω ⊆ X −→ Y be a sufficiently differentiable operator in Ω. The q-th deriva-
tive of F at u ∈ Ω, q ≥ 1, is the q-linear function F (q)(u) : Ω × · · · × Ω −→ Y such that
F (q)(u)(v1, . . . , vq) ∈ Y . It is easy to observe that

1. F (q)(u)(v1, . . . , vq−1, ·) ∈ L(Ω, Y ), where L(Ω, Y ) is the set of the bounded linear operators
from Ω into Y .

2. F (q)(u)(vσ(1), . . . , vσ(q)) = F (q)(u)(v1, . . . , vq), for all permutation σ of {1, 2, . . . , q}.

After this, we use the following notation:

(a) F (q)(u)(v1, . . . , vq) = F (q)(u)v1 · · · vq,

(b) F (q)(u)vq−1F (p)vp = F (q)(u)F (p)(u)vq+p−1.

On the other hand, for x∗+ h ∈ Ω lying in a neighborhood of a solution x∗ of F (x) = 0, we
can apply Taylor’s expansion and assume that F ′(x∗) 6= 0, we have

F (x∗ + h) = F ′(x∗)

[
h+

p−1∑
q=2

cqh
q

]
+O(hp), (2)

where cq = 1
q!

[F ′(x∗)]−1F (q)(x∗), q ≥ 2. We observe that cqh
q ∈ Ω, since F (q)(x∗) ∈ L(Ω× · · ·×

Ω, Y ) and [F ′(x∗)]−1 ∈ L(Y,Ω).
In addition, we can express F ′ as

F ′(x∗ + h) = F ′(x∗)

[
I +

p−1∑
q=2

qcqh
q−1

]
+O(hp), (3)
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where I is the identity matrix. Therefore, qcqh
q−1 ∈ L(Ω, Y ). From (3), we assume

[F ′(x∗ + h)]−1 =
[
I +X2h+X3h

2 +X4h
4 + · · ·

]
[F ′(x∗)]−1 +O(hp) (4)

and, taking into account that [F ′(x∗ + h)]−1F ′(x∗ + h) = F ′(x∗ + h)[F ′(x∗ + h)]−1 = I,

Xs = −
s∑
j=2

jXs−j+1cj, s = 2, 3, . . . ,

where X1 = I.
If we denote en = xn − x∗ the error in the nth iteration, the equation

en+1 = Mepn +O(ep+1
n ),

where M is a p-linear function, M ∈ L(Ω × · · · × Ω, Y ), is called the error equation and p is
the order of convergence. Notice that epn is (en, en, . . . , en).

In the next result, we prove the local order of convergence of the M5 method, by using the
Taylor expansions, and obtain the error equation.

Theorem 1 Let F : Ω ⊆ X → Y be a nonlinear continuously differentiable enough operator
on a non-empty open convex domain Ω of a Banach space X with values in a Banach space
Y and x∗ ∈ Ω a solution of the equation F (x) = 0. Suppose that F ′(x) is continuous and
nonsingular at x∗. Then, the sequence {xn}, given by the M5 method, converges to x∗ with local
order of convergence five. Moreover, the error equation is

en+1 =
(
−2c2c3c2 + 6c3c

2
2 + 14c42

)
e5n +O(e6n), (5)

where cj = 1
j!

[F ′(x∗)]−1F (j)(x∗), for j = 2, 3, . . ., and en = xn − x∗.

Proof. We expand F (xn) and F ′(xn) in the Taylor series around the solution x∗,

F (xn) = F ′(x∗)
[
en + c2e

2
n + c3e

3
n + c4e

4
n + c5e

5
n

]
+O

(
e6n
)
,

F ′(xn) = F ′(x∗)
[
I + 2c2en + 3c3e

2
n + 4c4e

3
n + 5c5e

4
n

]
+O

(
e5n
)
.

Suppose that the Taylor expansion of the inverse operator at xn is

F ′(xn)−1 =
[
I +X2en +X3e

2
n +X4e

3
n +X5e

4
n

]
F ′(x∗)−1 +O(e5n).

From [F ′(xn)]−1 F ′(xn) = F ′(xn) [F ′(xn)]−1 = I, we obtain

X2 = −2c2,

X3 = 4c22 − 3c3,

X4 = 6c3c2 − 8c32 + 6c2c3 − 4c4,

X5 = 16c42 − 12c3c
2
2 − 12c2c3c2 + 8c4c2 + 9c23 − 12c22c3 + 8c2c4 − 5c5.

Then, the error at the first step of the process can be expressed as

yn − x∗ = en −
[
en + c2e

2
n + c3e

3
n + c4e

4
n + c5e

5
n +X2e

2
n +X2c2e

3
n +X2c3e

4
n +X2c4e

5
n

+ X3e
3
n +X3c2e

4
n +X3c3e

5
n +X4e

4
n +X4c2e

5
n +X5e

5
n

]
+O(e6n)

= c2e
2
n + 2(c3 − c22)e3n + (4c32 − 4c2c3 − 3c3c2 + 3c4)e

4
n

+(4c5 − 6c2c4 + 8c22c3 − 6c23 − 4c4c2 + 6c2c3c2 + 6c3c
2
2 − 8c42)e

5
n +O(e6n).
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Then, as F (yn) = F ′(x∗) [yn − x∗ + c2(yn − x∗)2 + c3(yn − x∗)3] +O ((yn − x∗)4), F (yn) can be
expressed in terms of the error at xn as

F (yn) = F ′(x∗)
[
c2e

2
n + 2(c3 − c22)e3n + (5c32 − 4c2c3 − 3c3c2 + 3c4)e

4
n

+ (4c5 − 6c2c4 + 10c22c3 − 6c23 − 4c4c2 + 8c2c3c2 + 6c3c
2
2 − 12c42)e

5
n

]
+O(e6n).

Moreover, the expansion of the inverse operator on F (yn) is

[F ′(xn)]
−1
F (yn) = c2e

2
n + 2(c3 − 2c22)e

3
n + (13c32 − 8c2c3 − 6c3c2 + 3c4)e

4
n

+(4c5 − 12c2c4 + 26c22c3 − 12c23 − 8c4c2 + 20c2c3c2 + 18c3c
2
2 − 38c42)e

5
n +O(e6n)

and the expansion of the error at the second step is

zn − x∗ = yn − x∗ − 5 [F ′(xn)]
−1
F (yn)

= −4c2e
2
n + (18c22 − 8c3)e

3
n + (−61c32 + 36c2c3 + 27c3c2 − 12c4)e

4
n

+(−16c5 + 54c2c4 − 122c22c3 + 54c23 + 36c4c2 − 94c2c3c2 − 84c3c
2
2 + 182c42)e

5
n +O(e6n).

Then,

F (zn) = F ′(x∗)
[
zn − x∗ + c2(zn − x∗)2 + c3(zn − x∗)3

]
+O

(
(zn − x∗)4

)
= F ′(x∗)

[
−4c2e

2
n + (18c22 − 8c3)e

3
n + (−45c32 + 36c2c3 + 27c3c2 − 12c4)e

4
n

+(−16c5 + 54c2c4 − 90c22c3 + 54c23 + 36c4c2 − 62c2c3c2 − 84c3c
2
2 + 38c42)e

5
n

]
+O(e6n)

and

[F ′(xn)]
−1

(F (zn)− 16F (yn)) =

−20c2e
2
n + (90c22 − 40c3)e

3
n + (−305c32 + 180c2c3 + 135c3c2 − 60c4)e

4
n

+(−80c5 + 270c2c4 − 610c22c3 + 270c23 + 180c4c2 − 460c2c3c2 − 450c3c
2
2 + 840c42)e

5
n +O(e6n).

Finally, the error equation of the method is

xn+1 − x∗ = zn − x∗ −
1

5
[F ′(xn)]

−1
(F (zn)− 16F (yn))

= (−2c2c3c2 + 6c3c
2
2 + 14c42)e

5
n +O(e6n),

and then, the local order of the M5 method is five. �

4 Regions of accessibility of Newton’s method and the

M5 method

The local convergence results for iterative methods require conditions on the operator F and the
solution x∗ of equation (1). Note that a local result provides what we call ball of convergence
and denote by B(x∗, ε). From the value ε, the ball of convergence gives information about the
accessibility of the solution x∗.

An interesting local result for Newton’s method is given in [4] by Dennis and Schnabel,
where the following conditions are required:

(L1) Let x∗ be a solution of equation (1) and exist r > 0, so that B(x∗, r) ⊂ Ω and the operator
[F ′(x∗)]−1 exists with ‖[F ′(x∗)]−1‖ ≤ γ and γ > 0,
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(L2) ‖F ′(x)− F ′(y)‖ ≤ K‖x− y‖, K ≥ 0, for all x, y ∈ Ω.

Dennis and Schnabel prove, under conditions (L1) and (L2), that, for any starting point be-

longing to B(x∗, ε), where ε = min{r, R} and R =
1

2γK
, Newton’s method is convergent.

In the following, we establish a local convergence result for the M5 method under conditions
(L1) and (L2).

Theorem 2 Let F : Ω ⊆ X → Y be a nonlinear continuously differentiable operator on
a non-empty open convex domain Ω of a Banach space X with values in a Banach space Y .
Suppose that conditions (L1) and (L2) are satisfied. Then, there exists ε̃ > 0, such that the
sequence {xn}, given by the M5 method, is well-defined and converges to a solution x∗ of the
equation F (x) = 0 from every point x0 ∈ B(x∗, ε̃).

Proof. Let ε̃ = min{r, R̃}, where R̃ = 13−3
√
5

31γK
. First, we prove, for all x ∈ B(x∗, ε̃), that

the operator [F ′(x)]−1 exists and ‖[F ′(x)]−1‖ ≤ γ
1−γKε̃ . For this, we consider

‖I − [F ′(x∗)]−1F ′(x)‖ ≤ ‖[F ′(x∗)]−1‖‖F ′(x∗)− F ′(x)‖ ≤ γK‖x− x∗‖ < γKε̃ < 1.

Now, by the Banach’s lemma on invertible operators, the operator [F ′(x)]−1 exists and ‖[F ′(x)]−1‖ <
1

1−γKε̃‖[F
′(x∗)]−1‖ ≤ γ

1−γKε̃ .

As x0 ∈ B(x∗, ε̃), then the operator Γ0 = [F ′(x0)]
−1 exists, ‖Γ0‖ < γ

1−γKε̃ , y0 is well-defined
and

y0 − x∗ = x0 − Γ0F (x0)− x∗ = Γ0

∫ 1

0

(F ′(x∗ + s(x∗ − x0))− F ′(x0)) ds (x∗ − x0).

Then, y0 ∈ B(x∗, ε̃), since ‖y0 − x∗‖ < δ
2
‖x0 − x∗‖ < ‖x0 − x∗‖, where δ = γKε̃

1−γKε̃ .

Moreover, z0 is well-defined and z0 ∈ B(x∗, ε̃), since

z0 − x∗ = y0 − 5Γ0F (y0)− x∗

= 5Γ0

∫ 1

0

(F ′(y0 + s(x∗ − y0))− F ′(x0)) ds (x∗ − y0) + 4(x∗ − y0)

and ‖z0 − x∗‖ < f(δ)‖x0 − x∗‖ < ‖x0 − x∗‖, where f(t) = t
(
5
8
t2 + 5

2
t+ 2

)
and f(δ) < 1.

Furthermore, x1 is well-defined and x1 ∈ B(x∗, ε̃), since

x1 − x∗ = z0 − Γ0

(
−16

5
F (y0) +

1

5
F (z0)

)
= Γ0

(
1

5

∫ 1

0

(F ′(z0 + s(x∗ − z0))− F ′(x0)) ds (x∗ − z0)

+
4

5

∫ 1

0

(F ′(y0 + s(x∗ − y0))− F ′(x0)) ds (x∗ − y0)
)

and ‖x1 − x∗‖ < g(δ)‖x0 − x∗‖ < ‖x0 − x∗‖, where g(t) = tf(t)
(
f(t)
10

+ 1
)

+ t2

5
(t + 2) and

g(δ) < 1.
Following now an inductive procedure on n ∈ N, we have:

‖yn − x∗‖ <
δ

2
‖xn − x∗‖, ‖zn − x∗‖ < f(δ)‖xn − x∗‖, ‖xn+1 − x∗‖ < g(δ)‖xn − x∗‖.

7



Therefore, ‖xn − x∗‖ < g(δ)n‖x0 − x∗‖, for all n ∈ N, and consequently lim
n→+∞

xn = x∗. �

As the radii of the balls of convergence of both methods are given by conditions (L1) and
(L2), it is clear that the radius of the ball of convergence of Newton’s method is significantly

larger than that of the M5 method, since 1
2γK

> 13−3
√
5

31γK
.

If we consider again the complex equation F (z) = sin z − 1
3

= 0, the balls of convergence of
Newton’s method and the M5 method are respectively B(z̃, 0.17342 . . .) and B(z̃, 0.07039 . . .),
where z̃ = z∗, z∗∗ (see Figures 3 and 4). Observe the difference that exists between the two
balls of convergence, which also coincides with the difference shown by the attractions basins
in Figures 1 and 2.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

-0.4

-0.2

0.0

0.2

0.4

Figure 3: Balls of convergence of Newton’s
method when it is used to approximate the
two solutions of the equation F (z) = sin z −
1
3

= 0.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

-0.4

-0.2

0.0

0.2

0.4

Figure 4: Balls of convergence of the M5
method when it is used to approximate the
two solutions of the equation F (z) = sin z −
1
3

= 0.

5 A predictor-corrector iterative method

Our next aim is to design an iterative method from the M5 method with the same accessibility
as Newton’s method. For this, we construct a new hybrid iterative method from the M5 method
that converges when it starts from the same starting points from which Newton’s method is
convergent. So, we define the following iterative method:

{
u0 ∈ B(x∗, ε), where ε = min{r, R} and R = 1

2γK
,

un = un−1 − [F ′(un−1)]
−1F (un−1), n = 0, 1, . . . , N0,

x0 = uN0 ,

yk−1 = xk−1 − [F ′(xk−1)]
−1F (xk−1), k ∈ N,

zk−1 = yk−1 − 5[F ′(xk−1)]
−1F (yk−1),

xk = zk−1 − 1
5
[F ′(xk−1)]

−1 (−16F (yk−1) + F (zk−1)) ,

(6)
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where x0 = uN0 ∈ B(x∗, ε̃), ε̃ = min{r, R̃} and R̃ = 13−3
√
5

31γK
, and provided that B(x∗, r) ⊂ Ω. In

this case, we can use Newton’s method for a finite number of steps N0 and then apply the M5
method to accelerate the convergence. To do this, we have to guarantee the existence of N0.

Now, we study the local convergence of method (6). Since ε = min{r, R}, ε̃ = min{r, R̃}
and R̃ < R, then three cases can be given:

ε = ε̃ = r, ε = r and ε̃ = R̃, ε = R and ε̃ = R̃.

Observe that the last two cases lead to ε̃ < ε. In consequence, we only have to consider two
cases: ε̃ = ε and ε̃ < ε. But, the first one leads to the fact that the two balls of convergence are
the same, so that we can apply the M5 method from the beginning without applying Newton’s
method for a finite number of steps N0. Therefore, the most interesting case is when ε̃ < ε.

From the local convergence result for Newton’s method given in [4] by Dennis and Schnabel,
it follows

‖un − x∗‖ ≤
(

1

2

)n
‖u0 − x∗‖ <

(
1

2

)n
ε.

Therefore, we look for the first value of n such that
(
1
2

)n
ε < ε̃. Taking logarithms, we find a

value N0 ∈ N such that x0 = uN0 ∈ B(x∗, ε̃). So, N0 >
log( ε

ε̃)
log 2

and, consequently,

N0 = 1 +

[
log
(
ε
ε̃

)
log 2

]
, (7)

where [t] denotes the integer part of any real number t.
Finally, once the value N0 is a priori estimated, we summarize all the above in the following

result, which guarantees the local convergence of method (6).

Theorem 3 Let F : Ω ⊆ X → Y be a nonlinear continuously differentiable operator on
a non-empty open convex domain Ω of a Banach space X with values in a Banach space Y .
Suppose that conditions (L1) and (L2) are satisfied. Then, there exist ε, ε̃ > 0 such that the
sequence {xn}, given by method (6), with N0 defined in (7), is well-defined and converges to a
solution x∗ of the equation F (x) = 0 from every point x0 ∈ B(x∗, ε).

The previous local convergence result guarantees that method (6) has the same ball of
convergence as Newton’s method.

6 An example

Next, we illustrate the previous result with the following example given in [4]. We choose the
max-norm.

Let F : R3 → R3 be defined as F (x, y, z) = (x, y2+y, ez−1). It is obvious that x∗ = (0, 0, 0)
is a solution of the system.

From F , we have

F ′(x, y, z) =

 1 0 0
0 2y + 1 0
0 0 ez


and F ′(x∗) is the identity matrix 3 × 3. So, ‖F ′(x∗)−1‖ = 1 and γ = 1. On the other hand,
there exists r = 1, such that B(0, r) = {w ∈ R3 : ‖w‖ < 1} ⊂ R3, and it is easy to prove that

‖F ′(x, y, z)− F ′(u, v, w)‖ = max{2|y − v|, |ez − ew|} ≤ 3‖(x, y, z)− (u, v, w)‖,

9



in B(0, r). Therefore, R = 1
2γK

= 1
6

and Newton’s method is convergent from any starting point

belonging to B(x∗, 1/6). However, from Theorem 2, the M5 method is convergent from any
starting point belonging to B(x∗, 0.067653 . . .). This shows again that the accessibility of the
M5 method is reduced. If we consider method (6), the accessibility region is that of Newton’s
method and the number of iterations needed with the predictor is 2 (N0 = 2). Then, the M5
method is applied and the convergence of fifth-order is guaranteed.
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