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Abstract

We present a convergence analysis for a Damped secant method with modified right-hand side vector in
order to approximate a locally unique solution of a nonlinear equation in a Banach spaces setting. In the
special case when the method is defined on Ri, our method provides computable error estimates based on
the initial data. Such estimates were not given in relevant studies such as [12, 13]. Numerical examples
further validating the theoretical results are also presented in this study.
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1 Introduction

In this study we are concerned with the problem of approximating a locally unique solution x∗ of the nonlinear
equation

F (x) = 0, (1.1)

where F is a Fréchet-differentiable operator defined on a open convex subset D of a Banach space X with values
in a Banach space Y.

Many problems from Computational Sciences and other disciplines can be brought in a form similar to
equation (1.1) using Mathematical Modeling [3, 8, 7, 14, 11]. For example in data fitting, we have X = Y = Ri,
i is number of parameters and observations.

The solution of (1.1) can rarely be found in closed form. That is why most solution methods for these
equations are usually iterative. In particular, the practice of Numerical Analysis for finding such solutions is
essentially connected to Newton-like methods [3, 5, 6, 7, 14, 15, 16]. The study about convergence matter of
iterative procedures is usually centered on two types: semilocal and local convergence analysis. The semilocal
convergence matter is, based on the information around an initial point, to give criteria ensuring the convergence
of iteration procedures; while the local one is, based on the information around a solution, to find estimates of
the radii of the convergence balls. Local and semilocal convergence of Newton-like methods as well as an error
analysis for such methods can be found in [1, 2, 5, 7, 9, 10].

∗This research was supported by Ministerio de Ciencia y Tecnoloǵıa MTM2011-28636-C02-{01, 02} and Universitat Politècnica
de València SP20120474.
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In the present paper, we study the convergence of the Damped Secant method defined by

xn+1 = xn −A−1 (I − αn ([xn−1, xn;F ]−A))F (xn), for each n = 0, 1, 2, . . . , (1.2)

where x−1 and x0 are initial points, A ∈ L(X,Y) the space of bounded linear operators from X into Y,
A−1 ∈ L(Y,X), [x, y;F ] ∈ L(X,Y) is a divided difference of order one at the point (x, y) with x, y ∈ D and αn

is a sequence of real numbers chosen to force convergence of sequence xn.
If the divided difference [x, y;F ] is replaced by F ′(x) we get

zn+1 = zn −A−1 (I − αn (F
′(zn)−A))F (zn) for each n = 0, 1, 2, . . . , (1.3)

The local convergence of the method (1.3) was studied by Krejić and Lužanin [13] (see also [12]) in the case
when X = Y = Ri.

If A = [xn−1, xn;F ] and αn = 0 for each n = 0, 1, 2, . . ., we obtain the secant method

xn+1 = xn − [xn−1, xn;F ]−1F (xn), for each n = 0, 1, 2, . . . , (1.4)

If A = [x−1, x0;F ] and αn = 0 for each n = 0, 1, 2, . . ., we obtain the modified-secant method

xn+1 = xn − [x−1, x0;F ]−1F (xn), for each n = 0, 1, 2, . . . , (1.5)

It is well-known that Newton’s method

xn+1 = xn − F ′(xn)F (xn), for each n = 0, 1, 2, . . . , (1.6)

converges quadratically provided that the iteration starts close enough to the solution. However, the cost of a
Newton iterate may be very expensive, since all the elements of the Jacobian matrix involved must be computed,
as well as the need for an exact slowdown of a system of linear equations using a new matrix for every iterate.
As noted in [13] Newton-like method (1.3) uses a modification of the right hand side vector, which is cheaper
than the Newton and faster than the modified Newton method. One step of the method requires the solution
of a linear system, but the system matrix is the same in all iterations.

Similar problems we have if we use the secant method (1.4) which converges with order 1.618 . . . < 2. That
is why Damped secant method is a good alternative to all the preceding methods, especially to the method
(1.3) considered in [13].

We present a local and semilocal convergence analysis for Damped Secant method (1.2). In the local case
the radius of convergence can be computed as well as the error bounds on the distances ∥xn − x∗∥ for each
n = 0, 1, 2, . . .. In the semilocal case, we provide estimates on the smallness of ∥F (x0)∥ as well as computable
estimates for ∥xn − x∗∥ (not given in [12, 13] in terms of the Lipschitz constants and other initial data).

We denote by U(ν, µ) the open ball centered at ν ∈ X and of radius µ > 0. Moreover, by U(ν, µ) we denote
the closure of U(ν, µ).

The paper is organized as follows. Sections 2 and 3 contain the semilocal and local convergence analysis of
Secant-like method (1.2), respectively. The numerical examples are presented in the concluding Section 4.

2 Semilocal convergence

In this section we present the semilocal convergence of Damped Secant method (1.2). We shall use the following
conditions:

(C0) F : D ⊆ X → Y is Fréchet-differentiable and there exists A ∈ L(X,Y) such that A−1 ∈ L(Y,X) with
∥A−1∥ ≤ a;

(C1) There exists L > 0 such that for each x, y ∈ D the Lipschitz condition

∥F ′(x)− F ′(y)∥ ≤ L∥x− y∥

holds;
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(C2) Given x0 ∈ D, there exist L0 > 0, a0 ≥ 0 and a1 ≥ 0 such that for each x ∈ D the center-Lipschitz
condition

∥F ′(x)− F ′(x0)∥ ≤ L0∥x− x0∥,

∥F ′(x0)−A∥ ≤ a0 and ∥A−1(F ′(x0)−A)∥ ≤ a1 hold;

(C3) There exist a divided difference [x, y;F ] and L1 ≥ 0 such that for each x, y ∈ D

∥[x, y;F ]− F ′(x0)∥ ≤ L1 (∥x− x0∥+ ∥y − x0∥) ;

(C4) There exists α ≥ 0 and c > 0 such that

|αn| ≤ α and ∥x−1 − x0∥ ≤ c, x−1 ∈ D.

(C5) There exists q ∈ (0, 1) such that

a+ α

(
a1 +

2aL1q∥F (x0)∥
1− q

)
≤ q (2.1)

and
L

2
q2∥f(x0)∥+

(
L0q∥F (x0)∥

1− q
+ a0

)
q + α

(
a0 +

2L1q∥F (x0)∥
1− q

)
≤ q; (2.2)

(C6) There exists q ∈ (0, 1) such that the first inequality in (C5) holds and also(
2

1− q
+

1

2

)
L0q∥F (x0)∥+

(
L0q∥F (x0)∥

1− q
+ a0

)
q + α

(
a0 +

2L1q∥F (x0)∥
1− q

)
≤ q;

(C7) U(x0, r) ⊆ D, with r = q∥F (x0)∥
1−q .

Notice that (C1) implies (C2),
L0 ≤ L (2.3)

holds in general and L
L0

can be arbitrarily large [3, 4, 7]. The conditions involving ∥F (x0)∥ and q in (C5) and
(C6) can be solved for ∥F (x0)∥ and q. However, these representations are very long and unattractive. That is
why we decided to leave these conditions as uncluttered as possible. Notice also that these conditions determine
the smallness of ∥F (x0)∥ and q. From now on we shall denote (C0)-(C5), (C7) and (C0),(C2)-(C4),(C6)-(C7) as
the (C) and (C0) conditions, respectively. Next, we present the semilocal convergence of the Damped Secant-like
method (1.2) first under the (C) conditions.

Theorem 2.1 Suppose that the (C) conditions hold. Then sequence {xn} generated by the Damped Secant
method (1.2) is well defined, remains in U(x0, r) for each n = 0, 1, 2, . . ., and converges to a solution x∗ ∈
U(x0, r) of equation (1.1). Moveover, the following estimates hold for each n = 0, 1, 2, . . .,

∥xn+1 − xn∥ ≤ q∥F (xn)∥ ≤ qn+1∥F (x0)∥, (2.4)

and
∥F (xn+1)∥ ≤ q∥F (xn)∥ ≤ qn+1∥F (x0)∥, (2.5)

where q is defined in (C5) and r in (C7).
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Proof. By constructing (1.2) and A−1 ∈ L(Y,X), sequence {xn} is well defined. Then, we shall show
that x1 ∈ U(x0, r), ∥x1 − x0∥ ≤ q∥F (x0)∥ and ∥F (x1)∥ ≤ q∥F (x0)∥. Indeed, we have by (1.2) for n = 0 and
conditions in (C0), (C2), (C3), (C4), (C5) and (C7) that

∥x1 − x0∥ = ∥A−1 (I − α0 ([x−1, x0;F ]−A))F (x0)∥
≤

[
∥A−1∥+ |α0|

[
∥A−1∥∥[x−1, x0;F ]− F ′(x0)∥+ ∥A−1(F ′(x0)−A)∥

]]
∥F (x0)∥

≤ [a+ α(a1 + aL1c)] ∥F (x0)∥
≤ q∥F (x0)∥ < r.

Hence, x1 ∈ U(x0, r) and (2.4) holds for n = 0. Using (1.2) and some algebraic manipulation, we obtain the
Ostrowski-type approximation

F (xn+1) =

∫ 1

0

[F ′ (xn + θ(xn+1 − xn))− F ′(xn)] (xn+1 − xn) dθ

+ (F ′(xn)− F ′(x0) + F ′(x0)−A) (xn+1 − xn)+

αn ([xn−1, xn;F ]− F ′(x0) + F ′(x0)−A)F (xn).

(2.6)

Using (2.6), and the (C) conditions, for n = 0 we get in turn that

∥F (x1)∥ ≤
∫ 1

0

∥F ′ (x0 + θ(x1 − x0))− F ′(x0)∥∥x1 − x0∥dθ

+ ∥F ′(x0)−A∥∥x1 − x0∥+ |αn| (∥[x−1, x0;F ]− F ′(x0)∥+ ∥F ′(x0)−A∥) ∥F (x0)∥

≤ L0

2
∥x1 − x0∥2 + a0q∥F (x0)∥+ α(a0 + L1c)∥F (x0)∥

≤ L

2
q2∥F (x0)∥2 + a0q∥F (x0)∥+ α(a0 + L1c)∥F (x0)∥

≤
[
L

2
q2∥F (x0)∥+ a0q + α(a0 + L1c)

]
∥F (x0)∥

≤ q∥F (x0)∥.

That is (2.5) holds for n = 0. Using (1.2) for n = 1, we get by (C0), (C2), (C3), (C4) and (C5) that

∥x2 − x1∥ = ∥A−1 (I − α1 ([x0, x1;F ]−A))F (x1)∥
≤

[
∥A−1∥+ |α1|

(
∥A−1∥ (F ′(x0)−A) ∥+ ∥A−1∥∥[x0, x1;F ]− F ′(x0)∥

)]
∥F (x1)∥

≤ [a+ α (a1 + aL1∥x1 − x0∥)] ∥F (x1)∥
≤ [a+ α (a1 + aL1q∥F (x0)∥)] ∥F (x1)∥
≤ q∥F (x1)∥ ≤ q2∥F (x0)∥.

We also have that, by (C7)

∥x2 − x0∥ ≤ ∥x2 − x1∥+ ∥x1 − x0∥
≤ q2∥F (x0)∥+ q∥F (x0)∥

= q∥F (x0)∥
1− q2

1− q

<
q∥F (x0)∥
1− q

= r.
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That is, x2 ∈ U(x0, r). Then, using (2.6) for n = 1, as above we get in turn that by the (C) conditions,

∥F (x2)∥ ≤ L

2
∥x2 − x1∥2 + (L0∥x1 − x0∥+ a0) ∥x2 − x1∥+

α (a0 + L1 (∥xn−1 − x0∥+ ∥xn − x0∥)) ∥F (x1)∥+
L

2
q3∥F (x0)∥∥F (x1)∥+

(L0q∥F (x0)∥+ a0) q∥F (x1)∥+ α

(
a0 + 2L1

q∥F (x0)∥
1− q

)
∥F (x1)∥

≤
[
L

2
q3∥F (x0)∥+ (L0q∥F (x0)∥+ a0) q + α

(
a0 + 2L1

q∥F (x0)∥
1− q

)]
∥F (x1)∥

≤ q∥F (x1)∥ ≤ q2∥F (x0)∥.

Similarly, we have

∥x3 − x2∥ = ∥A−1 (I − α2 ([x1, x2;F ]−A))F (x2)∥
≤

[
∥A−1∥+ |α2|

(
∥A−1 (F ′(x0)−A) ∥+ ∥A−1∥ ([x1, x2;F ]− F ′(x0))

)]
∥F (x2)∥

≤ [a+ α (a1 + aL1(∥x1 − x0∥+ ∥x2 − x0∥+))] ∥F (x2)∥

≤
[
a+ α

(
a1 + 2a

L1q∥F (x0)∥
1− q

)]
∥F (x2)∥

≤ q∥F (x2)∥ ≤ q3∥F (x0)∥.

We also have that

∥x3 − x0∥ ≤ ∥x3 − x2∥+ ∥x2 − x1∥+ ∥x1 − x0∥
≤ (q3 + q2 + q)∥F (x0)∥

= q∥F (x0)∥
1− q3

1− q
< r.

That is, x3 ∈ U(x0, r). Moreover, using (2.6) for n = 2 as above we have that

∥F (x3)∥ ≤ L

2
∥x3 − x2∥2

+ (L0 ∥x2 − x0∥+ a0) ∥x3 − x2∥+ α (a0 + L1 (∥xn−1 − x0∥+ ∥xn − x0∥)) ∥F (x2)∥

≤ L

2
q4∥F (x0)∥∥F (x2)∥

+

(
L0

q∥F (x0)∥
1− q

+ a0

)
q∥F (x2)∥+ α

(
a0 + 2L1

q∥F (x0)∥
1− q

)
∥F (x2)∥

≤
[
L

2
q4∥F (x0)∥+

(
L0

q∥F (x0)∥
1− q

+ a0

)
q + α

(
a0 + 2L1

q∥F (x0)∥
1− q

)]
∥F (x2)∥

≤ q∥F (x2)∥ ≤ q3∥F (x0)∥.

The rest follows in analogous way using induction (simply replace x1, x2, x3 by xn−1, xn, xn+1 in the preceding
estimates). By letting n → ∞ in (2.5) we obtain F (x∗) = 0.

Condition (C1) may not be satisfied but weaker condition (C2) may be satisfied. In this case condition (C1)
can be dropped. Then, using instead of approximation (2.6) the approximation

F (xn+1) =

∫ 1

0

[(F ′ (xn + θ(xn+1 − xn))− F ′(x0)) + (F ′(x0)− F ′(xn))] (xn+1 − xn) dθ

+ (F ′(xn)− F ′(x0) + F ′(x0)−A) (xn+1 − xn)+

αn ([xn−1, xn;F ]− F ′(x0) + F ′(x0)−A)F (xn),

(2.7)

we arrive in an analogous way to Theorem 2.1 at the following semilocal convergence result for the Damped
Secant method (1.2) under the (C0) conditions.
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Theorem 2.2 Suppose that the (C0) conditions hold. Then sequence {xn} generated by the Damped secant
method (1.2) is well defined, remains in U(x0, r) for each n = 0, 1, 2, . . ., and converges to a solution x∗ ∈
U(x0, r) of equation (1.1). Moveover, the following estimates hold for each n = 0, 1, 2, . . .,

∥xn+1 − xn∥ ≤ q∥F (xn)∥ ≤ qn+1∥F (x0)∥,

and
∥F (xn+1)∥ ≤ q∥F (xn)∥ ≤ qn+1∥F (x0)∥,

where q is defined in (C6) and r in (C7).

Concerning the uniqueness of the solution x∗ in U(x0, r) we have the following result.

Proposition 2.3 Suppose that the (C) or (C0) conditions hold. Moveover, suppose that there exist x0 ∈ D and
r1 ≥ r such that F ′(x0)

−1 ∈ L(X,Y) and

∥F ′(x0)
−1∥L0(r1 + r) < 2. (2.8)

Then the solution x∗ is the only solution of equation (1.1) in U(x0, r1), where r is defined in (C7).

Proof. The existence of the solution x∗ is guaranteed by conditions (C) or (C0). To show uniqueness, let

y∗ ∈ U(x0, r1) with F (y∗) = 0. Define Q =
∫ 1

0
F ′(x∗ + θ(y∗ − x∗)) dθ. Then, using (C2) and (2.8) we obtain in

turn that

∥F ′(x0)
−1∥∥Q − F ′(x0)∥ ≤ ∥F ′(x0)

−1∥L0

∫ 1

0

∥(x∗ − x0) + θ(y∗ − x∗)∥ dθ

≤ ∥F ′(x0)
−1∥L0

∫ 1

0

∥(1− θ)(x∗ − x0) + θ(y∗ − x0)∥ dθ

≤ ∥F ′(x0)
−1∥L0

2
(r + r1) < 1. (2.9)

It follows from (2.9) and the Banach lemma on invertible operator [11] that Q−1 ∈ L(Y,X). Moreover, we have
that 0 = F (y∗)− F (x∗) = Q(y∗ − x∗), which implies x∗ = y∗.

3 Local convergence

In this section, we present the local convergence analysis of Damped Secant method (1.2). We shall use the
following conditions:

(H0) F : D ⊆ X → Y is Fréchet-differentiable and there exist A ∈ L(X,Y), x∗ ∈ D, a ≥ 0, β ≥ 0, c0 ≥ 0 such
that A−1 ∈ L(Y,X), F (x∗) = 0, ∥A−1∥ ≤ a, ∥F ′(x∗)∥ ≤ β and ∥A−1 (A− F ′(x∗)) ∥ ≤ c0;

(H1) There exist L > 0 such that for each x, y ∈ D the Lipschitz condition

∥F ′(x)− F ′(y)∥ ≤ L∥x− y∥

holds;

(H2) There exists l0 > 0 such that for each x ∈ D the center-Lipschitz condition

∥F ′(x)− F ′(x∗)∥ ≤ l0∥x− x∗∥

holds;

(H3) There exist a divided difference [x, y;F ], and L1 ≥ 0 such that

∥[x, y;F ]− F ′(x∗)∥ ≤ L1 (∥x− x∗∥+ ∥y − x∗∥) ;

6



(H4) There exists α ≥ 0 such that
|αn| ≤ α and c0(1 + αβ) < 1.

(H5) Denote by R1 the positive root of quadratic polynomial

p1(t) =
αl20
2

at2 +

(
aL

2
+

αl0c0
2

+ l0a(1 + αβ) + 2aL1 + al0

)
t+ c0(1 + αβ)− 1.

Moreover, denote by R2 the positive root of quadratic polynomial

p2(t) =
aαl20
2

t2 +

(
3al0
2

+
c0al0
2

+ l0a(1 + αβ) + 2aL1 + al0

)
t+ c0(1 + αβ)− 1.

(H6) U(x∗, R) ⊆ D, where R is R1 or R2.

Notice that (H1) implies (H2),
l0 ≤ L (3.1)

holds in general and L
l0

can be arbitrarily large [3, 4, 7]. The quadratic polynomials p1(t) and p2(t) have a

positive root by the second hypothesis in (H4) and the positivity of the coefficients of t and t2. From now on
we shall denote (H0)-(H6) and (H0) and (H2)-(H6) as the (H) and (H0) conditions, respectively. Next, we
present the local convergence of Secant-like method (1.2) first under the (H) conditions. In view of (1.2) and
F (x∗) = 0, we can have the following identity

xn+1 − x∗ = −A−1

{∫ 1

0

[F ′ (x∗ + θ(xn − x∗))− F ′(xn)] dθ

− ((A− F ′(x∗)) + (F ′(x∗)− F ′(xn)))
[
(I − αnF

′(x∗))

− αn

∫ 1

0

[F ′ (x∗ + θ(xn − x∗))− F ′(x∗)]
]
+

([xn−1, xn;F ]− F ′(x∗)) + (F ′(x∗)− F ′(xn))

}
(xn − x∗) .

(3.2)

Then, using (3.2), and the (H) conditions, it is standard to arrive at the following result (see, for example
[9, 10, 13]):

Theorem 3.1 Suppose that the (H) conditions hold. Then sequence {xn} generated by the Damped Secant
method (1.2) is well defined, remains in U(x∗, R1) for each n = 0, 1, 2, . . ., and converges to x∗ provided that
x0 ∈ U(x∗, R1). Moveover, the following estimates hold for each n = 0, 1, 2, . . .,

∥xn+1 − x∗∥ ≤ en∥xn − x∗∥ < ∥xn − x∗∥ < R1, (3.3)

where

en =
aL

2
∥xn − x∗∥+ (c0 + αl0∥xn − x∗∥)

(
1 + αβ +

αl0
2

∥xn − x∗∥
)

+ a (L1 (∥xn−1 − x∗∥+ ∥xn − x∗∥) + l0∥xn − x∗∥)
< p1(R1) + 1 < 1.

In cases (H1) cannot be verified but (H2) holds, we can present the local convergence of the Damped Secant
method (1.2) under the (H0) conditions using the following modification of the Ostrowski representation (3.2)
given by

xn+1 − x∗ = −A−1

{∫ 1

0

[F ′ (x∗ + θ(xn − x∗))− F ′(x∗)] dθ + [F ′(x∗)− F ′(xn)]− ((A− F ′(x∗)) +

(F ′(x∗)− F ′(xn)))
[
(I − αnF

′(x∗)− αn

∫ 1

0

[F ′ (x∗ + θ(xn − x∗))− F ′(x∗)]
]
+

([xn−1, xn;F ]− F ′(x∗)) + (F ′(x∗)− F ′(xn))

}
(xn − x∗) .

(3.4)
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Theorem 3.2 Suppose that (H0) conditions hold. Then sequence {xn} generated by the Damped Secant method
(1.2) is well defined, remains in U(x∗, R2) for each n = 0, 1, 2, . . ., and converges to x∗ provided that x0 ∈
U(x∗, R2). Moveover, the following estimates hold for each n = 0, 1, 2, . . .,

∥xn+1 − x∗∥ ≤ e0n∥xn − x∗∥ < ∥xn − x∗∥ < R2, (3.5)

where

e0n =
3l0a

2
∥xn − x∗∥+ (c0 + αl0∥xn − x∗∥)

(
1 + αβ +

αl0
2

∥xn − x∗∥
)

+ a (L1 (∥xn−1 − x∗∥+ ∥xn − x∗∥) + l0∥xn − x∗∥)
< p2(R2) + 1 < 1.

4 Numerical Examples

In this section we are going to present some examples in order to analyze the different conditions and bounds
for the semilocal and local convergence and to confirm the theoretical results.

Example 1 In this example we consider the X = Y = R and the function F (x) = x3−0.49 defined in [0, 1]. Let
us consider x0 = 0.85, A = F ′(x0) and αn = 0.001, for all n ≥ 0. So, a = 0.4614, a0 = a1 = 0 and α = 0.001.
For this example, the constant of Lipschitz conditions are L = 6, L0 = 5.55 and L1 = 2.775. Then, in order
to satisfy conditions (2.1) and (2.2) of (C5), we need to choose q = 0.5369. Therefore, r = 0.1439 and, from
Theorem 2.1, the ball of convergence is U(x0, r).

Example 2 Let X = Y = R3 and the function F : D ⊆ R3 → R3 defined as

F (x, y, z) = (x, y2 + y, ez − 1).

Then, the Fréchet derivative of F is given by

F ′(x, y, z) =

1 0 0
0 2y + 1 0
0 0 ez

 .

Notice that x∗ = (0, 0, 0)T is a root of the system F (x, y, z) = 0. Let us consider the domain D = U(x∗, 0.5),
A = 1.43I, where I denotes the identity matrix, x0 = (0.1, 0.1, 0.1)T , αn = 0 for all n ≥ 0. So, a = 0.6993,
a0 = 0.57 and a1 = a0a = 0.3007, and α = 0.

Example 3 Now, we consider the X = Y = R and the function F (x) = x3 − 2 in D = [0.75, 1.75], whose real
root is x∗ = 1.25992 . . .. We take A = 4.8 (so, a = 0.2083), β = 4.7622, c0 = 0.00787, l0 = 7.6798, L1 = 4.7622
and αn = 1/1000, n = 0, 1, 2, . . .. So, α = 0.001 and applying conditions (H0), the roots of polynomial p2(t)
are t1 = 0.115258 and t2 = −1006.79. From Theorem 3.2, the ball of convergence is U(x∗, t1). By choosing
q = 0.7, conditions (2.1) and (2.2) of (C5) are satisfied. Then, from Theorem 2.1 the ball of convergence is
U(x0, 0.2455)

Example 4 Let X = Y = R3 and the function F : D ⊆ R3 → R3 defined as

F (x, y, z) = (ex − 1,
e− 1

2
y2 + y, z).

Then, the Fréchet derivative of F is given by

F ′(x, y, z) =

ex 0 0
0 (e− 1)y + 1 0
0 0 1

 .

As x∗ = (0, 0, 0)T , we have F (x∗) = (0, 0, 0)T and F ′(x∗) = diag{1, 1, 1}. If we take D = U(x∗, 1), A =
diag{1.25, 1.25, 1.25} and αn = 5/100, n = 0, 1, . . ., then the bounds of conditions (H0) - (H4) are the following:
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a = ∥A−1∥ = 1/1.25 = 0.8, β = ∥F ′(x∗)∥ = 1, c0 = ∥A−1(A − F ′(x∗))∥ = |1 − 1/1.25| = 0.2, the constant of
the Lipschitz condition is L = e, and the constant of the center-Lipschitz condition is l0 = e− 1.

With these bounds the condition c0(1+αβ) < 1 is satisfied, and polynomial p1(t) has the roots t1 = −93.5199,
t2 = 0.143055 and p2(t) has the roots t1 = −112.184, t2 = 0.119256. Therefore, if we assume (H) conditions,
then the ball of convergence is U(x∗, 0.143055), whereas that if we assume (H0) conditions, then the ball of
convergence is U(x∗, 0.119256).
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