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Abstract

A one minimum only decoder for Trellis-EMS (OMO T-EMS) and for Trellis-Min-max (OMO

T-MM) is proposed in this paper. In this novel approach, we avoid computing the second minimum in

messages of the check node processor, and propose efficient estimators to infer the second minimum

value. By doing so, we greatly reduce the complexity and at the same time improve latency and

throughput of the derived architectures compared to the existing implementations of EMS and Min-

max decoders. This solution has been applied to various NB-LDPC codes constructed over different

Galois fields and with different degree distributions showing in all cases negligible performance loss

compared to the ideal EMS and Min-max algorithms. In addition, two complete decoders for OMO T-

EMS and OMO T-MM were implemented for the (837,726) NB-LDPC code over GF(32) for comparison

proposals. A 90 nm CMOS process was applied, achieving a throughput of 711 Mbps and 818 Mbps

respectively at a clock frequency of 250 MHz, with an area of 19.02mm2 and 16.10mm2 after place

and route. To the best knowledge of the authors, the proposed decoders have higher throughput and

area-time efficiency than any other solution for high-rate NB-LDPC codes with high Galois field order.
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I. INTRODUCTION

Since the first non-binary low-density parity-check (NB-LDPC) decoder architecture was

proposed for the Q-ary Sum-of-Product algorithm (QSPA) [1], hardware designers have been

working to derive solutions that allow the use of NB-LDPC codes in a wide range of commu-

nication and storage systems. Good error correction, high throughput and small area remain the

challenge of any NB-LDPC decoder designer.

Extended Min-Sum (EMS) [2] and Min-Max (MM) [3] algorithms were proposed, with the

aim of reducing the complexity involved in the check node processor, which is the bottleneck

of QSPA algorithm. Although the decoding process is simplified by means of using forward-

backward for the extraction of check-to-variable messages, these metrics penalize the maximum

throughput achievable when they are implemented in hardware.

To avoid the use of forward-backward, in [4] the Trellis Extended Min-Sum (T-EMS) was

proposed. With T-EMS, the degree of parallelism is increased using only combinations of the

most reliable Galois field (GF) symbols to compute the check-to-variable messages. The decoder

presented in [4] was outperformed in [5] where an extra column is added to the original trellis

with the purpose of generating the check-to-variable messages in a parallel way. The main

drawback of the approach presented in [5] is that requires a lot of area and pipeline stages,

reducing the overall efficiency of the decoder. In [6] the hardware implementation of a T-EMS

decoder is described, reaching the highest throughput found in literature. Previous trellis-based

proposals, such as the ones from [7], [8] and [9], applied partial-parallel decoding as a way to

obtain the output messages in the check node processor.

In [10] a decoder architecture named Relaxed Min-Max (RMM) is proposed. RMM makes an

approximation for the second minimum calculation and hence, generates the check-to-variable

messages with less complexity. The main drawbacks for this approach are: i) the check node out-

put messages are derived serially, reducing the overall throughput of the decoder and increasing

latency; and ii) the proposed approach suffers of an early degradation in the error floor region,

due to the way of deriving the second minimum.

In this paper, we introduce a novel second minimum approximation based on the statistical

analysis of the check node messages named as One Minimum Only (OMO) decoder. The

motivation to perform this approximation is that the two-minimum finder duplicates the critical

path and increases the complexity of the check node processor. In addition to the second minimum
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estimator proposed in [10], we analyze two other estimators: one based on a slight modification

of the one-minimum finder, and a last one which linearly combines the first two estimators, and

showed the best performance in simulations. The proposed OMO decoder can be applied to both

T-EMS and Trellis Min-max obtaining OMO T-EMS and OMO T-MM decoders respectively. By

avoiding the use of two-minimum finders [11] in the check node, we were able to reduce both

area and latency of the check node update without introducing any performance loss compared

to the original EMS or Min-max algorithms.

The OMO T-EMS and OMO T-MM check node architectures have been implemented and

included in a layered scheduling decoder. A 90nm CMOS process has been employed and a

(837,726) NB-LDPC code over GF(32) has been chosen to show the efficiency of our approach

for high order fields and high rate codes. The OMO T-EMS and OMO T-MM decoders achieve

100% and 159% higher efficiency (Mbps / Million Gates) compared to the most efficient decoder

found in literature [10] respectively, with about 30% less latency and 40% higher throughput

than the solution from [6] depending on whether EMS or Min-max version is implemented.

The rest of the paper is organized as follows: in Section II we introduce the nomenclature

and the main concepts of T-EMS algorithm. The proposed approach for the second minimum

estimation of T-EMS algorithm, OMO T-EMS, is presented in Section III, including and analysis

of performance for different NB-LDPC codes and showing that can be extended to Min-max

algorithm without loss of generality. Section IV includes the hardware implementation of the

proposed check node and the overall decoder. Moreover, synthesis and post place and route results

of the design and comparisons with other architectures are also included. Finally, conclusions

are outlined in Section V.

II. TRELLIS - EXTENDED MIN-SUM ALGORITHM

NB-LDPC codes are characterized by a sparse parity check matrix H where each non-zero

element hm,n belongs to Galois field GF(q = 2p). We consider regular NB-LDPC codes with

constant row weight dc and column weight dv. Decoding algorithms for NB-LDPC codes use

iterative message exchange between two types of nodes called check nodes (CN) (M rows of

H) and variable nodes (VN) (N columns of H).

Let N (m) (M (n)) be the set of VN (CN) connected to a CN (VN) m (n). Let Qm,n(a) and

Rm,n(a) be the edge messages from VN to CN and from CN to VN for each symbol a ∈GF(q)

respectively. Ln(a) denotes the channel information and Qn(a) the a posteriori information.
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Algorithm 1: T-EMS Algorithm

Input: Qm,n , zn = argmina∈GF(q)Qm,n(a) ∀ n ∈N (m)

for j = 1→ dc do

1 ∆Qm,n j(η j = a+ zn j) = Qm,n j(a)

end

2 β = ∑
dc
j=1 zn j ∈ GF(q)

3 ∆Q(a) = minη′j(a)∈con f (nr,nc)∑
dc
j=1 ∆Qm,n j(η

′
j(a)),a ∈ GF(q)

for j = 1→ dc do

4 ∆Rm,n j(a+η′j(a)) = min(∆Rm,n j(a+η′j(a)),∆Q(a)−∆Qm,n j(η
′
j(a)))

5 Rm,n j(a+β+ zn j) = λ ·∆Rm,n j(a),a ∈ GF(q)

end

Output: Rm,n

Let c = c1,c2, · · · ,cN and y = y1,y2, · · · ,yN be the transmitted codeword and received sym-

bol sequence respectively, with y = c+ e and e is the error vector introduced by the com-

munication channel. The log-likelihood ratio (LLR) for each received symbol is obtained as

Ln(a) = log[P(cn = zn|yn)/P(cn = a|yn)] ensuring that all values are non-negative where zn is the

symbol associated to the highest reliability.

Trellis Extended Min-Sum (T-EMS) algorithm [4] presents a way of implementing the original

EMS algorithm [2], avoiding the use of the forward-backward metrics and increasing the degree

of parallelism of the CN. Algorithm 1 includes the original T-EMS CN algorithm, where the

first and fifth steps perform the transformation of incoming messages (Qm,n) from “normal” to

delta domain (N→ ∆) and from delta domain to normal domain (∆→ N) for the CN outgoing

messages (Rm,n) respectively. For the N→ ∆ transformation, syndrome β of the CN must be

obtained (Step 2 of Algorithm 1) using the incoming tentative hard decision zn for each CN

message.

The extra column (∆Q(a)) calculation is derived on step 3 using the configuration sets

originally proposed in [2], with the aim of building the output messages using only the most

reliable information. The configuration set con f (nr,nc) is defined as the set of at most nr symbols
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that satisfy the parity equation, deviating at most nc times from the combination (path) of symbols

with the highest reliability. Considering only the case when nr = 1 and nc = 2, the extra column

∆Q(a) is built with the combination of the most reliable messages for each GF(q) symbol i.e.

with the minimum value message, min1(a).

Once the ∆Q(a) values are derived, the outgoing CN messages in delta domain ∆Rm,n, are

generated in Algorithm 1 using step 4 which provides all the values for extrinsic CN outgoing

messages. For the intrinsic values, min1(a) and min2(a) are used as it is explained in detail in

[5].

It is important to remark that the min1(a) values are used for both, ∆Q(a) and ∆Rm,n(a)

generation while min2(a) is only used to compute ∆Rm,n(a) (in the case of nr = 1 and nc = 2).

Additionally, the extraction of the position of the first minimum is also required (min1pos(a)),

since this information is used to derive the path for each extra column value in the trellis.

However, the two minimum values must be processed using a two-minimum finder before the

extra column calculation. This two-minimum finder increases the critical path for min1(a) due

to the min2(a) extraction.

In next section we propose a novel approach to approximate the second minimum, which

at the same time that reduces the critical path to get the first minimum, achieves an accurate

estimation of the second one without degrading the performance of the original T-EMS and

Min-max algorithms.

III. ONE MINIMUM ONLY TRELLIS DECODER

As shown in Section II, the two-minimum finder represents an important part of the CN

architecture. On the other hand, the hardware architectures to implement the minimum finder

processor [11] introduce the same delay for both min1(a) and min2(a), which is not optimal for

EMS and Min-max algorithms.

This observation is our principal motivation for creating a novel check node architecture which

approximates the computation of the second minimum, reducing the delay for the first one and

hence improving the latency and the throughput of the decoder as it can be seen in next sections.

Our proposed approach has been tested on multiple NB-LDPC codes with different GF(q) and

degree distribution, showing in all cases a negligible performance loss compared with the T-EMS

and Min-max algorithms. In order to simplify the description of our proposal, we will focus on

T-EMS, however, this method can be directly derived to Min-max algorithm without any loss
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of generality. However, we will provide performance and implementation results of this new

solution for both EMS and Min-max decoders.

In the rest of the section, different estimators of the second minimum values are considered,

and a statistical analysis of their distribution compared to the true second minimum is made. The

analysis is done for the (837,726) NB-LDPC code over GF(32), where H is generated using the

methods proposed in [12], with circulant sub-matrices of size (q−1)× (q−1). However, other

codes with different GF and degree distribution have been tested obtaining the same behavior.

A. Estimators for the second minimum value

A first natural solution for the estimation of min2 is to make use of a scaled version of the

first minimum min1, described in equation (1):

min′′2(a) = min1(a)× γp (1)

This approximation has been already proposed in [10]. However, by just applying equation

(1) the value of the minimum is usually underestimated if we apply a γp value that mimics as

much as possible the behavior of EMS or Min-max in the waterfall region 1. As it can be seen

in Fig.1, where we draw the distributions of the true min2(a) and their proposed estimators,

the value of min′′2(a) is on average smaller than the real min2(a), which leads to an important

performance degradation in the error floor region.

A second possible estimator makes advantage of a re-use of the hardware architecture. Using a

radix-2 one-minimum finder is possible to determine an early estimation for the second minimum.

In Fig. 3, a one-minimum tree finder is presented. In the figure, we include an extra multiplexor in

the last stage, that allows extracting the looser term, denoted min′′′2 (a). By doing so and just using

an extra multiplexor, this term can be used as an early estimator of the second minimum, which

represents an upper-bound on the true minimum value. If the true min2(a) value is located in the

other half part of the tree that min1(a) (dc/2 branches of the minimum tree finder not connected

to min1(a)), then we obtain min′′′2 (a) = min2(a). In the other cases, min′′′2 (a)> min2(a). Hence,

the resultant value corresponds to an provable upper bound on the true min2(a). A systematic

over-estimation of the second minimum value could lead also to performance degradation of the

complete decoder, and we propose to combine min′′2(a) and min′′′2 (a) in order to get an estimator

with a better statistical behavior.

1γp is selected as the mean value of the ratio between min2(a) and min1(a). γp = min2(a)/min1(a)
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Fig. 1. Histograms for the different estimators of min2(a). The γp value was set to 1.125.

−15 −10 −5 0 5 10 15
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
·108

Value

Ti
m

es

min2(a)−min′′2(a)
min2(a)−min′′′2 (a)
min2(a)−min∗2(a)

Fig. 2. Histograms showing the error distribution of different estimators of min2(a). The γp value was set to 1.125.

February 13, 2016 DRAFT



8

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

Fig. 3. Second minimum estimation based on a radix-2 one-minimum finder. Example for an eight inputs tree.

As we will demonstrate with a statistical analysis in the next section, both min′′2(a) and

min′′′2 (a) are biased estimators, one over-estimating the true second minimum, and the other one

under-estimating the true second minimum. We therefore propose in this paper to combine those

two estimators, by using a linear combination of the two preceding estimators, in the following

way:

min∗2(a) =
min′′2(a)+min′′′2 (a)

2
=

min1(a)× γp +min′′′2 (a)
2

(2)

Compared to the real min2(a) values, min∗2(a) presents a similar behavior in the histogram

shown in Fig. 1 which implies that the proposed estimation has similar statistical behavior than

the exact min2(a) values.

The operations involved to implement (2) can be performed after min1(a) and min′′′2 (a) values

are obtained (using the hardware structure in Fig. 3). Therefore, the second minimum estimation

can be made at the same time that ∆Q(a) values are obtained, to finally calculate check-to-

variable output messages.

In the next section, we analyse the statistical behavior of each of the three proposed estimators.
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B. Statistical analysis of the different estimators

In Fig. 2, we plot the distributions of the difference between the proposed estimators, m̂in2(a)

being defined following one of the equations (1)-(2), and the true minimum, i.e. p
(

min2(a)− m̂in2(a)
)

.

We performed this analysis by computing for each iteration and for different Eb/N0 values the

difference between the real second minimum at the check node and each one of the estimators.

The information for this analysis is computed based on all the M check nodes of the parity

check matrix.

From the shape of the distributions, we can see that m̂in2(a) = min′′2(a) seems to be biased

and skewed to the positive values of the difference, which means that not only min′′2(a) under-

estimates the true minimum, but also that the difference is not symmetric around its bias. Of

course, as it was expected for m̂in2(a) = min′′′2 (a), which represents a upper bound on the true

second minimum, we get the opposite behavior, as the distribution of min2(a)−min′′′2 (a) is

left biased and skewed. In order to better measure the performance of each estimator, we have

computed the first four cumulants of the distributions p
(

min2(a)− m̂in2(a)
)

, and reported their

values in Table I after 1 and 15 decoding iterations. The first cumulant of the distribution is the

mean, and measures the bias of the estimator, a value of zero indicating that the estimator is

unbiased. The second cumulant is the square-root of the variance, which indicates the spread

of the estimator around the mean value. The third cumulant is the skewness, and is a measure

of the symmetry of the distributions. A zero skewness indicates that an estimator does not favor

positive or negative difference with the true value min2(a). Finally, the fourth cumulant, called

the kurtosis is a measure of the flatness of the tails of the distribution. A low value of the kurtosis

indicates that very large outliers values of the difference with the true minimum do not appear

with high probability. The kurtosis value for a Gaussian distribution is equal to 3.

As we can see from those tables, min′′2(a) typically tends to under-estimates the true min2(a)

value, since both the mean and the skewness are positive, while min′′′2 (a) over-estimates the

true min2(a) value, since both the mean and the skewness are negative (which was expected

as min′′′2 (a) is actually an upper bound of min2(a)). As we can see, the third estimator that we

propose, namely min∗2(a), is a better estimation than the other 2, with respect to all statistics.

First it is practically unbiased at the first iteration, although a slight positive bias seems to appear
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TABLE I

STATISTICAL PROPERTIES OF THE DIFFERENT m̂in2(a) ESTIMATORS AFTER I = 1 AND I = 15 DECODING ITERATIONS.

p
(
min2(a)−min′′2(a)

)
p
(
min2(a)−min′′′2 (a)

)
p
(
min2(a)−min∗2(a)

)
mean (I = 1/I = 15) 1.70 / 2.09 -1.74 / -1.67 -0.07/0.16

σ (I = 1/I = 15) 2.94 / 2.65 2.83 / 2.74 2.04 / 1.92

Skewness (I = 1/I = 15) 1.17 / 1.09 -0.11 / -0.25 -0.0011 / -0.0025

Kurtosis (I = 1/I = 15) 4.51 / 4.18 5.82 / 5.71 4.05 / 3.99

at iteration 15. The skewness is almost zero, which tells us that, on average, the decoder will

under-estimate or over-estimate the min2 with the same frequency. Finally, both the variance

and the kurtosis of p(min2(a)−min∗2(a)) are the minimum among the three estimators, which

indicates that values very different than the true minimum will appear less often with min∗2(a)

than with the other two estimators. With respect to those indicators, min∗2(a) is a better estimator

of min2 than min′′2(a) or min′′′2 (a). We will confirm in the next section that min∗2(a) also provides

the maximum gain in error correction performance for the overall LDPC decoder.

C. Frame Error Rate Performance

To prove the correct behavior of the proposed OMO T-EMS and OMO T-MM algorithms,

we performed Frame Error Rate (FER) simulations for NB-LDPC codes with different degree

distributions and Galois field values, from GF(4) to GF(32), assuming transmission over Binary

Phase Shift Keying (BPSK) modulation and Additive White Gaussian Noise (AWGN) channel.

In this subsection we only include the performance for two different codes, the (837,726) NB-

LDPC code over GF(32) with dc = 27 and dv = 4 and the (2212,1896) NB-LDPC code over

GF(4) with dc = 28 and dv = 4. For the rest of the codes we obtained similar results. We compare

the proposed OMO T-EMS and OMO T-MM approaches to T-EMS [6] and Relaxed Min-Max

(RMM) algorithms [10].

Fig. 4 shows the frame error rate (FER) simulation results of the (837,726) NB-LDPC code.

For this code, the proposed OMO T-EMS algorithm in its floating point version (fp) achieves the

same performance as T-EMS algorithm without any performance loss. Both algorithms use 15

iterations (it) and a scaling factor λ = 0.5. In addition, the OMO T-MM algorithm has a coding

gain of 0.12dB compared to the RMM from [10]. Comparing the quantized version of OMO

T-EMS algorithm to RMM algorithm, OMO T-EMS algorithm with 7 bits (7b) for the datapath
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OMO T-MM (15it-fp)
OMO T-MM (8it-6b)
RMM [10] (15it-5b)

Fig. 4. FER performance for the (837,726) NB-LDPC code over GF(32) with AWGN channel. Layered schedule is applied

to all algorithms. λ = 0.5 for TEMS and OMO T-EMS algorithms. γp = 1.125 for OMO T-EMS algorithm. γp = 1.5 for OMO

T-MM algorithm.

and 9 iterations achieves the same performance as RMM [10] with 5 bits for the datapath and

15 iterations, so the proposed approach requires less iterations than the method from [10] to

achieve the same performance. For the quantized version of the OMO T-MM the performance

with 6 bits (6b) and 8 iterations achieves the same than the RMM decoder.

On Fig. 5, we have plotted the performance of the T-EMS decoder with 15 iterations, and

for all the approximations of the second minimum discussed in this paper. The curve labeled

T-EMS uses the exact computed value of min2. As we can see, the fact that min′′2 and min′′′2
do not estimate accurately the second minimum has indeed an impact on the overall decoder

performance, and especially in the error floor region, where a strong early flattening appears

for both approximations (especially for min′′2). On the other hand, our proposed approximation

min∗2 has absolutely no performance loss compared to the T-EMS with the exact minimum

computation, both in the waterfall and the error floor regime. It results that the complexity gains

provided by the OMO-T-EMS comes at no performance loss, at least for the codes that we

simulated.

In Fig. 6, simulations for the (2212,1896) NB-LDPC show a negligible performance loss

of 0.03dB for a FER = 10−7 comparing T-EMS to OMO T-EMS. The same happens when we

compare Min-max algorithm to OMO T-MM, just a negligible difference of 0.04dB is introduced
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Fig. 5. FER performance for the (837,726) NB-LDPC code over GF(32) with AWGN channel for the estimators of the second

minimum value. γp = 1.125 for OMO T-EMS algorithm.
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OMO T-MM (15it-fp)

Fig. 6. FER performance for the (2212,1896) NB-LDPC code over GF(4) with AWGN channel. Layered schedule is applied

to all algorithms. λ = 0.5 for T-EMS and OMO T-EMS algorithms. γp = 2.5 for OMO T-EMS algorithm. λ = 0.75 for MM and

OMO T-MM algorithms. γp = 1.125 for OMO T-MM algorithm.

by the approximation. The γp values in all simulations are adjusted using the mean of the ratio

min2/min1 as we said before.
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(a)

(b)

Fig. 7. Check node top architecture for T-EMS algorithm (a). Proposed OMO T-EMS/ OMO T-MM check node architecture

(b).

IV. OMO T-EMS AND OMO T-MM HARDWARE ARCHITECTURES

In this section the hardware architectures for the proposed OMO T-EMS and OMO T-MM are

introduced. Since the main contribution of this paper focuses in the CN processing, first we detail

the implementation results for the OMO T-EMS and OMO T-MM CN architectures comparing

them to other existing solutions. Finally, we present the results for the complete decoders with

horizontal layered schedule.

A. Check Node Architecture

In Fig. 7.a the original T-EMS hardware structure [6] is included, while the proposed OMO

T-EMS CN structure is presented in Fig. 7.b. It can be observed that the main advantage of our

approach is to avoid the use of two-minimum finders and apply one-minimum finders, reducing

the total complexity and the delay for the min1(a) values, introducing the novel second-minimum

estimation. To do this approximation, the block labeled “min∗2(a) Processor” is responsible to

implement the Eq. (2). The min∗2(a) Processor does not introduce any additional delay since

the processing is made at the same time that the ∆Q(a) values are computed. Moreover, it

is important to remark that the OMO decoding technique can be directly implemented for a

Min-max decoder obtaining the same advantages.
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For both OMO T-EMS and OMO T-MM algorithms, the row-wise search of the most reliable

messages min1(a) implies that the one-minimum finder must have dc inputs and includes an

extra multiplexor in the last stage to extract the min′′′2 (a) values as shown in Fig. 3. For the

CN q− 1 one-minimum finders are required, each one formed by (dc− 1) w-bit comparators

and (dc×w) 2-input multiplexors, where w is the number of bits for the datapath. On the other

hand, compared with the two-minimum finders [11], the critical path is reduced by half due to

the reduction of the hardware spent on the second minimum computation, which will impact

greatly on the obtained throughput.

To make a fair comparison with the two-minimum finder used in conventional designs, we

must add extra resources to implement (2), which reduce to 2× (q− 1) w-bit adders for the

one-minimum finders. This value is calculated considering that the implementation of (1) and

(2) need only two additional adders.

On the other hand, a conventional two-minimum finder [11] requires 2×dc w-bit comparators

and 3× dc×w 2-input multiplexors. Considering the same number of equivalent gates for an

adder and a comparator (w bits both of them), the two-minimum finder has three times more

multiplexors and two times more comparators than the one minimum finder plus the second

minimum estimation implementing (2).

For the N→ ∆ and ∆→ N transformation, the approach used is similar to the one proposed

in [13], requiring 2×q× p×dc×w 2-input multiplexors to perform both transformations. The

check node’s syndrome β is calculated adding all dc tentative hard decision symbols zn by means

of a GF(q) adder in a tree structure fashion needing p× (dc−1) XOR gates.

The extra column values are generated using a configuration processor similar to the one

proposed in [6] using (q−1)× (q/2−1) w-bit adders or comparators to generate the tentative

extra column values depending on whether EMS or Min-max check node is implemented. To

select the most reliable value, q− 1 one minimum finders are required, each one formed by

(q/2− 1) w-bit comparators and (q/2×w) 2-input multiplexors. To compute the path info,

(q−1)(2×dlogdce+(q/2−1)×w) 2-input multiplexors, (q−1)(dlogdce) XOR gates and (q−

1)(dlogdce−1) OR gates are implemented.

The resources required for the CN implementation of OMO T-EMS and OMO T-MM are

summarized in Table II and compared with the approaches from [10] and [6]. VHDL was used

for the description of the hardware and the total gate account was derived after synthesis using

Cadence RTL Compiler. The hardware implementation was performed for the (837,726) NB-
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TABLE II

CN COMPLEXITY COMPARISONS. FOR THE (837,726) NB-LDPC CODE OVER GF(32)

Architecture Datapath

Logic

Gates

(NAND)

Memory

(bits)

Relaxed Min-Max

[10]
5 bits 152594 52080

T-EMS

(nr = 2, nc = 2) [6]
6 bits 304260 -

OMO T-EMS

(nr = 1, nc = 2)
7 bits 190780 -

OMO T-MM

(nr = 1, nc = 2)
6 bits 165700 -

LDPC code over GF(32), with dc = 27 and dv = 4.

As it can be observed, although the CN in [10] has less NAND gates than our proposals,

their CN requires to store intermediate messages due to the serial processing, increasing the gate

account of the CN to 230714 NAND gates (considering that storing one bit of RAM memory is

equivalent in terms of area to 1.5 NAND gates [10], [14], [15]). Hence, our proposals requires

at most 18% less logical resources than the CN presented in [10], even considering that we use

two extra bits.

For T-EMS decoder presented in [6] we did not provide separate results for the CN architecture,

however we obtained these results considering the main differences with our new proposal. The

CN from [6] needs about four times more hardware than our OMO approaches for the extra

column values computation due to the use of the first and second minimum for the extraction

of the extra column values. As we can see in Table II OMO T-EMS and OMO T-MM require

37% less logical resources than [6].

B. Complete decoder architecture

The proposed CN architecture has been included in an horizontal layered schedule decoder

(with one CN cell (Fig. 7) and dc VN units. Each VN processor includes dual-port memories

that store the LLR values (Qn(a)) and avoid adding extra latency. On the other hand, due to the
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layered schedule, a shift register is required to store the “last iteration” CN output information

(Rm,n(a)).

Since, only one CN cell is implemented in the decoder, M clock cycles are required to complete

one decoding iteration. This value is increased due to the pipeline stages (k) introduced in the

decoder (k×dv clock cycles are added) with the aim of achieving the desired clock frequency

( fclk). As after processing one entire circulant sub-matrix the pipeline registers must be empty

before processing a new one, reducing the logical path of the decoder has a great impact in the

maximum throughput achieved by the decoder (Eq. (3)). Finally, q− 1 additional clock cycles

are required to load the LLR values and output the estimated codeword of the decoder.

T hroughput =
fclk[MHz]×N× p

it× (M+dv× k)+(q−1)

[
Mb
s

]
(3)

With OMO T-EMS we reduce the critical path of the CN, so we only require 8 pipeline

stages to achieve a clock frequency of fclk = 250MHz after place and route with Cadence SOC

encounter tools and employing a 90 nm CMOS library in which the area of a NAND gate is

3.13µm2. The total area of the decoder is 19.02 mm2 with a core occupation of 60% and a gate

account of (19.02×0.6)/3.13 = 3.6 Million of NAND gates.

For OMO T-MM the number of pipeline stages is 8 and the maximum clock frequency is

fclk = 250MHz. The total area is 16.10 mm2 with a core occupation of 70% and a gate account

of (16.1×0.7)/3.13 = 3.6 Million NAND gates.

It is important to remark that the library used to implement both OMO T-EMS and OMO

T-MM do not include optimized RAM memories, so each bit of RAM is implemented as a

register, and hence, the area for the memories is about three times larger. Due to this, the total

number of equivalent NAND gates is overestimated compared to the results found in literature

that always assume optimized memories. For this reason we include in Table III, for comparison

purposes, the equivalent number of NAND gates assuming that each bit of RAM is implemented

with and area of 1.5 NAND gates.

To achieve the same performance as in [10] and [6], our OMO T-EMS approach requires only

9 decoding iterations, as can be seen in Fig. 4, therefore the total latency of the decoder is 1435

clock cycles, which corresponds to a throughput of 729 Mbps (3). For the OMO T-MM 1279

clock cycles are required to get the same FER performance as RMM or T-EMS, so a maximum

throughput of 818 Mbps is reached.
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OMO T-EMS and OMO T-MM decoders have been compared to the most efficient NB-LDPC

decoder designs to the best knowledge of the authors. The results of the comparisons have been

included in Table III, where we have scaled the results in [10] to include all throughput results

over 90 nm CMOS process [16].

The throughput of both OMO T-EMS and OMO T-MM decoders is higher than any decoder

proposed in literature for high order fields and high rate NB-LDPC codes (see Table III), because

of the improvements made at the check node processor.

Our approaches require in the worst case (OMO T-EMS) less than half area than [15] and

achieve at least 3.2 times higher throughput, so our most complex solution is 13 times more

efficient. 2

On the other hand, the decoder presented in [10] has been considered since it was the most

efficient one until now and it uses (1) as a method to approximate the second minimum, which

gives benefits in terms of area but introduces early performance degradation (Fig. 4). Despite

this, OMO T-EMS has 8.8 times less latency than [10] achieving 4.75 times higher throughput

with a decoder 49.7% more efficient in terms of area over throughput (for a 90 nm CMOS

process). On the other hand, OMO TMM has 61.2% higher efficiency than [10] with 9.9 times

less latency and 5.3 times higher throughput.

Finally, our OMO T-EMS approach has been compared against the T-EMS decoder presented

in [6]. Making use of the novel approach for the second minimum estimation, the latency is

reduced on 33% with respect to [6] with an increment in throughput of 50%. The area was also

reduced in 25%, so the efficiency is 50% higher.

Is important to remark that the proposed approach is focused on high-rate NB-LDPC codes.

However, efficient NB-LDPC decoders suitable for lower rate codes have been proposed in the

literature [17]- [18]. These architectures make a parallel processing of messages.

V. CONCLUSIONS

In this paper a new method to estimate the second minimum value in message of the check

node processor of NB-LDPC decoders is proposed. This solution avoids the use of two-minimum

finders, greatly reducing the check node complexity. The simplifications applied to the T-EMS

and T-MM algorithms reduce latency and area with respect to the original proposal, without

2Note that [15] is the only proposal that also provides post place and route results.
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TABLE III

COMPARISON OF THE PROPOSED NB-LDPC LAYERED DECODERS TO OTHER WORKS FROM LITERATURE. FOR THE

(837,726) NB-LDPC CODE OVER GF(32)

Algorithm
T-Max-log

QSPA [15]

RMM

[10]

T-EMS

[6]

OMO T-EMS /

OMO T-MM

Report Post-layout Synthesis Synthesis Post-layout

Technology 90 nm 180 nm 90 nm 90 nm

Quantization (w) 7 bits 5 bits 6 bits 7 bits / 6 bits

Gate Count

(NAND)
8.51M 871K 2.75M 2.07M / 1.79M

fclk (MHz) 250 200 250 250

Iterations 5 15 12 8

Latency (clock

cycles)
4460 12675 2160 1435 / 1279

Throughput (Mbps) 223 66 484 729 / 818

Throughput

(Mbps) 90 nm
223 154 484 729 / 818

Efficiency 90 nm

(Mbps/M-gates)
26.2 176.8 176 352 / 456

Area (mm2) 46.18 - - 19.02 / 16.10

introducing any significant performance loss. The proposed check node architecture was included

in a complete decoder with layered schedule achieving 729 Mbps of throughput after place and

route on a 90nm CMOS process for OMO T-EMS and 818 Mbps for OMO T-MM. The designed

decoder nearly doubles the efficiency of the best solutions found in literature for high order fields

and high rate codes.
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