

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

 © 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this
work in other works.

http://dx.doi.org/10.1109/SCC.2015.68

http://hdl.handle.net/10251/64732

IEEE

Cedillo Orellana, IP.; Jiménez Gómez, J.; Abrahao Gonzales, SM.; Insfrán Pelozo, CE.
(2015). Towards a monitoring middleware for cloud services. 12th IEEE International
Conference on Services Computing (IEEE SCC 2015). IEEE. doi:10.1109/SCC.2015.68.

Towards a Monitoring Middleware for Cloud Services

Priscila Cedillo, Javier Jimenez-Gomez, Silvia Abrahao, Emilio Insfran

Department of Computer Systems and Computation

Universitat Politècnica de València

Camino de Vera, s/n, 46022, Valencia, Spain

icedillo@dsic.upv.es, jajimgme@inf.upv.es, {sabrahao, einsfran}@dsic.upv.es

Abstract— Cloud Computing represents a new trend in the

development and use of software. Many organizations are

currently adopting the use of services that are hosted in the

cloud by employing the Software as a Service (SaaS) model.

Services are typically accompanied by a Service Level

Agreement (SLA), which defines the quality terms that a

provider offers to its customers. Many monitoring tools have

been proposed to report compliance with the SLA. However,

they have some limitations when changes to monitoring

requirements must be made and because of the complexity

involved in capturing low-level raw data from services at

runtime. In this paper, we propose the design of a platform-

independent monitoring middleware for cloud services, which

supports the monitoring of SLA compliance and provides a

report containing SLA violations that may help stakeholders to

make decisions regarding how to improve the quality of cloud

services. Moreover, our middleware definition is based on the

use of models@run.time, which allows the dynamic change of

quality requirements and/or the dynamic selection of different

metric operationalizations (i.e., calculation formulas) with

which to measure the quality of services. In order to

demonstrate the feasibility of our approach, we show the

instantiation of the proposed middleware that can be used to

monitor services when deployed on the Microsoft Azure©

platform.

Cloud Computing; Software as a Service; Monitoring;

Middleware; Quality of Service; Models@run.time

I. INTRODUCTION

Cloud Computing represents a new trend in the
development and use of software systems. Cloud platforms
allow the provision of infrastructure as a service (IaaS),
platform as a service (PaaS), or software as a service (SaaS).
The business model that cloud computing offers has a huge
number of advantages (e.g., scalability, elasticity,
availability, pay-as-you-go flexible charging). These
advantages could be translated into quality requirements that
should be fulfilled during the provision of the service. The
provision of SaaS includes the delivery of software
applications or services to clients via the Internet. A SaaS
model may have a large number of tenants and each tenant
may have hundreds of thousands of users, meaning that a
SaaS infrastructure can support millions of users with
scalable performance [1]. The terms under which a service is
provided must be expressed by using Service Level
Agreements (SLAs).

Each service is typically accompanied by an SLA that

defines the minimal guarantees that a cloud provider offers
to its customers [2] (e.g., ensure web application server
latency to be less than 100 ms). Cloud providers usually
offer some performance guarantees for the provision of
services and leave the detection of SLA violations to the
customer [2]. Penalties are established when the service
quality violates the SLA. Both the underestimation of
provisioning and overestimation of de-provisioning lead to
penalties [3]. Moreover, many cloud providers do not
automatically credit the customer for SLA violations and
leave the burden of providing evidence of any such violation
to the customer [2]. The provision of an SLA violation report
that helps both clients and providers to understand the real
behavior of services and SLA compliance would be useful.
Unfortunately, existing solutions have several drawbacks, as
is reported by Muller et al. [4]: the SLAs that they support
are not sufficiently expressive to model real-world scenarios;
the monitoring configuration is coupled with a given SLA
specification; and explanations of the violations are difficult
to understand and potentially inaccurate.

On the other hand, the deployment and execution of
software systems in highly dynamic infrastructures (i.e.,
clouds) lead to a new set of challenges and requirements with
regard to monitoring. A monitoring system should
consequently have the flexibility to be adapted or changed
according to new monitoring requirements and should keep
up when a service scales up or down dynamically [5].

We believe that Model-Driven Engineering (MDE) may
be a solution that provides the flexibility required to monitor
cloud services. However, establishing the whole set of Non-
Functional Requirements (NFRs) to be monitored at design
time is not always possible owing to renegotiations of SLAs
or the addition of new NFRs to be monitored. It is therefore
not sufficient to set requirements statically because they may
change at run-time [6]. Baresi and Ghezzi [7] advocate that
future Software Engineering research should be focused on
providing intelligent support for software at run-time, thus
crossing the current rigid boundary between development-
time and run-time. It is therefore necessary to define
approaches that will permit the run-time monitoring of cloud
services, the addition of new quality requirements to be
monitored, and the selection of the most appropriate metric
operationalization 1 depending on the cloud capabilities,

1 The operationalization of a metric consists of establishing a

mapping between the generic specification of the metric and the

concepts that are represented in the software artifacts to be

measured [20].

without interrupting the execution of services. This challenge
can be tackled by using models@run.time [8] [9], which, by
means of dynamic reflection mechanisms, allows the
calculation formula used for specific metrics to be changed
in order to satisfy quality requirements as well as to define
new quality requirements at run-time.

In previous studies, we have proposed the definition of a
monitoring process for cloud services by using
models@run.time [10]. This monitoring process provides an
SLA violation report, which contains the non-compliance
with the SLA and additional NFRs that may be of interest to
the service provider. In this paper, we propose the design of
a platform-independent monitoring middleware for cloud
services, which supports the monitoring of SLA compliance
and provides a report containing SLA violations that may
help stakeholders to make decisions regarding how to
improve the quality of cloud services. Furthermore, our
middleware definition is based on the use of
models@runtime, which allows the dynamic change of
quality requirements and/or the dynamic selection of
different metric operationalizations (i.e., calculation
formulas) with which to measure the quality of services. In
order to demonstrate the feasibility of our approach, we show
the instantiation of the proposed middleware that can be used
to monitor services when deployed on the Microsoft Azure©
platform.

The paper is organized as follows. In Section II, we
discuss existing approaches and platforms that are used to
monitor cloud services. In Section III, we describe the
monitoring process and introduce the problem that the
proposed middleware is addressing. In Section IV, we
present the architecture of the platform-independent
monitoring middleware. In Section V, we present the
instantiation of the proposed middleware for monitoring
services that are deployed on the Microsoft Azure ©
platform. Finally, in Section VI, we present our conclusions
and further work.

II. RELATED WORK

Recent research and industry efforts have focused on
developing monitoring techniques, platforms, and
frameworks that can assist cloud providers in tracking the
SLA violations of certain service quality requirements. In
this section, we analyze the flexibility and maintainability of
these solutions when a monitoring requirement needs to be
added or modified.

Currently, many public cloud providers provide their
consumers with the ability to monitor their cloud services
using available monitoring tools for CPU, storage, and
network [11]. These tools are often tightly integrated with
their other cloud solutions. For example, CloudWatch
(offered by Amazon) is a monitoring tool that enables
consumers to manage and monitor their applications residing
on AWS EC2 (CPU) services. However, this monitoring tool
does not have the ability to monitor a service component that
may reside on the infrastructure of other cloud providers
such as GoGrid and Azure. Another limitation of tools of this
kind is that they are only concerned with monitoring the
quality of the service attributes for hardware resources (CPU,

storage, and network) and lack the ability to monitor
application-specific QoS attributes and SLA requirements
(i.e., latency, performance, security). In addition, the
majority of these commercial tools (e.g., CloudWatch,
LogicMonitor) are not flexible enough to allow a service
provider to extend the provided QoS attributes in order to
monitor the fulfillment of SLAs.

Some research works have also focused on surveying the
current state of monitoring tools [12] or providing solutions
for cloud service monitoring [4], [13], [14]. Fatema et al.
[12] survey the range of monitoring tools that are currently in
use in order to gain an insight into their technical
capabilities. They also identify the desired capabilities of
monitoring tools used to serve different cloud operational
areas from the perspective of both providers and customers;
the authors then present a taxonomy of the capabilities
identified and analyze the tools available using these
capabilities as a basis. They conclude that the monitoring
tools were mostly not designed with the cloud in mind and
must be extended or redesigned to be useable in cloud
environments. Consequently, there is a lack of support for
monitoring desirable capabilities that are specific to cloud
platforms (e.g., elasticity, scalability).

Keller and Ludwig [13] describe a framework named
WSLA that can be used to specify and monitor SLAs for
web services. They have developed a prototype of a WSLA
compliance monitor. However, they do not study how to deal
with different operationalizations in order to provide
flexibility to their measurement service.

Emeakaroha et al. [14] propose an application monitoring
architecture named Cloud Application SLA Violation
Detection architecture (CASViD). This architecture monitors
and detects SLA violations at the application layer and
includes tools for resource allocation, scheduling, and
deployment. The monitoring infrastructure receives
instructions to monitor applications from the SLA
management framework and delivers the monitored
information. It uses agents and an SMTP protocol to collect
data from the cloud services. However, this approach does
not have a flexible means to change the requirements and
metrics to be monitored at run-time. Shao et al. [15] propose
a runtime model for cloud monitoring (RMCM), which
denotes a representation of a running cloud by focusing on
common monitoring concerns. However, they do not
mention specific non-functional characteristics for SaaS
cloud environments and their metrics (e.g. scalability,
availability, elasticity, etc.). Furthermore, they do not
provide an SLA violation report and leave addressing non-
functional requirements from SLA as future work. Finally,
Müller et al. [4] have designed and implemented
SALMonADA, which is a service-based system for
monitoring and analyzing SLAs in order to provide an
explanation for violations. The SLA is described using a
monitoring management document (MMD) to be consumed
by the monitoring infrastructure; however, these authors do
not help stakeholders in selecting alternative
operationalizations depending on the platform, and require
advanced users with knowledge about metrics and specific
platforms.

Overall, these monitoring solutions have focused on
some specific quality attributes (e.g., performance) and some
of them lack mechanisms to aggregate multiple quality
attributes or parameters for a service consumer, which is a
critical aspect of monitoring. To the best of our knowledge,
there is a need for approaches that monitor the specific non-
functional characteristics of cloud services and that allow the
flexibility of adding and modifying monitoring requirements
at run-time. These changes in monitoring requirements can
be due to the renegotiation of SLAs or result from the need
to know the quality characteristics of a service that was not
of interest when the monitoring requirements were
established.

III. MONITORING PROCESS OVERVIEW

This section presents the process that is supported by the
monitoring middleware. It contains a set of tasks that can be
used to monitor, analyze, and report SLA violations. It may
also be useful to service providers for monitoring additional
NFRs that are not specified in the SLA but that might be of
interest during the service provision (e.g., detecting
variations in the service performance).

Figure 1 provides an overview of the process. The first
step of the process is the Monitoring Configuration task
where the NFRS are specified as well as the procedure to
collect data from the cloud service. The inputs for this
activity are the NFRs to be monitored, which are represented
by using a Monitoring Requirements Model. Since this
model mainly contains the SLA terms, we use the WSLA
Language [16] to express the SLA terms in a standardized
manner. The generation of the Monitoring Requirements
Model can be supported by the SaaS Quality Model in order
to classify and choose the appropriate operationalizations
that are needed to monitor the NFRs contained in the SLA.
The NFR classification is built in compliance with the SaaS
Quality Model, which is aligned with the ISO/IEC 25010
standard (SQuaRE) [17], and it contains all the
characteristics, sub-characteristics, attributes, and metrics
that are used to measure the quality of SaaS. The output of
the Monitoring Configuration task is the Runtime Quality
Model, which is a model@run.time that contains the
monitoring directives. Also, the matching between non-
functional requirements and raw data to be obtained from the
cloud takes place in the Monitoring Configuration task, and
is included in the Runtime Quality Model. This latter model
is used in the Measurement Process task to calculate all of
the metrics that are involved in the monitoring process. The
SaaS Quality Meta-model and the Runtime Quality Meta-
model have been designed by considering quality
specifications and reports, which study the meta-classes that
are involved in the quality measurement [18][19].

The second step of the process is the Measurement
Process task, which captures raw data by using different
retrieval scenarios based on the suitability of the technique
for gathering quality data from cloud services (e.g.,
performance counters, custom counters, wrappers, APIs). In
the Measurement Process Task, the metrics are calculated
and the process is fed with useful and filtered information,
which is used by the Analyze Results task. In the third step,

the Analyze Results task uses the information generated by
the Measurement Process, compares it with the non-
functional requirement thresholds specified in the
Monitoring Requirements Model, and creates an SLA
Violations Report in which any non-compliances are
described. Further information on the monitoring process can
be found in [10].

In

Monitoring
Configuration

Measurement
Process

Analyze Results

SLA Additional
Monitoring

Requirements

Monitoring
Model@runtime

out

Low Level Data
Raw data

in

Model With
Monitoring Data

out

SLA + Additional
Monitoring

Requirements

in in

SLA Violations
Report

out

Artifacts

in

Figure 1. Monitoring Process Overview

IV. MONITORING MIDDLEWARE ARCHITECTURE

This section presents the platform-independent
middleware architecture. This architecture allows the
identification of SLA violations of cloud services by
decoupling the specification of the quality attributes that
must be evaluated from the monitoring process itself. Figure
2 shows the different elements of the monitoring
architecture.

Monitoring & Analysis
Middleware

Middleware Configurator

Monitoring Requirements Model
(SLA + Additional Non-functional
Requirements)

Cloud Services

List of raw data
counters

SaaS
Quality
Model

Analysis Engine

Measurements Engine

Runtime

Quality Model
M@RT

Service Quality
Raw Data

SLA Violations
Report

NFR Cloud Parameters

(1)

(4)

(2)

(6)

(3)

(5)

Figure 2. Monitoring Configurator & Middleware

Three models are used to configure the monitoring
middleware (i.e., the Monitoring Requirements Model, the
SaaS Quality Model, and the Runtime Quality Model). The
Monitoring Requirements Model (see Figure 2 (1)) contains
all the NFRs that will be monitored. This model contains the
constraints established in the SLA together with the
corresponding thresholds, which should be evaluated. The
SaaS Quality Model (see Figure 2 (2)) represents the
decomposition of SaaS quality characteristics into
measurable quality attributes and the different metric
operationalization alternatives that can be used during the
service monitoring process. The operationalization of a
metric consists of establishing a mapping between the
generic specification of the metric and the concepts that are
represented in the software artifacts to be measured [20]. The
possibility of having several operationalizations allows the

most appropriate formula to be selected (by considering the
availability of raw data in a specific platform). This model
contains the actual parameters and instructions that are
inherent to the platform, which can be retrieved by using
different methods (e.g., agents, APIs, platform tools,
libraries). Figure 3 shows an excerpt from the SaaS quality
metamodel in which different operationalizations of a metric
are specified.

The Runtime Quality Model (see Figure 2 (3)), which is a
model@run.time, specifies all of the monitoring
requirements, metrics, calculation formulas, and
configurations that are needed to access the services to be
monitored during their execution.

Figure 2 (4) shows the Middleware Configurator, which
is an important component of the architecture. This
component allows the definition of the Runtime Quality
Model by matching the metrics that are specified in the
Monitoring Requirements Model with the platform-
dependent formulas that are contained in the SaaS Quality
Model.

Attribute

name : EString

definition : EString

NFR

name : EString

description : EString

mandatory : EBoolean

NLRestriction : EString

OCLRestriction : EString

Operationalization

Metric

name : EString

DirectMetricOperationalization

name : EString

IndirectMetricOperationalization

name : EString

MeasurementFunction

name : EString

formula : EString PlatformParametersAccess

parameter : EString

Platform

name : EString

MetricDefinition

Description : EString

Figure 3. SaaS Quality Model Excerpt

Finally, Figure 2 (5) shows the Monitoring & Analysis
Middleware containing two elements: the Measurements
Engine, which calculates the monitoring values; and the
Analysis Engine, which compares the calculated values with
the thresholds that are specified in the Monitoring
Requirements Model in order to be able to generate the SLA
Violations Report. Since this approach has been proposed as
a middleware, it will be implemented and deployed as a
service in order to interact with the cloud services to be
monitored. Moreover, it is possible to use ways to gather
information from services deployed on any platform by
mean of wrappers that allow the extension of a service to
provide quality information. The main benefits of this
architecture are its ability to monitor application-specific
quality requirements and the flexibility and maintainability
of the Monitoring & Analysis Middleware when new NFRs
need to be added or modified or when a different metric
operationalization is needed for a given quality attribute
(e.g., using a more precise calculation formula to determine
the probability of failure of a given cloud service). This
advantage exists thanks to the Runtime Quality Model,
which decouples those NFRs that will be evaluated and

states how the calculation formulas from the Monitoring &
Analysis Middleware will be applied. Another potential
benefit is its ability to detect faults before they occur.

V. INSTANTIATING THE MONITORING MIDDLEWARE IN

MICROSOFT AZURE ©

In this section, we show how the platform-independent
monitoring middleware can be instantiated. Despite the fact
that the design and implementation of the middleware has
been applied to monitor cloud services that are deployed on
Microsoft Azure, similar actions can be taken to apply this
solution to monitor cloud services that are deployed on other
platforms like Amazon Web Services or Google App Engine.

In our monitoring architecture, the Measurements Engine
must gather and calculate data regarding the behavior and
performance of the cloud services, while the Analysis Engine
determines whether the SLA and other NFRs for the services
of interest are fulfilled. Figure 4 shows the Measurements
Engine with three possible data-gathering scenarios. Each
scenario is numbered and colored in the picture to show its
context of use. The first scenario (1) shows the case in which
raw data is gathered directly. This direct gathering of raw
data can be achieved by using the Microsoft Azure
Diagnostics Service as the platform data retrieval
mechanism. The data sources should be configured and
directly retrieved from a set of Performance Counters
(provided by the Microsoft Azure Diagnostics Service). This
service is an extension service that provides support for data
extraction for roles and virtual machines that are deployed on
Azure Platforms [21]. The Microsoft Azure Diagnostics
Module has to be imported and the data source in which the
raw data will be stored and later manipulated should be set.
In other platforms like AWS-EC2, performance counters can
be obtained from the Performance Monitor Counter [22] or
from other mechanisms, depending on how each platform
retrieves performance counters from cloud services.

The second scenario (2) is the case in which there are no
Performance Counters for direct use. It is therefore necessary
to build Custom Performance Counters by combining Azure
Performance Counters or other Custom Performance
Counters. In this case, the Measurements Engine calculates
Custom Performance Counters and the result can be
managed by the Microsoft Azure Diagnostics Service. This
scenario represents indirect metrics in quality terms. It can be
applied in any platform since monitoring data is a result of
measurements that are calculated from data that is gathered
using scenarios (1) and (3).

Finally, the third scenario (3) is the case in which data
regarding the service quality cannot be obtained directly
from the Azure platform or any other platform and the
corresponding cloud service has to be extended to provide
the information needed. This can be done by means of
wrappers that encapsulate the corresponding cloud service.
The mechanism used to produce the data needed from the
service is hard coded in these wrappers, which can also be
considered to be Custom Performance Counters, and store
the gathered data in any storage solution. Here, we have used
Azure Storage.

The following shows the implementation of the
Monitoring & Analysis Middleware for the Microsoft Azure
platform shown in Figure 5, which is based on the
architecture presented in Figure 2.

First, the Middleware Configurator allows the service
monitoring directives to be prepared. It is assumed that the
SLA has been defined for the service to be monitored. The
NFRs are contained in the Monitoring Requirements Model.
These NFRs can be seen as a subset of the NFR
categorization contained in the SaaS Quality Model. The
SaaS Quality Model includes associated parameters that are
specific to the platform to facilitate the selection of the
appropriate metrics depending on the platform. The user
must therefore use the Middleware Configurator to match the
NFRs with the Azure Performance Counters (see Figure 6)
(i.e., Azure Performance Counters, Custom Performance
Counters, and Wrappers defined as Custom Performance
Counters). Finally, the Middleware Configurator is able to
use this information to generate the Runtime Quality Model.
When the Runtime Quality Model has been generated, it is
used by the Monitoring Middleware. In this example, we
provide a detailed description of how we have developed
both the Configurator and the Monitoring & Analysis
Middleware.

The Middleware Configurator (shown at the top of
Figure 5), was implemented in C# as an Azure Web Role by
using Microsoft Visual Studio 2014. This configurator uses
the Monitoring Requirements Model to specify the NFRs to
be monitored. The specified NFRs must be matched with the
formula that allows raw data to be collected from the
services. The SaaS Quality Model is used to support the
matching.

Monitoring & Analysis Middleware

Measurements Engine

Wrapper

Extractor

Storage Manager

Storage

Direct Counters Table / Log Files

Calculated Metrics Table

Service

OnStart()

Platform Counters

Custom Counters

123

213

3a

1

2

APIs, Plugins, Tools

3b

Platform Data
Retrieval Mechanism

Analysis Engine

Figure 4. Platform-Independent Raw Data Extraction Scenarios

The Azure Service Counters must be matched with the
NFRs that are contained in the Monitoring Requirements
Model. When the matching is made, it is able to build the
Runtime Quality Model. This model is consumed by the
Measurements Engine allocated in the Monitoring &
Analysis Middleware.

The Monitoring & Analysis Middleware begins to gather
the raw data with the quality information from the services

using one of the three scenarios detailed above. The raw data
obtained is stored in an Azure Storage Account. Two tables
are used to store the monitoring information: (1) the
WadPerformanceCounters Table where the raw data is
gathered by the Diagnostics Service directly from the
services; and (2) the CalculatedMetrics Table, which
contains the calculated metrics that are generated by the
Measurements Engine and passed to the Analysis Engine.

It is also necessary to specify the sampling frequency of
each Performance Counter, which may be different
depending on the stakeholders settings, and the period of
time in which the data is transferred to storage. Since the
Runtime Quality Model can be changed, our example is able
to handle updates of it at runtime, thus providing the
monitoring infrastructure with flexibility.

The Extractor class has been implemented in the
Monitoring & Analysis Middleware to retrieve data from the
tables to operate with it. Thus Extractor class (Figure 5)
retrieves raw data in each period. Since Microsoft Azure bills
per transaction, it is beneficial to retrieve all the necessary
information in the fewest transactions possible. Therefore
our solution saves on costs to the stakeholders.
The Performance Counters provide two kinds of values: (i)
counters, which specify a single value of a single data
retrieval (e.g., the Request Execution Time of the last
request); or (ii) accumulative data (e.g., the Total Number of
Requests handled by the Service since it started). The client
should therefore use the configurator to specify how to give
meaning to the data retrieved in order to provide the highest
quality measurements.

Middleware Configurator

Monitoring
Requirements Model

SaaSQualityModel

Monitoring & Analysis Middleware

Analysis Engine

Measurements
Engine

SLA Violations
Report

Cloud Services

Performance /Custom / Wrappers
Counters

MonitoringConfigurator WebRole

Azure Performance
Counters

(Calculated MetricsTable)

Storage
Manager

Diagnostics

Raw Data

(WadPerformanceCounters)

M@RT

Runtime
Quality Model

Windows Azure Storage

Extractor

Raw Data

Figure 5. Monitoring Solution for the Azure Platform

Once the metrics have been calculated by the
Measurements Engine, these values are stored in the
Calculated Metrics Table (See Figure 5) to be analyzed by
the Analysis Engine. The decision to use Windows Storage
Tables was made because Windows Azure encourages the

use of this kind of database, which is the most economic
since it uses basic operations to store and retrieve data.
However, the storage process is completely extensible to
other databases if necessary.

The monitoring takes place by default at the service
level, which means that metrics represent the behavior of the
set of roles that make up the service. Moreover, by using this
proposal it is possible to maintain the measure of the metrics
at the role level. This occurs if the stakeholder is interested in
obtaining in-depth knowledge of the issues in order to find
solutions (e.g., several roles performing at an excellent level
could conceal one that is performing poorly, as the general
results will be positive). However, although sometimes
appropriate, this option will imply higher storage and
computational costs. It is up to the user to accept the tradeoff
because the Monitoring Middleware allows both
possibilities.

The monitoring middleware application has been
exemplified through the use of a representative domain in
which NFRs for SaaS architectures in cloud environments
can be monitored and analyzed [23]. This example has been
selected since it has been proposed for SaaS, thus permitting
relevant NFRs to be monitored in cloud environments. The
example is denominated as the Open Reference Case (ORC),
which is used as an open source demonstrator to highlight
the achievements of the European research project
SLA@SOI. The ORC is an extension of the CoCoMe
implementation [24] and provides a service-oriented retail
solution that can be used in a trading system to handle the
sales and stocking process [23]. For this running example,
we have chosen Availability. We selected Availability
because it is a relevant quality characteristic in cloud
computing [25] and it clearly illustrates the use of the
monitoring middleware when using both Azure Performance
Counters and Custom Performance Counters.

One of the SLA terms contains a commitment to making
the inventory service in the retail solution available 99.50%
or more of the time in a given calendar month. If the service
offered fails to meet this commitment, a service credit will
be applied to the customer’s account. Availability is defined
as the “ability of an IT service or other configuration item to
perform its agreed function when required” [26]. Availability
is mathematically expressed in (1), while the availability
formula is defined in [27]:

Availability =
Agreed Service Time - Outage Downtime

Agreed Service Time
 (1)

Agreed Service Time is the period during which the
inventory service should be enabled. If downtime is
permitted, the planned and scheduled downtime can be
excluded from the Service Agreed Time. Outage Downtime
is defined as “the sum, over a given period, of the weighted
minutes, a given population of a systems, network elements,
or service entities” [27]. It is sometimes necessary to provide
different users with several different functions
simultaneously, meaning that partial capacity and partial
functionality outages are often more common than the total
outages [28]. Prorating is achieved by using a portion of the

capacity of the primary functionality that is impacted. In this
example, we assume that the Outage Downtime of a Web or
Worker Role in Azure affects the entire service provision,
such that if a role fails, the service fails.

The first step for monitoring a given service is to identify
the NFR to be monitored. The Monitoring Requirements
Model with the NFR to be monitored is therefore the first
input of the Monitoring Configurator. Figure 6 shows an
excerpt of the model in question.

The SaaS Quality Model represents an important and
necessary support for establishing the metrics of the
requirements model. An excerpt from the meta-model, which
contains the core of the SaaS Quality Model, is shown in
Figure 3. However, the SaaS Quality Model itself is not
shown due to space limitations. The SaaS Quality Model
contains the metrics at a high level, along with the specific
platform parameters that are used to obtain the measurement
results. It therefore represents the next input for the
Monitoring Configurator.

Figure 6. Requirements Quality Model Instance

As an example, the SaaS Quality Model contains two
operationalizations of Availability (2) (3). These
operationalizations are independent of the platform.

Availability =
Uptime

Agreed Service Time (2)

The Azure Performance Counters can be employed to
directly calculate the Operationalization of Availability by
using (3), bearing in mind that the Outage Downtime is the
sum of each period in which the service has not been
available.

In order to calculate Availability, the Agreed Service
Time is the initial period from which Availability must be
guaranteed and specified in the SLA until the report date.
However, all the historical data can be retrieved for the
future reporting of the stakeholders’ needs. When the
formula used to capture raw data is set as in (4) and the
matching between (3) and the formula using the Agreed
Service Time minus the sum of (4) between a period has
been employed, the configurator is able to generate the
model@run.time, which in our approach is denominated as

the Runtime Quality Model. This model is consumed by the
middleware in order to capture the raw data from the cloud
services and to apply the metrics.

Availability =
(Agreed Service Time - Σ Downtime)

Agreed Service Time
 (3)

The SLA violations regarding availability are reported by
storing Downtime in the Calculated Metrics table. Downtime
is calculated by using the Azure Performance Counter “\Web
Service(_Total)\ Service Uptime”. This counter represents a
cumulative value, which stores the service uptime. If the
service is restarted, the uptime is a negative value. Thus, if
ServiceUptimePreciseTimeStamp1 > ServiceUptimePrecise
TimeStamp2, then downtime is calculated by using (4).

Downtime = (Uptime2.PreciseTimeStamp - Uptime1.

PreciseTimeStamp) - Uptime 2
 (4)

Downtime and Availability represent extraction scenario
(2) since they are Custom Performance Counters. Downtime
values are calculated using the uptime Azure Performance
Counter. Moreover, we are monitoring cloud services at the
SaaS level, so the availability is measured at that level; if the
platform stops working, no data will be recorded by the
middleware. Therefore, the last monitoring timestamp before
the interruption and the first timestamp after the interruption
are considered to measure the availability. Exceptions of this
kind can be solved by the second scenario, using the same
formula (4). The Downtime entries must be added in a
determinate period. An excerpt from the Calculated Metrics
Table is shown in Figure 7. This table shows the calculated
downtime. From the downtime, availability is calculated. We
have also monitored the latency, which can be calculated
following the same steps. The results are presented in Table
7. The NFR that has been calculated using the Calculated
Metrics Table allows the Analysis Engine to compare the
expected values with the real values and the NFR Violations
Report can then be generated.

Figure 8 shows the SLA violations report, which includes
the monitoring results. In this case, if the SLA requires an
availability of 99.50% in a period between two timestamps
and the Measurements Engine of the Monitoring & Analysis
Middleware uses the monitoring results to determine that the
real availability of a service was 99.444%, there has been an
SLA violation. The Measurements Engine calculates the
metric by using the sum of the Downtime values (shown in
Figure 7), and applies formula (3). Therefore, the Analysis
Engine performs the comparisons and determines whether an
SLA violation has occurred.

Finally, it is important to bear in mind that the
Monitoring Middleware can be developed for any platform
by using the proposed architecture. The way in which the
data will be retrieved from services is a key aspect to be
considered. We have presented three different ways in which
to obtain raw data on Azure Platforms. It is important to
explore tools that are suitable for capturing data depending
on the platform. The Diagnostic service has been used in this

solution, although each platform presents APIs, tools, or
libraries with which to capture raw data. If no way is
established, the definition of Custom Performance Counters
is always a valid option.

Figure 7. Calculated Metrics Table

Figure 8. SLA Violations Report Excerpt

VI. CONCLUSIONS

This paper presented a platform-independent monitoring
middleware for cloud services that supports the monitoring
of SLA compliance and provides a report containing SLA
violations. This report may help service providers to
understand the quality of the services with which their
customers are provided and to make decisions regarding how
to improve the quality of cloud services. In addition, we
implemented the proposed middleware by using a runtime
quality model. The application of models@run.time provides
our solution with a high level of flexibility and
maintainability; because changes essentially affect the
runtime quality model rather than the entire infrastructure.
We have instantiated our solution in the Azure Platform in
order to be able to monitor any cloud service running in
Azure. We have also defined three scenarios in which raw
data is captured from the services: using Diagnostics Azure
Service and its Performance Counters; using Diagnostics
Azure Service and creating customized counters; and using

“wrappers” to support customized information that cannot be
captured by using the Azure Diagnostics Tools.

Our current efforts focus on improving the usability of
the monitoring middleware by providing consumers with
facilities that can be used to specify the way in which a
report should be viewed (e.g., chart or graph) and other
facilities that will allow the monitoring results to be shared
with others and the monitored historical data to be
maintained. In addition, we are exploring the use of new
techniques to be able to extract more valuable data from
cloud services or to be able to cope with more complex
quality attributes (e.g., security).

As future work, we plan to perform an empirical
evaluation of the efficiency, effectiveness, perceived ease of
use, and perceived usefulness of end-users applying the
monitoring middleware on different cloud platforms and
with as many NFRs as possible. Furthermore, our approach
does not yet reason about the interplay of service quality
parameters and SLA requirements across multiple layers
(software as a service, platform as a service, and
infrastructure as a service). We plan to address this concern
in future work. We also plan to explore the use of the
monitoring middleware to detect faults in cloud services
before they occur. This may imply the correlation of events
with data from different sources (e.g., social media) in order
to predict how external events can impact the quality of
cloud services.

ACKNOWLEDGMENT

This research is supported by the Value@Cloud project
(TIN2013-46300-R); the Scholarship Program Senescyt -
Ecuador; University of Cuenca – Ecuador; and the Microsoft
Azure for Research Award Program.

REFERENCES

[1] W. Tsai, X. Bai, and Y. Huang, "Software-as-a-service (SaaS):
perspectives and challenges", Sci. China Inf. Sci., vol. 57, no. 5,
2014, pp. 1–15, doi: 10.1007/s11432-013-5050-z.

[2] S. A. Baset, "Cloud SLAs : Present and Future", ACM SIGOPS
Oper. Syst. Rev., vol. 46, no. 2, 2012, pp. 57–66, doi:
10.1145/2331576.2331586.

[3] Y. Jiang, C. S. Perng, T. Li, and R. Chang, "Self-adaptive cloud
capacity planning", IEEE 9th Int. Conf. Serv. Comput. SCC, 2012,
pp. 73–80, doi: 10.1109/SCC.2012.8.

[4] C. Muller, M. Oriol, X. Franch, J. Marco, M. Resinas, A. Ruiz-
Cortes, and M. Rodriguez, "Comprehensive Explanation of SLA
Violations at Runtime", Serv. Comput. IEEE Trans., vol. 7, no. 2,
2014, pp. 168–183, doi: 10.1109/TSC.2013.45.

[5] G. Katsaros, G. Kousiouris, S. V. Gogouvitis, D. Kyriazis, A.
Menychtas, and T. Varvarigou, "A Self-adaptive hierarchical
monitoring mechanism for Clouds", J. Syst. Softw., vol. 85, 2012, pp.
1029–1041, doi: 10.1016/j.jss.2011.11.1043.

[6] N. Bencomo, J. Whittle, P. Sawyer, A. Finkelstein, and E. Letier,
"Requirements reflection: requirements as runtime entities", in 32nd
Int.Conf. on Software Engineering, 2010, vol. 2, pp. 199–202, doi:
10.1145/1810295.1810329.

[7] L. Baresi and C. Ghezzi, "The Disappearing Boundary Between
Development-time and Run-time", in Workshop on Future of
Software Engineering Research FSE/SDP, 2010, pp. 17–22, doi:
10.1145/1882362.1882367.

[8] N. Bencomo, R. France, B. H. C. Cheng, U. Aßmann, B. H.C.
Cheng, and U. Abmann, Models@run.time. Foundations,
Applications and Roadmaps. London: Springer Cham Heidelberg

New York Dordrecht London, 2014, p. 318, doi: 10.1007/978-3-319-
08915-7.

[9] G. Blair, N. Bencomo, and R. B. France, "Models@ run.time",
Computer (Long. Beach. Calif)., vol. 42, no. 10, Oct. 2009, pp. 22–
27, doi: 10.1109/MC.2009.326.

[10] P. Cedillo, J. Gonzalez-Huerta, E. Insfrán, and S. Abrahao,
"Towards Monitoring Cloud Services Using Models@run.time", in
9th Workshop on Models@run.time co-located with17th Int.Conf. on
MDE Languages and Systems MODELS 2014, 2014, pp. 31–40.

[11] K. Alhamazani, R. Ranjan, K. Mitra, F. Rabhi, P. P. Jayaraman, S.
U. Khan, A. Guabtni, and V. Bhatnagar, "An overview of the
commercial cloud monitoring tools: research dimensions, design
issues, and state-of-the-art", Computing, 2014, pp. 1–21, doi:
10.1007/s00607-014-0398-5.

[12] K. Fatema, V. C. Emeakaroha, P. D. Healy, J. P. Morrison, and T.
Lynn, "A survey of Cloud monitoring tools: Taxonomy, capabilities
and objectives", Journal of Parallel and Distributed Computing, vol.
74. pp. 2918–2933, 2014, doi: 10.1016/j.jpdc.2014.06.007.

[13] A. Keller and H. Ludwig, "The WSLA Framework: Specifying and
Monitoring Service Level Agreements for Web Services", J. Netw.
Syst. Manag., vol. 11, no. 1, 2003, pp. 57–81, doi:
10.1023/A:1022445108617.

[14] V. C. Emeakaroha, T. C. Ferreto, M. A. S. Netto, I. Brandic, and C.
A. F. De Rose, "CASViD: Application Level Monitoring for SLA
Violation Detection in Clouds", in 36th Annual Computer Software
and Applications Conference (COMPSAC), 2012, pp. 499–508, doi:
10.1109/COMPSAC.2012.68.

[15] J. Shao, H. Wei, Q. Wang, and H. Mei, "A Runtime Model Based
Monitoring Approach for Cloud", in IEEE 3rd International
Conference on Cloud Computing (CLOUD), 2010, pp. 313–320, doi:
10.1109/CLOUD.2010.31.

[16] H. Ludwig and A. Keller, "Web Service Level Agreement (WSLA)
Language Specification", 2003, pp. 1–110.

[17] ISO/IEC, "ISO/IEC 25010 Systems and software engineering -
Systems and Software Quality Requirements and Evaluation
(SQuaRE) -- System and software quality models.". 2011.

[18] (OMG) Object Management Group, "Structured Metrics Metamodel
(SMM)", 2012.

[19] M. Ferreira, F. Ruiz, F. Manuel, C. Calero, A. Vallecillo, M. Piattini,
B. Mora, F. García, F. Ruiz, M. F. Bertoa, C. Calero, A. Vallecillo,
M. Piattini, and B. Mora, "Medición del Software Ontología y
Metamodelo", La Mancha, España, España, 2006.

[20] A. Fernandez, S. Abrahão, and E. Insfran, "A Web Usability
Evaluation Process for Model-Driven Web Development", 23rd Int.
Conf. Adv. Inf. Syst. Eng., 2011, pp. 108–122.

[21] "Collect Logging Data by Using Azure Diagnostics", MSDN
Library, 2014. [Online]. Available: https://msdn.microsoft.com/en-
us/library/azure/gg433048.aspx. [Accessed: 08-Feb-2015].

[22] Amazon Elastic Compute, "Sending Performance Counters to
CloudWatch and Logs to CloudWatch Logs", 2014. [Online].
Available: http://docs.aws.amazon.com/AWSEC2/latest/Windows
Guide/ec2-configuration-cwl.html.

[23] P. Wieder, J. M. Butler, W. Theilmann, and R. Yahyapour, Eds.,
Service Level Agreements for Cloud Computing. New York, NY:
Springer New York, 2011, p. 357, doi: 10.1007/978-1-4614-1614-2.

[24] S. Herold, H. Klus, Y. Welsch, C. Deiters, A. Rausch, R. Reussner,
K. Krogmann, H. Koziolek, R. Mirandola, B. Hummel, M.
Meisinger, and C. Pfaller, "CoCoMe - The Common Component
Modeling Example", 2008, pp. 16–53.

[25] A. J. Gonzalez and B. E. Helvik, "System Management to Comply
with SLA Availability Guarantees in Cloud Computing", in 4th Int.
Conf. on Cloud Computing Technology and Science, 2012, pp. 325–
332, doi: 10.1109/CloudCom.2012.6427508.

[26] "ITIL Glossary and Abbreviations - English", 2011. [Online].
Available: https://www.axelos.com/Corporate/media/Files/Glossa
ries/ITIL_2011_Glossary_GB-v1-0.pdf. [Accessed: 06-Feb-2015].

[27] E. Bauer and R. Adams, Service Quality of Cloud-Based
Applications, vol. 18. : John Wiley & Sons, Inc., 2013, p. 344.

[28] Quality Excellence for Suppliers of Telecommunications Forum
(QuEST Forum)", TL9000 Quality Management System
Measurements Hadbook 5.0, 2012. [Online]. Available:
http://tl9000.org.

