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Abstract 

 

When trying to analyze spatial relationships in image analysis, wavelets appear as one 

of the state-of-the-art tools. However, image analysis is a problem dependent issue and 

different applications might require different wavelets in order to gather the main 

sources of variation in the acquired images with respect to the specific task to be 

performed. This paper provides a methodology based on N-way modeling for properly 

selecting the best wavelet choice to use, or at least to provide a range of possible 

wavelets choices (in terms of families, filters and decomposition levels), for each image 

and problem at hand. The methodology has been applied on two different data sets with 

exploratory and monitoring objectives. 

 

Keywords: Wavelets, Tucker3, Multivariate image analysis. 

 

1 INTRODUCTION 

 

Wavelet-based image analysis is still one of the state-of-the-art techniques for texture 

analysis [1-5], both in terms of image characterization as well as image segmentation. 
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However, image wavelet decomposition is problem dependent, because different images 

are better characterized by different types of wavelet families. Moreover, each wavelet 

family consists of different filters, which makes the selection a critical issue.  

 

Different works have addressed this problem: wavelet family and filter choice. In [6] 

different properties of the decomposition filter were analyzed in terms of texture 

description capability, proposing different general criteria for the selection of the best 

wavelet family. Daubechies filters, Haar filter and biorthogonal filters were analyzed. 

Other works have focused on image compression [7], by comparing the goodness of the 

reconstructed image in comparison with the original one, which also gives an idea about 

the ability of the wavelet transform for characterizing the image and problem at hand. 

 

Svensson et al. [8] applied a Design of Experiments (DoE) in order to determine the 

best wavelet for the texture characterization of pharmaceutical tablets. They used 

Daubechies 2D-Discrete Wavelet Transform (DWT) in comparison with Dual Tree-

Complex Wavelet Transform (DT-CWT) for texture characterization. More recently, 

the same authors [9] again compared different types of wavelets for evaluating texture 

properties in images. Dual Tree-DWT was used in comparison with Stationary Wavelet 

Transform from Daubechies 4, and with continuous wavelet in the form of Mexican hat, 

but still the final conclusions are problem dependent. 

 

In many research papers, just one wavelet family is used, especially when wavelet 

transform is only considered as a denoising tool and not as an analysis tool to resolve 

different patterns in the image. In other occasions [3] trial and error is the selection 

criterion, no justification is provided [8, 9], or even no comment on the wavelet family 

applied is provided [10].  

 

The decomposition level (i.e. scale) has also to be addressed. Wavelets can be applied 

on the images recursively starting with the first decomposition level up to the maximum 

possible level depending on the image size. At each level more coarse aspects 

(smoothed version) of the image are captured in the approximations, while other finer 

aspects are separately filtered in the details. Thus, depending on the problem at hand, 

one may need to consider different or some specific decomposition levels for properly 

characterizing some phenomenon. 
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In this context, a methodology is needed for properly selecting the best wavelet choice 

to use, or at least to provide a range of possible wavelets choices (in terms of families, 

filters and decomposition levels), for each image and problem at hand. Adaptive 

wavelets [11] may represent a solution to this issue, since they allow developing 

wavelets specifically for a particular set of data and data analysis task. Nevertheless, 

this approach needs to optimize other settings besides the meta-parameters of the 

multivariate model, e.g. the number of components to use, etc.; so it suffers the 

drawback of requiring a proper double validation scheme, as well as being 

computationally costly. 

 

This paper presents an alternative approach, based on the selection of several wavelets 

sensible to be applied on some type of images, and integrate them all in an N-way data 

structure. The complexity of the data sets, coming from RGB images with multitude of 

pixels, wavelet families with different filter lengths, decomposition levels and 

directions, needs a careful consideration of the array assembling. In this sense, 

analyzing these datasets by N-way models such as Tucker3 [12-13] allows evaluating 

the similarity or dissimilarity of the given set of wavelets investigated.  

 

The paper is organized as follows. Section 2 introduces the materials and methods used. 

First, the different wavelet families used in the paper are presented and the 

decomposition scheme applied explained. Afterwards, the data structure built from the 

image decomposition is presented, and the N-way model applied introduced. Section 3 

illustrates the results from an exploratory case (orange images), and a monitoring case 

(artificial stone plate images). Finally, section 4 reports some conclusive remarks. 

 

2 MATERIALS AND METHODS 

 

2. 1. Image data sets 
 

Two types of images are used to illustrate the proposed methodology. The first type is 

an RGB image (size 100x100) from oranges affected by insects that act as a 

major pest of citrus fruits (Fig. 1). Resolution of the images was 0.25 mm/pixel. 
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The second type of images (RGB) relates to two artificial stone plates from a 

manufacturing process: one produced under Normal Operating Conditions (Fig. 2a, size 

64x64) and another one with some defects (Fig. 2b, size 128x128). Resolution of the 

images was 0.32 mm/pixel. 

 

[INSERT FIGURES 1 and 2 ABOUT HERE] 

 

2. 2. Wavelets families and filters 
 

Wavelets can be defined as functions that have sufficient compact support in both time 

(localization) and frequency [14], which decompose a signal (or image in this case) 

through high-pass and low-pass filters. They transform the images into a new 

representation by splitting their features at different resolution scales, yielding the so-

called approximation and detail images, while maintaining the textural structure of the 

analyzed images (decomposed as the sum of the detail coefficients at each scale and at 

each direction). This way, they constitute a multiscale representation of the image that 

can be used to analyze the texture present in an image at different scales.  

 

When dealing with digital images, the discrete wavelet transform (DWT) is usually 

applied. In principle, DWT is implemented through the fast Mallat algorithm [15], 

which requires a dyadic structure (i.e. image size to be some power of two in both 

directions). In practice the algorithm works also if this is not the case, although some 

border distortion may arise in the convolution step. Different extension methods can be 

applied [16] in order to minimize this problem. Another aspect of this decomposition is 

that it is not shift invariant, i.e. a shifted version, also to a small extent, of the original 

image (what is of concern is a slightly shift of the same pattern/features in different 

images that we want to recover) can bring to very different wavelet coefficients, hence 

in decomposition images. In this case some artifacts can be introduced in the 

reconstructed single decomposition image, as in our application, with respect to the 

original, also resulting in low resolution.  

One way to overcome this drawback is to use the stationary wavelet transform, SWT 

[17-19], also known as undecimated wavelet transform, UWT [20]. In this case 

decimation (down-sampling) of coefficients is not applied; instead the wavelet filter 
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coefficients are up-sampled when passing to the next decomposition level. Thus, each 

block of coefficients at every level maintains the same size as the original image and 

captured features may be localized directly in the wavelet transform (WT) coefficients 

space without reconstruction, hence obtaining congruent images that may be better 

analyzed, without interfering-neighboring-pixels effects. 

 

Out of all the wavelet families and filters proposed in the literature in this paper the 

following wavelet families and filters were tested: 

 

• Daubechies, DbN (asymmetric, 2N filter length): N 1 to 5;  

• Symlets, SmN (near symmetric, 2N filter length): N 2 to 5;  

• Coiflets, CfN (near symmetric, 6N filter length): N 1 to 5. 

 

These wavelets are selected because they are widely used in literature and cover 

different characteristics, such as degree of symmetry or regularity and number of 

vanishing moments [21-24]. These characteristics are linked to the analysis capability of 

the given wavelet filter, e.g. degree of compression, smoothness of reconstructed 

signals, or capacity to capture signal variation.  

 

 

2. 3.  Data structure 
 

Once an image is decomposed by some wavelet family, from level one to the maximum 

level permitted for some filter length and given image size, we end up with a quite 

complex structure related to all the approximation and details blocks obtained in the 

decomposition.  

 

For a given color band (R, G or B) of an image analyzed by a given wavelet filter, e.g. 

Db2, we have the following 3-way data structure: 

 

· The first mode is related to the unfolded image, hence being formed by the 

pixels of each of the reconstructed images. 

· The second mode is related to the A approximation image, and H, V or D details 

images. For DWT scheme A, H, V and D stands for the images reconstructed by 
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using only the CA, CH, CV and CD coefficients at a given decomposition level, 

respectively. For SWT scheme reconstruction is not necessary. 

· The third mode is related to each decomposition level (scale) and wavelet filter. 

 

For an RGB image, the second mode has the approximation (A) and details (H, V and 

D) images repeated 3 times, i.e. as many times as color bands we have. 

 

Finally, if we want to compare several wavelet filters belonging to different families 

and having different filter length, it is necessary to build up a common 3-way array, just 

concatenating in the third mode the different decomposition levels (scales) for each 

wavelet filter (a member of a wavelet family) one after the other; then repeating this 

procedure for the different wavelet families. The final 3-way data structure arranged is 

shown in Fig. 3. 

 

[INSERT FIGURE 3 ABOUT HERE] 

 

2. 4. Pre-processing 
 

Preprocessing has a potential relevance in the analysis results [25]. When dealing with 

3-way data, there are multiple choices regarding the modes and the preprocessing to 

apply. A thorough discussion about preprocessing can be found in [26] and [27]. 

 

The most applied preprocessing techniques are centering and scaling. Centering the data 

structure can be easily thought as translating our variable space to deviations from its 

gravity center or removing a common offset from the data. This is commonly performed 

subtracting the column averages across one of the modes. Regarding scaling three-way 

data sets, there are different alternatives to perform (assuming observations, pixels of 

the image in this case, to be placed in the first mode, as in Fig. 3): 

 

• Slab scaling (SSc) within the second mode, i.e. color bands and directions. This 

means to give all color bands and decomposition blocks (each block is capturing 

a different pattern in the image, approximation being a smoothed version of the 
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raw image and details capturing pattern changes in the three directions) the same 

opportunity to contribute to the model.  

• Slab scaling within the third mode, i.e. wavelet families, filter lengths and their 

corresponding levels (scales). Thus, we give the same relevance to the different 

wavelets filters and levels, maintaining the original variance structure in the 

second mode.  

• Double slab scaling (DSSc) both within the second and third mode, which lets 

all variables in both second and third modes to have the same global variance, 

and at the same time maintaining the original internal variance structure ratio. 

• Column scaling (CSc). This typical two way scaling option gives all variables in 

the second and the third mode the same weight (calculated on the X(I, JK) 

columns), without maintaining the original variance structure within each mode. 

The risk of this scaling is to give high weights to variables with low signal-to-

noise ratio.  

 

In summary, since preprocessing is problem dependent, we have considered the 

different options. Because in this paper scaling only within the third mode is not an 

option (we need all color bands to a priori have the same weight), scaling within the 

second mode, scaling within the second and third modes, and column scaling, have been 

considered for DWT and SWT decompositions schemes.  

 

2. 5. N-way modelling 
 
Since the data structures analyzed here (see Fig. 3) do not show any trilinearity 

(components in all modes may present interactions between them), Tucker3 models 

have been used for analyzing them.  

 

For any D, E and F components in the first, second and third modes of a 3-way data 

array, the mathematical model for the Tucker3, also known as N-way-PCA [12-13] is: 

 

ijk

D

d

E

e
defkf

F

f
jeidijk rgcbax +=∑∑∑

= = =1 1 1
       (2)  
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The model parameters are estimated by minimizing the residuals sum of squares Σr2
ijk. 

Expressed in matrix notation, with X and G in matricized form X(I,JK), G(D,EF), and 

using the Kronecker product ⊗ the model is: 

 

        (3) 

 

Where matrices A, B and C gather the loadings of the first (aid), second (bje) and third 

(ckf) modes, respectively; and R holds for the residuals (rijk). G matrix, commonly 

known as the core matrix with elements gdef, indicates the amount of variance explained 

by the different combinations of the components of the modes. It can be rotated to 

maximum variance [28] or to maximum diagonality [12, 28-29] for a better 

interpretation of the results. Since the number of components does not necessarily need 

to be the same for the different modes, the dimensions of the loading matrices can be 

individually accommodated in each mode. This enables the model to maximally explain 

the variance in the data, usually imposing as the only restriction the orthogonality 

between the components in each mode. 

 

From the N-way model fitted to the data structure, a set of loadings is obtained. Careful 

inspection of the third mode loadings allows assessing which of the wavelet families 

and filter lengths carry similar and/or unique information and at which scaling levels. 

Salient color bands and wavelet coefficients from approximation (A) or details (H, V 

and D) images for describing the image pattern can be depicted from the second mode 

loadings. Finally, considering the first mode loadings and refolding the pixels located in 

them the scores images are obtained. This way it is possible to analyze which type of 

information is being provided by those wavelets and color bands most influencing the 

model. This will be illustrated in Section 3. 

 

2. 6. Multivariate Image Analysis 
 

Once the best wavelet filter has been selected, as well as the scales to use, the final stage 

is to apply the image analysis technique, in order to deal with the problem at hand. 

Since we have already decomposed the image using the WT’s, after the analysis with 

the Tucker3 model we only have to extract out, from the corresponding three-way array, 
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the frontal slabs of interest corresponding to the chosen settings: wavelet family and 

filter length, as well as decomposition levels or scales selected. Remember that each 

frontal slab corresponds to one scale of one specific wavelet family and filter length: i.e. 

the first frontal slab corresponds to Daubechies family, filter length 1, first 

decomposition level; the second frontal slab corresponds to Daubechies family, filter 

length 1, second decomposition level, and so on (see Fig. 3). 

 

This way of performing can be included under the Multi-Resolutional MIA framework 

[30], since we select, for some wavelet and filter length, the scales that better 

characterize some feature or NOC image; which can also be extended for selecting 

those scales (and directions) that maximize some predictive ability. 

 

By stacking the resulting matrices for the decomposition levels selected one beside the 

other, we end up with an X matrix that can be analyzed by Principal Component 

Analysis, PCA [31] as X = TPT+E, where T holds the new latent variables, orthogonal 

and linear combinations of the original ones; P gathers the loadings that explain the 

inner relations between variables; and E contains the residuals of the PCA model. 

 

From these results, several analyses can be carried out [1]. For the exploratory analysis 

case, we have used the score images, spatial representation of the score values obtained 

by each pixel, according to its original n1×n2 pixels image spatial location, in order to 

check whether the phenomenon of interest is gathered in the model. 

 

For the monitoring case study, T2 and Residuals Sum of Squares (RSS) images have 

been used. T2 and RSS images are, in analogous way to score images, n1×n2 spatial 

representations of the T2 and RSS pixels values, but only for those pixels having T2 or 

RSS values above some pre-specified threshold. This way, those pixels with abnormal 

behaviors are shown up, revealing the defects of the image.  

 

Thus, the proposed methodology will be validated by checking if the different selected 

wavelet filter and scales for the WT decompositions are able to: 

i) gather  the phenomenon of interest in the exploratory study;  

ii) detect the defects in the monitoring case. 
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2. 7. Methodology scheme 
 

The proposed methodology, explained through two different applications in Section 3, 

is summarized in a three-step approach, as follows. 

 

STEP 1: 

• Decompose the image using all the wavelet families and related filters from one 

to the maximum level reachable. 

• Build the three-way data structure as described in section 2.2. 

• Fit 3-way models, after preprocessing. Considering that in this context N-way 

modeling serves as exploratory tool a rather standard procedure can be adopted, 

such as the use of Tucker3 model, assuming a [2 2 2] model dimensionality. 

This is very rough but generally works for exploration [12, 32-33]. Anyhow, the 

following general procedure can also be suggested: assess by preliminary testing 

a range of components for each mode, inspecting the scree-like plot and 

selecting few models using parsimony as main criterion; rotate the core array to 

maximum variance and consider only the first two/three core elements for 

further analysis of loadings. Nevertheless, for simplicity and comprehension 

reasons we decided to illustrate the methodology with a Tucker3 [2 2 2] model. 

Results with more complex models (not shown) did not provide better results. 

STEP 2 

• Inspect third mode loadings plot for the Tucker3 components (Factors). Each 

point corresponds to a specific wavelet filter and decomposition level. Look for 

the highest loadings (in absolute value) in each component or for those ones 

further from the center. Any of the families and filters pointed out would 

provide the image features gathered by the Tucker3 model. Features that are 

shown in the scores images of the corresponding components.  

 

STEP 3 

• By using the wavelet family, filters and decomposition levels selected from 

STEP 2, build MIA models on them, using all the approximation and details 

images and color bands. This is accomplished by selecting the corresponding 

slabs from the array shown in Fig 3. Afterwards, unfold the data by stacking 

each slab one beside the other. This way, we obtain a matrix of dimensions 
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(n1×n2, J×levels of the selected wavelets family and filter length) that can be 

directly analyzed by PCA. Finally, check whether they gather or not the 

information of interest for the problem at hand. 

 

3 RESULTS 

 

When performing any image analysis, the wavelet selection may be dependent on the 

goals pursued. In this paper two potential applications are illustrated: exploratory 

analysis and process monitoring. 

 

• In an exploratory analysis, the focus is in process understanding or object 

characterization. Therefore, we will try to find those wavelets that best 

extract out the different sources of variations (phenomena) in the images. 

• In process monitoring, the goal is to detect any abnormal behavior (mainly 

defects) from images obtained under Normal Operating Conditions, NOC, 

i.e. when the process is working properly [34].  

 

In both cases, results from Double slab scaling (DSSc) both within the second and third 

mode [35] are shown, which lets all variables in both second and third modes to have 

the same global variance, and at the same time maintaining the original internal 

variance structure ratio.  

 

Different data sets and/or applications may require different preprocessing options in 

order to obtain optimal results. In these two cases, other preprocessing options (results 

not shown), such as Slab Scaling or typical 2-way autoscaling [27] did not provide 

better results. 

 

3.1 Exploratory analysis 

 

This first approach deals with trying to find the best wavelet family that better helps in 

characterizing some pits that appear in the oranges when one disease is present (See Fig. 

1). So, it is necessary to perform an exploratory analysis in order to search for those 

(latent) variables that describe these defects in detail.  
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Steps 1 and 2: Image wavelet decomposition, Tucker3 modeling and analysis 

 

For computational restrictions associated to the (huge) data structure derived from the 

image, a 100×100 pixels area representative of the events in the original image was 

selected (Fig. 1).  

 

As indicated in Section 2.7, the proposed methodology is applied. The [2 2 2] Tucker3 

model explained a 7.82% of the data. Higher Tucker3 models did not provide insight on 

information of interest. The main core elements are (1,1,1), explained variance ratio of 

56.83%, and (2,1,2), with 42.47%. Fig. 4 shows the loadings plots indicating the color 

bands (R, G and B) and decomposition directions (a, h, v and d) (Mode 2); as well as 

the wavelet families (Db, Sm and Cf), with their filter lengths (1 to 5) and scales (1 to 

maxlevel) most influencing the model (Mode 3). In this case, Daubechies (Db), filter 

lengths 1 to 3, decomposition levels 1 to 3; Symlets (Sm), filter lengths 2 and 3, 

decomposition levels 1 to 3; and Coiflets (Cf), filter lenght 1, levels 1 and 2. 

 

[INSERT FIGURE 4 ABOUT HERE] 

 

By refolding the loadings of the first mode into the original image size, the Tucker3 

model score images are obtained (Fig. 5). It is possible to see how they mainly gather 

textural information linked to the high and medium frequencies (fine and medium 

roughness) pointed out by the loadings plot of the third mode from Fig. 4. These 

features are related to the characteristics of the phenomenon we are dealing with in this 

example, so it makes sense to use them for next Step 3. 

 

[INSERT FIGURE 5 ABOUT HERE] 

 

Step 3: Multivariate image analysis 

 

This analysis provides different options for Multivariate Image Analysis, regarding the 

wavelet families and filters that can be used. In this case, from the SWT results, some 

wavelet families were selected (most prominent in the third mode from previous Tucker 
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3 model), and the consistency of the proposals was checked. In the following, the results 

for Symlets 2 (Sm2) wavelet filter, for decomposition levels 1 to 3, are shown.  

 

When inspecting the MIA score images (Fig. 6), it is possible to see that PC’s 4, 11 and 

13 are the ones more related to the phenomenon of interest (pits in the oranges, Fig 1). 

From the MIA loadings (Fig. 7), the most important color bands and wavelet 

decomposition images are green horizontal detail images for levels 2 and 3 (PC 4, 

inverted score values for illustration purposes), diagonal and vertical details for green 

and blue color bands for level 3 (PC 11), and diagonal and vertical details for green 

color bands for level 3 (PC 13). These directions are supported in the score images by 

the type of pits detected. 

 

[INSERT FIGURE 6 ABOUT HERE] 

 

[INSERT FIGURE 7 ABOUT HERE] 

 

In order to improve the final image picture, it is possible to form a T2 image based on 

the PC’s of interest (Fig. 8). Comparison with the original image supports the goodness 

of the proposed methodology for finding proper wavelet families for some specific 

purpose (in this case, pits detection).  

 

[INSERT FIGURE 8 ABOUT HERE] 

 

It must be stressed that, by considering any other wavelet filter different from the ones 

proposed by the methodology, the results (see the Supplementary material) were not 

satisfactory.  

 

3.2 Monitoring  

 

The second studied approach, illustrated on artificial stone plates images (see Fig 2), 

deals with process monitoring. The goal is finding out whenever a process behaves in 

some abnormal way. These abnormalities show up as defects in images as spots, 

scratches, color changes, etc. that can be detected applying MIA with monitoring 

purposes, using T2 and RSS images [31] as image sensors. 



Original Research Article 

14 

 

Steps 1 and 2: Image wavelet decomposition, Tucker3 modeling and analysis 

 

Again, for computational restrictions associated to the data structure, a 64×64 pixels 

area representative of the original image was selected (Fig. 2a). For illustration 

purposes, the commented results are those obtained by the stationary wavelets (SWT). 

The [2 2 2] Tucker3 model built explained a 9.93% of the data. The main core elements 

are (1, 1, 1) with explained variance ratio of 57.24%, and (2, 2, 2) with 41.62% ratio. 

Fig. 9 shows the corresponding loadings plots. 

 

[INSERT FIGURE 9 ABOUT HERE] 

 

From the main core element (57.24% of the core variance), the first component of the 

second mode, dominated by the diagonal details images is mainly related to the first 

component of the third mode, mostly influenced by Daubechies, filter lengths 2 and 3, 

levels 3 and 4; Symlets, filter lengths 2 and 3, levels 3 and 4; and Coiflet 1 and 2, levels 

3 and 4 (Fig. 9). 

 

Regarding the second factor of the second mode, which interacts with factor 2 of mode 

3, accounting for 41.62% of the core element variance, respectively, it is related to the 

horizontal details. In this case, this second component is associated to Daubechies, filter 

length 1, levels 1 to 3; Daubechies and Symlets filter length 2, levels 2 to 4; Daubechies 

and Symlet, filter length 3, level 4; Coiflets filter length 1, levels 2 to 4; and Coiflet 

filter length 2, levels 3 and 4. 

 

By refolding the loadings of the first mode into the original image size, the score images 

derived from the Tucker3 model are obtained (Fig. 10). They are mainly gathering 

textural information linked to high and medium frequencies, which are related to the 

nature of the defects supposed to appear in the images.  

 

[INSERT FIGURE 10 ABOUT HERE] 

 

Step 3: Multivariate image analysis 
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Using e.g. Db1, levels from 1 to 3, by projecting the test image (Fig 2b) we obtain the 

score images from the MIA model (4 PCs) shown in Fig. 11. It is possible to see how 

they gather the defect properly. Afterwards, the T2 and RSS images (Fig. 12) unravel 

those pixels with extreme values associated to defects of different nature. This 

procedure is known as the Fit to a pattern model approach [1, 34].  

 

[INSERT FIGURES 11 AND 12 ABOUT HERE] 

 

In this case, the proposed methodology indicated that some other pre-processing options 

would be advisable (see the Supplementary material), although the corresponding 

results did not seem as good as the ones shown here.  

 

4 CONCLUSIONS 
 

A methodology for coping with the problems that arise when trying to apply wavelets in 

MIA for each problem at hand: selecting the best type of wavelet family, filter and 

decomposition scheme; as well as the best decomposition levels, has been presented.  

 

The three way analysis applied has shown very efficient when trying to reveal these 

critical aspects, moreover confirming the closeness between Daubechies and Symlet; 

and that Coiflet is not so ambivalent in general. Moreover, the segregation of the 

loadings in separate modes facilitates the decision about the scaling level to reach for 

each problem at hand. In general, it has been possible to get a limited set of suitable 

wavelets filters/decomposition levels to choice. Moreover, considering that SWT has 

always yielded a suitable solution and it does not suffer shift distortions, nor it needs a 

reconstruction step, we may suggest this is a better alternative with respect to DWT 

scheme. Regarding the type of pre-processing, DSSc also has provided good results in 

these two cases. 

 

Results have shown that wavelet selection is problem dependent, not only in terms of 

the type of image analyzed, but also depending on the final approach under analysis: 

exploratory or monitoring. Therefore, this methodology represents an alternative for 
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deciding between a set of possible wavelet families, within the whole bunch of 

associated decomposition possibilities. 
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