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Automatic individual arterial input functions calculated from PCA outperform 

manual and population-averaged approaches for the pharmacokinetic modeling of 

DCE-MR images 
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ABSTRACT 

 

Purpose 

To introduce a segmentation method to calculate an automatic arterial input function (AIF) 

based on principal component analysis (PCA) of dynamic contrast enhanced MR (DCE-

MR) imaging and compare it with individual manually-selected and population-averaged 

AIFs using calculated pharmacokinetic parameters. 

 

Materials and Methods 

The study included 65 individuals with prostate examinations (27 tumors and 38 controls). 

Manual AIFs were individually extracted and also averaged to obtain a population AIF. 

Automatic AIFs were individually obtained by applying PCA to volumetric DCE-MR 

imaging data and finding the highest correlation of the PCs with a reference AIF. 

Variability was assessed using coefficients of variation and repeated measures tests. The 

different AIFs were used as inputs to the pharmacokinetic model and correlation 

coefficients, Bland-Altman plots and ANOVA tests were obtained to compare the results.  

 

Results 

Automatic PCA-based AIFs were successfully extracted in all cases. The manual and PCA-

based AIFs showed good correlation (r between pharmacokinetic parameters ranging from 

0.74 to 0.95), with differences below the manual individual variability (RMSCV up to 

27.3%). The population-averaged AIF showed larger differences (r from 0.30 to 0.61). 

 

Conclusion 

The automatic PCA-based approach minimizes the variability associated to obtaining 

individual volume-based AIFs in DCE-MR studies of the prostate. 
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INTRODUCTION 

 

The pharmacokinetic modeling of dynamic contrast-enhanced magnetic resonance (DCE-

MR) imaging is used to provide quantitative measurements of the microvascular perfusion 

properties of different tissues and biological situations, with a focus on the characterization 

of tumors and treatment response (1). To quantify the pharmacokinetic parameters, it is 

necessary to select a vascular function as input to the model, called the arterial input 

function (AIF). To incorporate this AIF data, several approaches have been proposed, such 

as reference experimentally derived AIFs (2,3), manual selection of individual AIFs (4,5), 

population-averaged AIFs (4-7) or automatically extracted personalized AIFs (8-11). 

Several of these studies have demonstrated that the quantitative parameters obtained from 

these models do not show significant differences based on how the AIF is selected (4-6). 

However, other studies report lower or very weak agreement (12,13). 

This methodological variability hinders the process of standardizing a final methodology. 

However, there are also important efforts to provide reasonable degrees of standardization, 

such as the Quantitative Imaging Biomarkers Alliance (QIBA), an initiative of the 

Radiological Society of North America. In their DCE MR imaging Quantification Profile 

(14), they propose three alternatives to extract the AIF. The best recommendation about the 

calculation of the AIF is to use an automatically extracted AIF. As a second option, they 

recommend the manual selection, as described by Vonken et al. (15). However, this method 

has significant variability due mainly to flow artifacts. The last recommendation is about 

those situations where it is not possible to obtain an AIF because of anatomy, motion, flow 

artifacts or T2* effects. In these cases, population-averaged or reference AIFs could be 

used. However, an average AIF does not take into account the individual hemodynamics, 

thus losing the ability to characterize individual patients in a more accurate way. Also, with 

image processing and automatic volume-based approaches, the previous limitations can be 

overcome, at least partially.   

The preferred methodology to decrease biases would allow the automatic extraction of the 

AIF without variability. With regard to this approach, several authors have proposed 

different solutions. Rijpkema et al. (8) proposal is based on the detection of early arrival of 

contrast media and thresholding the value of gadolinium concentration through an iterative 
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process; Singh et al. (9) used an approach based on thresholds with correction of partial 

volume effects; Shi et al. (10) proposed an iterative clustering algorithm called affinity 

propagation; Lin et al. (16) used a blind source separation algorithm to identify those 

voxels with the maximum arterial purity; and Kim et al. (11) developed an algorithm to 

select those voxels with similar contrast concentration homogeneity, allowing to select AIF 

voxels based on the well-known AIF profile and then correcting for partial volume effects. 

These methods vary in complexity, some of them being tested on very limited populations 

and thus, far from clinical validation. Also, they often concentrate on single slices, while it 

has been demonstrated that the choice of a certain slice has an important effect on the AIF 

selection and pharmacokinetic calculations (17).  

In this context of automatically extracted personalized AIFs, we propose a simple method 

based on principal component analysis (PCA) to extract with minimum variability those 

voxels with a pure arterial behavior from a volumetric DCE-MR imaging data set of 

individual patients.  

PCA (18) is a widespread statistical technique for the analysis of large data sets, which may 

have redundant information. This analysis allows a fast extraction of the sources of 

variation from large numbers of intensity vs. time curves, i.e. whole volumes analyzed on a 

voxel basis but taking all the data as a whole (19), hence taking profit of the correlation 

between pixels with the same behaviors. The output of PCA is a series of linearly 

uncorrelated latent variables called principal components (PC), which can be related to the 

expected dynamic behaviors of blood flow in organs and tissues; such as those used as 

schemes to categorize enhancement curves in types, i.e. 3-time-point method (20). When 

applying PCA to a whole volume of DCE-MR images, it can be demonstrated that the three 

largest sources of variation are usually associated to the arteries, normal enhancing organs 

and highly arterialized areas (19). The order of importance may change, depending on the 

relative contribution of these components to the whole volume of data.  

We hypothesize that the combination of PCA and a priori knowledge of a typical AIF 

behavior can be used to segment voxels from which to compute individual AIFs without 

user intervention. The aim of this work is to introduce this methodology in a clinically 

relevant setting and compare it with manual individual selection and population-averaged 

AIFs, paying detailed attention to user dependent sources of variability.  
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MATERIALS AND METHODS 

 

Patients 

Sixty-five patients (age 62 ± 9 years old, mean ± standard deviation) who underwent 

routine DCE-MR examinations of the prostate were retrospectively included in the study. 

Among them, 27 patients had pathological confirmation of prostate carcinoma while 38 had 

negative biopsy with 6 months follow up without lesions. All the 65 cases were used for 

AIF calculations and comparisons. 

In order to assess the performance of each AIF determination method to separate tumor 

from healthy tissue, a subgroup of 20 patients was defined. They were classified into 

healthy (10) and tumor (10). The criteria for the healthy group were negative biopsy, 

absence of family history of prostate cancer and stable PSA below 2.5 ng/ml (in at least two 

controls). The criteria for the tumor group were positive biopsy, PSA higher than 10 ng/ml, 

Gleason score higher than 7 and clinical status higher than T2a. For simplicity, only 

patients with tumor reliably located in the peripheral gland were included in this subgroup. 

All patients gave written consent for the inclusion of their anonymized data in the study. 

Approval from the Ethics Review Board was obtained for this study. 

 

Image acquisition 

The MR perfusion images were acquired in a 3 Tesla system (Philips Healthcare, Best, The 

Netherlands) with an 8-channel receiving surface coil and a 3D T1-weighted spoiled 

gradient echo sequence with the following parameters: TR / TE / FA = 3.4 ms / 1.7 ms / 

40º, full prostate coverage (12 slices), matrix size = 192 x 192, reconstructed voxel size = 2 

mm x 2 mm x 4 mm, temporal resolution of 3.4 s per dynamic, 80 dynamics (non-equally 

spaced), total acquisition time of 5 min, contrast agent Gd-DOTA (Dotarem®, Guerbet, 

France) and contrast dose 0.2 ml/kg followed by 40 ml of saline flush at 4 ml/s, using a 

power injector. 

Also, a specific gradient echo with multiple flip angle sequence was acquired to obtain 

voxel-wise prostate T1 mapping calculations for the conversion of intensity values into 

contrast concentration measurements. The same geometry and characteristics as in the DCE 
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sequence were used, except for TR / TE / FAs = 3 ms / 2 ms / (2º, 7º, 10º, 20º, 30º, 40º, 

50º). The multitransmit technology was used in order to obtain B1 mapping and minimize 

flip angle variations. 

Finally, T2-weighted images were used to characterize prostate morphology and locate 

suspicious hypointense areas, with the following: 2D turbo spin echo sequence, ETL = 17, 

TR / TE / FA = 3858 ms / 90 ms / 90º and voxel size: 0.5 mm x 0.5 mm x 2 mm. 

 

Image analysis 

Selection of the AIFs 

Individual manual selection and variability assessment 

For every case, a radiologist (RP, 8 years of experience), manually drew a ROI on the right 

external iliac artery of the central slice. The AIF was obtained after averaging this ROI at 

each time point.  

The variability was obtained by repeating the measures with a separation of one week and 

calculating the differences between the pharmacokinetic parameters using manually 

selected AIFs in 10 random cases, Four sources of variability were considered. 

1. Selection of the AIF at the same location. The same radiologist selected the AIF at the 

right external iliac artery on the central slice after one week. 

2. Different location within the same slice. A random AIF was selected at the central slice, 

either choosing the right/left internal/external iliac arteries. 

3. Multiple manual ROIs per patient to obtain the individual AIF. To do this, the user 

drew 3 different ROIs instead of only one, again in the central slice and for a given 

artery (i.e. right external). Then these ROIs were averaged among themselves at each 

time point to calculate the individual AIF. To avoid influencing consecutive selections, 

the ROIs were not visible anymore once they had been selected. 

4. Selection of the AIF from the same artery at different slices. The AIF was extracted 

from the same artery (i.e. right external), first in the 3rd and then in the 9th slice 

(cranio-caudal orientation). 

 

Population-averaged AIF 
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To obtain the population-averaged AIF, all the individual AIFs selected at the right external 

iliac artery of the central slice were adjusted to correct for differences in onset times, 

ensuring that the peaks were matched in time before averaging the curves.  

 

Automatic PCA-based AIF 

PCA (18) is an orthogonal linear mathematical transformation that generates a new 

coordinate system from a data set, so that the coordinates of the new system (PCs) model 

the variance of the data in decreasing order, ensuring that all PCs are linearly uncorrelated.  

In this study, PCA was applied to all the signal intensity curves of the DCE-MR volume. 

To do this, the original DCE-MR data were re-organized as a 2-dimension matrix X = (r x 

t), where r corresponds to the total number of observations (i.e. voxels) and t to variables 

(time steps). In this study, the matrix X had a size of 368640 (192x192x10) rows 

(observations) and 47 columns (t = 47). Notice that the extreme slices were excluded from 

the analysis as they can contain 3D spoiled gradient echo artifacts (this is demonstrated and 

discussed later on). 

Mathematically, PCA solves this matrix system: 

X = T · P’ + E 

where X are the observations; T are the scores, which is the representation of X in the PC 

coordinate system; P’ are the coefficients (also known as loadings) of each PC; and E is a 

residual matrix. Quantitatively, the PCs are iteratively obtained by maximizing the 

variance, obtained as 

PCi’ · S · PCi 

where S is the covariance matrix of X.  

Once the model is built, the interpretation of the PC’s loadings allows identifying those 

uptake curves (i.e. voxels) that follow a certain pattern determined by the contribution of 

this pattern to the whole variance of the DCE-MR data set. The advantage of the AIF is that 

arterial blood follows a pattern quite distinct from the rest of uptake curves, so the voxels 

that have a strong correlation with the arterial-like PC (first pass with a fast upslope and 

fast washout) can be identified and located easily by looking for high scores in the 

corresponding PC.  
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In practice, although the arterial-like PC models a significant variance of the data set, a 

priori it cannot be known which PC it will correspond to, as PCA releases the components 

according to decreasing variance. This final order depends on each particular case. 

However, in our experience, the PC corresponding to the arterial-like behavior was always 

obtained within the three initial PCs.  

To detect which PC corresponded to the AIF, the population-averaged AIF obtained in this 

study was used as reference. Other type of synthetic or experimentally derived (3) AIF-like 

curves could also be used, as it was just necessary to include a valid AIF shape as a priori 

knowledge. The PCs were correlated with this AIF-like curve, and the PC releasing the 

highest correlation was selected as the arterial PC. Before calculating the correlation, the 

PCs and the reference AIF were automatically adjusted by matching the maximum values 

in time.  

Once the PC corresponding to the AIF was found, the voxels containing the purest 

contribution of this PC were located by unwrapping the 2D matrix X. The purest voxels 

were defined as those whose total signal contribution contained at least 95% of the selected 

PC, computed as the variance contribution of the selected PC to the whole signal intensity 

of the voxel. This threshold was robust enough to ensure that only pure arterial voxels were 

selected (i.e. they were all part of the iliac arteries), minimizing partial volume artifacts. 

Finally, the intensities of these voxels were averaged at each time point to obtain the AIF. 

By handling all the temporal information together, PCA allows extracting robust estimates 

of the AIF, taking into account the whole volume and therefore minimizing possible blood 

flow effects and ROI selection bias. 

Although no human interaction was needed to extract the PCA-based AIF, two sources of 

variability were also assessed: the percentage threshold of the arterial-like PC contribution 

to the AIF (50%, 60%, 70%, 80%, 90% and 95%) and the effect of choosing a different 

number of slices rather than the whole volume for the PCA analysis (4, 8 and 10 central 

slices). 

  

Prostate segmentation 

In all cases, the same radiologist (RP, 8 years of experience) manually segmented the 

prostate by peripherally drawing ROIs in the slices in which it was visible. Afterwards, 



9 

 

voxel-by-voxel enhancement curves were automatically extracted to perform a voxel-based 

pharmacokinetic analysis. 

Furthermore, manually selected ROIs were placed on the peripheral prostate glands of the 

subgroup of patients classified as healthy and tumor. For the healthy group, a representative 

sample of the peripheral gland was selected. For the tumor group, ROIs were carefully 

placed in the T2-weighted low signal intensity areas, corresponding to the region of 

positive biopsy location. The anatomic division of the prostate into sextants (left or right 

base, mid-gland or apex of the peripheral gland) was used as reference.  

 

Pharmacokinetic modeling 

The one-input two-compartment extended Tofts model was used (21), obtaining the 

pharmacokinetic parameters Ktrans (transfer constant), kep (washout constant),vp (vascular 

space fraction) and ve (interstitial space fraction). 

The concentration-time curves were obtained from the intensity-time curves by calculating 

the T1 variations with respect to pre-contrast T1 values after the injection of the contrast 

agent (22,23).  

All image-processing methods were implemented in Matlab R2012a (The Mathworks Inc., 

USA). 

 

Statistical analysis 

In order to simplify the analysis and the results, for each patient a unique value of each 

pharmacokinetic parameter was handled, obtained by averaging the values of all the 

prostate voxels.  

To assess the variability associated to the selection of the manual individual AIFs, the root 

mean square coefficient of variation (RMSCV) and the ANOVA test of repeated measures 

were used for each of the four variability experiments.  

RMSCV =

s
i

xi

æ

è
ç

ö

ø
÷

2

i=1

N

å

N
 

where N is the number of repeated measures (N=10), si is the standard deviation and xi  is 

the mean of each pair of measures. The RMSCV was used to assess the variability ranges 
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(low values meaning low variability), while the ANOVA looked for statistical significance 

in the differences. The same methods were used to assess the variability associated to the 

selection of the PCA-based AIF. 

To compare the manual, population-averaged, and PCA-based AIFs, the relationships 

among the different sets of pharmacokinetic parameters were obtained using the Pearson’s 

correlation coefficient and Bland-Altman plots. Case by case differences in absolute values 

were also assessed using ANOVA tests. A Student’s t-test was performed to analyze the 

differences between healthy and cancerous tissues. 

A p-value < 0.05 was considered statistically significant. When necessary, logarithmic data 

transformations were applied to ensure that data distributions were normal before applying 

the ANOVA tests. All statistical analyses were done in SPSS 19 (IBM, USA). 

 

RESULTS 

 

Manual AIF variability assessment 

Table 1 reports the RMSCV of each parameter for the analysis of the variability associated 

to the manual individual selection of the AIF. Selecting and averaging multiple manual 

ROIs to obtain the AIF for a single patient showed the minimum variability for all the 

parameters (RMSCV from 1.9% to 2.9%), followed by the selection of the AIF at the same 

location (RMSCV from 9.6 to 15.2%). Finally, the variability associated to selecting 

different locations (i.e. arteries) within the same slice or to using the same artery at 

different slices was comparable, with different results depending on the pharmacokinetic 

parameter, but always higher than in the previous approaches (RMSCV from 13.6% to 

25.3% and from 11.3% to 27.3%, respectively).  

 

Population-averaged AIF 

The population-averaged AIF is shown in figure 1, along with the 95 and 5 percentiles of 

the 65 individual AIFs. The relative peak differences between the individual manually 

selected and the average AIFs were 38±62% (mean ± standard deviation, absolute values). 

 

PCA-based AIF 
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In all cases the PC associated to the AIF was obtained within the first three PCs. Figure 2 

shows an example with several PCs extracted after applying PCA to a whole volume of 

DCE-MR images and the corresponding AIF (for visualization purposes only the first three 

PCs are shown). It can be seen that in this example the third component is already modeling 

noise. Then, the PC containing the AIF behavior was successfully selected in all cases as 

the PC maximizing the correlation with the average AIF, the DCE-MR volume was 

thresholded and a 3D arterial tree was obtained to extract the AIF (figure 3).  

The choice of different percentages (50%, 60%, 70%, 80%, 90% and 95%) to threshold the 

AIF mask showed RMSCV of 10.1% for Ktrans, 3.4% for kep, 7.6% for ve and 13.3% for vp, 

with the ANOVA repeated measures test showing p-values of 0.215, 0.802, 0.534 and 

0.314, respectively. When focusing on thresholds of 80% or higher, the RMSCV were 

5.5%, 2.7%, 5.0% and 8.2%, respectively. 

The choice of a different number of slices to perform the PCA (4 central slices, 8 central 

slices, 10 central slices and whole volume) showed RMSCV of 47.9% for Ktrans, 20.9% for 

kep, 16.1% for ve and 13.7% for vp, with the ANOVA repeated measures test showing p-

values of 0.044, 0.213, 0.382 and 0.223, respectively. When the extreme slices were 

excluded from the analysis, the RMSCV fell drastically to 3.8% for Ktrans, 5.4% for kep, 

4.1% for ve and 5.7% for vp.  

The full process of applying PCA to the whole DCE-MR volume and finding the AIF took 

2.6±0.3 seconds (mean ± standard deviation), using a computer with an Intel® CoreTM i7 

@3.60 GHz and 32 GB of RAM memory, without parallel computing. 

 

Global comparison between the 3 AIFs 

Table 2 shows the Pearson’s correlations between the pharmacokinetic parameters obtained 

from each pair of AIFs. The highest correlations were found between the manual and the 

PCA-based AIFs, as they are both extracted from the same individual. The variations were 

caused by small differences in the height of the AIF peaks. On the other hand, the average 

AIF showed more disparities, both when compared to the manual and the PCA-based AIFs. 

Notice that ve was the parameter with the highest correlation among the three AIFs. 

After calculating the case-by-case differences (table 3), the individual AIFs (manual and 

automatic PCA-based) showed the lowest discrepancy in all the parameters, followed by 
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the differences between the average and PCA-based AIFs. Last, the largest differences were 

seen between the manual and the average AIFs. There were statistically significant 

differences between the manual and the average AIFs (p<0.001), and between the average 

and the PCA AIFs (p<0.001) for all the parameters, whereas no significant differences 

appeared between the manual and the PCA methods. 

When the differences in the AIF maximum (peak) values were analyzed together with the 

differences in the pharmacokinetic parameters on the same case-by-case basis, it was seen 

that the choice of the AIF had a direct effect on the pharmacokinetic parameters, especially 

when comparing the results of the average AIF with the other two AIFs (as figure 4 shows 

for Ktrans).  

Finally, the Bland-Altman plots (figure 5) showed a bias towards increasing differences 

between the resulting parameters as their estimated value increased (i.e. higher parametric 

values release larger differences between the different methods). This bias was more 

obvious when comparing the average AIF with the manual and PCA approaches, while it 

remained more constrained when comparing the manual and PCA AIFs. 

 

Diagnostic performance of the three AIFs 

Table 4 shows the pharmacokinetic parameters for each group of patients (healthy and 

tumor) using each AIF. kep and Ktrans were the best parameters to separate between healthy 

and tumor tissue in the peripheral gland, showing statistically significant differences for the 

three AIFs (p-values ranging from 0.007 to 0.035). Qualitatively, kep showed a slightly 

better performance to separate healthy from tumor areas. Ktrans showed similar values in the 

healthy patients for the three AIFs, while it showed quite lower values for the tumor area 

when using the average AIF. On the contrary, kep showed lower values for the healthy area 

when using the manual AIF, while the values in the tumor were similar for the three AIFs. 

Figure 6 shows the parametric maps of Ktrans for one patient of each group, where the 

average AIF releases lower (tumor patient, 46% lower in comparison to the mean of the 

individual AIFs) or higher (healthy patient, 29% higher in comparison to the individual 

AIFs) values in comparison to the individual AIFs. 
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DISCUSSION 

 

In this work, an automatic method is proposed to extract the AIF from a whole volume of 

DCE-MR images, taking into account a priori shape information from a population-

averaged AIF. The method is based on the application of PCA to the DCE-MR imaging 

data and the maximization of the correlation between each PC and the expected AIF 

behavior. Then the DCE-MR perfusion volume is thresholded ensuring that the segmented 

voxels have a very high contribution of the PC with the maximum correlation. Finally these 

voxels are averaged at each time point to release the individual PCA-based AIF. The 

method was tested on a relevant number of clinical studies, being robust and showing very 

low variability for all the cases. 

The reproducibility of the pharmacokinetic parameters obtained from DCE-MR images has 

been an issue for a long time, as the choice of the AIF is an important source of variability 

(24-26). In this work, we have shown that the variabilities associated to the manual 

selection of an AIF are not negligible.  

We have demonstrated that extracting an individual AIF by manually selecting and 

averaging several ROIs at the same locations showed the minimum variability. However, 

this method is more time consuming, and it does not prevent the differences obtained by 

selecting the AIF at different locations of the 3D data set (i.e. other arteries at the same 

slice or at different slices). Therefore, the lack of a validated protocol for the AIF manual 

selection when multiple choices are available poses difficult reproducibility issues. This 

enforces the need to consider whole volume automatic approaches to extract more accurate 

AIFs.  

The use of population-averaged AIFs has been proposed for those situations where it is not 

possible to obtain a proper AIF, due to the area under analysis or to image acquisition 

limitations (4). Several studies show that there are not important differences in comparison 

with the individual AIF (4-7,27), while other studies report weaker agreement between the 

results of the average and the individual AIFs (12), especially with important differences in 

Ktrans (13). In our study, we found that both approaches cannot be taken as equivalent, as 

the analysis of the case-by-case differences shows. On the other hand, we also found that 

after performing an ANOVA among the global results corresponding to each AIF, using the 
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original values instead of the differences (results not shown in the study), they were not 

statistically different. This shows that on a population-level analysis the results are 

equivalent, but not on an individual basis. 

The automatic PCA-based method was fast and robust and it showed very low variability to 

extract the AIF in all cases. The differences in the pharmacokinetic parameters compared to 

the manual individual AIF were below the range of manual selection variability. This 

suggests that the proposed approach can be used to obtain the AIF from a whole set of 

DCE-MR images without manual interaction and with accurate results, considering the 

expert manual selection as a ground truth. In this work, a 95% threshold was empirically set 

to obtain “pure” arterial behaviors, ensuring that it was highly selective with the voxels that 

were to be included as AIF. The effect of choosing a different threshold was also studied, 

demonstrating that there is also a relatively high variability when a lower threshold (~50%) 

is applied. The recommendation should be to set this threshold as high as possible (i.e. 90-

95%) to ensure a fully arterial behavior in the AIF. Notice also that as it was a volume-

based approach, the amount of candidate voxels was large enough to establish such high 

thresholds, so even if some arterial voxels were excluded from the selection, the sample 

was still sufficient to provide a robust AIF. 

Another source of bias for the calculation of the automatic PCA was the inclusion of the 

extreme slices in the analysis. In 3D spoiled gradient echo sequences, these slices can have 

artifacts due to aliasing or to an incorrect excitation profile, so they can introduce errors 

when PCA is performed on the whole volume. When they were excluded the variability 

decreased drastically. 

The diagnostic performance of each AIF was also studied by comparing the 

pharmacokinetic parameters of healthy tissue and tumors in the peripheral gland. In 

average, the three AIFs showed similar results, with relatively small differences and with 

Ktrans and kep as the best parameters to separate both tissues. Again, we hypothesized that 

two facts probably occur here. Regarding the range of values, although on a case-by-case 

scenario there are differences, the population analysis masks them, showing homogenized 

populations. Regarding the statistical separability between healthy tissue and tumor, the 

choice of one AIF or another probably introduces a scaling effect in the pharmacokinetic 

parameters (especially Ktrans), so that the relative differences between tissues are 
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nonetheless maintained. Therefore, as long as the AIF shape is preserved, this may not 

make a big difference for classifying tissues on an individual case. However, the lack of 

absolute individual measurements has limitations in order to obtain reference values.  

Our Ktrans values for the healthy tissue were in the range of those released by Chen et al. 

(28) for the peripheral zone (0.23±11 min-1). However, our values were quite higher for the 

tumor (0.57±0.18 min-1 in Chen et al.), and more in the range of the study by Vos et al. 

(29), focused only in the tumor (0.63 to 1.44 min-1, including low, intermediate and high-

aggressive tumors). Comparisons with other works are difficult, as they do not normally 

distinguish between peripheral and central prostate glands. 

Our study had several limitations. First, the PCA-based approach does not provide an 

organ-specific AIF, but the optimal AIF within the volume of DCE-MR images. In fact, 

more specific AIFs would require organ-specific reference AIFs, but probably with more 

variability associated to manual segmentation, due to spatial resolution restrictions. The 

selection of sub-volumes containing the arteries of interest could also help in obtaining 

more specific AIFs. A second limitation is the necessity to incorporate a priori knowledge 

of a standard AIF shape. However, as this type of shape is well known, it can be easily 

generated by mathematical models or incorporated as an empirical curve, such as in this 

work. Finally, the results of using analytical expressions for the AIF have not been explored 

(3,30-33). The comparison with these approaches was beyond the scope of this paper, 

considering that the MR studies had enough temporal resolution and a proper AIF could 

always be extracted from the volume of DCE-MR images. 

In conclusion, an automatic PCA-based AIF was successfully obtained in all cases. The 

pharmacokinetic parameters obtained by the manual and PCA AIFs were comparable, with 

the PCA AIF showing differences below the range of the variability associated to the 

manual AIF selection. The population-averaged AIF showed significantly different results 

in comparison to the manual and the PCA-based AIFs. Taking the expert manual selection 

of AIFs as reference and considering its variability sources, the automatic PCA-based 

approach should be preferred, as it is a fast method with very low variability to extract 

individual AIFs for the pharmacokinetic modeling of DCE-MR studies. 

 



16 

 

REFERENCES 

 

1. Leach MO, Brindle KM, Evelhoch JL, et al. The assessment of antiangiogenic and 

antivascular therapies in early-stage clinical trials using magnetic resonance imaging: 

issues and recommendations. Br J Cancer 2005;92:1599-1610. 

2. Tofts PS, Kermode AG. Measurement of the blood-brain barrier permeability and 

leakage space using dynamic MR imaging. I. Fundamental concepts. Magn Reson Med 

1991;17:357-367. 

3. Parker GJM, Roberts C, MacDonald A, et al. Experimentally-derived functional form 

for a population-averaged high-temporal-resolution arterial input function for dynamic 

contrast-enhanced MRI. Magn Reson Med 2006;56:993-1000. 

4. Meng R, Chang SD, Jones EC, Goldenberg SL, Kozlowski P. Comparison between 

population average and experimentally measured arterial input function in predicting 

biopsy results in prostate cancer. Acad Radiol 2010;17:520-525. 

5. Loveless ME, Halliday J, Liess C, et al. A quantitative comparison of the influence of 

individual versus population-derived vascular input functions on dynamic contrast 

enhanced-MRI in small animals. Magn Reson Med 2012;67:226-236.  

6. Shukla-Dave A, Lee N, Stambuk H, et al. Average arterial input function for 

quantitative dynamic contrast enhanced magnetic resonance imaging of neck nodal 

metastases. BMC Medical Physics 2009;9:4-12. 

7. Wang Y, Huang W, Panicek DM, Schwartz LH, Koutcer JA. Feasibility of using 

limited-population-based arterial input function for pharmacokinetic modeling of 

osteosarcoma dynamic contrast-enhanced MRI data. Magn Reson Med 2008;59:1183-

1189. 

8. Rijpkema M, Kaanders JHAM, Joosten FBM, Van der Kogel AJ, Heerschap A. Method 

for quantitative mapping of dynamic MRI contrast agents uptake in human tumors. J 

Magn Reson Imaging 2001;14:457-463. 

9. Singh A, Rathore RK, Haris M, Verma SK, Husain N, Gupta RK. Improved bolus 

arrival time and arterial input function estimation for tracer kinetic analysis in DCE-

MRI. J Magn Reson Imaging 2009;29:166-176. 



17 

 

10. Shi L, Wang D, Liu W, et al. Automatic detection of arterial input function in dynamic 

contrast enhanced MRI based on affinity propagation clustering. J Magn Reson Imaging 

2014;39:1327-1337. 

11. Kim JH, Im GH, Yang J, Choi D, Lee J, Lee JH. Quantitative dynamic contrast-

enhanced MRI for mouse models using automatic detection of the arterial input 

function. NMR Biomed 2012;25:647-684. 

12. Li X, Welch EB, Arlinghaus LR, et al. A novel AIF tracking method and comparison of 

DCE-MRI parameters using individual and population-based AIFs in human breast 

cancer. Phys Med Biol 2011;56:5753-5769. 

13. Fedorov A, Fluckiger J, Ayers GD, et al. A comparison of two methods for estimating 

DCE-MRI parameters via individual and cohort based AIFs in prostate cancer: a step 

towards practical implementation. Magn Reson Imaging 2014;32:321-329. 

14. DCE MRI Technical Committee. DCE MRI Quantification Profile, Quantitative 

Imaging Biomarkers Alliance. Version 1.0. Publicly Reviewed Version. QIBA, July 1, 

2012. Available from: RSNA.ORG/QIBA. 

15. Vonken EJ, Van Osch MJ, Bakker CJ, Viergever MA. Measurement of cerebral blood 

perfusion with dual-echo multi-slice quantitative dynamic susceptibility contrast MRI. J 

Magn Reson Imaging 1999;10:109-117. 

16. Lin Y, Chan T, Chi C, et al. Blind estimation of the arterial input function in dynamic 

contrast-enhanced MRI using purity maximization. Magn Reson Med 2012;68:1439-

1449. 

17. Roberts C, Little R, Watson Y, Zhao S, Buckley DL, Parker GJ. The effect of blood 

inflow and B(1)-field inhomogeneity on measurement of the arterial input function in 

axial 3D spoiled gradient echo dynamic contrast-enhanced MRI. Magn Reson Med 

2011;65:108-119. 

18. Jackson JE. A user’s guide to principal components. New York: John Wiley & Sons; 

1991. 575 p. 

19. Prats-Montalbán JM, Sanz-Requena R, Martí-Bonmatí L, Ferrer A. Application of 

multivariate image analysis techniques to prostate magnetic resonance perfusion 

studies. J Chemom 2014;28:672-680. 



18 

 

20. Eyal E, Bloch BN, Rofsky NM, et al. Principal component analysis of dynamic 

contrast-enhanced MRI in human prostate cancer. Invest Radiol 2010;45:174-181. 

21. Tofts PS. Modeling tracer kinetics in dynamic Gd-DTPA MR imaging. J Magn Reson 

Imaging 1997;7:91-101. 

22. Donahue KM, Burstein D, Manning WJ, Gray WL. Studies of Gd-DTPA relaxivity and 

proton exchange rates in tissue. Magn Reson Med 1994;32:66-76. 

23. Taylor JS, Reddick WE. Evolution from empirical dynamic contrast-enhanced magnetic 

resonance imaging to pharmacokinetic MRI. Adv Drug Deliv Rev 2000;41:91-110. 

24. Port RE, Knopp MV, Brix G. Dynamic contrast-enhanced MRI using Gd-DTPA: 

interindividual variability of the arterial input function and consequences for the 

assessment of kinetics in tumors. Magn Reson Med 2001;45:1030-1038. 

25. Dale BM, Jesberger JA, Lewin JS, Hillenbrand CM, Duerk JL. Determining and 

optimizing the precision of quantitative measurements of perfusion from dynamic 

contrast enhanced MRI. J Magn Reson Imaging 2003;18:575-584. 

26. Garpebring A, Bynolfsson P, Yu J, et al. Uncertainty estimation in dynamic contrast-

enhanced MRI. Magn Reson Med 2013;69:992-1002. 

27. Onxley JD, Yoo DS, Muradyan N, MacFall JR, Brizel DM, Craciunescu OI. 

Comprehensive population-averaged arterial input function for dynamic contrast-

enhanced magnetic resonance imaging of head and neck cancer. Int J Radiat Oncol Biol 

Phys 2014;89:658-665. 

28. Chen YJ, Chu WC, Pu YS, Chueh SC, Shun CT, Tseng WY. Washout gradient in 

dynamic contrast-enhanced MRI is associated with tumor aggressiveness of prostate 

cancer. J Magn Reson Imaging 2012;36:912-919. 

29. Vos EK, Litjens GJ, Kobus T, et al. Assessment of prostate cancer aggressiveness using 

dynamic contrast-enhanced MRI at 3T. Eur Urol 2013;64:448-455. 

30. Yang C, Karczmar GS, Medved M, Oto A, Zamora M, Stadler W. Reproducibility 

assessment of a multiple reference tissue method for quantitative dynamic contrast-

enhanced MRI analysis. Magn Reson Med 2009;61:851-859. 

31. McGrath DM, Bradley DP, Tessier JL, Lacey T, Taylor CJ, Parker GJM. Comparison 

of model-based arterial input functions for dynamic contrast-enhanced MRI in tumor 

bearing rats. Magn Reson Med 2009;61:1173-1184. 



19 

 

32. Orton MR, D’Arcy JA, Walker-Samuel S, et al. Computationally efficient vascular 

input function models for quantitative kinetic modeling using DCE-MRI. Phys Med 

Biol 2008;53:1225-1239. 

33. Heisen M, Fan X, Buurman J, Van Riel NAW, Karczmar GS, Ter Haar Romeny BM. 

The use of a reference tissue arterial input function with low-temporal-resolution DCE-

MRI data. Phys Med Biol 2010;55:4871-4883. 



20 

 

TABLES 

Table 1. Manual AIF selection variability of the pharmacokinetic parameters obtained as 

the root mean square coefficient of variation (RMSCV) and the corresponding statistical 

significance of the ANOVA test with repeated measures. These values are obtained from 

repeating the manually selected AIF experiment in ten random cases, with a separation of 

one week between the analyses.  

 

 

AIF manual selection approach 

Same location 

Different 

location in the 

same slice 

3 averaged 

ROIs at the 

same location 

Same artery 

at different 

slices 

Ktrans 

RMSCV 9.6% 18.7% 2.0% 27.3% 

ANOVA’s 

p-value 
0.043 0.202 0.076 0.002 

kep 

RMSCV 9.7% 13.6% 2.8% 11.3% 

ANOVA’s 

p-value 
0.288 0.035 0.416 0.873 

ve 

RMSCV 15.2% 25.3% 2.9% 24.7% 

ANOVA’s 

p-value 
0.033 0.035 0.675 0.001 

vp 

RMSCV 14.4% 23.7% 1.9% 14.5% 

ANOVA’s 

p-value 
0.214 0.876 0.827 0.164 
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Table 2. Pearson’s correlations (r) between the pharmacokinetic parameters obtained by 

each AIF estimation method with the statistical significance between brackets. 

 

 Manual vs. Average Manual vs. PCA Average vs. PCA 

Ktrans r=0.30 (p=0.015) r=0.87 (p<0.001) r=0.53 (p<0.001) 

kep r=0.32 (p=0.009) r=0.74 (p<0.001) r=0.62 (p<0.001) 

ve r=0.61 (p<0.001) r=0.95 (p<0.001) r=0.64 (p<0.001) 

vp r=0.35 (p=0.004) r=0.78 (p<0.001) r=0.50 (p<0.001) 
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Table 3. Results (mean and 95% confidence interval in brackets, in absolute values) 

showing the statistics of the case-by-case differences in the pharmacokinetic parameters 

between manual, average and PCA-based AIFs. The p-value represents the statistical 

significance of the comparisons between the groups of subtracted values. 

 

 (1) Manual-Average (2) Manual-PCA (3) Average-PCA p1-2 p1-3 p2-3 

Ktrans (min-1) 0.065 (0.049,0.086) 0.022 (0.016,0.030) 0.059 (0.044,0.079) <0.001 0.665 <0.001 

kep (min-1) 0.206 (0.157,0.273) 0.066 (0.050,0087) 0.153 (0.117,0.202) <0.001 0.135 <0.001 

ve 0.074 (0.055,0.101) 0.025 (0.018,0.033) 0.076 (0.056,0.103) <0.001 0.934 <0.001 

vp 0.013 (0.010,0.017) 0.004 (0.003,0.006) 0.011 (0.001,0.015) <0.001 0.489 <0.001 
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Table 4. Results (mean and 95% confidence interval in brackets) showing the descriptive 

and ANOVA statistics of the pharmacokinetic parameters for each group of patients 

(healthy and tumor) using each AIF. 

 

 AIF type Healthy Tumor p 

Ktrans (min-1) 

Manual 0.17 (0.08,0.26) 0.97 (0.48,1.46) 0.034* 

PCA-based 0.18 (0.10,0.26) 1.06 (0.52,1.61) 0.033* 

Averaged 0.16 (0.10,0.23) 0.75 (0.39,1.12) 0.035* 

kep (min-1) 

Manual 0.44 (0.25,0.64) 2.09 (1.43,2.76) 0.007* 

PCA-based 0.82 (0.22,1.43) 2.20 (1.47,2.92) 0.014* 

Averaged 0.71 (0.19,1.24) 2.14 (1.36,2.93) 0.031* 

ve 

Manual 0.35 (0.17,0.53) 0.53 (0.35,0.71) 0.173 

PCA-based 0.32 (0.11,0.54) 0.54 (0.38,0.70) 0.091 

Averaged 0.22 (0.12,0.32) 0.41 (0.31,0.50) 0.017* 

vp 

Manual 0.01 (0.01,0.02) 0.01 (0.00,0.02) 0.358 

PCA-based 0.01 (0.01,0.02) 0.01 (0.00,0.02) 0.470 

Averaged 0.03 (0.00,0.06) 0.04 (0.00,0.09) 0.561 
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FIGURE LEGENDS 

 

Figure 1. Population-averaged AIF obtained at the external iliac arteries of the 65 patients. 

All curves were corrected for onset times before averaging. The continuous line shows the 

average and the dashed lines the 95- and 5-percentile. 

Figure 2. Principal components (PCs) obtained from the PCA of all the DCE-MR images. 

First three PCs: PC1 corresponds to the typical behavior of an artery, PC2 represents a 

typical slow progressive enhancement and PC3 corresponds to noise. The order may vary 

according to the explained variance of each PC. In some cases, PC3 still models a 

physiologically relevant behavior. 

Figure 3. Automatic volumetric segmentation of the purest arterial component based on the 

principal components analysis. (a) The segmented area corresponds to those voxels with the 

highest contribution of the arterial component (PC1 in figure 2), corresponding to the 

external iliac arteries. (b) The AIF is obtained by averaging the contributions of all voxels 

at each time point. 

Figure 4. Case-by-case analysis of the differences in Ktrans originated by differences in the 

maximum (peaks) of the AIFs. a) Manual vs. average AIFs. b) Manual vs. PCA-based 

AIFs. c) Average vs. PCA-based AIFs. The points in b) are more clustered, reflecting 

smaller differences than when comparing with the average AIF. 

Figure 5. Bland-Altman plots showing the mean and differences for Ktrans. a) Manual vs. 

averaged AIFs. b) Manual vs. PCA-based AIFs. c) Averaged vs. PCA-based AIFs. Both a) 

and c) show that the differences with the averaged AIF increase when the mean value of 

Ktrans increases. The differences between the manual and the PCA-based AIF are more 

bounded. 

Figure 6. Parametric colored map showing Ktrans overlapped on a T2-weighted image. Top 

row: a low signal intensity area can be seen on the left side of the peripheral gland related 

to the presence of a tumor (arrow). In this case, the average AIF was quite higher than the 

individual AIF of the patient, so the Ktrans values using the average AIF (a) were 

underestimated in comparison to those using the individual AIFs, being b) the manual AIF 

and c) the PCA-based AIF. For visualization purposes, the parametric maps show only 

Ktrans values higher than 0.2 min-1. Bottom row: in this case the average AIF was lower, 
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releasing higher values for Ktrans (d) in comparison to the individual (e) and PCA-based (f) 

AIFs, which showed similar results. 

 


