

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

 © ACM 2015. This is the author's version of the work. It is posted here for your personal use.
Not for redistribution. The definitive Version of Record was published in
http://dx.doi.org/10.1145/2729094.2742615

http://dl.acm.org/citation.cfm?id=2742615

http://hdl.handle.net/10251/65314

ACM

Silva, J.; Insa Cabrera, D. (2015). Semi-automatic assessment of unrestrained Java code: a
Library, a DSL, and a workbench to assess exams and exercises. ACM-SIGCSE Annual
Conference on Innovation and Technology in Computer Science Education (ITiCSE 2015).
ACM. doi:10.1145/2729094.2742615.

Semi-Automatic Assessment of Unrestrained Java Code∗

A Library, a DSL, and a Workbench to Assess Exams and Exercises

David Insa Josep Silva
Universitat Politècnica de València

Camino de Vera, s/n
46022 Valencia, Spain

{dinsa,jsilva}@dsic.upv.es

ABSTRACT
Automated marking of multiple-choice exams is of great in-
terest in university courses with a large number of students.
For this reason, it has been systematically implanted in al-
most all universities. Automatic assessment of source code
is however less extended. There are several reasons for that.
One reason is that almost all existing systems are based on
output comparison with a gold standard. If the output is the
expected, the code is correct. Otherwise, it is reported as
wrong, even if there is only one typo in the code. Moreover,
why it is wrong remains a mystery. In general, assessment
tools treat the code as a black box, and they only assess the
externally observable behavior. In this work we introduce a
new code assessment method that also verifies properties of
the code, thus allowing to mark the code even if it is only
partially correct. We also report about the use of this sys-
tem in a real university context, showing that the system
automatically assesses around 50% of the work.

1. INTRODUCTION
Assessment is an integral part of instruction, as it deter-

mines whether or not the goals of education are being met.
When assessment works best, it provides diagnostic feed-
back both to students and teachers. Therefore, it provides
both means to guide student learning and essential informa-
tion for both the learner and the teacher about the learning
process.

In the psychology education area, it has been proved that
most students often direct their efforts based on what is as-
sessed and how it affects the final course mark (see, e.g., [4],

∗This work has been partially supported by the EU
(FEDER) and the Spanish Ministerio de Economı́a y Com-
petitividad (Secretaŕıa de Estado de Investigación, Desar-
rollo e Innovación) under grant TIN2013-44742-C4-1-R
and by the Generalitat Valenciana under grant PROME-
TEOII2015/013. David Insa was partially supported by the
Spanish Ministerio de Educación under FPU grant AP2010-
4415.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

[Chapter 9]). As a consequence, continuous assessment dur-
ing a course can be used to direct and enhance the learning
process. However, providing quality assessment manually
for even a small class requires an important effort. When
the class size grows, the amount of assessed work has to be
limited or rationalized in some other way.

This is the reason why many efforts have been made to
produce tools and techniques for the automatic assessment
(AA). In fact, this has been a hot topic for a long time [7],
and there are in the literature many different ways for the
teacher to define tests, resubmission policies, security issues,
and so forth.

AA has been traditionally focussed on multiple-choice ex-
ams. Most of the work has been done in that area, mainly
improving the scanning process, allowing recognition of stu-
dents annotations (e.g., permitting to alter the annotated
answer by annotating the “error” circle and handwriting the
letter of the correct answer next to the appropriate row), or
enabling automated reading of a limited set of handwritten
answers, thus minimizing the need for a human intervention.

Another area of special interest is the correction of pro-
grams written by students. Most of the work has focussed
on restricted programs, where the student has to select dif-
ferent (finite) options in a GUI to construct a program, or
it is based on output comparison. Most advanced AA sys-
tems compile the student code, execute it, and compare the
result with the correct answer. Random test generation can
be also used reducing the number of false positives.

Unfortunately, checking the output of the student’s code,
even if we compare all possible outputs, is often not enough
to ensure a quality assessment. This is illustrated in Exam-
ple 1.1.

Example 1.1. An exercise says: Implement a class “Car”.
Cars have an attribute numberPlate that can be obtained
with method getNumberPlate(). We can assume that this
exercise is part of a wider model to represent a garage.

SOLUTION 1 SOLUTION 2

class Car { class Car extends Vehicle {

int numberPlate;

Car(int np){ Car(int np){

numberPlate = np; super.numberPlate = np;

} }

int getNumberPlate(){ int getNumberPlate(){

return numberPlate; return super.numberPlate;

} }

} }

While both solutions could be acceptable for a first-year
student, the first solution is unacceptable for a second-year
student. Solution 2 is more maintainable and reuses code
via inheritance. Solution 1 does not make use of inheritance,
and thus it can be wrong when an object “Car” should behave
as a “Vehicle”. However, both cars have the same attributes
and methods, and thus for most tests, they will always pro-
duce the same output. In this example, a teacher would not
be interested in the output, but in one specific property of
class “Car” (i.e., it extends class “Vehicle”).

Another important restriction of output comparison is
that they just return the whole code as correct or the whole
code as wrong. No intermediate mark is possible. The real-
ity is however different: Teachers normally divide an exam
into small appraisable pieces. For instance, using inheri-
tance could be assigned a value of 3 points over 10, thus,
Solution 1 should be marked with 7 points.

Moreover, output comparison is very sensible to small
errors. For instance, if the student accidentally changes
return numberPlate by return numberPate, then all out-
put comparison based methods will mark the exam with 0
points. Nevertheless, many teachers would see the typo as
something not important or just due to lack of time, and
they would mark the exam with, e.g., 9 points. Of course,
output comparison methods cannot handle programs that
do not compile (e.g., because a semicolon is missing).

Our approach goes beyond output comparison, and it can
assess unrestrained code (i.e., the student can freely use the
complete programming language without restrictions). In
particular, our technique can automatically assess the code
not only from the final output, but also checking whether
the own source code fulfills any properties desired by the
teacher (e.g., definition of a particular class hierarchy, im-
plementation of interfaces, existence of a particular field,
etc.). Concretely, we have developed an assessment library
that uses the abstraction and advanced meta-programming
features of Java to allow properties verification. Based on
this library, we have developed a domain specific language
(DSL) for the specification of automatic exam assessment
templates. And we have also developed a system that inte-
grates the DSL into a workbench with GUIs and facilities
for AA of unrestricted Java programs.

We believe that our approach opens a new line of research
in AA, and we have made the library, DSL, tools and the
source code open and free. In contrast to many other ap-
proaches [7], it has not been designed as a tool for a specific
Java programming course useful for a single teacher, but a
tool that can be widely used, configured and augmented to
design any Java exam or exercise and to automatically assess
batteries of exams.

It is important to note that we call our tool semi-automatic
even though it is as automatic as the other tools and systems
available in the bibliography that claim that they are auto-
matic. We want to remark that not all programming exer-
cises can be automatically assessed. In the general case, AA
is an undecidable problem, and thus no fully-AA-system can
be constructed. For instance, a program that does not ter-
minate cannot produce an output. And it must be stopped.
For this program, it is not possible to know whether it is
really non-terminating or just inefficient, because determin-
ing non-termination is by itself an undecidable problem.
Other programs simply do not compile, they are syntacti-
cally wrong, and thus no dynamic analysis can be done with

them. For all these kinds of problems, human (teacher) in-
tervention is needed to correct the program or just to assign
a mark.

Our system also performs output comparison. It automat-
ically compares the output of the exam with the expected
solution. It also uses test generation to compare the output
with many different inputs. But, as a new feature, it also
validates arbitrary properties of the code. Whenever human
intervention is needed, the system prompts the teacher with
the available information showing the problem found, and
both the student’s exam and the solution.

We summarize the main contributions of our work:

• An assessment Java library with abstraction methods
for the verification of properties in Java code.

• A DSL built on top of the library for the specifica-
tion of exams and their corresponding assessment tem-
plates.

• A semi-automatic assessment tool for Java exams and
exercises based on output comparison via tests gener-
ation and verification of properties.

• A report on teachers assessment problems identified
with our tool.

2. RELATED WORK
Pears et al. [12] classify the tools that support teach-

ing programming into four groups: (1) visualization tools,
(2) AA tools, (3) programming support tools, and (4) mi-
croworlds.

Focussing on AA tools, the main area of interest has been
automatic marking of multiple-choice exams. This is of spe-
cial interest in university courses with a large number of
students, and the problem has been solved and solutions im-
planted in almost all universities. Some remarkable systems
of this kind are [14, 6].

A second kind of AA tools is based on visual algorithm
simulation exercises [9]. These tools use advanced GUIs
that control all possible (finite) actions of the student re-
garding a particular problem (e.g., sorting an array). In
visual algorithm simulation exercises, a learner directly ma-
nipulates the visual representation of the underlying data
structures to which the algorithm is applied. The learner
manipulates these real data structures through GUI opera-
tions with the purpose of performing the same changes on
the data structures that the real algorithm would do (e.g., a
student can simulate the steps of Quicksort using the GUI,
and the system can assess every single movement using the
real quicksort algorithm) [9].

In this paper we focus on a third kind of AA tool that
has been less investigated: AA of source code. In this area,
almost all approaches are based on output comparison (see,
e.g., [13, 5], and the four surveys [2, 1, 10, 7]). The gen-
eral idea is to compile the students code, execute it with a
predetermined set of inputs, and compare the outputs with
the expected results. The most advanced systems [15, 8, 3]
also use random test case generation and some sort of model
(often the correct algorithm) to compare the results. Some
of these systems are language independent. This is possible
because they use the compiler as a parameter, and they just
compare the results.

Unfortunately, there are very few works that perform code
analysis to mark exams. Two exceptions are [11] and [16].

In both approaches, the idea is to measure the similarity of
the student code to the pool of known solutions. Similarity
is computed with a graph representation of the code.

A comparison of the most important AA tools can be
found in [7]. Other previous reviews are [2, 10, 1].

Our approach also uses output comparison with automatic
test generation. But, in contrast to many of the related
work, we do not use a pool of known solutions, a model, or
a graph. We use a solution to the exam provided by the
teacher. We compile it and use it as an oracle to generate
test cases. Moreover, our generated tests are not completely
random, they are based on an analysis of path conditions to
maximize code coverage.

Another important difference of our approach is the prop-
erty verification module. We are not aware of any other
technique that uses a DSL to specify properties that can be
automatically validated and assigned a mark. Finally, an-
other feature that is completely novel, is the possibility to
mark an exam that does not compile.

3. THE SYSTEM IN A NUTSHELL
Our automatic assessment system, including libraries, the

DSL specification, the workbench, manuals, the source code,
and examples, is free and publicly available at:

http://www.dsic.upv.es/~jsilva/teaching/ASys/

We describe here its functionality and architecture, and
we refer the interested reader to the project website for im-
plementation details. Essentially, our system performs three
different assessment phases:

1. Compilation: To identify compilation errors.
2. Analysis: To check whether the specified requirements

are properly implemented.
3. Testing : To identify runtime errors.

Phases 1 and 3 are already implemented and reported in
other works (see, e.g., [15, 8, 3]) so we will explain here phase
2, which is a novel contribution of our work. We just want
to remark that, for phases 1 and 3, our system is not limited
to a set of predefined tests to check some provided finite
input-output pairs. Contrarily, our system can generate any
arbitrary number of test cases. For this, the system inputs
the solution of the exam (in Java), and iteratively generates
them. Then, tests are used with a battery of Java exams,
so that, the output of exams is checked against the output
of the compiled solution. Tests implemented manually can
also be used in the testing phase.

Phase 2 is our most important contribution. To imple-
ment the analysis phase, we first implemented a Java meta-
programming library with assessment functions, and a DSL
on top of the library for the specification of assessment tem-
plates. Because the DSL is compliant with Java, it is directly
executable by an assessment engine that can automatically
verify the properties in the template against a given exam.
In the next sections we describe the library, the DSL, and
the workbench that integrates all of the components.

3.1 The assessment library
One of the most important contributions of our work is

our assessment library, because it is per se a tool to cre-
ate assessment systems. It is a Java library with heavy use
of reflection that provides an API composed of 77 methods

that can be used to inspect and analyze Java source code.
The library provides a class called “Inspector” that inter-
nally makes all the abstraction. This class provides several
methods to query and manipulate the meta information in
order to check properties of the code.

Example 3.1. Some methods of the library, useful to de-
termine whether a given property is satisfied, follow:

• public boolean checkType(Field field,

TypeVariable<?> genericType)

Checks whether the type of a given field is the generic
type given as second argument.

• public boolean checkGenericType(Field field,

int[] indices)

Checks whether a given field contains a generic type
in a specified position (e.g., in Map<T, Map<S, R>>
the indices [1, 0] stands for the generic type S).

• public Method getDeclaredMethod(Class<?> clazz,

String methodName, Class<?>[] paramTypes,

Class<?> returnType, boolean allowWrappers)

Returns the method with the given name, parameters
and return value. It can allow a wrapper as any param-
eter or returned value instead of the primitive ones.

• public Class<?> getSuperClass(Class<?> clazz)

Returns the superclass of a given class.

Example 3.2. Given the code in Solution 1 of Exam-
ple 1.1, with the library, we can automatically check whether
class “Car” extends class “Vehicle” with the following code:

public boolean checkCarExtendsVehicle() {

Class<?> carClass = inspector.getClass("Car");

Class<?> vehicleClass = inspector.getClass("Vehicle");

boolean carExtendsVehicle =

inspector.checkSuperClass(carClass, vehicleClass);

return carExtendsVehicle;

}

where methods inspector.checkSuperClass and inspec-

tor.getClass are provided by the library and have the obvi-
ous meaning.

The assessment library is used by our system, but it is
an independent piece of work that can be used in other sys-
tems and projects. Therefore, we have made it available
independently as an standard Java library. The library is
publicly accessible at: http://www.dsic.upv.es/~jsilva/

teaching/ASys/library/.

3.2 The assessment DSL
With the assessment library, we have created a DSL that

allows teachers to programmatically assess Java exams and
exercises. The DSL allows us to load a Java program (e.g.,
an exercise) and check whether it has been implemented
correctly. For instance, we can check the correct use of in-
heritance, interfaces, abstract classes, etc.

In particular, the DSL provides mechanisms to specify
properties and assign marks to them. Each exam is assigned
with a set of evaluation pieces, and each evaluation piece is

Figure 1: Architecture of ASys

associated with one property that we want to check, and a
mark that is assigned if the property holds. Properties can
be specified using the library API.

When properties hold, the correction can be done au-
tomatically, assigning the specified mark to each property.
When a property fails, the system can be configured to either
assign a mark (e.g., 0 points), or work semi-automatically:
the teacher is prompted with the source code that caused the
problem, the explanation of the property that fails, and a
form to assign a mark and a review for this failing property.
The DSL also gives support to this behavior.

Concretely, all functionality of the DSL (creating assess-
ment templates formed from evaluation pieces) has been ac-
companied with a GUI, so that teachers can graphically cre-
ate assessment templates and include properties and marks
using buttons and text boxes.

Due to lack of space, we refer the reader to the project
website for explanations and examples of the DSL.

3.3 The assessment workbench
Our semi-automatic assessment system is called ASys (which

stands for Assessment System). The architecture of ASys is
depicted in Figure 1. The input of the system is (i) a path
to the directory with the exams to be assessed, (ii) a path
to the directory with the solution to the exam, and (iii) a
marking template specified with the assessment DSL that
defines how to mark the exam.

The output of the system is, for each exam, a report that
specifies the final mark together with a detailed list of the
problems found. This output is useful for both the teacher
and the student, and thus, each report is duplicated and
presented in two different ways: one for the teacher with in-
formation useful to automate the marking and publication
of marks, and another for the student, with learning feed-
back explaining the problems encountered. Concretely, the
report is composed of information from the system and the
teacher about compilation errors (compilation), unsatisfied
properties (analysis), and runtime errors (testing).

In order to understand how this triple report is built, we
can see the data flow diagram (DFD) of the system depicted
in Figure 2. Dark boxes with Exam, Exam solution, and
Assessment template are the inputs provided by the user.
They correspond to those in Figure 1. Following the paths
in the DFD, one can easily understand that there are three
different phases highlighted with the Phase 1, Phase 2, and
Phase 3 boxes. These phases correspond to the three mod-
ules in the architecture: Compilation, Analysis, and Test-

ing.

One could think that the three phases are executed se-
quentially. That is, the exam is compiled once, then, the
generated code is analyzed, and, finally, it is tested to find
runtime errors. This sequential behavior is the one used in
previous tools (without the analysis phase, which is novel).
However, our system works differently.

We repeat the three phases every time that the teacher
modifies the code; and this happens every time that an er-
ror (either compilation error, unsatisfied property, or fail-
ing test) is identified. Hence, the general schema in the
DFD is: find one error → prompt the teacher → re-

compile the whole exam → check *all* properties →
check *all* tests. This is repeated until no more errors
are found. This schema:

• allows the teacher to correct (and mark) any part of
the code when an error is found. He/she can correct
a single error, more than one error, or even the com-
plete exam at once. Then, Asys will check again that
everything is correct.

• prevents the teacher to introduce errors. For instance,
once a property A has been already corrected by the
teacher, the correction of property B could make A to
fail again. But this is not a problem, because Asys
recompiles and verifies all properties again.

Figure ?? shows a screenshot of ASys when reporting an
error: “class QuadrangularPrism should extend class Square”.
In the left window, we can see (in different tabs) the source
code of the student (automatically showing the cause of the
error). This code must be modified by the teacher to solve
the problem. For this, at the right window, we can see the
original source code of the student, and the solution. Once
corrected, at the bottom, the teacher can assign marks to
the problems encountered, and reviews, which will be in-
cluded in the final report for the student. Reviews are (op-
tionally) used to provide feedback explaining the cause of
the error. Observe that several (independent) marks and
reviews can be added to the same property (e.g., because
several problems are encountered). Note also that “review”
is a listbox. It contains all previous reviews for this property.
This is very useful when correcting several exams, because
once a problem is identified and a review introduced, it can
be reused in different exams. This significantly speeds up
the assessment, because after a few exams, the errors are
often repeated once and again; and the teacher only has to
clic and select to automatically assign a review and a mark.

4. A USE CASE

Figure 2: Data Flow Diagram of ASys

The use case reported in this section is not an artificial
one. It is a real example performed by different teachers (dif-
ferent from the authors) in a real university exam. Three
Java exams were done during a second year university course
at Universitat Politècnica de València. There were 5 teach-
ers and 381 students involved. As normally, each of the
teachers assessed a subset of the exams, and they published
the marks. Then, we asked them to assess again the exams
with ASys. Results are summarized in Figure 3.

In the table, each row is a different exam. The meaning
of the columns is the following: Column #Exams contains
the number of exams to be assessed. Column #Proper-

ties contains the number of properties in the assessment
template. Column Automatic represents the percentage of
properties automatically corrected by Asys (without teacher
intervention). Column Average Mark contains the average
mark of all exams (this is computed for the teachers assess-
ing alone and assessing with Asys). The standard deviation
of the marks is computed in column Standard Deviation.
Finally, column Difference computes the difference in ab-
solute value and percentage between the two average marks
computed.

The first important conclusion is that ASys is able to auto-
matically perform almost half of the assessment work (48%).
Moreover, it is important to note that the average mark ob-
tained with ASys and without ASys is different. The differ-
ence is small in two exams (less than 3%), but it is significant
in the third exam (more than 21%). We studied with the
teachers the causes of these differences. In almost all cases
they were due to errors of the teachers in the first (man-
ual) assessment, and in a few cases they were due to small
differences in the interpretation of the assessment criteria
(e.g., unspecified details that were penalized with -0,1 the
first time and with -0,2 the second time).

The errors in the first teacher assessment were due to (1)
wrong code introduced by the students in classes not in-
volved in the exercise (and thus, no revised by the teacher
and no penalyzed), (2) type errors not affecting the result,
(3) incorrect use of interfaces, (4) code that is correct but
it is marked as wrong because it is surrounded by wrong
code, (5) correct code very difficult to understand even for
the teacher, (6) introduction of dead code, or even (7) er-
rors of the teacher when marking (this happened massively
in the third exam and produced the difference of 21.93%:
One teacher wrongly marked one question for all students).

Figure 3: Performance results obtained after assessing real exams with ASys

In the same way that we, teachers, make mistakes when
programming, we also make them when correcting a pro-
gram. Tool assistance can help not only to make part of
the work automatically, but also to improve the quality of
our assessment. In this way, ASys allowed to identify many
assessment errors, and, at the same time, it introduced a sys-
tematic (partially automatic) methodology to assess the ex-
ams, providing also reports for the student and the teacher.

5. CONCLUSIONS
We have presented a new tool for semi-automatic assess-

ment of Java code. This tool introduces a new analysis
phase that can verify properties and assign a mark to them.
The tool is built using a DSL defined over a new meta-
programming library defined to assess Java code. The new
system has been used in the university with very good re-
sults. It was able to assess more that 380 exams with several
different problems including compilation errors.

As already reported in [7], it is surprising, and quite dis-
appointing, to see how few AA systems are open-source, or
even otherwise (freely) available. In many papers, it is stated
that a prototype was developed but we were not able to find
the tool. In some cases, a system might be mentioned to be
open source but you need to contact the authors to get it.
This is the cause why we are reinventing the wheel, imple-
menting the same assessment systems once and again. For
this reason, we made our system, DSL, and library open-
source and publicly available, so that other researchers can
reuse it or join efforts to further developing it.

6. REFERENCES
[1] K. A Rahman and M. Jan Nordin. A review on the static

analysis approach in the automated programming
assessment systems. In National Conference on
Programming 07, 2007.

[2] K. Ala-Mutka. A survey of automated assessment
approaches for programming assignments. In Computer
Science Education, volume 15, pages 83–102, 2005.

[3] C. Beierle, M. Kula, and M. Widera. Automatic analysis of
programming assignments. In Proc. der 1. E-Learning
Fachtagung Informatik (DeLFI ’,03), volume P-37, pages
144–153, 2003.

[4] J. Biggs and C. Tang. Teaching for Quality Learning at
University : What the Student Does (3rd Edition). In Open
University Press, 2007.

[5] P. Denny, A. Luxton-Reilly, E. Tempero, and J. Hendrickx.
CodeWrite: Supporting student-driven practice of java. In
Proceedings of the 42nd ACM technical symposium on
Computer science education, pages 09–12, 2011.

[6] R. Hendriks. Automatic exam correction. 2012.

[7] P. Ihantola, T. Ahoniemi, V. Karavirta, and O. Seppala.
Review of recent systems for automatic assessment of
programming assignments. In Proceedings of the 10th Koli
Calling International Conference on Computing Education
Research, pages 86–93, 2010.

[8] H. Kitaya and U. Inoue. An online automated scoring
system for Java programming assignments. In International
Journal of Information and Education Technology,
volume 6, pages 275–279, 2014.

[9] M.-J. Laakso, T. Salakoski, A. Korhonen, and L. Malmi.
Automatic assessment of exercises for algorithms and data
structures - a case study with TRAKLA2. In Proceedings of
Kolin Kolistelut/Koli Calling - Fourth Finnish/Baltic Sea
Conference on Computer Science Education, pages 28–36,
2004.

[10] Y. Liang, Q. Liu, J. Xu, and D. Wang. The recent
development of automated programming assessment. In

Computational Intelligence and Software Engineering,
pages 1–5, 2009.

[11] K. A. Naudé, J. H. Greyling, and D. Vogts. Marking
student programs using graph similarity. In Computers &
Education, volume 54, pages 545–561, 2010.

[12] A. Pears, S. Seidman, C. Eney, P. Kinnunen, and L. Malmi.
Constructing a core literature for computing education
research. In SIGCSE Bulletin, volume 37, pages 152–161,
2005.

[13] F. Prados, I. Boada, J. Soler, and J. Poch. Automatic
generation and correction of technical exercices. In
International Conference on Engineering and Computer
Education (ICECE 2005), 2005.

[14] M. Supic, K. Brkic, T. Hrkac, Z. Mihajlovic, and
Z. Kalafatic. Automatic recognition of handwritten
corrections for multiple-choice exam answer sheets. In
Information and Communication Technology, Electronics
and Microelectronics (MIPRO), pages 1136–1141, 2014.

[15] S. Tung, T. Lin, and Y. Lin. An exercise management
system for teaching programming. In Journal of Software,
2013.

[16] T. Wang, X. Su, Y. Wang, and P. Ma. Semantic
similarity-based grading of student programs. In
Information and Software Technology, volume 49, pages
99–107, 2007.

