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Abstract

It is attempted to put forward a new multipoint iterative method of sixth-order convergence for ap-
proximating solutions of nonlinear systems of equations. It requires two vector-function and two Jacobian
matrices per iteration. Furthermore, we use it as a predictor to derive a general multipoint method. Con-
vergence error analysis, estimating computational complexity, numerical implementation and comparisons
are given to verify applicability and validity for the proposed methods.
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1 Introduction

The solution of equations is a venerable subject in science and engineering and of particular importance in
applications. In the light of this fact, there have been constructed enormous amount of iterative methods for
solving scalar nonlinear equations [1]. On the other hand, it must be noted that many of this methods cannot
be extended to their corresponding systems. Even if this is possible, some crucial factors must be considered.
Therefore, there are few practical iterative methods in this case. Moreover, it is worth mentioning that although
some of the scalar iteration can be extended, however, due to increasing in computational complexity, they have
no practical interest. This matter has been discussed in [5, 14, 18] thoroughly and one can consult them.

Let the function F : D ⊂ Rn → Rn has at least, second-order Frechet derivatives with continuity on
an open set D. Suppose that the equation F (x) = 0 has a solution x∗ ∈ D, that is F (x∗) = 0, where

F (x) =
(
f1(x), f2(x), . . . , fn(x)

)T
, x = (x1, x2, . . . , xn)T , and fi(x), i = 1, 2, . . . , n, are real-valued functions.

It is widely known that the Newton’s method in several variables [2] could be written as

x(k+1) = x(k) − F ′(x(k))−1F (x(k)), k = 0, 1, 2, . . . , (1.1)

where x(0) is the initial estimate and F ′(x(k)) is the Jacobian matrix of the function F evaluated in the
kth iteration. This method has order of convergence two under certain conditions. Some other one point
methods like Chebyshev and Halley [3, 4] have been extended to their corresponding system versions with
order of convergence three, but they use the first and second Frechet derivatives involved n2 and n3 function
evaluations, respectively. On the other hand, it has been considerable attempts to derive methods free from
second Frechet derivative having order of convergence three which most of them are not one step methods,
and can be consulted in depth in [5]-[12] and references therein. There are few other mutipoint methods for
approximating system solutions of nonlinear equations.
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Another famous scheme for solving nonlinear systems of equations is Jarratt’s fourth-order method [14]
which is the generalization of the scheme in the scalar case given in [13] as follows

y(k) = x(k) − 2
3F
′(x(k))−1F (x(k)),

x(k+1) = x(k) − 1
2

[(
3F ′(y(k))− F ′(x(k))

)−1(
3F ′(y(k)) + F ′(x(k))

)]
×F ′(x(k))−1F (x(k)).

(1.2)

Sharma et al. [15] constructed, composed of two weighted Newton step, the following fourth-order method
y(k) = x(k) − 2

3F
′(x(k))−1F (x(k)),

x(k+1) = x(k) − 1
2

[
− I + 9

4F
′(y(k))−1F ′(x(k)) + 3

4F
′(x(k))−1F ′(y(k))

]
×F ′(x(k))−1F (x(k)).

(1.3)

Another fourth-order Jarratt-type method has been devised by Babajee et al. [16] as following
y(k) = x(k) − 2

3F
′(x(k))−1F (x(k)),

x(k+1) = x(k) − 2
[
I − 1

4

(
F ′(x(k))−1F ′(y(k))− I

)
+ 3

4

(
F ′(x(k))−1F ′(y(k))− I

)2]
×
(
F ′(x(k)) + F ′(y(k))

)−1
F (x(k)).

(1.4)

Abad et al. [17], in addition to create two fourth and fifth-order methods for solving nonlinear systems, provide
a conjecture relative to construction optimal multipoint methods for nonlinear systems of equations: Given
a multipoint iterative method to solve nonlinear systems of equations which requires d = k1 + k2 functional
evaluations per step such that k1 of them correspond to the functional evaluations of the Jacobian matrix and k2
to evaluations of the nonlinear function. Then optimal order for this method is 2k1+k2−1 if k1 ≤ k2. It should
be remarked, although this conjecture is an extension of Kung and Traub conjecture for multipoint without
memory methods in the scalar case, however, computational factors for iterative methods for solving nonlinear
systems of equations are of considerable differences.

Note that although most of the works emphasizes on the numerical aspects of these iterations, there are two
general ways for pursuing this aim analytically. One is based on the well-known n-dimensional Taylor expansion
[14, 19] and second is based on the matrix approach, which is so-called as Point of Attraction, introduced first
in [2]. We here apply the first case by reminding the following:

Let F : D ⊆ Rn −→ Rn be sufficiently Frechet differentiable in D. By using the notation introduced in
[14], the qth derivative of F at u ∈ Rn, q ≥ 1, is the q-linear function F (q)(u) : Rn× · · · ×Rn −→ Rn such that

F (q)(u)(v1, . . . , vq) ∈ Rn. It is well known that, for x∗ + h ∈ Rn lying in a neighborhood of a solution x∗ of
the nonlinear system F (x) = 0, Taylor’s expansion can be applied and we have

F (x∗ + h) = F ′(x∗)

[
h+

p−1∑
q=2

Cqh
q

]
+ O(hp), (1.5)

whereCq = (1/q!)[F ′(x∗)]−1F (q)(x∗), q ≥ 2. We observe thatCqh
q ∈ Rn since F (q)(x∗) ∈ L(Rn×· · ·×Rn,Rn)

and [F ′(x∗)]−1 ∈ L(Rn). In addition, we can express F ′ as

F ′(x∗ + h) = F ′(x∗)

[
I +

p−1∑
q=2

qCqh
q−1

]
+ O(hp), (1.6)

wherein I is the identity matrix, and qCqh
q−1 ∈ L(Rn). Note that in what follows, e(k) = x(k) − x∗ is the

error in the kth iteration and e(k+1) = Le(k)
p

+O(e(k)
p+1

) is the error equation, where L is a p-linear function,
i.e. L ∈ L(Rn,Rn, . . . ,Rn) and p is the order of convergence. Observe that e(k)

p

= (e(k), e(k), . . . , e(k)).
In this work, based on results in the scalar case in [20], we extend a new variant of Weerakoon and Fernando’s

method with sixth-order convergence in the multidimensional case. It uses two vector-function and two Jacobian
matrices per iteration. Furthermore, we drive a general procedure in such a way that it uses this sixth-order
as its predictore using only new one vector-function evaluation in each step. This is the most advantageous of
this paper. In other words, when we add another step, the order of convergence increases by three units.
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The paper is organized as follows. In the next section, extension and development of Weerakoon and
Fernando’s method, [20], for solving nonlinear systems of equations are derived. Furthermore, analysis of
convergence order is established. In Section 3, our primary goal is to develop the extended method in Section 2.
Indeed, we derive the ninth- and twelfth- order methods and then the general multipoint iteration is provided
along with some relevant discussion. In Section 4, computational complexities are discussed. Numerical test
problems and comparisons are illustrated in Section 5. The last section includes some conclusions.

2 Extension and Development

We here extend and develop a new method for solving nonlinear systems of equations described by

y(k) = x(k) − F ′(x(k))−1F (x(k)),

z(k) = x(k) − 2(F ′(x(k)) + F ′(y(k)))−1F (x(k)),

x(k+1) = z(k) −
(

7
2I − 4F ′(x(k))−1F ′(y(k)) + 3

2

(
F ′(x(k))−1F ′(y(k))

)2)
F ′(x(k))−1F (z(k)).

(2.1)

Needless to say, that its first two steps are extensions for Weerakoon and Fernando’s method [20] for solving
nonlinear systems of equations. Furthermore, the third step has been built in such a way that no additional
computations of any Jacobian matrices is required so that it speeds up the convergence order from three to six.
In order to analyze the convergence order of the proposed method (2.1) we address the following theorem.

Theorem 2.1. Let F : D ⊆ Rn −→ Rn be sufficiently Frechet differentiable at each point of an open convex
neighborhood D of x∗ ∈ Rn, that is a solution of the system F (x) = 0. Let us suppose that F ′(x) is continuous
and nonsingular in x∗. Then, the sequence {x(k)}k≥0 obtained using the iterative method (2.1) converges to x∗

with convergence rate six.

Proof. By (1.5) and (1.6), we get

F (x(k)) = F ′(x∗)[e(k) +C2e
(k)2 +C3e

(k)3 +C4e
(k)4 +C5e

(k)5 +C6e
(k)6] + O(e(k)

7
), (2.2)

and
F ′(x(k)) = F ′(x∗)

[
I + 2C2e

(k) + 3C3e
(k)2 + 4C4e

(k)3 + 5C5e
(k)4 + 6C6e

(k)5
]

+ O(e(k)
6
), (2.3)

where Ck = (1/k!)[F ′(x∗)]−1F (k)(x∗), k = 2, 3, . . .. From (2.3), we have

[F ′(x(k))]−1 =
[
I +X2e

(k) +X3e
(k)2 +X4e

(k)3 + · · ·+X7e
(k)6
]

[F ′(x∗)]−1 + O(e(k)
7
), (2.4)

where X1 = I, X2 = −2C2, X3 = 4C2
2 − 3C3, X4 = −8C3

2 + 6C2C3 + 6C3C2 − 4C4; in general, Xs =∑s
j=2 jXs−j+1Cj , for s = 1, 2, . . . .
Then, by (2.2) and (2.4), we have

F (x(k))−1F (x(k)) = e(k) −C2e
(k)2 + 2

(
C2

2 −C3

)
e(k)

3

+
(
−4C3

2 + 4C2C3 + 3C3C2 − 3C4

)
e(k)

4

+
(
8C4

2 + 5C2C4 − 10C2
2C3 + 6C2

3 − 10C3C
2
2 + 5C4C2 − 4C5

)
e(k)

5

+
(
− 16C5

2 + 26C3
2C3 − 14C2

2C4 − 17C2C
2
3 + 9C3C4 + 8C4C3

+ 7C5C2 + 26C3C
3
2 − 14C4C

2
2 − 16C2

3C2 + 6C2C5 − 5C6

)
e(k)

6
+ O(e(k)

7
). (2.5)

By (2.5), the first step of (2.1) induces

y(k) − x∗ =C2e
(k)2 +

(
−2C2

2 + 2C3

)
e(k)

3

+
(
4C3

2 − 4C2C3 − 3C3C2 + 3C4

)
e(k)

4

+
(
−8C4

2 + 10C2
2C3 − 5C2C4 − 6C2

3 + 10C3C
2
2 − 5C4C2 + 4C5

)
e(k)

5

+
(
− 16C5

2 + 26C3
2C3 − 14C2

2C4 − 17C2C
2
3 + 9C3C4 + 8C4C3

+ 7C5C2 + 26C3C
3
2 − 14C4C

2
2 − 16C2

3C2 + 6C2C5 − 5C6

)
e(k)

6
+ O(e(k)

7
). (2.6)
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The Taylor expansion of the Jacobian matrix F ′(y(k)) results

F ′(y(k)) = F ′(x∗)
{
I + 2C2(y(k) − x∗) + 3C3(y(k) − x∗)2 + 4C4(y(k) − x∗)3

+ 5C5(y(k) − x∗)4 + 6C6(y(k) − x∗)6
}

+ O((y(k) − x∗)
7
). (2.7)

Taking into account (2.4), (2.6) and (2.7), we obtain

F ′(x(k)) + F ′(y(k)) = F ′(x∗)
{

2I + 2C2e
(k) +

(
2C2

2 + 3C3

)
e(k)

2

+ 4
(
−C3

2 +C2C3 +C4

)
e(k)

3

+
(
8C4

2 − 11C2
2C3 + 3C2C4 + 3C4C2 + 5C5

)
e(k)

4

+ 2
(
−8C5

2 + 14C3
2C3 − 10C2

2C4 + 2C2C5 + 2C5C2 + 3C6

)
e(k)

5

+ 2
(
16C6

2 − 34C4
2C3 + 6C3

3 + 30C3
2C4

− 13C2
2C5 − 8C2C3C4 + 3C2C6 + 2C6C2

)}
e(k)

6
+ O(e(k)

7
). (2.8)

Therefore, (
F ′(x(k)) + F ′(y(k))

)−1
=
{1

2
I − 1

2
C2e

(k) − 3

4
C3e

(k)2

+
1

2

(
3C3

2 +C2C3 − 2C4

)
e(k)

3

+
1

8

(
−36C4

2 + 32C2
2C3 + 9C2

3 + 2C2C4 + 2C4C2 − 10C5

)
e(k)

4

+
1

2

(
18C5

2 − 36C3
2C3 + 14C2

2C4 + 6C3C4 −
3

4
C2C

2
3 +C2C5 − 3C6

)
e(k)

5

+
1

18

[
− 216C6

2 + 732C4
2C3 − 75C3

3 − 520C3
2C4 + 32C2

4

− 2C2
2

(
95C2

3 − 74C5

)
+ 30C3C5 + 30C5C3

+ 56C2C3C4 + 3C2C6 + 3C6C2

)]
e(k)

6
}
F ′(x∗)−1 + O(e(k)

7
). (2.9)

Consequently, by (2.2) and (2.9), we have

2
(
F ′(x(k)) + F ′(y(k))

)−1
F (x(k)) = e(k) +

1

2

(
−2C2

2 −C3

)
e(k)

3

+

(
3C3

2 −
3C2C3

4
− 3C3C2

4
−C4

)
e(k)

4

+

(
−6C4

2 + 9C2
2C3 −C2C4 −C4C2 +

3

4

(
C2

3 − 2C5

))
e(k)

5

+
1

2

(
18C5

2 − 50C3
2C3 + 30C2

2C4 + 3C3C4 + 2C4C3

+ 5C2C
2
3 − 3C2C5 − 2C5C2 − 4C6

)
e(k)

6
+ O(e(k)

7
) (2.10)

Substituting (2.10) into the second step of (2.1) results

z(k) − x∗ = x(k) − x∗ − 2(F ′(x(k)) + F ′(y(k)))−1F (x(k))

=

(
C2

2 +
C3

2

)
e(k)

3

+

(
−3C3

2 +
3C2C3

4
+

3C3C2

4
+C4

)
e(k)

4

+

(
6C4

2 − 9C2
2C3 +C2C4 +C4C2 −

3

4

(
C2

3 − 2C5

))
e(k)

5

+
1

2

(
− 18C5

2 + 50C3
2C3 − 30C2

2C4 − 3C3C4 − 2C4C3

− 5C2C
2
3 − 3C2C5 − 2C5C2

)
+ 4C6

)
e(k)

6
+ O(e(k)

7
). (2.11)
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To obtain the general error equation of (2.1) we need

F ′(x(k))−1F ′(y(k)) = I − 2C2e
(k) +

(
6C2

2 − 3C3

)
e(k)

2

− 4
(
4C3

2 − 2C2C3 − 2C3C2 +C4

)
e(k)

3

+
(
40C4

2 − 61C2
2C3 + 9C2

3 + 11C2C4 + 11C4C2 − 5C5

)
e(k)

4

+
(
− 96C5

2 + 198C3
2C3 − 88C2

2C4 + 24C3C4

− 66C2C
2
3 + 14C2C5 + 14C5C2 − 6C6

)
e(k)

5

+
(

224C6
2 − 584C4

2C3 − 15C3
3 + 300C3

2C4 + 16C2
4

+ 315C2
2C

2
3 − 56C2C5 − 56C5C2 + 15C3C5 + 15C5C3

− 194C2C3C4 + 17C2C6 + 17C6C2

)
e(k)

6
+ O(e(k)

7
). (2.12)

Thus,

7

2
I−4F ′(x(k))−1F ′(y(k)) +

2

3
(F ′(x(k))−1F ′(y(k)))2 = I + 2C2e

(k) + 3C3e
(k)2

+
(
−20C3

2 +C2C3 +C3C2 + 4C4

)
e(k)

3

+

(
110C4

2 − 89C2
2C3 +

9C2
3

2
+C2C4 +C4C2 + 5C5

)
e(k)

4

+ 2
(
− 216C5

2 + 300C3
2C3 − 58C2

2C4 − 66C2C
2
3

+C2C5 + 3C3C4 + 3C4C3 +C6

)
e(k)

5

+
(

1456C6
2 − 2830C4

2C3 − 66C3
3 + 816C3

2C4 + 8C2
4 + 1176C2

2C
2
3 − 146C2

2C5

+ 15C3C5 − 340C2C3C4 +C2C6 +C6C2

)
e(k)

6
+ O(e(k)

7
). (2.13)

In addition, we need

F ′(x(k))−1F ′(z(k)) =

(
C2

2 +
C3

2

)
e(k)

3

+

(
−5C3

2 +
C2C3

4
+
C3C2

4
+C4

)
e(k)

4

+
1

4

(
64C4

2 − 52C2
2C3 − 9C2

3 + 6C5

)
e(k)

5

+
1

4

(
− 160C5

2 + 268C3
2C3 − 76C2

2C4 − 15C3C4 − 15C4C3

+ 3C2C
2
3 − 3C2C5 − 3C5C2 + 8C6

)
e(k)

6
+ O(e(k)

7
). (2.14)

Considering (2.13) and (2.14) and the third step of (2.1), the final error equation follows

e(k+1) = z(k) − x∗

−
(7

2
I − 4F ′(x(k))−1F ′(y(k)) +

2

3

(
F ′(x(k))−1F ′(y(k))

)2)
F ′(x(k))−1F ′(z(k))

=

(
19C5

2 + 7C3
2C3 −

5

4
C2C

2
3

)
e(k)

6
+ O(e(k)

7
). (2.15)

This establishes that the new method has sixth order of convergence for solving systems of nonlinear equa-
tions.

In practice, instead of using (2.1) directly, to avoid computing involved inverses, the following approach is
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applied 
ν
(k)
1 = x(k) − γ(k)

ν
(k)
2 = x(k) − 2ζ(k),

x(k+1) = ν
(k)
2 −

(
7
2I − 4ξ(k) + 3

2 (ξ(k)))2
)
ρ(k),

(2.16)

where 
F ′(x(k))γ(k) = F (x(k)),(
F ′(x(k)) + F ′(ν

(k)
1 )
)
ζ(k) = F (x(k)),

F ′(x(k))ξ(k) = F ′(ν
(k)
1 ),

F ′(x(k))ρ(k) = F (ν
(k)
2 ).

(2.17)

By (2.17), it can be elucidated that the proposed method (2.1) consumes two vector-function, F (x(k)) and
F (y(k)), and two Jacobian matrices, F ′(x(k)) and F ′(x(k))+F ′(y(k)) per iteration k. Finally, We need to solve
four linear systems of equations per iteration in which merely one of them applies a different LU factorization.

3 Further development: General multipoint method

This section concerns with construction of a general multipoint for solving nonlinear systems of equations in
which it uses the proposed method (2.1) as its first three steps as predictor. In fact, by adding one step
it increases the order of convergence by three units and only one vector-function evaluation is required. It
contains a economic solid frozen factor, too.

3.1 First development: ninth-order of convergence

Following we present a new ninth-order iterative method for solving nonlinear systems of equations:

y(k) = x(k) − F ′(x(k))−1F (x(k)),

z(k) = x(k) − 2(F ′(x(k)) + F ′(y(k)))−1F (x(k)),

w(k) = z(k) −
(

7
2I − 4F ′(x(k))−1F ′(y(k)) + 3

2

(
F ′(x(k))−1F ′(y(k))

)2)
F ′(x(k))−1F (z(k)),

x(k+1) = w(k) −
(

7
2I − 4F ′(x(k))−1F ′(y(k)) + 3

2

(
F ′(x(k))−1F ′(y(k))

)2)
F ′(x(k))−1F (w(k)).

(3.1)

Similar to the proof the Theorem (2.1), we can prove the following.

Theorem 3.1. Let F : D ⊆ Rn −→ Rn be sufficiently Frechet differentiable at each point of an open convex
neighborhood D of x∗ ∈ Rn, that is a solution of the system F (x) = 0. Let us suppose that F ′(x) is continuous
and nonsingular in x∗. Then, the sequence {x(k)}k≥0 obtained using the iterative method (3.1) converges to x∗

with convergence rate 9, and its error equation is given by

e(k+1) = Ce(k)
9

+ O(e(k)
10

), (3.2)

where

C =

(
308C8

2 + 51C6
2C3 + 51C3C

6
2 − 20C4

2C
2
3 − 19C2

3C
4
2 +

5

4
C2

2C
3
3 +

5

4
C3

3C
2
2

)
.

Notice that (3.1) requires three vector-function and two Jacobian matrices evaluations per iteration. It also
needs solving five linear systems of equations per cycle in which one of them uses a different LU factorization.
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3.2 Second development: twelfth-order of convergence

Following we present a new twelfth-order iterative method for solving nonlinear systems of equations:

y(k) = x(k) − F ′(x(k))−1F (x(k)),

z(k) = x(k) − 2(F ′(x(k)) + F ′(y(k)))−1F (x(k)),

w(k) = z(k) −
(

7
2I − 4F ′(x(k))−1F ′(y(k)) + 3

2

(
F ′(x(k))−1F ′(y(k))

)2)
F ′(x(k))−1F (z(k)),

u(k) = w(k) −
(

7
2I − 4F ′(x(k))−1F ′(y(k)) + 3

2

(
F ′(x(k))−1F ′(y(k))

)2)
F ′(x(k))−1F (w(k)),

x(k+1) = u(k) −
(

7
2I − 4F ′(x(k))−1F ′(y(k)) + 3

2

(
F ′(x(k))−1F ′(y(k))

)2)
F ′(x(k))−1F (u(k)).

(3.3)

Notice that (3.3) requires four vector-function and two Jacobian matrices evaluations per iteration. Further-
more, it needs solving six linear systems of equations per cycle in which only one of them uses a different LU
factorization. Similar to the proof of Theorem (2.1), we can prove the following.

Theorem 3.2. Let F : D ⊆ Rn −→ Rn be sufficiently Frechet differentiable at each point of an open convex
neighborhood D of x∗ ∈ Rn, that is a solution of the system F (x) = 0. Let us suppose that F ′(x) is continuous
and nonsingular in x∗. Then, the sequence {x(k)}k≥0 obtained using the iterative method (3.3) converges to x∗

with convergence rate 12, and its error equation is given by

e(k+1) = Ce(k)
12

+ O(e(k)
13

), (3.4)

where
C = C3

2(−10C3
2 +C3

3)
(
76C4

2 + 14C2
2C3 + 14C3C

2
2 − 5C2

3

)
(−10C3

2 +C3
3).

3.3 General m-point method m ≥ 4

We now deal with developing a new general multipoint method. Indeed, based on what have been mentioned
above, the method (2.1) can be developed as follows:

ν
(k)
1 = x(k) − γ(k)

ν
(k)
2 = x(k) − 2ζ(k),

ν
(k)
3 = ν

(k)
2 −

(
7
2I − 4ξ(k) + 3

2 (ξ(k)))2
)
ρ
(k)
3 ,

ν
(k)
4 = ν

(k)
3 −

(
7
2I − 4ξ(k) + 3

2 (ξ(k)))2
)
ρ
(k)
4 ,

...

x(k+1) = νm = ν
(k)
m−1 −

(
7
2I − 4ξ(k) + 3

2 (ξ(k)))2
)
ρ
(k)
m ,

(3.5)

where 
F ′(x(k))γ(k) = F (x(k)),(
F ′(x(k)) + F ′(ν

(k)
1 )
)
ζ(k) = F (x(k)),

F ′(x(k))ξ(k) = F ′(ν
(k)
1 ),

F ′(x(k))ρ
(k)
i = F (ν

(k)
i−1), i = 3, 4, . . . ,m.

(3.6)

Notice that m-step (3.5) requires m− 1 vector-function and two Jacobian matrices evaluations per iteration. In
addition, it needs to solve m + 1 linear systems of equations per cycle in which one of them use a different Lu
factorization.

Theorem 3.3. The m-step (m ≥ 4) iterative method (3.5) has the local convergence order 3(m−1) using m−1
vector-function evaluations of the sufficiently smooth function F and two frozen Jacobian matrices per iteration.
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Proof. The proof is by induction on m. Theorem (3.1) accounts for m = 4. Assume that the result holds for
m; we will prove it for m + 1. To this end, we take advantageous of the Traub’s acceleration theorem [1] and
corrector frozen Jacobian matrix together. In other words, Traub’s theorem states that if iterative method
G(x(k) has convergence order p, then x(k+1) = G(x(k))− F ′(x(k))−1F (G(x(k)) is of convergence order p + 1.

On the other hand,, the frozen Jacobian matrix factor, 7
2I − 4F ′(x(k))−1F ′(y(k)) + 3

2

(
F ′(x(k))−1F ′(y(k))

)2
),

based on the induction hypothesis plays a key role and improves the convergence order by three units per iterate.
Therefore, the (m+ 1)-step of (3.5) has convergence order 3m+ 3, where 3 is the convergence improving factor
for (3.5). Hence, the (m + 1)-step has the convergence order 3(m + 1).

4 Computational complexities

In the iterative method (2.1), we solve four linear systems of equations, while just two LU factorizations must be
done due to multiple right hand sides. In these situations, one could compute a factorization of the (Jacobian)
matrix and use it repeatedly.

The computational efficiency of some algorithms are now computed by a practical efficiency index, defined
by

FEI = p
1

CO , (4.1)

also known as flops-like efficiency index (FEI) [18], wherein C stands for the total computational cost per
iteration in terms of the number of functional evaluations along with cost of LU decompositions and solving two
triangular systems (based on the flops), to observe the competence of distinctive methods. For solving r linear
systems of equations with the frozen LU factorization, the following theorem is generally used to estimate the
computational operations [14]

Theorem 4.1. The number of products and quotients required for solving r linear systems of equations with
the same matrix of coefficients, by using LU factorization, is

o(n, r) =
1

3
n3 + rn2 − 1

3
n, (4.2)

where n is the size of each system.

We also denote by o(F ) and o(F ′), the number of function and Jacobian matrices, respectively. Thus, for
our purposes, it is more convenient to redefine (4.1) as

FEI = p
1

CO , (4.3)

where CO = o(F ) + o(F ′) + o(n, r).

Theorem 4.2. For (2.1), we have FEI(2.1) = 6
1

5n3
3

+5n2+ 4
3
n

Proof. The iterative method (2.1) has the following cost: n evaluations of scalar functions for F (x), n evaluations
of scalar functions for F (z), then, o(F ) = 2n. It also needs n2 evaluations of scalar functions for F ′(x), again
n2 evaluations of scalar functions for F ′(y), that is o(F ′) = 2n2. Furthermore, we must solve two linear and
one matrix systems with the same LU factorization and another linear system with a different LU factorization.
In other words, o(n, (n+ 2)) + o(n, 1) = 1

3n
3 + (n+ 2)n2− 1

3n+ 1
3n

3 +n2− 1
3n = 5

3n
3 + 3n2− 2

3n. Consequently,

CO = 5n3

3 + 5n2 + 4
3n.

The following theorem provides flops-like efficiency index for (3.5).

Theorem 4.3. For (3.5), m ≥ 4, we have FEI(3.5) = 3(m− 1)
1

5n3
3

+(m+2)n2+ 3m−5
3

n .

Proof. The iterative method (3.5) has the following cost: (m−1)n evaluations of scalar functions. It also needs n2

evaluations of scalar functions for F ′(x), again n2 evaluations of scalar functions for F ′(y), that is o(F ′) = 2n2.
Furthermore, we must solve m − 1 linear systems and one matrix system with the same LU factorization
and another linear system with a different LU factorization. In other words, o(n, (n + m − 1)) + o(n, 1) =
1
3n

3+(n+m−1)n2− 1
3n+ 1

3n
3+n2− 1

3n = 5
3n

3+mn2− 2
3n. Consequently, CO = 5n3

3 +(m+2)n2+ 3m−5
3 n.

Therefore we can easily obtain the following:
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Corollary 4.1. For (3.1), m = 4, we have FEI(3.5) = 9
1

5n3
3

+6n2+ 7
3
n .

Corollary 4.2. For (3.3), m = 5, we have FEI(3.5) = 12
1

5n3
3

+7n2+ 10
3

n .

In the same manner we can prove that:

Theorem 4.4. FEI(1.1) = 2
1

n3
3

+2n2+ 2
3
n , FEI(1.2) = 4

1
5n3
3

+3n2+ 1
3
n , FEI(1.3) = 4

1
3n3+3n2 , and FEI(1.4) =

4
1

2n3+5n2 .

Proof. First we examine Newton’s FEI for (1.1). It uses n and n2 evaluations for F (x(k)) and F ′(x(k)),
respectively. We must solve a linear system for F ′(x(k))Γ = F (x(k)) for Γ with 1

3n
3 + n2 − 1

3n. Therefore,
CO = 1

3n
3 + 2n2 + 2

3n.

We deal with Jarratt’s FEI for (1.2). It computes F (x(k)), F ′(x(k)) and F ′(y(k)) with n, n2 and n2

evaluations, respectively. Furthermore, in the first step we must solve F ′(x(k))Γ = F (x(k)) for Γ with 1
3n

3 +

n2 − 1
3n evaluations. And in the second step we must solve (3F ′(y(k)) − F ′(x(k)))Θ = (3F ′(y(k)) + F ′(x(k))

for Θ with 1
3n

3 + n3 − 1
3n evaluations. Consequently, CO = 5

3n
3 + 3n2 + 1

3n.

We now turn to Sharma et al. FEI for (1.3). It computes F (x(k)), F ′(x(k)) and F ′(y(k)) with n, n2

and n2 evaluations, respectively. Furthermore, in the first step we must solve F ′(x(k))Γ = F (x(k)) for Γ
with 1

3n
3 + n2 − 1

3n evaluations. In the second step, we must solve two systems of matrix of equations, namely

F ′(x(k))Φ = F ′(y(k)) and F ′(y(k))Ψ = F ′(x(k)) with 2( 1
3n

3+n3− 1
3n) evaluations. So, we have CO = 3n3+3n2.

Finally, the task is now to find FEI for Babajee et al. method (1.4). It computes F (x(k)), F ′(x(k)) and
F ′(y(k)) with n, n2 and n2 evaluations, respectively. Furthermore, in the first step we must solve F ′(x(k))Γ =
F (x(k)) for Γ with 1

3n
3 + n2 − 1

3n evaluations. In the second step, we must solve one system of matrix of

equations, namely F ′(x(k))Φ = F ′(y(k)) and with 1
3n

3 + n3 − 1
3n evaluations. We also solve another system,

namely (F ′(x(k)) + F ′(y(k)))Υ = F (x(k)) with 1
3n

3 + n2 − 1
3n evaluations. Hence, CO = 2n3 + 5n2

5 Numerical implementation

In this section, we want to apply our methods to solve four examples, taken from [14, 18]. Computations have
been carried out using variable precision arithmetic with 600 digits of mantissa in Mathematica 8. Besides, to
verify that our algorithms support their given theories, the approximated computational order of convergence
(ACOC), see [14], has been computed by the formula

ACOC ≈
ln
(
‖x(k+1) − x(k)‖ ‖x(k) − x(k−1)‖−1

)
ln
(
‖x(k) − x(k−1)‖ ‖x(k−1) − x(k−2)‖−1

) (5.1)

In addition to the methods (1.2)-(1.4), (2.1), and (3.1)-(3.3), we consider the following methods for compar-
ison purpose and illustrations

The sixth-order method by Cordero et al. in [14]:
y(k) = x(k) − 2

3F
′(x(k))−1F (x(k)),

z(k) = x(k) − 1
2 (3F ′(y(k))− F ′(x(k)))−1(3F ′(y(k)) + F ′(x(k)))F ′(x(k))−1F (x(k)),

x(k+1) = z(k) − 2(3F ′(y(k))− F ′(x(k)))−1F (z(k)).

(5.2)

The sixth-order method by Cordero et al. in [21]:
y(k) = x(n) − 1

2F
′(x(k))−1F (x(k)),

z(k) = 1
3 (4y(k) − x(k)),

u(k) = y(k) + (F ′(x(k))− 3F ′(z(k)))−1F (x(k)),

x(k+1) = u(k) + 2(F ′(x(k))− 3F ′(z(k)))−1F (z(k)).

(5.3)
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The sixth-order method by Soleymani et al. in [18]:
y(k) = x(k) − 2

3F
′(x(k))−1F (x(k)),

z(k) = x(k) − 1
2 (3F ′(y(k))− F ′(x(k)))−1(3F ′(y(k)) + F ′(x(k)))F ′(x(k))−1F (x(k)),

x(k+1) = z(k) −
[
(3F ′(y(k))− F ′(x(k)))−1(3F ′(y(k)) + F ′(x(k)))F ′(x(k))−1F (x(k))

]2
F ′(x(k))−1F (z(k)).

(5.4)

We compare the computed results and justify the accuracy and applicability of the mentioned algorithm
and theorems. In fact, we want to estimate the zeros of the following nonlinear systems. In tables Ai means
‖F (x(i))‖∞ and a× 10−b was shown with a(−b).

We consider the following nonlinear systems of equations:

(1) F (x) = (ex
2
1 − e

√
2x1 , x1 − x2)T with x(0) = (2, 2)

T
and x∗ =

(√
2,
√

2
)T

.

(2) F (x) = (x2
1 + x2

2 + x2
3 − 1, 2x2

1 + x2
2 − 4x3, 3x2

1 − 4x2
2 + x2

3)T with x(0) = (0.5, 0.5, 0.5)
T

and x∗ ≈
(0.698288 . . . , 0.628524 . . . , 0.342561 . . . )

T
.

(3) In order to tackle with large-scale nonlinear systems, we have included this example in this work{
xixi+1 = 1, i = 1, 2, . . . , n− 1

xnx1 = 1
(5.5)

where a solution is the vector x∗ = (1, 1, · · · , 1) for odd n, and its first Frechet derivative has the following
sparse pattern :

J(x) =



x2 x1 0 · · · 0
0 x3 x2 · · · 0
...

. . .
. . .

. . .
...

0
. . . 0 xn−2 xn−1

xn 0 · · · 0 x1

 , (5.6)

and the initial value x(0) = (2, 2, . . . , 2)
T

, also the case for 99× 99 is considered.

(4) In order to tackle with large-scale nonlinear systems , we have included this example in this work{
(xixi+1)2 − 3 = 0, i = 1, 2, . . . , n− 1

xn(x1)2 − 1 = 0
(5.7)

where its solution is the vector x∗ ≈ (0.57735, 3.0000, 0.57735, 3.0000, . . . , 0.57735, 3.0000)
T

and note that
its first Frechet derivative has the following sparse pattern

J(x) =



2x1x
2
2 2x2

1x2 0 · · · 0

0 2x2x
2
3 2x2

2x3 · · ·
...

... · · · 2x3x
2
4 2x2

3x4

...

0
. . .

. . .
. . . 0

2x1xn 0 · · · 0 x2
1


, (5.8)

and the initial value x(0) = Table [2.0 {i, 1, 250}] , also the case for 250× 250 is considered .

It can be seen from Tables 1-4 that numerical results demonstrate all selected methods converge with the
expected rates. In fact, it is clear that methods (1.2)-(1.4) have convergence order four while methods (2.1)
and (5.2)-(5.4) have sixth-order convergence. Moreover, methods (3.1) and (3.3) have ninth- and twelfth-order
convergence. Last columns show that it can be concluded that approximated computational order of convergence
(ACOC), calculated by (5.1), supports the very well the theoretical order.

In Tables 5-7, we demonstrate and compare the flop-like efficiency indices of the proposed methods together
some other methods expressed in this paper. It can be concluded that our methods show good tendency as
opposed the other methods.
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Methods A1 A2 A3 ACOC
(1.2) 2.8562 0.0470 4.3625(−8) 3.9950
(1.3) 4.9170 0.3057 0.0001 3.9229
(1.4) 5.9382 0.5403 0.0020 3.8285
(2.1) 4.3234 0.1598 3.1611(−7) 5.9998
(3.1) 2.9217 0.0179 2.1353(−18) 9.0000
(3.3) 2.1491 0.0012 4.5650(−38) 11.999
(5.2) 1.7595 0.0017 2.5856(−20) 5.9999
(5.3) 1.7595 0.0017 2.5856(−20) 5.9999
(5.4) 2.2600 0.0087 1.6334(−15) 5.9552

Table 1: Numerical results for Example 1

Methods A1 A2 A3 ACOC
(1.2) 0.0084 2.0142(−11) 4.2577(−46) 4.0213
(1.3) 0.0228 2.3487(−9) 1.8332(−37) 4.0223
(1.4) 0.0415 3.8243(−8) 2.0232(−32) 4.0217
(2.1) 0.0085 4.3218(−16) 5.9810(−96) 6.0000
(3.1) 0.0019 2.1717(−29) 5.0746(−263) 9.0013
(3.3) 0.0004 1.2046(−46) 2.2679(−557) 12.000
(5.2) 0.0006 6.5609(−14) 7.7067(−89) 6.0071
(5.3) 0.0006 6.5609(−24) 7.7067(−144) 6.0070
(5.4) 0.0027 1.4796(−19) 3.0421(−117) 6.0062

Table 2: Numerical results for Example 2

Methods A1 A2 A3 ACOC
(1.2) 0.5037 9.2456(−7) 1.1590(−29) 3.9924
(1.3) 0.7925 0.0001 8.0715(−25) 3.9748
(1.4) 1.0012 0.0004 2.4850(−22) 3.9999
(2.1) 0.2720 6.8908(−11) 2.0370(−68) 5.9948
(3.1) 0.0545 2.4936(−22) 2.2500(−205) 9.0000
(3.3) 0.0112 7.5839(−38) 6.9320(−460) 11.999
(5.2) 0.0947 1.4083(−10) 1.5626(−61) 5.9999
(5.3) 0.0947 1.4083(−12) 1.5626(−74) 5.9999
(5.4) 0.1517 6.9449(−13) 6.7420(−81) 6.0000

Table 3: Numerical results for Example 3

Methods A1 A2 A3 ACOC
(1.2) 0.5879 0.0088 1.2817(−15) 4.0250
(1.3) 2.7267 0.1053 1.1451(−10) 4.0817
(1.4) 5.9382 0.5403 0.0020 3.8658
(2.1) 4.7399 0.0001 1.9969(−38) 5.9988
(3.1) 11.1123 6.0790(−6) 1.3395(−54) 8.9888
(3.3) 9.8499 2.0244(−8) 3.4518(−87) 8.8889
(5.2) 3.5087 2.6227(−6) 1.5340(−45) 5.8861
(5.3) 3.5087 2.6227(−6) 1.5340(−45) 5.8899
(5.4) 5.3508 0.0007 4.3403(−35) 5.9977

Table 4: Numerical results for Example 4
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n Method (2.1) Method (1.1) Method (1.2) Method (1.3) Method (1.4)
2 1.051 1.050 1.055 1.039 1.039
3 1.019 1.021 1.019 1.013 1.014
4 1.009 1.011 1.009 1.006 1.007
5 1.005 1.005 1.005 1.003 1.004
6 1.003 1.003 1.003 1.002 1.002

Table 5: EFI of the different methods for different sizes of the systems

n Method (2.1) Method (3.1) Method (3.3)
2 1.051 1.060 1.053
3 1.019 1.023 1.021
4 1.009 1.011 1.011
5 1.005 1.006 1.006
6 1.003 1.004 1.004

Table 6: EFI of the different methods for different sizes of the systems

6 Conclusion

First, we extended and developed Weerakoon and Fernando’s method for solving nonlinear systems of equations
with sixth-order convergence. Its convergence analysis was discussed. To develop a general multipoint iteration,
we used this extended method as a predictor with two frozen Jacobian matrices. Some concrete examples of the
general method have been given. In addition, we dealt with computational complexities. Numerical examples
verified that these new methods can compete very good with the existing ones.
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