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Abstract—Message Oriented Middleware (MOM) refers to
the software infrastructure that support ubiquitous information
delivery among software and hardware systems. Two of the
most relevant protocols in this context are AMQP and MQTT.
Lately, they have been extensively used to exchange messages
conserving network bandwidth, device memory and batteries.
These protocols provide an abstraction of the communication
programming details of the different participating system entities,
alleviating their coordination and collaboration.

However, these protocols have not been thoroughly tested
focused on studying the impact of node mobility. In this paper we
present an experimental evaluation of both protocols quantifying
the effect of the node mobility in terms of message loss, latency,
jitter and saturation boundary values. Based on the results
obtained, we provide criteria of applicability of these protocols.
This evaluation is of interest for the upcoming applications that
can be supported by MOM, and in especial for communication
in Machine to Machine (M2M) and Internet of Things (IoT).

I. INTRODUCTION

Communication is essential to node coordination. Mod-
ern Internet-based applications are becoming more oriented
towards the interaction of wireless and mobile devices with
cloud resources and services. For many years HTTP has been
used as the reference communications protocol in this context.
HTTP is a very wide spread protocol, and APIs for its use are
available basically for every programming language.

However, more flexible middleware systems have been
developed to ease the design of cloud-based applications.
Significant research efforts have been dedicated to define
new communication systems that connect distributed com-
ponents via message passing; one of them is the Message-
Oriented Middleware (MOM). The basic idea of MOM are
publish/subscribe systems to deliver messages from publishers
via the message-brokers to subscribers based on their interests.
This architectural model is a key components for real time
collaboration experience. Based on this model many protocols
have been developed, e.g. AMQP, MQTT, STOMP, DDS,
XMPP. Here, we focus on two open protocols that have be-
come in standards (a) the Advanced Message Queuing Protocol
(AMQP), and (b) the Message Queuing Telemetry Transport
(MQTT).

AMQP was created in 2003 by John O’Hara of JPMor-
gan Chase [8] and MQTT was originated in 1999 by Andy

Stanford-Clark of IBM [18]. Both protocols ensure that the
information is safely transported between systems, offering
a number of advantages including efficiency (in use of re-
sources), flexibility (content-based publish/subscribe), fault-
tolerance (support to off-line operations), and ease to use
(there are libraries available for the most popular programming
languages, and there are implementations for the most common
operating systems and platforms). In addition, they take into
consideration security and confidentiality issues without affec-
ting significantly the communications performance.

AMQP is an open standard for enterprise messaging,
designed to support messaging for almost any distributed or
business application [5]. It works like instant messaging or
email the difference towards these available solutions is that
AMQP comprises both (a) the network protocol, which spec-
ifies the entities (producer, consumer, broker) to interoperate
with each other, and (b) the protocol model, which specifies
the message representation and the methods to interoperate
among the entities. Furthermore, the data content in an AMQP
message is opaque, immutable and self-contained. There is no
limit for the size of a message, it can be as large as or greater
than several gigabytes [16]

MQTT is a lightweight machine-to-machine messaging
protocol [2]. It fits perfectly for constrained devices with very
limited resources, it has a clear focus on the mobile sector.
Its information exchange procedure is resource-efficient, and
it does not specify a particular data format. Additionally, it
provides security that all messages transmitted even if the
connection breaks off briefly, solving problems that arise upon
unreliable communications.

The mechanisms to support message delivery allow a wide
variety of usage scenarios, AMQP offers possibilities such as
point-to-point, store-and-forward. However, the MQTT proto-
col provides a basic messaging based on specified topics (sub-
scription’s name) without possibility of store-and-forward [12]

In this article, we evaluate experimentally AMQP and
MQTT protocols fundamentally focused on compare their
capabilities and capacities through measurements in situations
of node movement. We consider that among the major factors
that effect the wireless network reliability and computation
quality are situations such as significant path loss, attenuation
of transmitted signals, loss of line-of-sight, interference among
adjacent wireless networks occur among other things resulting



from node’s movement. Thus this study that will be replicated
in any wireless network (in general BAN, PAN and WLAN)
where the collaborative use of the information collected by
individual nodes will form an enhanced dataset to improve any
situation of our day to day life, like in many applications of
physiological monitoring, inter-vehicular safety, remote sens-
ing of environmental conditions, and transportation planning,
analysis and monitoring. Our goal is to determine whether
these protocols provide a satisfactory service depending of
the applications’ load needs in terms of message size and
communication rates.

In order to emulate applications of remote sensing in trans-
portation infrastructure, we use a simple scenario composed by
one producer/publisher node (sensors to acquire information
about objects or phenomenons), one consumer/subscriber node
(to view, analyse and make decisions about the environment)
and one message-broker (for matching subscriptions with
publications) using specific hardware devices to observe the
effect of the producer/publisher node moving from one Wi-Fi
access point (AP) to another in the same IP network. Then, we
present the evaluation results on the messages’ jitter, and the
saturation boundary values. With this purpose, we have been
designed, developed, tested, and evaluated a synthetic load
generator, called momperf to generate and publish messages
with different load patterns. A message generated with this tool
in its payload includes: a sequence number (to detect messages
that can be lost, delivered out-of-order, or duplicated), the size
of the current message and the interval of time in which they
are sent by the producer/publisher node.

The rest of the article is structured as follows: Section II
presents a literature review related to the topic. Section III
provides a description of the methodology used in this work,
showing how measurements have been done in order to be
reproducible. Section IV presents the results and, finally,
Section V concludes the paper, highlighting the next steps to
follow in this research line.

II. RELATED WORK

The mobility concept has been profoundly researched in
the last decade, many research groups and individuals have
focused on node mobility support from many different points
of views and providing many useful approaches. For example,
in [9], the authors propose a middleware sits between the
application and transport layers that use the store-and-forward
feature of delay-tolerant network technology (DTN) and con-
cepts of publish and subscribe employing AMQP protocol and
Qpid message-broker, to provide resilient message dissemina-
tion even without network support. As a proof of concept,
they present a prototype to Android devices inspired in a
neighbourhood watch system with watch volunteers reporting
incidents in order to reduce burglaries.

In [1] a theoretically middleware service is used to bridge
things (the low level interfaces) and applications. To support
devices that quickly moving between networks, re-associating
with public access points, connecting to multiple networks
and multiple technologies. Using a global unique identifier to
separate the naming and addressing for every networked object
(like HIP protocol where a device’s identity is separate from
its network address). And introducing tree network services:

(a) a service of name resolution, (b) a routing module based
in the identifier, and (c) delay-tolerance data delivery. Thus
they handle mobile devices and context services supporting its
mobility and seamless hand-off, but large scale evaluations of
this proposal are pending.

The AMQP and MQTT protocols have proved to be useful
in production scenarios, and have been used in challenging
applications, including Autonomous Computing [3], Cloud
computing [13] or in aspects related to the IoT [14].

There are several works in which the AMQP and MQTT
protocols are evaluated separately. In [10] the performance
of AMQP is assessed using Infiniband and Gigabit Ethernet
networks with Qpid as AMQP middleware. Five simple syn-
thetic benchmarks modeled after the OSU Micro-benchmarks
for MPI were used. They exercise the number of Publishers,
the number of Consumers, and the Exchange type. Each bench-
mark measures performance for data capacity (the amount of
raw data in MegaBytes per second), message rate (the number
of discrete messages transmitted), and speed (average time one
message takes to travel from the publisher to the consumer).

In [4] a performance comparison between AMQP and
RESTful web services is presented. Three different tests are
performed, which consist of several client applications sending
messages during 30 minutes to the broker or the web server,
respectively; once the messages arrive to the server they are
stored in a database. Then, the average number of messages
per second that have been sent is compared to the total number
of messages stored in the database. They conclude that, when
the AMQP protocol is used to exchange messages, a larger
number of messages per second is supported.

A study about MQTT, a “light weight” publish-subscribe
based messaging protocol, is presented in [6]. The correlation
between the end-to-end latency and loss of system messages
is studied. Three different QoS levels with different sizes of
payload (from 1 to 16 Kbytes) are tested on a real world
scenario with both wired and wireless clients using 3G. They
prove that there is a strong correlation between these two
variables.

However, few studies have focused on the mobility impact
in the effectiveness of both protocols

III. METHODOLOGY OF THE EXPERIMENTS

The publish/subscribe topology allows us to use a simple
scenario with decoupled components in order to inter-operate
among them. In our experiments, we use a message pro-
ducer/publisher node located at the edge of the network, which
at a given period of time, produce and publish AMQP/MQTT
messages of a prefixed size to the message-broker.

In the case of AMQP, the message-broker accepts incoming
messages from a producer node in an exchange (an exchange
is essentially a router [11]) and, based on a set of criterions
routes the messages to a specific queue. In the case of MQTT,
the message-broker forwards the incoming messages from
publisher nodes directly to the subscriber nodes. A subscription
is initially created by a client application with a simple
subscription name or a predefined topic.

In our scenario, the message-broker and the con-
sumer/subscriber node are executed on the same computer



Fig. 1: A picture of the scenario.

in order to avoid the latency that can be introduced by
the message trip from the message-broker to the consumer
node. The producer/publisher node is connected to a one
of the two Wi-Fi access points. Both Wi-Fi access points
offer paths to and from the message-broker. All these entities
are connected within the same network. The diagram of the
scenario configuration is depicted in Figure 1.

In the testbed, to generate workloads for the message
queuing system with both MOM protocols we have been
developed a testing application (which we call momperf ).
Momperf works as a message producer/publisher and con-
sumer/subscriber.

Notice that momperf uses the RabbitMQ [15] and
Paho [17] libraries, which are open source implementations
of AMQP and MQTT protocols respectively. These current
implementations are using TCP/IP connections for these com-
munications. Indeed, this is needed to enhance reliability.

If the producer/publisher’s connection suffers an interrup-
tion, the client (producer’s AMQP or publisher’s MQTT) stores
the messages in their local buffers and then transmit them
when the connection that reaches the message-broker is re-
established. The problem appears when, the storage buffer
capacity of the producer/publisher device is depleted, thereby
causing message losses.

In the arrival event of each message, the sequence number
and the production timestamps are recorded in a log file to-
gether with the reception time stamp. When there are changes
in the producer/publisher link, the regularity of message re-
ception is affected. Since the inter-message times are modified,
message bursts can be delivered to the consumer, and even the
sending order can be changed.

The duration of each test was about 20 seconds, which
is enough time to check the access point migration of the
message producer. During the tests we checked whether there
were messages losses or if messages arrived out of order.

To the simulation of the node mobility in an indoor sce-
nario, we used a set of scripts that shut down and activate the
routers’ radios, in this way we get disassociation/association
of all client devices. A schema of this approach is shown in
Figure 2.

Fig. 2: Simulating the node mobility in an indoor scenario.

Due to the asynchrony among the internal clocks of the
different entities of a distributed system we cannot obtain
an accurate latency value [7]. Instead, we have calculated
the variation in the delay of the received messages, i.e., the
jitter. Let us consider two consecutive messages that have been
received by the consumer node, for message n, t′n is its arrival
time. T is the inter-message production period and it is one of
the variables fixed for each experiment. To the nth message,
its inter-arrival jitter time is computed through the following
formula:

Jn = t′n − t′n−1 − T

Note that, with this formula, we are not concerned by a pos-
sible asynchrony among the producer, broker and consumer.

In our tests, we have taken as a reference bandwidth, the
bandwidth needed to support high definition video streaming,
that is about 5 Mbps. With momperf tool this value can be
reached, for instance, by transmitting messages of 12500B
(12.5KBytes) every 0.02 seconds. To detect the point at which
messages start being lost, we made some tests in both cases:
with and without mobility of the producer node. The obtained
values are detailed in the following section.

The technical details of our testbed are: the message broker
was deployed on a server with an AMD 8-core processor and
16GBytes of RAM memory. The mobile client had an Atom
N450 processor and 1GByte of RAM memory. Both of them
were running Ubuntu 12.04 GNU/Linux distribution. For the
wireless network, we have used the OpenWRT GNU/Linux
distribution with Attitude Adjustment version on an Alix PC-
Enginees (alix2d2) and a Tplink (TL-WDR3600) routers.

IV. RESULTS

In this section, we present our experimental results. The
scenario is focused on the pattern of devices quickly moving
between networks (from one access point to another main-
taining the same IP address) while producing and publishing
messages with stream-based applications. Indeed the TCP
connection between the producer/publisher and the message
broker is slightly affected.

For the experiments, we have used a completely dedicated
network without external traffic. Each test was repeated 100
times for each combination of inter-message period and me-
ssage size. The data message size is between 0.5 KBytes and



6 KBytes, and message production intervals of 10, 50, 100,
500 and 1000 ms. Then, we analyse the behaviour for each
scenario, the results were generalized through a cumulative
distribution function.

A. Behaviour during access point transition

When the communication link is stable and reliable, the
jitter values to each message are around zero. In the mobility
case, when a producer is migrating from one access point to
another, the delay jitter has a considerable value.

Figure 3 show the typical jitter behaviour of a message
received by the consumer/subscriber. These figures were ob-
tained producing/publishing messages of different sizes with
different inter-message period from 10 to 1000]ms during 20
seconds. As can be seen both protocols seem to perform very
similarly.

In Figures 3, we can see certain points that reach values
between 3.1 and 3.3 seconds, these points reveal the value of
delay jitter that is associated with the corresponding hand-off
time in each transition among the Wi-Fi access points. Also,
we can see some negative values that belong to the reception
of a burst of messages which the producer retained during the
communication’s interruption. The number of burst messages
(that present a negative jitter) can be approximately calculated
by the value of the maximum jitter (hand-off time) divided by
the message producing period.

We have found that during the message burst, using the
AMQP protocol (the Figure 3 left) the messages are consumed
in inverted order. The delivery no guarantees the message
delivery in order. It follows a LIFO (last-input first-output)
order. This does not occur with MQTT protocol where the
burst delivery of message retained in the transition do not affect
the order. The LIFO behaviour during the burst of messages
following the hand off may be due to implementation details,
because it is not specified as a feature of the protocol.

B. Jitter analysis

The messages were sent with exactly the right intervals be-
tween them at the broker, depending on the conditions to transit
in the network, these messages reach the consumer/subscriber
at different amounts of time. Taking the difference of the
arrival timestamps according with the previous formula, the
jitter values of each message with a fixed node are around
zero. We know that the maximum jitter value in our tests is
the consequence of the node movement, given that the network
had no external traffic, and that the workloads used in these
tests do not saturate the system.

Using the Cumulative Distribution Function on the set of
experimental data, we have analysed the behaviour of the
message jitter focusing on the instant when the producer makes
an access point migration.

Due the space limitations, in Figure 4 we show only a
few cases of the distribution function of the jitter. In example
using a period of 10ms for message production and message
sizes of 512 Bytes and 6 KBytes for each protocol tested.
When message size is 512 Bytes (Figures 4a and 4b), we
observe that the jitter value is concentrated around 3.3 seconds,
with sporadic cases of jitters of 7 seconds, without significant

differences between these protocols, when the number of bytes
sent increases (Figures 4c and 4d) the message rate drops.
About half of the cases present jitter values close to 3.3
seconds while the other half of the cases double this value.
We consider that this behaviour for bigger messages is due to
the fragmentation of their payload by both protocols.

(a) (b)

(c) (d)

Fig. 4: Cumulative Distribution Function of the maximum jitter
value (on x-axis). Using: AMQP (left) and MQTT (right). With
a inter-message production period of 10ms, and messages size
of 512Bytes (a and b) and 6KBytes (c and d).

To study the jitter evolution, we have used the statistical
analysis for rounding mode values (rounded to the nearest
hundred) to fit the most representative value instead of using
the value that appears most often in the data sets.

We have represented the jitter mode value in two ways: as a
function of the message size (Figure 5a) and as function of the
inter-message period (Figure 5b). Where for different message
lengths the jitter value is about constant, except when the
periods between each published message are of 10ms, because
in the measurements show the deleterious effects of mobility
with jitter mode values was around the double.

C. Workload boundary

In order to know the capacity of the messaging system
to handle heavy workloads, we executed the experiments
without node movement. There is, therefore, no interruption
in the wireless link between the producer/publisher node and
messaging broker. Note that these saturation boundary values
can be dependent on the platform used, and even on their
configuration.



Fig. 3: Jitter behaviour on the producer migration access points, using (left) AMQP and (right) MQTT protocol

(a) (b)

Fig. 5: Evolution of maximum jitter as a function of (a) message size, and (b) inter-message period

Typically a user application sends a few messages per sec-
ond, with average load below 5 Mbps, which is well managed
both by message protocols and the network. Performing this
exhaustive delimitation of the workloads, in Figure 6 we show
an approximation of the capacity of the system in terms of
message size and number of messages produced per second.

The system is saturated, for loads above 20 Mbps, which
is near to the bandwidth that we have obtained with the iperf
tool for the TCP test in each case. If the load exceeds this
limit value a certain proportion of all produced messages will
not arrive to consumers.

Indeed, we note that the payload limit of a message in the
MQTT protocol is greater than for AMQP. We consider that
is mainly caused by the difference between the frame header:

AMQP has a fixed size header of 8 Bytes while MQTT has
only a 2 Byte header.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we presented an experimental analysis of
the behaviour of two of the most relevant application level
protocols based on Message-Oriented Middleware standard
(AMQP and MQTT), focussed on the impact on the infor-
mation exchange while a node is moving between different
access points within the same domain in order to provide a
characterization of the publish-and-subscribe models to sce-
narios where the collaborative use of the information collected
by individual nodes will improve any situation of our day to
day life, like in applications of physiological monitoring, inter-
vehicular safety, remote sensing of environmental conditions,



Fig. 6: Maximum message size before message losses start to
appear increasing the inter message production period.

and transportation planning, analysis and monitoring.

With a simple workload model of one producer/publisher
and one consumer/subscriber with several access points con-
forming a same Service Set, we have evaluated scenarios where
the producer/publisher suffers a handover process measuring
the effect in the variability of the jitter and the information
loss, Indeed we have observed that both approaches of these
protocols seem to perform very similarly with the mean jitter
values that tend to oscillate between 1 and 4.5 seconds.

We have demonstrated that there is no information loss
during the hand-off period and after the node recover its
connection with the message-broker using the same IP address.
We can say that the messaging system of these protocols is
reliable and robust. The message losses are present only when
load is higher than its system buffer capacity in the producer
side.

We have found that after the attachment point, during
message bursts the delivery with AMQP protocol follows a
LIFO (last-input first-output) order, which results in messages
consumed in inverted order. But this is not done MQTT
protocol, with MQTT the delivery is always in order.

In order to select the right protocol to build systems and
applications with mobile communications over node mobility
scenarios, both of these protocols can be used. The applica-
tion/system architect’s decision to choose one of them, will
be determined according to different criteria, such as security
and energy efficiency. AMQP offers more aspects related to
security [16], and MQTT is more energy efficient [6].

We recommend the use of AMQP protocol to build reliable,

scalable, and advanced clustering messaging infrastructures
over an ideal WLAN, and the use of MQTT protocol to support
connections with edge nodes (simple sensors/actuators) under
constrained environments (low-speed wireless access).

As future work, we plan develop techniques and strategies
to reduce the problems arising from mobility, multi-homing
and temporary disconnection of the nodes in IoT applications.
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