
 

Document downloaded from: 

 

This paper must be cited as:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The final publication is available at 

 

 

Copyright 

 

Additional Information 

 

http://dx.doi.org/10.1016/j.dsp.2015.05.003

http://hdl.handle.net/10251/66257

Elsevier

Lorente Giner, J.; Ferrer Contreras, M.; Diego Antón, MD.; Gonzalez, A. (2015). The
frequency partitioned block modified filtered-x NLMS with orthogonal correction factors for
multichannel Active Noise Control. Digital Signal Processing. 43:47-58.
doi:10.1016/j.dsp.2015.05.003.



Digital Signal Processing 00 (2015) 1–24

Digital

Signal Pro-

cessing

The Frequency Partitioned Block Modified Filtered-X NLMS with
Orthogonal Correction Factors for Multichannel Active Noise

Control

Jorge Lorente∗, Miguel Ferrer, Maria de Diego, Alberto Gonzalez

Instituto de Telecomunicaciones y Aplicaciones Multimedia (iTEAM), Universitat Politècnica de València , Camino de Vera s/n Edificio 8G,

Valencia 46022, Spain

Abstract

The Normalized Least Mean Square (NLMS) algorithm with a filtered-x structure (FxNLMS) is a widely used adaptive algorithm
for Active Noise Control (ANC) due to its simplicity and ease of implementation. One of the major drawbacks is its slow conver-
gence. A modified filtered-x structure (MFxNLMS) can be used to moderately improve the speed of convergence, but it does not
offer a huge improvement. A greater increase in the speed of convergence can be obtained by using the MFxNLMS algorithm with
orthogonal correction factors (M-OCF), but the usage of orthogonal correction factors also increases the computational complexity
and limits the usage of the M-OCF in massive real-time applications. However, Graphics Processing Units (GPUs) are well known
for their potential for highly parallel data processing. Therefore, GPUs seem to be a suitable platform to ameliorate this compu-
tational drawback. In this paper, we propose to derive the M-OCF algorithm to a partitioned block-based version in the frequency
domain (FPM-OCF) for multichannel ANC systems in order to better exploit the parallel capabilities of the GPUs. The results
show improvements in the convergence rate of the FPM-OCF algorithm in comparison to other NLMS-type algorithms and the
usefulness of GPU devices for developing versatile, scalable, and low-cost multichannel ANC systems.

c⃝ 2013 Published by Elsevier Ltd.

Keywords: Active Noise Control, Adaptive Filters, Graphics Processing Unit, Normalized Least Mean Square with Orthogonal
Correction Factors

1. Introduction

Active Noise Control (ANC) [1, 2, 3] is a field that combines digital signal processing techniques with traditional

acoustics. ANC systems are based on the principle of destructive interference between a disturbance sound field called

primary noise and a secondary sound field generated by controlled secondary sources called actuators. The target is to

cancel, or at least minimize, the primary noise signal. To cancel the primary noise, the ANC system commonly uses

∗Corresponding author. Tel: 34-96-3877007, ext. 73008
Email address: jorlogi@iteam.upv.es (Jorge Lorente)

1



J. Lorente et al. / Digital Signal Processing 00 (2015) 1–24 2

adaptive algorithms [4] to generate the secondary sound field from a reference signal that is correlated with the primary

noise. For this purpose, the noise or undesired signal is monitored at a specific spatial point by a sensor that is called

error sensor. Therefore, cancellation is only carried out at that specific spatial point and also at close points around the

error sensor (approximately λ/10, where λ is the wavelength of the highest frequency of the undesired noise). ANC

systems can be extended to multichannel ANC systems by overlapping different controlled areas and setting multiple

secondary sources [5]. These multichannel systems require a high computational capacity. An even greater capacity

is required when massive control systems are considered (a high number of channels, with one channel being defined

for each error sensor - secondary source pair), and, in practice, the computational cost is one of the main bottlenecks

of multichannel ANC systems.

The filtered-x Normalized Least Mean Squares (FxNLMS) algorithm [6] and its multichannel version (see for ex-

ample [5]), are the most widely used adaptive filtering techniques applied to single or multiple channel adaptive noise

cancelers for ANC applications. This is due to its computational simplicity and ease of implementation. However,

one of the major drawbacks of the FxNLMS algorithm is the speed of convergence. The Affine Projection Algorithm

(APA)[7], which was developed to address this problem, uses affine subspace projections to speed the convergence

of the LMS-type algorithms. From [7], some variants of the APA algorithm have been proposed for different au-

thors, such as the Regularized APA (R-APA)[8], the Partial Rank Algorithm (PRA)[9], the Decorrelating Algorithm

(DA)[10] or the NLMS with orthogonal Correction Factors (NLMS-OCF)[11][12]. The basic idea of these algorithms,

which are commonly reffered to in the literature as the APA family [13], is to update the weights on the basis of mul-

tiple input signal vectors. This is in contrast to the FxNLMS which uses a single input signal vector to update the

coefficient weights. In the existing literature, the algorithms of the APA family have traditionally been implemented

in the time domain for single-channel system identification or echo cancellation problems. In this paper, we will focus

on the NLMS-OCF algorithm because we find its practical implementation easier than the APA implementation, and,

as considered in [12], the NLMS-OCF algorithm, which is a generalization of the APA, allows other than unit delay

between input vectors. Here, we use the NLMS-OCF algorithm for a multichannel ANC system, but the unavailability

of the undesired signal in the ANC system justifies the use of the modified filtered-x scheme. Therefore, the modified

filtered-x NLMS-OCF (M-OCF) 1 algorithm is derived from the NLMS-OCF algorithm and is used in a multichannel

ANC system. Since the M-OCF uses multiple input vector signals to update the weights, the algorithm is highly

demanding from a computational point of view, particularly in multichannel scenarios. This computational drawback

limits its implementation in multichannel real-time systems.

Ideally, it would be desirable to have a computationally-simple adaptive algorithm for an ANC system with high

performance in terms of convergence rate or disturbance attenuation that can be easily implemented on a hardware de-

vice. However, in practice, these characteristics are incompatible in most cases and some kind of trade-off between the

1For the sake of simplicity, we will refer throughout paper to the filtered-x NLMS-OCF algorithm as the OCF algorithm and to the modified

filtered-x NLMS-OCF algorithm as the M-OCF algorithm.

2



J. Lorente et al. / Digital Signal Processing 00 (2015) 1–24 3

algorithm performance and the computational cost is needed. Graphics Processing Units (GPUs) are highly parallel

programmable co-processors that provide massive computation when the needed operations are properly parallelized.

In the last few years, GPUs have been being employed in most of the engineering fields that require intensive compu-

tation, and audio signal processing is not an exception. For example, a general overview of audio signal processing

on the GPU is given in [14] and [15]. Moreover, there are many recent contributions that leverage GPUs to accelerate

acoustic simulations or real-time applications such as: room acoustics [16], acoustics likelihood computation [17],

room impulse response reshaping [18], sound localization [19] or wave-field synthesis [20]. There are also GPU

contributions in adaptive filtering like: echo cancellation [21] and noise cancellation [22], [23]. Hence, GPUs seem to

be a suitable option for multichannel ANC applications where the processing of each channel could be parallelized.

Therefore, in contrast to traditional implementations that are based on conventional hardware devices such as Digital

Signal Processors (DSPs) [24] and dedicated hardware, this paper presents a scalable multichannel ANC prototype

over a GPU platform. For this purpose, the M-OCF has been adjusted to meet the hardware requirements, and, there-

fore, a frequency-domain partitioned block-based M-OCF algorithm has been proposed. Throughout the paper, it will

be called the Frequency Partitioned Block Modified Filtered-X Normalized Least Mean Square algorithm with Or-

thogonal Correction Factors (FPM-OCF). As we mentioned above, the use of the NLMS-OCF algorithms instead of

the APA was motivated in part by the ease of implementation since it can easily be changed to the frequency domain

while the implementation of APA in the frequency domain (which is required in most of the practical implementations

using non dedicated hardware), is not straightforward. The FPM-OCF algorithm is motivated by the following rea-

sons: the frequency domain allows a fast implementation; the parallel resources of a GPU are better exploited working

with blocks of data than by working sample-by-sample, and most of the common audio cards work with block-data

buffers. Also, since the adaptive filters could be larger than the block size, the adaptive filters are partitioned [25, 26],

and, therefore, the delay is reduced and the parallelization is improved by performing the adaptation of each partition

of the filters at the same time.

The main motivation of this work is twofold: on the one hand, to find an algorithm that improves the convergence

rate of the NLMS-type algorithms, and on the other, to obtain an efficient version of that algorithm to reduce the

computational requirements. For these reasons, we have considered the NLMS-OCF algorithm, in which both the

convergence rate and the computational complexity depend on the number of correction factors (R). Therefore, this

leads to an adjustable and configurable algorithm with regard to the complexity and the convergence rate. Accordingly,

the main contributions of this paper can be summarized in the following points: first, we present the NLMS-OCF

algorithm with a modified filtered-x structure embedded (M-OCF) in order to make it suitable for multichannel ANC

systems. Second, the M-OCF has been adjusted to its frequency partitioned block-based version (FPM-OCF) in order

to meet the hardware requirements of a real-time implementation. Finally, a parallel implementation using a GPU

hardware platform is presented to increase the applicability and versatility of the multichannel system.

This paper is organized as follows: section 2 presents the FPM-OCF algorithm derived from the NLMS-OCF. The

ANC prototype is described in section 3 and the GPU implementation is explained in section 4. Finally, sections 5
3



J. Lorente et al. / Digital Signal Processing 00 (2015) 1–24 4

Table 1. Notation for the multichannel ANC algorithms considered

I Number of reference signals (reference sensors) J Number of secondary sources (actuators)

K Number of error signals (error sensors) B Block size

L Length of the adaptive filters F L/B, number of partitions of the adaptive filters

M Length of the FIR filters that model the estimated

secondary paths

P M/B, number of partitions of the estimated sec-

ondary paths

R Number of successive input vectors used in the

weight update of the NLMS-OCF algorithm

D Number of iterations between the successive input

vectors used in the weight update of the NLMS-

OCF algorithm

x[i](q) ith reference signal at sample q x[i]Bn [x[i](Bn) x[i](Bn − 1) . . . x[i](Bn − B + 1)]T

y[ j](q) jth actuator signal at sample q y[ j]Bn [y[ j](Bn) y[ j](Bn − 1) . . . y[ j](Bn − B + 1)]T

e[k](q) kth microphone signal at sample q e[k]Bn [e[k](Bn) e[k](Bn − 1) . . . e[k](Bn − B + 1)]T

s[ jk] M-length estimation of the secondary path that links the jth secondary source with the kth error sensor

Sp
[ jk] FFT of size 2B of the pth partition of the acoustic path s[ jk]

w[i j]q Coefficients of the adaptive filter of length L that links the ith reference signal with the jth secondary

source at sample q

W f
[i j]n FFT of size 2B of the f th partition of the coeffitients of the adaptive filter that links the ith reference signal

with the jth secondary source at the nth block iteration

and 6 respectively present the experimental results and conclusions.

The notation used throughout this paper is the following: boldface symbols are used for vectors, lowercase letters

are used for time domain signals, and uppercase letters are used for frequency domain signals; ∥ · ∥2 denotes the

2-norm, (·)∗ denotes the complex conjugate, and ◦ denotes the element-wise product of two vectors.

2. Description of the algorithms

This section focuses on describing the M-OCF algorithm for a multichannel ANC system that is derived from the

NLMS-OCF algorithm introduced in [11] for a system identification application. In [11], the NLMS-OCF algorithm

is derived from the NLMS algorithm. The NLMS algorithm adapts the filter weights so that the error signal e(q) is

minimized in the mean-square sense. When both the input x(q) and desired output d(q) signals are stationary, the

algorithm converges to a filter weights which, on average, are equal to the Wiener-Hopf solution. In other words,

the NLMS is an iterative algorithm to implement Wiener filters, without explicitly solve the Wiener-Hopf equation.

Finally, the NLMS algorithm is a stochastic implementation of the steepest-descent algorithm, and the adaptation of

the filters is done replacing the cost function ξ = E[e2(q)] by its instantaneous error [27].

4



J. Lorente et al. / Digital Signal Processing 00 (2015) 1–24 5

Reference 

signals  x
Secondary 

Paths 

Estimated

Secondary 

Paths (Sjk)

Adaptive !lter 

copy (Wij)

Adaptive 

!lter (Wij)

Estimated

Secondary 

Paths (Sjk)

adaptive

algorithm

 

K

K
K

K

K

K

Error sensor

signals

IJK

I

J

Undesired 

signals  d

d

e

y

v

Figure 1. Scheme of the multichannel ANC system.

On the other hand, the NLMS-OCF algorithm solves a constrained minimization problem. As the NLMS-OCF

algorithm uses R input vectors for the filter weights update, it iteratively solves the constrained minimization problem

until each of the R a posteriori error is forced to zero. In summary, it finds the filter weights wr
q such that ∥wr

q −wq∥ is

minimized subject to dq−r − xT
q−rwr

q = 0 for r = 0, 1, ...,R (see appendix of [12]).

In a system identification application, where the NLMS-OCF was introduced, the error signal is the error in

estimating the so-called desired signal that is picked up by the microphones. In contrast, in an ANC system, the

microphones pick up a mixture of the disturbance or undesired signals and the signals that are used to cancel the

noises. Therefore, since the desired signals are not available and they are needed to calculate the error signals [28],

we have to use a modified filtering scheme to estimate them. Finally, the FPM-OCF algorithm has been derived from

the M-OCF algorithm in order to adjust the algorithm to meet the hardware requirements and to seek the best parallel

implementation.

For this purpose, a generic multichannel ANC system with I reference signals, J secondary sources, and K error

sensors (I:J:K) has been considered. Moreover, we define L as the length of the adaptive filters and M as the length

of the FIR filters that model the estimated secondary paths. The notation in Table 1 will be used to describe the

algorithms. For the estimation of the secondary path, we have used an off-line modeling which is obtained by using

FIR filters and considering perfect estimation.

2.1. The Modified Filtered-x NLMS algorithm (MFxNLMS)

There are two filtered-x schemes that have been traditionally used in the ANC systems, the conventional filtered-

x scheme (which is the most widely used), and the modified filtered-x scheme. The modified filtered-x scheme is

computationally more expensive, but it provides faster convergence. However, the reason for our use of the modified

filtered-x scheme is not based on the performance or the computational load. As mentioned in the introduction, the

use of the modified filtering scheme is mainly based on the need to estimate the undesired signals. The block diagram

of a multichannel ANC system based on the MFxNLMS [29] algorithm is depicted in Fig. 1. The following steps

constitute the multichannel version of the MFxNLMS algorithm:

5



J. Lorente et al. / Digital Signal Processing 00 (2015) 1–24 6

1. Calculation of the output signals.

The jth output signal at the qth instant is calculated as

y[ j](q) =
I∑

i=1

wT
[i j]qx[i]Lq, (1)

where x[i]Lq = [x[i](q) x[i](q − 1) x[i](q − 2) . . . x[i](q − L + 1)]T is the ith input signal vector with the last

L samples from sample q.

2. Calculation of the estimated undesired signals:

d̂[k](q) = e[k](q) − y f[k](q), (2)

where e[k](q) is the qth sample of the kth microphone signal, and sample y f[k](q) is defined as

y f[k](q) =
J∑

j=1

sT
[ jk]y[ j]Mq, (3)

where y[ j]Mq = [y[ j](q) y[ j](q − 1) y[ j](q − 2) . . . y[ j](q − M + 1)]T is the jth output signal vector with the

last M samples from sample q.

3. Filter updates:

w[i j]q+1 = w[i j]q −
K∑

k=1

µ̂[i jk]v[i jk]Lq, (4)

where the step-size µ̂[i jk] is calculated as

µ̂[i jk] = µ
ê[k](q)
∥v[i jk]Lq∥2

, (5)

with µ being the step size parameter and ê[k](q) being the error signal when estimating the qth sample of the kth

undesired signal, d̂[k](q), given by

ê[k](q) = d̂[k](q) +
I∑

i=1

J∑
j=1

wT
[i j]qv[i jk]Lq, (6)

where v[i jk]Lq = [v[i jk](q) v[i jk](q − 1) v[i jk](q − 2) . . . v[i jk](q − L + 1)]T is a vector with the last L samples

of the ith input signal filtered through the jkth secondary path, which is calculated as

v[i jk](q) = sT
[ jk]x[i]Mq, (7)

where x[i]Mq = [x[i](q) x[i](q − 1) x[i](q − 2) . . . x[i](q − M + 1)]T .

6



J. Lorente et al. / Digital Signal Processing 00 (2015) 1–24 7

2.2. The Modified Filtered-x NLMS algorithm with Orthogonal Correction Factors (M-OCF)

The NMLS-OCF was introduced in [11] for a system identification mode. This algorithm updates the weights on

the basis of R multiple input vectors, while the NLMS algorithm updates the adaptive filter weights on the basis of

a single vector. The parameter D is defined as the number of iterations between the successive input vectors used in

the weight update. The best improvement in convergence rate occurs if the successive input vectors (corrections) are

orthogonal. When the successive input vectors are not orthogonal, the authors in [11] proposed generating orthogonal

directions and moving along those directions.

Here we introduce the M-OCF for an ANC system derived from the MFxNLMS similarly to the way the NLMS-

OCF is derived from the NLMS in [11] in a system identification application. The equations for calculating the output

signals and the estimated undesired signals are the same as in the MFxNLMS algorithm. However, the weight update

equation in (4) is modified as [12]

w[i j]q+1 = w[i j]q −
K∑

k=1

µ̂0
[i jk]v

0
[i jk]Lq −

K∑
k=1

µ̂1
[i jk]v

1
[i jk]Lq − . . . −

K∑
k=1

µ̂R
[i jk]v

R
[i jk]Lq = w[i j]q −

R∑
r=0

K∑
k=1

µ̂r
[i jk]v

r
[i jk]Lq, (8)

where R is the number of input vectors that are used in the tap weight adaptation, and v0
[i jk]Lq, v1

[i jk]Lq,. . ., vR
[i jk]Lq are

orthogonal to each other. As before, v0
[i jk]Lq is the filtered input vector at the qth instant, and µ̂0

[i jk] is chosen as in the

FxNLMS

µ̂0
[i jk] = µ

ê[k](q)
∥v0

[i jk]Lq∥2
. (9)

Let us define the vector vr
[i jk]Lq, which is obtained from v[i jk]Lq−rD but constrained to be orthogonal to v[i jk]Lq,

v[i jk]Lq−D, v[i jk]Lq−2D, . . ., v[i jk]Lq−(r−1)D, where D is the distance between the input vectors. It can be calculated using

the Gram-Schmidt procedure [30]. The corresponding step-size µ̂r
[i jk] is calculated as

µ̂r
[i jk] =


µ

êr
[k](q)

∥vr
[i jk]Lq∥2

, if ∥vr
[i jk]Lq∥2 , 0

0, otherwise

(10)

where

êr
[k](q) = d̂[k](q−rD) +

I∑
i=1

J∑
j=1

wr
[i j]q+1

T v[i jk]Lq−rD, (11)

and

wr
[i j]q+1 = w[i j]q −

K∑
k=1

µ̂0
[i jk]v

0
[i jk]Lq −

K∑
k=1

µ̂1
[i jk]v

1
[i jk]Lq − . . . −

K∑
k=1

µ̂r−1
[i jk]v

r−1
[i jk]Lq. (12)

The R parameter must be chosen depending on the computational resources available, but when R increases, the

convergence is faster. However, there exists a value of R where the convergence rate saturates. With regard to D,

larger values of D provide better performance, especially for low values of R. This might be explained by the fact that

7



J. Lorente et al. / Digital Signal Processing 00 (2015) 1–24 8

when D increases, the successive input signals used in the weight update are less correlated. Table 2 summarizes the

M-OCF algorithm.

2.3. The Frequency-domain Partitioned Block Modified Filtered-x NLMS with Orthogonal Correction Factors algo-

rithm (FPM-OCF)

Finally, the FPM-OCF algorithm has been derived from the M-OCF algorithm. In this algorithm, samples are

processed by blocks of size B. L is the length of the adaptive filters, and M is the length of the FIR filters that model

the estimated secondary paths. If L and M are higher than B, we have to split up both the adaptive filter length and the

estimated secondary path length into F and P partitions, respectively [4]. Thus, the algorithm works simultaneously

with all the partitions of size B. Furthermore, the sub-index n and the super-indexes f and p of the following notation

denote block iteration and the number of each partition, respectively.

According to the notation, the following steps describe the FPM-OCF algorithm:

1. Calculation of the output signals,

Y[ j]n =

I∑
i=1

F∑
f=1

W f
[i j]n ◦ X[i]n− f+1, (13)

where X[i]n = FFT{[x[i]B(n−1) x[i]Bn]}, W f
[i j]n is the FFT of size 2B of the f th partition of the coefficients of the

adaptive filter w[i j] at the nth block iteration. The output signals y[ j]Bn are the last B samples of IFFT{Y[ j]n}.

2. Calculation of the estimated undesired signals,

D̂[k]n = E[k]n − YF[k]n, (14)

where vector E[k]n is the kth microphone signal in the frequency domain, E[k]n = FFT{[0B e[k]Bn]}, and vector

YF[k]n is defined as

YF[k]n =

J∑
j=1

P∑
p=1

Y[ j]n−p+1 ◦ Sp
[ jk]. (15)

3. Filter updates.

The update of the coefficients of each partition of the ijth adaptive filter is calculated in the frequency domain

taking into account the R input vectors and is given by

W[i j]n+1
f =W[i j]n

f −
K∑

k=1

FFT{[ϕ f
[i jk]0 0B]} −

K∑
k=1

FFT{[ϕ f
[i jk]1 0B]} − . . . −

K∑
k=1

FFT{[ϕ f
[i jk]R 0B]}, (16)

where R is the number of input vectors that are used in the tap weight adaptation. These R input vectors are the

input signals that are filtered through the corresponding secondary path, V[i jk]n of the last R ·D iterations, where

D is the distance in iterations between the input vectors. Vector V[i jk]n is defined as

8



J. Lorente et al. / Digital Signal Processing 00 (2015) 1–24 9

V[i jk]n =

P∑
p=1

Sp
[ jk] ◦ X[i]n−p+1. (17)

Generalizing for an input vector r, the vector ϕ f
[i jk]r corresponds to the first B samples of the 2B-IFFT of the

corresponding partition µ̃ f
[i jk]r

[ϕ f
[i jk]r ϕ̄

f
[i jk]r] = IFFT{µ̃ f

[i jk]r}, (18)

f = 1, 2, . . . , F, and r = 1, 2, . . . ,R.

Let us define the vector Vr
[i jk]n− f+1 which is obtained from V[i jk]n− f+1−(rF)D but constrained to be orthogonal to

V[i jk]n− f+1,V[i jk]n− f+1−(F)D, V[i jk]n− f+1−(2F)D, . . . ,V[i jk]n− f+1−((r−1)F)D, where D is the distance between the input

vectors. The corresponding step-size vector µ̃ f
[i jk]r is calculated as

µ̃ f
[i jk]r =


µ

Êr
[k]n ◦ (Vr

[i jk]n− f+1)∗

∥Vr
[i jk]n− f+1∥2

, if ∥Vr
[i jk]n− f+1∥2 , 0

02B, otherwise.

(19)

The estimated error signals Êr
[k]n are calculated as

Êr
[k]n = D̂[k]n−(r)D +

I∑
i=1

J∑
j=1

F∑
f=1

V[i jk]n− f+1−(rF)D ◦Wr
[i j]n

f . (20)

With regard to the R and D parameters, since this algorithm works by blocks of samples, even when D = 1, the

successive input signals used in the weight update are separated by at least B samples. Moreover, when the reference

signal x[i] is a white random noise, each block of samples x[i]Bn is orthogonal to the previous ones. This means that

V[i jk]n− f+1−rF is orthogonal to V[i jk]n− f+1,V[i jk]n− f+1−F ,V[i jk]n− f+1−2F . . . ,V[i jk]n− f+1−(r−1)F , and, therefore, the orthog-

onalization procedure is already done by the nature of the input signal, so we can take Vr
[i jk]n− f+1 = V[i jk]n− f+1−rF .

This fact makes the NLMS-OCF algorithm especially suited to cancel broadband white noise signals, and for this

reason, it will be the case studied in the results section.

Note that the FPM-OCF algorithm in the particular case when R = 0 and D = 1 is similar to the one introduced

in [31] named FPBMFxLMS, but adding a power normalization in the weight update. In this paper we will refer

to the FPM-OCF algorithm with no orthogonal correction factors (R = 0) as the FPM algorithm. A summary of

the algorithm instructions executed at each iteration is given in Table 2 for the M-OCF algorithm and the FPM-OCF

algorithm.

3. Prototype description

The multichannel ANC prototype is depicted in Fig. 2. With regard to the computing platform, the algorithm has

been implemented in two ways: using a CPU with a sequential execution and using a GPU with a parallel execution.
9



J. Lorente et al. / Digital Signal Processing 00 (2015) 1–24 10

Table 2. Summary of the M-OCF and the FPM-OCF algorithms.

M-OCF algorithm FPM-OCF algorithm

Choose an arbitrary w[i j]0 and the number of Orthogonal

Correction Factors R < L. Repeat the following steps at

each new iteration.

(1) y[ j](q) =
I∑

i=1
wT

[i j]qx[i]Lq,

y[ j]Mq = [y[ j](q) y[ j](q − 1) . . . y[ j](q − M + 1)]T

(2) d̂[k](q) = e[k](q) −
J∑

j=1
sT

[ jk]y[ j]Mq

(3) v[i jk](q) = sT
[ jk]x[i]Mq,

v[i jk]Lq = [v[i jk](q) v[i jk](q−1) . . . v[i jk](q−L+1)]T

(4) ê[k](q) = d̂[k](q) +
I∑

i=1

J∑
j=1

wT
[i j]qv[i jk]Lq

(5) µ̂[i jk] = µ
ê[k](q)
∥v[i jk]Lq∥2

(6) w1
[i j]q+1 = w[i j]q −

K∑
k=1
µ̂[i jk]v[i jk]Lq

For all 1 ≤ r ≤ R, do

(7) Compute vr
[i jk]Lq as the vector obtained from

v[i jk]Lq−rD that is orthogonal to v[i jk]Lq, v[i jk]Lq−D,

v[i jk]Lq−2D, . . ., v[i jk]Lq−(r−1)D using the Gram-Schmidt

procedure [30].

(8) êr
[k](q) = d̂[k](q−rD) +

I∑
i=1

J∑
j=1

wr
[i j]q+1

T v[i jk]Lq−rD

(9) µ̂r
[i jk] =


µ

êr
[k](q)

∥vr
[i jk]Lq∥2

, if ∥vr
[i jk]Lq∥2 , 0

0, otherwise

(10) wr+1
[i j]q+1 = wr

[i j]q+1 −
K∑

k=1
µ̂r

[i jk]v
r
[i jk]Lq

end for

(11) w[i j]q+1 = wR
[i j]q+1

Choose an arbitrary W[i j]0 and the number of Orthogonal

Correction Factors R < L. Repeat the following steps at

each new iteration.

(1) Y[ j]n =
I∑

i=1

F∑
f=1

W[i j]n
f ◦ X[i]n− f+1

(2) D̂[k]n = E[k]n − YF[k]n

(3) YF[k]n =
J∑

j=1

P∑
p=1

Y[ j]n−p+1 ◦ Sp
[ jk]

(4) V[i jk]n =
P∑

p=1
Sp

[ jk] ◦ X[i]n−p+1

(5) Ê[k]n = D̂[k]n +
I∑

i=1

J∑
j=1

F∑
f=1

V[i jk]n− f+1 ◦W[i j]n
f

(6) µ̃ f
[i jk] = µ

Ê[k]n◦(V[i jk]n− f+1)∗

∥V[i jk]n− f+1∥2

(7) [ϕ f
[i jk] ϕ̄

f
[i jk]] = IFFT{µ̃ f

[i jk]},

f = n, n − 1, . . . , n − F + 1

(8) W1
[i j]n+1

f
=W[i j]n

f −
K∑

k=1
FFT{[ϕ f

[i jk] 0B]}

For all 1 ≤ r ≤ R, do

(10) Compute Vr
[i jk]n− f+1 as the vector obtained

from V[i jk]n− f+1−(rF)D that is orthogonal to

V[i jk]n− f+1, V[i jk]n− f+1−(F)D, V[i jk]n− f+1−(2F)D, . . .,

V[i jk]n− f+1−((r−1)F)D.

(11) Êr
[k]n = D̂[k]n−(r)D+

I∑
i=1

J∑
j=1

F∑
f=1

V[i jk]n− f+1−(rF)D ◦Wr
[i j]n

f

(12) µ̃ f
[i jk]r =


µ

Êr
[k]n ◦ (Vr

[i jk]n− f+1)∗

∥Vr
[i jk]n− f+1∥2

, if ∥Vr
[i jk]n− f+1∥2 , 0

02B, otherwise.

(13) [ϕ f
[i jk]r ϕ̄

f
[i jk]r] = IFFT{µ̃ f

[i jk]r},

(14) Wr+1
[i j]n+1

f
=Wr

[i j]n+1
f −

K∑
k=1

FFT{[ϕ f
[i jk]r 0B]}

end for

(15) W[i j]n+1
f =WR

[i j]n+1
f

10



J. Lorente et al. / Digital Signal Processing 00 (2015) 1–24 11

AUDIO 
CARD

CPU

GPU

.

.

.

s11(n)

3

2

11

s12(n)

s2K(n)

sJK(n)

s1K(n)

s13(n)

J

K

2

INPUT BUFFERS

OUTPUT 
BUFFERS

 noise  
source 1 noise 

source 2

noise
source I

. 
. 
.

CPU

COMPUTING PLATFORM

Figure 2. Scheme of the multichannel ANC system.

The CPU is an Intel Core i7 (3.07 GHz), and the GPU is a GeForce GTX 580 with Fermi architecture. The audio

card is a MOTU 24I/O. The MOTU audio card uses the ASIO (Audio Stream Input/Output) driver to communicate

with the CPU. The ASIO driver provides input/output buffers that are used to collect/send the current microphone

and loudspeaker signals. The input buffers are linked to the microphones and the output buffers are linked to the

loudspeakers.

The results will show that GPU parallelization is useful in multichannel scenarios. The operation of the GPU-

based prototype consists of the following three tasks steps are executed in each iteration:

1. Collect the K input-data buffers of size B from the sensors and transfer them through the PCI-Express bus to

the GPU.

2. Carry out the corresponding algorithm on the GPU.

3. Save the output audio samples in the J output-data buffers and send them back to the CPU to be reproduced by

the loudspeakers.

The sampling rate ( fs) and the block size (B) are two important parameters of the audio card. The block size

describes the number of transferred discrete-time samples per iteration and thereby determines the latency of the

algorithm. The latency is the time that is spent from when the input-data buffer is filled up until this data buffer is

processed and sent back to the output-data buffer. The time that is spent to fill up the input-data buffers is defined as

B/ fs, and we will refer to it throughout the paper as the buffering time (tbu f f ). The choice of the parameters B and fs

is critical for the performance of the system because there are two conditions that must be satisfied:

• The real-time condition. The application can work in real time if tproc < tbu f f , where tproc is the execution

delay measured from the moment the input-data buffer is sent to the GPU until the output-data buffer comes

back to the CPU. This includes transfer delays between the CPU and the GPU and the data processing delay of

the GPU.

11



J. Lorente et al. / Digital Signal Processing 00 (2015) 1–24 12

Block 

Concatenate

Get Last BLock

. . .

Sum

 partitions

. . 
.

Last Block input

Current input

Concatenate

partitions

. . 
.

I inputs

. . 
.

. . 
.

. . 
.

. . 
.

. . 
.

. . 
.

. . 
.

J output signals

J 

Sum

 contributions

. . 
.

J output signals

. .
 .

...

B

B yJn

Secondary sources

J 

partitioned 

!lters Wn

IJ 

IJ 

FFT IFFT

J 

Reference signals matrix generation in frequency domain

x1n

x2n

xIn

x1n-1

x2n-1 xIn-1

y2n

y1n

yjn

x1n-1

x1n

x
1
n
-1

x
1
n

x
1
n
-2

x
1
n
-1

(a) Block diagram of Step 1. Calculation of the output signals.

(c) Block diagram of Step 3. Filter updates.

(b) Block diagram of Step 2. Calculation of the estimated “undesired" signals.

IJK 

Sum

 partitions

. . 
.

. . 
.

. . 
.

. . 
.

. . 
.

. . 
.

. . 
.

K !ltered output signals

K 

Sum

 contributions

. . 
.

2B

K . . 
.

J output signals

J 

partitioned 

!lters Wn

IJ 

Sum

 partitions

Sum

 contributions

K 

. . .

Concatenate Partition

Estimated  error  signals

in frequency domain

IJK 

2B

2B2B

J 

JK K 

K 

K 

e1n

Concatenate

K 

MIcrophone 

inputs

Insert zeros

. .
 .

0B

ekn

2B

K 

e2n

eKn

FFT

Set Last Block to zeros

Sum

 contributions

IJ 

IJ µ Wn

+

-
FFT

FFTIJK 

K 

0B 0B

...

. . 
.

. . 
.

. . 
.

. . 
.

. . 
.

. . 
.

. . 
.

... ... ... ... ...

0B0B0B0B

Wn+1

Symbol Meaning

time domain

frequency domain

Kernel 5: element-wise 

multiplication

Nvidia library CUFFT

Kernel 3: sum contributions

Kernel 4: element-wise sum

Kernel 1: element-wise multiplication

kernel 2: sum all partitions

Repeat R times for r=0,1,...,R

Estimated  “undesired”  signals

in frequency domain   D
k

 

The ‘r’ input signals 

!ltered  through the 

estimated  secondary 

paths Vr

The ‘r’ estimated  

“undesired”  signals

in frequency domain D
k

IJK 

Reference signals 

matrix  in 

frequency domain

JK estimated  

paths  in frequency 

domain  Sjk

ijk

V
ijk

rr

r

If r==R

If r<R Wn
r+1

Figure 3. Block diagram of the GPU implementation of the FPBFxLMS and the FPBMFxLMS algorithms.

• The causality condition. The algorithm needs to satisfy the condition tbu f f + τs < τn in order to perform

properly [32]. τs is the maximum delay of the secondary paths that join the actuators with the error sensors, and

τn is the minimum delay of the paths that join the noise source with the error sensors. This condition guarantees

the causality of the system.

Causality is not a constraint when a sinusoidal excitation is considered because of the deterministic nature of the

signal; however, it is important in broadband noise control. In this paper, the multichannel ANC prototype is mounted

inside of a listening room where both real-time and causality conditions are fulfilled by choosing the correct distances

and parameters. The listening room and some impulse responses in time and frequency domain can be seen in [33].

If the location of the noise source and the environment where the noise has to be canceled do not offer the possibility
12



J. Lorente et al. / Digital Signal Processing 00 (2015) 1–24 13

to fulfill the causality conditions, the algorithm has to work with a lower block size, and, consequently, with a lower

tbu f f in order to satisfy the causality condition. The audio card offers different values of B between B = 16 and 2048.

In the experiments, we have used B = 2048. Moreover, the audio card offers three different sampling rates: 44.1, 44.8,

and 96 kHz. We have chosen fs = 44.1 kHz, which is the lowest rate, but it is a fairly high rate for the common sounds

involved in ANC systems. This value of sampling frequency offers us the possibility of controlling sounds up to 22.05

kHz, but at the same, as we have to satisfy the real time condition, it limits the processing time of the algorithm to a

few milliseconds.

It should be noted that the signal processing task is carried out by the GPU, while the CPU controls the data

transfer between the input/output buffers and the GPU.

4. GPU implementation

This section describes the main issues involved in the GPU implementation of the real-time multichannel ANC

prototype based on the FPM-OCF algorithm. The implementation is comprised of three steps that are depicted in

Fig. 3: the output signal generation, the estimation of the “undesired” signals, and the update of the adaptive filters.

These three steps are implemented as follows:

S1 Calculation of the output signals. This step aims to calculate the ANC output signals y[ j](t). The operations of

this step correspond to (13). The implementation and the CUDA kernels involved in it are shown in Fig. 3(a).

S2 Calculation of the estimated “undesired” signals. This step calculates an estimate of the undesired signals. The

corresponding description is shown in (14) and (15). The implementation and the CUDA kernels involved in it

are shown in Fig. 3(b).

S3 Filter updates. The update of the adaptive filter coefficients involve the implementation of (16)-(20). The details

regarding the different steps and kernels are illustrated in Fig. 3(c).

Since when R = 0, the FPM-OCF algorithm becomes the FPM algorithm (which is the algorithm presented in

[31] with a power normalization), the CUDA Kernels used in this implementation are equivalent to the ones used in

[31] but with different input vectors. Therefore, details of the implementation of the Kernels depicted in Fig. 3 can be

found in [31].

5. Results

Several experiments were performed to validate the ANC system based on the FPM-OCF algorithm. The experi-

ments were carried out using the prototype described in section 3. Different I:J:K configurations of the ANC system

were considered with one reference signal (I = 1).

13



J. Lorente et al. / Digital Signal Processing 00 (2015) 1–24 14

0 5 10 15 22,05

−100

−90

−80

−70

−60

−50

−40

−30

Frequency (KHz)

d
B

 

 

(a)

0 5 10 15 22,05

−100

−90

−80

−70

−60

−50

−40

−30

Frequency  (KHz)

d
B

 

 

(b)

Figure 4. Power spectral density of the average of the signals measured at both error sensors before (solid line) and after (dashed line) the ANC

system operation by using the FPM-OCF algorithm in two cases: (a) R = 0 (FPM algorithm), and (b) R = 4.

The ANC system has been evaluated from different points of view. First, section 5.1 is devoted to validating the

ANC performance. For this purpose, the attenuation levels achieved by the ANC system have been obtained from the

noise levels measured at the error sensors. Section 5.2 shows an experimental analysis of the convergence speed of

the FPM-OCF algorithm varying the value of R. It is important to note that for the case when R = 0, the FPM-OCF

algorithm becomes the FPM algorithm. Moreover, the computational complexity of the GPU implementation of the

algorithm for different R values is also analyzed in section 5.3. Finally, section 5.4 presents the computing results of

the GPU implementation of the FPM-OCF algorithm.

With regard to the computing results, a previous analysis of the distribution of threads in a block and blocks in a

grid is necessary for each specific case in order to achieve good performance [23]. This previous analysis consists of

testing the processing delay of the algorithm by changing both the dimensions of the blocks of threads and the grid of

blocks to find the fastest configuration for each different case.

5.1. Residual Noise levels

A multichannel ANC system with dimensions I = 1, J = 2 and K = 2 (1:2:2 configuration) has been considered

in this experiment. The following parameters were chosen: B = 2048, L = M = 4096, R = 0, and R = 4, with

broadband white random noise as reference signal.

Fig. 4 shows the power spectral density of the average signals measured at both error sensors by using the proposed

algorithm when R = 0 (FPM algorithm) and R = 4. The noise reductions showed in Fig. 4 are obtained at the specific

points where the error sensors are placed. A similar noise reduction performance is achieved in both cases. It can be

easily observed that a reduction of around 25-30 dB can be achieved up to about 20 kHz. We can conclude that the

noise reduction in the steady state does not depend on the R value.

14



J. Lorente et al. / Digital Signal Processing 00 (2015) 1–24 15

0 5 10 15 20 25 30 35 40
−30

−25

−20

−15

−10

−5

0

Time (s)

d
B

 

 

R=0 R=1 R=2 R=4

R=8 R=12 R=16

Figure 5. The learning curves of the FPM-OCF algorithm for different values of R and using white noise as the reference signal.

5.2. Convergence performance

The convergence performance of the NLMS-OCF has been theoretically analyzed for system identification con-

figuration in [12]. The theoretical analysis is also validated with simulation results. Specifically, in [12], it has been

shown how the NLMS-OCF algorithm outperforms the NLMS algorithm in terms of convergence speed. Moreover,

the benefits in terms of convergence speed of the NLMS-OCF algorithm have been also shown when compared with

the APA family algorithms in [34]. In this paper, the convergence performance of the FPM-OCF algorithm is evalu-

ated for an ANC application when varying the value of R. As it has been said, when R = 0, the FPM-OCF algorithm

becomes the FPM algorithm. The FPM solves a mean square problem using a gradient descent algorithm while the

FPM-OCF solves a constrained minimization problem. To reach the solution, both algorithms use an iterative pro-

cedure. However, the FPM-OCF algorithm uses R input vectors instead of only one. For this reason, the FPM-OCF

algorithm converges faster than the FPM, but exhibits a higher computational cost. In order to evaluate the algorithm

performance, the learning curves were obtained for the experiments as:

A[n] = 10 log10

(
Pe[n]
Pd[n]

)
, (21)

with

Pd[n] = αPd[n − 1] + (1 − α)pd[n],

Pe[n] = αPe[n − 1] + (1 − α)pe[n], (22)

and

pd[n] =
K∑

k=1

d2
[k][n],

pe[n] =
K∑

k=1

e2
[k][n]. (23)

15



J. Lorente et al. / Digital Signal Processing 00 (2015) 1–24 16

Table 3. Processing time and total number of multiplications, additions and FFTs per iteration of the GPU implementation of the FPBMFxLMS-

OCF algorithm for different ANC configurations and varying the value of R when L = M.

I:J:K configuration

1:1:1 1:2:2 1:4:4

R=0 R=4 R=16 R=0 R=4 R=16 R=0 R=4 R=16

Multiplications 13L 33L 93L 44L 112L 316L 160L 420L 1200L

Additions 10.5L 34.5L 106.5L 37L 125L 389L 140L 476L 1484L

FFTs 5 13 37 9 25 73 17 49 145

Time (ms) 0.73 1.91 5.46 1.16 3.22 9.29 2.25 6.64 19.46

M0/MN 1 2.5 7.2 1 2.5 7.2 1 2.5 7.5

A0/AN 1 3.3 10.1 1 3.4 10.5 1 3.4 10.6

FFT0/FFTN 1 2.6 7.4 1 2.8 8.1 1 2.9 8.5

t0/tN 1 2.6 7.5 1 2.8 8.0 1 2.9 8.6

with K being the number of error sensors.

Fig. 5 illustrates the simulations results with the configuration used in subsection 5.1. In this figure it is shown that

when the value of R grows, the FPM-OCF provides a faster convergence rate. However, there is a value of R where

the increase in the speed of convergence saturates. Specifically, the fastest convergence rate is obtained when 12

input vectors are used to update the weights (R=12), and, consequently, a higher value of R does not result in a faster

convergence rate. On the other hand, the learning curves show a similar steady-state behavior, which confirms the

results of the subsection 5.1. Focusing on the transitory, the algorithm reaches 20 dB of attenuation in approximately

2 seconds when R = 12, while the algorithm takes around 17 seconds when R = 0, which means that the convergence

speed is accelerated 8.5 times. Another important aspect is that a good convergence performance is obtained even

with low R values. For example, when the value of R is increased from R = 0 to R = 1, the convergence time is more

or less halved.

5.3. Computational complexity

The results of the subsection 5.2 demonstrate that the FPM-OCF algorithm outperforms the convergence rate of

the FPM when R > 0. This section is devoted to analyzing the major drawback of the algorithm: its computational

16



J. Lorente et al. / Digital Signal Processing 00 (2015) 1–24 17

complexity. Table 3 compares the computing time and the computational complexity in terms of multiplications,

additions, and FFTs per iteration of the GPU implementation of the FPM-OCF algorithm for different I:J:K con-

figurations and different R values. As before, note that the FPM-OCF algorithm becomes the FPM algorithm when

R = 0. Since we use a value of M = L and B=L/2 (filters are split up into 2 partitions), the computational complexity

only depends on L. It is important to note that the computational complexity can be analyzed by changing the I:J:K

configuration (and therefore the number of channels) and also by changing the number of input vectors (R) used in

the filter coefficients update.

First, Table 3 shows that, for a given value of R, the computational complexity of the algorithm increases sig-

nificantly with the increase in the number of channels. As an example, when R = 0 (FPM algorithm), if the ANC

configuration changes from 1:1:1 to 1:4:4 (16 secondary paths), the number of multiplications increases by a factor

of 12, the additions by a factor of 13, and the FFTs by a factor of 3.4 while the time delay increases only by a factor

of 3. Approximately the same occurs if R > 0. For example, for a value of R = 16 and changing the arrangement

configuration from 1:1:1 to 1:4:4, the number of multiplications increases by a factor of 13, the additions by a factor

of 14, and the FFTs by a factor of 3.9 while the time delay increases only by a factor of 3.5. Since the increase

in the number of channels greatly increases the complexity, we can conclude that the computational complexity is a

bottleneck of massive multichannel ANC systems regardless of the value of R. However, if the operations of each

channel are properly parallelized, an implementation over GPU would reduce this computational drawback and could

be a viable and meaningful solution.

Table 3 also shows that when orthogonal correction factors (R > 0) are used, the FPM algorithm exhibits higher

computational complexity than without using them (R = 0). This is due to the usage of the R input signal vectors in

the tap weight update (see Fig. 3, box in red). As Table 3 shows, the number of multiplications, additions and FFTs

significantly increases. Let us define the ratio MR/M0 as the number of multiplications of the FPM-OCF algorithm

when R > 0, divided by the number of multiplications of the FPBM algorithm (R = 0). We define the same ratio for

additions (AR/A0), FFTs (FFTR/FFT0), and time delay (tR/t0). It is shown that the ratios of multiplications, additions

and FFTs are similar to the ratio of delay. This can be explained by the fact that the processing of step 3 in Fig. 3 must

be executed in a sequential mode because the coefficients of the adaptive filters Wi jrn+1 are needed for the calculation

of the filters Wi jr+1
n+1, and, therefore, it can not be parallelized. However, even though the calculation of Wi jrn+1,

Wi jr+1
n+1, ..., Wi jRn+1 can not be implemented in parallel, the calculation of each one of the R times that the coefficients

are updated at each iteration could be accelerated by being implemented on a parallel computing device such as a

GPU.

Finally, it is important to emphasize that, as showed in sections 5.2 and 5.3, both the improvement in convergence

rate and the increase in complexity are linked to the number of correction factors. Therefore, this leads to an adjustable

and configurable implementation of the FPM-OCF algorithm with regards to the complexity and convergence rate.

17



J. Lorente et al. / Digital Signal Processing 00 (2015) 1–24 18

0 50 100 150 200 250
0

100

200

300

400

500

600

700

Sensors (K)

C
h
a
n
n
el

s 
(J

K
)

R=0 R=1 R=2 R=4 R=8 R=12

Figure 6. Maximum number of channels (JK) for each K value performing in real-time when I=1 for different values of R, B = 2048, and

L=M=4096.

5.4. Prototype computing performance

As is well known, the ANC prototype can extend the zone of cancellation by properly adding more sensors and

transducers. However, as we have seen in the subsection 5.3, the computational cost can become extremely large,

especially when R > 0.

This section is devoted to studying the computational constraints of the multichannel ANC prototype based on

the FPM -OCF algorithm. For this purpose, Fig. 6 shows the maximum number of channels that the GPU-based

ANC system can handle without violating the real-time condition for L=M=4096, B = 2048, for one reference signal

(I = 1) and different values of R. This maximum number of channels is calculated by fixing the number of error

sensors and finding the maximum number of actuators (J) that the system can feed without violating the real-time

condition. When the maximum J value for each value of K is found, the maximum number of physical channels that

are processed for each value of K is J · K. For example, for the curve labeled as R = 0 in Fig. 6, when K = 170,

the maximum number of actuators that can be used without violating the real-time condition is J = 3; therefore, the

maximum number of processed channels is 510. However, for K = 171, the maximum number of actuators is J = 2

because the real-time condition is violated with J = 3. Thus, the maximum number of processed channels is 342

(J = 2) when K = 171. For this reason, the shapes of the curves jumps with the increase in error sensors.

The following considerations are highlighted in the simulation results depicted in Fig. 6:

• The maximum number of actuators for each value of K is calculated by taking into account that it has to satisfy

the real-time condition: tproc < B/ fs. Therefore, if R increases, there are more operations to perform in the

same time period and thus less channels can be handled.

• Two systems with different I:J:K configurations could have the same number of physical channels but different
18



J. Lorente et al. / Digital Signal Processing 00 (2015) 1–24 19

0 50 100 150 200 250 300
0

1

2

3

4

5

6
x 10

7

R=0 R=1 R=2 R=4 R=8 R=12

Sensors (K)

N
u
m

b
er

 o
f 
co

m
p
le

x
M

u
lt

ip
li
ca

ti
on

s

Figure 7. Number of complex multiplications (CM) performed for the maximum JK configuration when I=1 for different values of R, B = 2048,

and L=M=4096.

computational costs. For example, both the 1:1:2 and 1:2:1 configurations have 2 physical channels, but the

second configuration exhibits a higher computational cost because it has to update two adaptive filters instead

of one. Therefore, an increase in the number of adaptive filters involves many more operations than an increase

in the number of error sensor signals, with IJ being the number of adaptive filters. Furthermore, when K is low

and J is high, the maximum number of channels is limited by the delay of processing the adaptive filters (see

Fig. 6 when K is low).

• When K increases, J has to decrease in order to satisfy the real-time condition, and, consequently, the number

of adaptive filters decreases and the curves of the number of processed channels grow quickly reaching the

maximums. The maximum of the curves is reached when neither K nor J is much bigger than the other.

• On the other hand, when J is small and K is large, even though the number of adaptive filters is low and therefore

less operations have to be carried out, the system operation is limited by the handling of the estimated ”unde-

sired” signals and the estimated error signals, which involve memory transactions and flow control instructions

(see Fig. 3). Therefore, the maximum number of channels decreases with the increase of K. Moreover, since

the calculation of the estimated error signal is repeated R times (one for each of the R input vectors used in the

tap weight update), when the value of R increases, the decrease in the number of channels with the increase of

K is bigger than when R = 0.

Once the maximum number of processed channels has been analyzed for each value of K, the number of complex

multiplications (CM) involved in both the products and the FFTs for the JK configurations derived in Fig. 6 is depicted

in Fig. 7. A CM involves 4 floating point multiplications and 2 floating point additions. It can be observed that for

a given value of R, the curve of the number of CM performed is not constant for the different JK configurations. As
19



J. Lorente et al. / Digital Signal Processing 00 (2015) 1–24 20

0 50 100 150 200 250 300
0

50

100

150

200

250

300

350

Sensors (K)

N
u
m

b
er

 o
f 
ch

an
n
el

s 
(J

K
)

CM=3·107

GPU

CM=2·107

Theoretical
CPU

CPU

CM=1·107

R = 2

0 50 100 150 200
0

50

100

150

200

Sensors (K)

N
u
m

b
er

 o
f 
ch

a
n
n
el

s 
(J

K
)

CM=3·107

GPU

CM=2·107

Theoretical
CPU

CPU

CM=1·107

R = 4

Figure 8. A comparison of the maximum number of processed channels for the GPU implementation, the CPU implementation, and a theoretical

processing machine limited to perform 1 · 107, 2 · 107, or 3 · 107 complex multiplications (CM) per block of samples for B = 2048 and I = 1.

commented above, this is because the GPU implementation is affected by the JK configuration. The most remarkable

aspect of Fig. 7 is that the JK configurations with more CM are those with low values of K and high values of J.

As explained above, the number of adaptive filters depends on both the I and J variables; therefore, when J grows,

more CM are performed because there are more adaptive filters to cope with. Moreover, as the value of K grows, the

handling of the estimated ”undesired” signals and the estimated error signals limits the processing and therefore less

CM are performed. Finally, if we compare the curves with different values of R, it is shown that for low values of K,

all of the curves perform a similar number of complex multiplications, but as K increases, the decrease in the number

of performed complex multiplications is accentuated with the value of R. This is because the algorithm performs the

handling of the K error signals R times.

The maximum number of channels that can be handled in real time by the GPU is shown in Fig. 6 for different

values of R. In order to compare the computational capabilities of the GPU with other hardware platforms, an ANC

system based on a CPU i7 was also implemented using one core and a sequential execution. The maximum number

of channels allowed by the CPU implementation was theoretically and practically studied. Moreover, the GPU and

CPU evaluation results were also compared with a theoretical processing machine that was limited to perform 1 · 107,

2 · 107, or 3 · 107 CM per buffering time. The results of this comparison are illustrated in Fig. 8 for the case when

I = 1, M = L = 4096, B = 2048, and R = 2 (Fig. 8.a) or R = 4 (Fig. 8.b). In this case, the buffering time is

B/ fs = 2048/44100 = 0.0464 seconds. For example, the curve labeled as ’CM=1 · 107’ in Fig. 8 represents the

maximum number of channels for each value of K that a given machine would process if this machine was able to

carry out 1 · 107 CM every 46.4 milliseconds. Finally, the theoretical maximum performance of our CPU was found

by calculating the maximum number of CM that this CPU could handle in a real-time execution. Since a floating point

multiplication and a floating point addition are performed by our CPU in 5 and 3 clock cycles, respectively (see annex

3 of [35]), a CM involves 26 clock cycles. The CPU operates at 3.07GHz, which means that our CPU could make

20



J. Lorente et al. / Digital Signal Processing 00 (2015) 1–24 21

0 2 4 6 8 10 12 14 16 18 20
0

10

20

30

40

50

60

70

80

90

100

Number of Actuators (J=K)

R

 

 

CPU
GPU

Figure 9. Maximum number of input vectors (R) that can be used in the tap weight update by the CPU and GPU configurations for square I:J:K

configurations when I = 1, B = 2048, and L=M=4096.

3.07 · 109/26 CM per second and (3.07 · 109/26) · 0.0464 ≃ 5.5 · 106 CM per buffering time. This is represented in the

figure with the curve labeled as ‘theoretical CPU’. Since our CPU also performs memory transactions and flow control

instructions, the practical CPU implementation handles fewer channels than the ‘theoretical CPU’. Furthermore, the

theoretical processing machine that processes 1 ·107, 2 ·107, or 3 ·107 CM per buffering time would has also to perform

memory transactions and flow control instructions in addition to the complex multiplications. Therefore, in practice,

these three curves would be lower.

Fig. 8 shows that this algorithm can not be used with R > 0 for multichannel ANC systems using the i7 CPU as

the processor. Therefore, expensive CPUs would be needed. On the other hand, the figure illustrates that the GPU

implementation outperforms the CPU implementation for both values of R and also shows the number of CM that a

processing machine would have to carry out each buffering time to outperform the GPU implementation. Moreover,

the maximum benefit of the GPU is obtained when low values of K and high values of J are used, where the GPU

carries out 3 · 107 CM per buffering time. As in previous sections, this can be explained by the fact that an increase

in the value of K involves an increase in the time required to handle the estimated undesired signals and the estimated

error signals in the frequency domain. This fact is accentuated with the increase in the value of R. As a conclusion,

Fig. 8 shows that even though the increase of the value of R results in a high increase in the computational complexity,

the algorithm can be implemented in a real-time ANC prototype using a GPU and a proper parallelization of the

operations of the multiple channels.

Finally, in order to better clarify the computational limitations of the CPU implementation, Fig. 9 depicts the max-

imum value of R that can be used by both the CPU implementation and the GPU implementation for different I:J:K

configurations. It has been calculated for square I:J:K configurations because they are the most representative. This

means configurations with one reference signal (I=1) and the same number of loudspeakers as microphones (J=K).

The figure also shows (with a dotted line) the saturation value of R where it saturates; in this case, R = 12. It is shown

that the CPU implementation can reach the saturation value of R onky for the single channel configuration and the

21



J. Lorente et al. / Digital Signal Processing 00 (2015) 1–24 22

1:2:2 configuration, whereas the GPU configuration can reach up to the 1:7:7 configuration. Moreover, the maximum

channel configuration that can be implemented on a CPU with a value of R = 1 is the 1:6:6 configuration, which

involves 36 channels processed in real time. In contrast, the GPU implementation reaches the 1:19:19 configuration,

which means 361 channels processed in real time.

6. Conclusions

This work presents the M-OCF algorithm for a multichannel active noise control system. The algorithm is derived

from the NLMS-OCF algorithm previously introduced for system identification. Moreover, this paper studies the

feasibility of its implementation in real time. To do this, the algorithm has been implemented using a GPU. To meet

the hardware requirements, the algorithm has been developed in the frequency domain, working with blocks of data

and partitioning the adaptive filters, resulting in the FPM-OCF algorithm. As a result, a prototype of multichannel

sound-control has been successfully implemented over GPU using the CUDA language and taking advantage of the

parallelization of the multiple channels involved. For this purpose, we have used the Nvidia CUDA in order to obtain

the most efficient implementation. We have avoided memory copies in the GPU and we have analyzed some CUDA

aspects such as the number of threads per block and the distribution of threads within the blocks.

The work in this paper has proved that the convergence rate of the FPM-OCF algorithm improves with the increase

in the value of R; therefore, this algorithm converges faster than the FPBFxNLMS algorithm (R = 0). Even though

the increase in the value of R results in a high increase in the computational complexity (especially for massive

multichannel systems), it has been demonstrated that by taking advantage of the parallelization capabilities of the

GPU, the increase in computational complexity due to the increase of channels produces a reduced increase in the

processing delay. Therefore, the use of a GPU platform can help to overcome the disadvantage of the FPM-OCF in

real-time for multichannel ANC systems. Moreover, both the improvement in convergence rate and the increase in

computational complexity can be controlled and adjusted with the number of correction factors used in the execution

of the algorithm, and, therefore, this value can be set depending on the performance requirements. As a conclusion,

we have demonstrated that by using a current cheap GPU (GeForce GTX 580), the implementation of the FPM-OCF

algorithm in a real-time multichannel ANC prototype is feasible, and therefore the GPU is a meaningful and versatile

solution for massive multichannel ANC systems, that is capable of processing hundreds of channels in real time,

depending on the value of R.

Finally, the computational limits of the ANC system have been studied. It has been shown that a commitment

relation between the convergence needing (number of correction factors used) and the available computing resources

(CPU/GPU) is necessary depending on the size of the multichannel structure (I:J:K configuration). For a single chan-

nel structure or small multichannel structures (e.g 1:2:2), the FPM-OCF algorithm can be implemented sequentially

in a CPU using the maximum number of correction factors without saturating. For bigger multichannel structures, a

parallelization of the operations is needed due to the big computational cost, and therefore, the GPU could be used.

22



J. Lorente et al. / Digital Signal Processing 00 (2015) 1–24 23

It is also important to note that with a considerable number of R, for example R = 8 in the case of section 5.2, the

gain in speed of convergence from R = 8 to R = 12 is not significantly, and depending on the application needing,

the value R = 8 could be considered as the maximum after saturation, and larger multichannel structures could be

obtained with R = 8 instead of R = 12. As a conclusion, the optimum relation between R and I:J:K depends on the

application needing and the available computing resources. Moreover, it is important to note that the results of this

paper in terms of number of processed channels could be larger by using a different audio card with lower frequency

sampling, decimating, or even using newer GPUs with better computational capacity.

References

[1] P. A. Nelson, S. J. Elliot, Active control of sound, Imperial College Press, New York, 1992.

[2] S. M. Kuo, D. R. Morgan, Active noise control: a tutorial review, Proceedings of the IEEE 87 (1999) 943–973.

[3] S. J. Elliot, P. A. Nelson, Active noise control, IEEE Signal Processing Magazine 10 (4) (1994) 12–35.

[4] S. Haykin, Adaptive filter theory, Prentice Hall, 1986.

[5] S. J. Elliott, I. M. Stothers, P. A. Nelson, A multiple error LMS algorithm and its application to the active control of sound and vibration,

IEEE Transactions on Acoustics, Speech and Signal Processing 35 (10) (1987) 1423–1434.

[6] B. Widrow, S. D. Stearns, Adaptive signal processing, Prentice-Hall, Englewood Cliffs, New York, 1985.

[7] k. Ozeki, T. Umeda, An adaptive filtering algorithm using an orthogonal projection to an affine subspace and its properties, Electronics

Communications 67-A (1994) 19–27.

[8] S. L. Gay, J. Benesty, Acoustic signal processing for telecommunication, Springer, 2000.

[9] S. G. Kratzer, D. R. Morgan, The partial-rank algorithm for adaptive beamforming, in: 29th Annual Technical Symposium, International

Society for Optics and Photonics, 1986, pp. 9–14.

[10] M. Rupp, A family of adaptive filter algorithms with decorrelating properties, Signal Processing, IEEE Transactions on 46 (3) (1998) 771–

775.

[11] S. G. Sankaran, A. Beex, Normalized lms algorithm with orthogonal correction factors, in: Signals, Systems &amp; Computers, 1997.

Conference Record of the Thirty-First Asilomar Conference on, Vol. 2, IEEE, 1997, pp. 1670–1673.

[12] S. G. Sankaran, A. Beex, Convergence behavior of affine projection algorithms, Signal Processing, IEEE Transactions on 48 (4) (2000)

1086–1096.

[13] H.-C. Shin, A. H. Sayed, Mean-square performance of a family of affine projection algorithms, Signal Processing, IEEE Transactions on

52 (1) (2004) 90–102.

[14] L. Savioja, V. Välimäki, J. O. Smith, Audio signal processing using graphics processing units, Journal Audio Eng. Soc 59 (2011) 3–19.

[15] N. Tsingos, W. Jiang, Using programmable graphics hardware for acoustics and audio rendering, Journal Audio Eng. Soc 59 (2011) 628–648.

[16] C. J. Webb, S. Bilbao, Computing room acoustics with CUDA-3D FDTD schemes with boundary losses and viscosity, in: Proceedings of the

International Conference on Acoustics, Speech and Signal Processing (ICASSP), Prague, 2011, pp. 317–320.

[17] J. Vanĕk, J. Trmal, J. V. Psutka, J. Psutka, Optimized acoustic likelihoods computation for NVIDIA and ATI/AMD graphics processors, IEEE

Transactions on Audio, Speech, and Language Processing 20 (6) (2012) 1818–1828.

[18] R. Mazur, J. O. Jungmann, A. Mertins, On CUDA implementation of a multichannel room impulse response reshaping algorithm based on

p-norm optimization, in: Proceedings of the IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA),

Vol. 24, 2011, pp. 305–308.

[19] S. Zhao, S. Ahmed, Y. Liang, K. Rupnow, D. Chen, D. L. Jones, A real-time 3D sound localization system with miniature microphone array

for virtual reality, in: Proceedings of the IEEE Conference on Industrial Electronics and Applications (ICIEA), Singapore, 2012, pp. 1853 –

1857.

23



J. Lorente et al. / Digital Signal Processing 00 (2015) 1–24 24

[20] D. Theodoropoulos, G. Kuzmanov, G. Gaydadjiev, Multi-core platforms for beamforming and wave field synthesis, IEEE Transactions on

Multimedia 99 (2010) 235–245.

[21] M. Schneider, F. Schuh, W. Kellerman, The generalized frequency-domain adaptive filtering algorithm implemented on a GPU for large-scale

multichannel acoustic echo canceller, in: Proceedings of the TG Conference on Speech Communication, 2012, pp. 1–4.

[22] J. Lorente, A. Gonzalez, M. Ferrer, J. A. Belloch, M. de Diego, G. Piñero, A. Vidal, Active noise control using graphics processing units, in:

Proceedings of the 19th International Congress on Sound and Vibration, 2012, pp. 138–146.

[23] J. Lorente, J. A. Belloch, M. Ferrer, A. Gonzalez, M. de Diego, G. Piñero, A. Vidal, Multichannel active noise control system using a GPU

accelerator, in: Proceedings of the Inter-Noise conference, New York, 2012, pp. 7768–7780.

[24] S. M. Kuo, D. R. Morgan, Active noise control, algorithms and DSP implementations, John Wiley & Sons, Inc., New York, 1996.

[25] J. Páez Borrallo, M. Garcia Otero, On the implementation of a partitioned block frequency domain adaptive filter (PBFDAF) for long acoustic

echo cancellation, Signal Processing 27 (3) (1992) 301–315.

[26] P. Sommen, Partitioned frequency domain adaptive filters, in: Proceedings of the 23rd Asilomar Conference on Signals, Systems and Com-

puters, Vol. 2, 1989, pp. 677–681.

[27] B. Farhang-Boroujeny, Adaptive Filters Theory and Applications, John Wiley & Sons, Inc., New York, 1998.

[28] M. Ferrer, A. Gonzalez, M. de Diego, G. Piñero, Fast affine projection algorithms for filtered-x multichannel active noise control, Audio,

Speech, and Language Processing, IEEE Transactions on 16 (8) (2008) 1396–1408.

[29] E. Bjarnason, Active noise cancellation using a modified form of the filtered-x LMS algorithm, in: Proceedings of the 6th European Signal

Processing Conference, Vol. 2, 1992, pp. 1053–1056.

[30] G. H. Golub, C. F. Van Loan, Matrix computations, Vol. 1, Johns Hopkins University Press, 1996.

[31] J. Lorente, M. Ferrer, M. de Diego, J. A. Belloch, A. Gonzalez, GPU implementation of a frequency-domain modified filtered-x LMS

algorithm for multichannel local active noise control, in: Proceedings of the 52nd Audio Engineering Society International Conference,

Guilford, UK, 2013.

[32] R. Burdisso, J. Vipperman, C. Fuller, Causality analysis of feedforward-controlled systems with broadband inputs, The Journal of the Acous-

tical Society of America 94 (1) (1993) 234–242.

[33] Audio and communications signal processing group (gtac), online at: http://www.gtac.upv.es.

[34] S. G. Sankaran, On ways to improve adaptive filter performance, Ph.d. thesis, Virginia Polytechnic Institute and State University (1999).

[35] Intel 64 and ia-32 architectures optimization reference manual, online at:

http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf.

24


