

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

 The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-662-46823-
4_28

http://link.springer.com/chapter/10.1007%2F978-3-662-46823-4_28

http://hdl.handle.net/10251/66304

Springer

Vidal Oriola, GF. (2015). Towards Symbolic Execution in Erlang. En Perspectives of System
Informatics. Springer. 351-360. doi:10.1007/978-3-662-46823-4_28.

Towards Symbolic Execution in Erlang?

Germán Vidal

MiST, DSIC, Universitat Politècnica de València
Camino de Vera, s/n, 46022 Valencia, Spain

gvidal@dsic.upv.es

1 Introduction

The concurrent functional language Erlang [1] has a number of distinguishing
features, like dynamic typing, concurrency via asynchronous message passing
or hot code loading, that make it especially appropriate for distributed, fault-
tolerant, soft real-time applications. The success of Erlang is witnessed by the
increasing number of its industrial applications. For instance, Erlang has been
used to implement Facebook’s chat back-end, the mobile application Whatsapp
or Twitterfall—a service to view trends and patterns from Twitter—, to name
a few. The success of the language, however, also requires the development of
powerful testing and verification techniques.

Symbolic execution is at the core of many program analysis and transforma-
tion techniques, like partial evaluation, test-case generation or model checking.
In this paper, we introduce a symbolic execution technique for Erlang. We dis-
cuss how both an overapproximation and an underapproximation of the concrete
semantics can be obtained. We illustrate our approach through some examples.
To the best of our knowledge, this is the first attempt to formalize symbolic
execution in the context of this language, where previous approaches have only
considered exploring different schedulings but have not dealt with symbolic data.
More details can be found in the companion technical report [17].

2 Erlang Syntax

In this section, we present the basic syntax of a significant subset of Erlang. In
particular, we consider a slightly simplified version of the language where some
features are excluded (basically, we do not consider modules, exceptions, records,
binaries, monitors, ports or process links, most of which are not difficult to deal
with but would encumber the notations and definitions of this paper). Never-
theless, this is still a large subset of Erlang and covers its main distinguishing
features, like pattern matching, higher-order functions, process creation, message
sending and receiving, etc.

? This work has been partially supported by the Spanish Ministerio de Economı́a
y Competitividad (Secretaŕıa de Estado de Investigación, Desarrollo e Innovación)
under grant TIN2013-44742-C4-1-R and by the Generalitat Valenciana under grant
PROMETEO/2011/052.

Program 3 pgm ::= f(Xn)→ e. | pgm pgm

Exp 3 e ::= bv | [e1|e2] | {en} | X | e(en) (n ≥ 0)
| case e of cl end | e1 ! e2 | receive cl end
| p = e | e1, e2

BasicValue 3 bv ::= a | n | p | [] | { }
Value 3 v ::= bv | [v1|v2] | {vn} (n > 0)

Pattern 3 p ::= bv | X | [p1|p2] | {pn} (n > 0)
Clauses 3 cl ::= p1 when g1 → e1; . . . ; pn when gn → en (n > 0)

where a ∈ Atom, n ∈ Number, p ∈ Pid, X ∈ Var, g ∈ Guard

Fig. 1. Erlang syntax rules

The syntax of the language can be found in Figure 1. We denote by on
the sequence of syntactic objects o1, . . . , on. Programs are sequences of function
definitions, where each function f/n is defined by a rule f(X1, . . . , Xn)→ e. with
X1, . . . , Xn distinct variables and the body of the function, e, an expression that
might include basic values, lists, tuples, variables, function applications, case
expressions, message sending and receiving, pattern matching and sequences.

Besides the functions defined in the program, we consider some of the usual
built-in functions (logical and relational operators, arithmetic operators, etc.),
together with the functions self, that returns the pid of the current process, and
spawn, that is used to create new processes. E.g., spawn(foo, [a, 42]) creates a new
process that starts calling the function foo(a, 42) and returns the new (fresh) pid
assigned to this process. Only the concurrent actions have side effects. We assume
that guards can only contain calls to built-in functions without side effects.

Example 1. Consider the program in Fig. 2 which follows a very simple client-
server scheme. Here, the first process is called with start(N), where N is the
maximum number of requests accepted by the server. Then, it creates a client
(a new concurrent process) and starts the server. A client request just includes
its own pid and the request number. If the request number is smaller than N ,
the server answers “ok”; otherwise, it answers “last” and terminates. The client
keeps asking the server with increasing numbers until it gets the reply “last”.

We do not consider I/O in this paper. Therefore, input parameters must be
provided through the initial function.

3 Concrete Semantics

The semantics of Erlang is informally described, e.g., in [1]. The past years have
witnessed an increasing number of works aimed at defining a formal semantics
for the language. Some of the first attempts were done by Huch [9] and, more
extensively, by Fredlund [6]. More recent approaches focus on the definition of
the distributed aspects of the Erlang semantics, like [4]; this semantics was later
refined in [15] and [14], where some assumptions on the future of the language

start(N) → S = self(), C = spawn(client, [1, S]), server(N).

server(N) → receive
{Pid,M} when M < N → Pid ! ok, server(N);
{Pid,M} when M >= N → Pid ! last

end.

client(N,Pid) → Pid ! {self(), N},
receive Atom→ case Atom of

ok→ client(N + 1, P id);
last→ ok

end
end.

Fig. 2. Simple client-server example in Erlang

design are proposed. Other approaches have formalized the semantics of Erlang
by defining its semantics in the framework of rewriting logic [10, 11].

Unfortunately, there is no commonly accepted semantics and, moreover, most
of the above papers only cover part of the language semantics (e.g., [4, 15, 14]
are mainly oriented towards the concurrent features of the language). Therefore,
we have recently introduced a semantics for a subset of Erlang in [16]. In the
following, we present a more elegant and general version of this semantics that
follows some of the ideas in [14].

Erlang follows a leftmost innermost operational semantics. Following, e.g., [9,
6], every expression C[e] can be decomposed into a context C[] with a (single)
hole and a subexpression e where the next reduction can take place:

C ::= [] | C, e | case C of cl end | C ! e | v ! C | p = C | C(e1, . . . , en)
| f(v1, . . . , vi, C, ei+2, . . . , en) | op(v1, . . . , vi, C, ei+2, . . . , en)
| [v1, . . . , vi, C|e] | {v1, . . . , vi, C, ei+2, . . . , en}

An Erlang process is denoted by a tuple 〈p; e; q〉, where p is a the process identi-
fier, e is the expression to be evaluated, and q is the process mailbox. An Erlang
system is a pair (Π,Q), where Π is a pool of processes and Q is the system
mailbox (analogous to the ether in the semantics of [14]). We assume no order
in Π since it is not relevant to our purposes (i.e., we will be interested in ex-
ploring all possible schedulings within symbolic execution). For implementing
actual scheduling policies, an ordering would be required. The system mailbox
Q is a set of triples (p,p′, q), where q is a list of messages (values) sent from
the process with pid p to the process with pid p′. The system mailbox is needed
to correctly model a multi-node distributed system (see the discussion in [14]).
Basically, Erlang only requires that the messages sent directly between two pro-
cesses must arrive in the same order. However, if the messages follow different
paths, say one message is sent directly from p to p′′, while another message is
sent from p to p′′ via p′, then there is no guarantee regarding which message
arrives first to p′′.

The operational semantics is defined by the labelled transition relation →
shown in Fig. 3. Here, we use the notation 〈p; e; q〉 & Π to denote an arbitrary

(seq)
(〈p;C[v, e]; q〉 & Π,Q)

τ→ (〈p;C[e]; q〉 & Π,Q)

(self)
(〈p;C[self()]; q〉 & Π,Q)

τ→ (〈p;C[p]; q〉 & Π,Q)

(builtin)
eval(op(vn)) = v

(〈p;C[op(vn)]; q〉 & Π,Q)
τ→ (〈p;C[v]; q〉 & Π,Q)

(fun)
f(Xn)→ e. ∈ pgm

(〈p;C[f(vn)]; q〉 & Π,Q)
τ→ (〈p;C[ê{Xn 7→ vn}]; q〉 & Π,Q)

(match)
∃σ. pσ = v

(〈p;C[p = v]; q〉 & Π,Q)
τ→ (〈p; (C[v])σ; q〉 & Π,Q)

(case)
match(v , cl) = (e, σ)

(〈p;C[case v of cl end]; q〉 & Π,Q)
τ→ (〈p; (C[e])σ; q〉 & Π,Q)

(receive)
matchrec(q, cl) = (e, σ, q′)

(〈p;C[receive cl end]; q〉 & Π,Q)
τ→ (〈p; (C[e])σ; q′〉 & Π,Q)

(spawn)
p′ is a fresh pid

(〈p;C[spawn(f, vn)]; q〉 & Π,Q)
τ→ (〈p;C[p′]; q〉 & 〈p′, f(vn), []〉 & Π,Q)

(send)
v1 = p′ ∈ Pid ∧ add msg(p, p′, v2,Q) = Q′

(〈p;C[v1 ! v2]; q〉 & Π,Q)
τ→ (〈p;C[v2]; q〉 & Π,Q′)

(sched)
(p, p′) ∈ sched(Π,Q) ∧ delivery(p, p′, Π,Q) = (Π′,Q′)

(Π,Q)
α→ (Π′,Q′)

Fig. 3. Concrete Semantics

pool of processes that contains the process 〈p; e; q〉. The initial system has the
form (〈p0; e; []〉, []). Most rules are self-explanatory. Let us just explain the more
involved ones:

In rule builtin, we assume a function eval that evaluates all built-in’s without
side effects (i.e., arithmetic or relational expressions, etc).

In rule fun, we assume that the program pgm is a global parameter of the tran-
sition system. Moreover, we let ê denote a copy of e with local variables renamed
with fresh names. The notation {Xn 7→ vn} denotes a substitution binding vari-
ables X1, . . . , Xn to values v1, . . . , vn. The application of a substitution σ to an
expression e is denoted by eσ.

In rule case, we assume an auxiliary function match that takes a value v and
the clauses p1 when g1 → e1; . . . ; pn when gn → en and returns a pair (ei, σ) if i
is the smaller number such that piσ = v and eval(giσ) = true.

The case of rule receive uses a similar auxiliary function matchrec that takes
a mailbox queue q and the clauses cl, determines the first message v such that
match(v, cl) = (e, σ), and returns (e, σ, q′), where q′ is obtained from q by delet-
ing message v.

In rule send, the message is stored in the system mailbox, together with the
source and target pids, using the auxiliary function add msg , whose definition is
straightforward. Note that the message is not actually delivered to the process
with pid p′ until the sched rule is applied (see below).

Finally, rule sched uses the auxiliary function sched to model a particular
scheduling policy. Basically, it selects two pids (p,p′) from Π (source and target

(〈p0; start(1); []〉, [])
τ→ (〈p0;S = self(), C = spawn(client, [1, S]), server(1); []〉, [])
τ→ (〈p0;S = p0, C = spawn(client, [1, S]), server(1); []〉, [])
τ→ (〈p0; p0, C = spawn(client, [1, p0]), server(1); []〉, [])
τ→ (〈p0;C = spawn(client, [1, p0]), server(1); []〉, [])
τ→ (〈p0;C = p1, server(1); []〉 & 〈p1; client(1, p0); []〉, [])
· · ·
τ→ (〈p0; receive . . . end; []〉 & 〈p1; receive . . . end; []〉, [(p1, p0, [{p1, 1}])])
α→ (〈p0; receive . . . end; [{p1, 1}]〉 & 〈p1; receive . . . end; []〉, [(p1, p0, [])])
τ→ (〈p0; p1 ! last; []〉 & 〈p1; receive . . . end; []〉, [(p1, p0, [])])
τ→ (〈p0; last; []〉 & 〈p1; receive . . . end; []〉, [(p1, p0, []), (p0, p1, [last])])
α→ (〈p0; last; []〉 & 〈p1; receive . . . end; [last]〉, [(p1, p0, []), (p0, p1, [])])
τ→ (〈p0; last; []〉 & 〈p1; case last of . . . end; []〉, [(p1, p0, []), (p0, p1, [])])
τ→ (〈p0; last; []〉 & 〈p1; ok; []〉, [(p1, p0, []), (p0, p1, [])])

Fig. 4. Computation for the program of Example 1

processes, which might be the same) such that (p,p′, q) ∈ Q and q is not empty.
Then, function delivery moves the first message of q to the local mailbox of the
process with pid p′, thus returning a new pair (Π ′,Q′).

Observe that all rules are labeled with τ except for the last one. This is
explained by the fact that we are interested in a particular type of computations
that we call normalized computations. In the following, given a state s, we denote
by s↓τ the state that results from s by only applying transitions labeled with
τ until no more transitions labeled with τ are possible, i.e., if s ≡ s0

τ→ s1
τ→

. . .
τ→ sn 6

τ→, then s↓τ= sn.

Definition 1 (normalized computation). Let s0 be the initial system. Then,
we say that a computation is normalized if it has the form
s0

τ ∗→ s0↓τ
α→ s1

τ ∗→ s1↓τ
α→ s2

τ ∗→ s2↓τ
α→ s3 . . .

In the following, we only consider normalized computations in order to reduce
the search space.

Example 2. Consider again the program of Ex. 1. A computation with this pro-
gram is shown in Fig. 4, where the expression selected for reduction is underlined.

4 Symbolic Execution Semantics

In this section, we introduce a symbolic execution semantics for Erlang. Firstly,
one could consider the semantics in Fig. 3 and just define a function sched that
returns all feasible combinations of processes in the considered system. This is
useful to explore all possible schedulings and detect errors (e.g., deadlocks) that
only occur in a particular scheduling. This is the aim, e.g., of the model checker
McErlang [7]. Basically, McErlang is today a mature tool that combines the use
of random test cases (using, e.g., a tool like QuickCheck [2]) with a semantics
that explores possible schedulings.

(seq)
(〈p;C[p, e]; q〉 & Π,Q, C) τ→ (〈p;C[e]; q〉 & Π,Q, C)

(self)
(〈p;C[self()]; q〉 & Π,Q, C) τ→ (〈p;C[p]; q〉 & Π,Q, C)

(builtin1)
eval(op(vn)) = v

(〈p;C[op(vn)]; q〉 & Π,Q, C) τ→ (〈p;C[v]; q〉 & Π,Q, C)

(builtin2)
∃i. pi is not a value, X is a fresh variable

(〈p;C[op(pn)]; q〉 & Π,Q, C) τ→ (〈p;C[X]; q〉 & Π,Q, C ∧ (X = op(pn))

(fun)
f(Xn)→ e. ∈ pgm

(〈p;C[f(pn)]; q〉 & Π,Q, C) τ→ (〈p;C[ê{Xn 7→ pn}]; q〉 & Π,Q, C)

(match)
∃σ. p1σ = p2σ

(〈p;C[p1 = p2]; q〉 & Π,Q, C) τ→ (〈p; (C[p2])σ; q〉 & Π,Q, C)

(case)
(e, σ, C′) ∈ unify(C, p, cl), C′′ = σ̂ ∧ C′

(〈p;C[case p of cl end]; q〉 & Π,Q, C) τ→ (〈p; (C[e])σ; q〉 & Π,Q, C ∧ C′′)

(receive)
(e, σ, q′, C′) ∈ unifyrec(C, q, cl), C′′ = σ̂ ∧ C′

(〈p;C[receive cl end]; q〉 & Π,Q, C) τ→ (〈p; (C[e])σ; q′〉 & Π,Q, C ∧ C′′)

(spawn)
p′ is a fresh pid

(〈p;C[spawn(f, pn)]; q〉 & Π,Q, C) τ→ (〈p;C[p′]; q〉 & 〈p′, f(pn), []〉 & Π,Q, C)

(send)
v = p′ ∈ Pid ∧ add msg(p, p′, p,Q) = Q′

(〈p;C[v ! p]; q〉 & Π,Q, C) τ→ (〈p;C[p]; q〉 & Π,Q′, C)

(sched)
(p, p′) ∈ sched(Π,Q) ∧ delivery(p, p′, Π,Q) = (Π′,Q′)

(Π,Q, C) α→ (Π′,Q′, C)

Fig. 5. Symbolic Execution

Here, we plan to also cope with missing input data (analogously to the tool
Java Pathfinder [12] for model checking of Java bytecode). Our symbolic systems
are now triples of the form (Π,Q, C), where the new element C is the so called path
constraint (initialized to true). Loosely speaking, C contains some constraints on
the symbolic values that represent the missing input data, such that the system
(Π,Q) is reachable (using the concrete semantics) when the input data in the
initial system satisfies the constraint C.

An Overapproximation. First, we consider that symbolic execution must over-
approximate the concrete semantics. This is useful, e.g., in the context of partial
evaluation or when a property that holds for all states must be verified. The
symbolic execution semantics is shown in Fig. 5. Let us briefly explain the main
differences w.r.t. the concrete semantics:

Rule builtin considers now two cases: builtin1, which is equivalent to the pre-
vious rule in the concrete semantics, and builtin2 that considers the case when
some argument is not a value. In the latter case, the built in function cannot
be evaluated and we reduce it to a fresh variable and add the corresponding
constraint to the system. E.g., given the expression 3+Y , we reduce it to a fresh
variable X and add the constraint X = 3 + Y to the system constraint.

Rule fun remains unchanged. Applications of the form X(p1, . . . , pn) are not
considered since it would involve calling every function and built-in of the pro-

(〈p0; start(K); []〉, [], true)
τ→ (〈p0;S = self(), C = spawn(client, [1, S]), server(K); []〉, [], true)

. . .
α→ (〈p0; receive . . . end; [{p1, 1}]〉 & 〈p1; receive . . . end; []〉, [(p1, p0, [])], true)
τ→ (〈p0; p1 ! ok, server(K); []〉 & 〈p1; receive . . . end; []〉, [(p1, p0, [])], 1 < K)
τ→ (〈p0; ok, server(K); []〉 & 〈p1; receive . . . end; []〉, [(p1, p0, []), (p0, p1, [ok])], 1 < K)
τ→ (〈p0; receive . . . end; []〉 & 〈p1; receive . . . end; []〉, [(p1, p0, []), (p0, p1, [ok])], 1 < K)
. . .

Fig. 6. Partial symbolic execution for the program of Example 1

gram to keep the symbolic execution complete, which is not acceptable. If such
an expression is reached, we give up and stop symbolic execution with a failure.

Rule match is similar to the original rule in the concrete semantics but re-
places matching with unification. Analogously, rules case and receive mainly re-
places the auxiliary functions match and matchrev with unify and unifyrev where
unification replaces matching as follows. Function unify takes a constraint C, a
pattern p and the clauses p1 when g1 → e1; . . . ; pn when gn → en and returns a
triple (ei, σ, C′) for each i such that piσ = pσ (i.e., σ is a unifier of pi and p) and
C ⇒ ¬giσ cannot be proved (i.e., the unsatisfiability of giσ cannot be proved);
here, C′ is the constraint C ∧ giσ (when giσ is different from true). Function
unifyrec proceeds analogously. Note that we also add the computed unifier to
the path constraint (where σ̂ denotes the equational representation of a substi-
tution σ). This will be required in the next section. The new functions return
a set since the pattern might unify with more than one clause whose guard is
also satisfiable. Note that this strategy is complete but typically not sound since
(besides the limitations of the constraint solver) we might follow several paths
while the original, concrete semantics only considers the first clause even if a
value matches several clauses.

Rule spawn, analogously to the case of rule fun, does not consider an expres-
sion like spawn(X, [pn]), which will be considered a failure. A similar situation
happens with rule send. Here, we consider the case where the message is a pattern
and, thus, might be a variable. However, we do not consider that the pid of the
target process is a variable, since it would involve broadcasting the message to
all processes to keep the symbolic execution complete, which is not acceptable.

Finally, rule sched just considers a scheduling function sched that returns all
possible combinations in order to explore all feasible schedulings.

We assume that the system constraint is checked for unsatisfiability at every
step. When unsatisfiability cannot be proved we continue with the symbolic
execution (which is complete, but a potential source of unsoundness).

As in the previous case, only normalized symbolic executions are considered.

Example 3. Consider again the program of Ex. 1. Now, Fig. 6 shows a normalized
symbolic execution starting with an unknown number K of maximum requests.

An Underapproximation. So far, we have put the emphasis on completeness (i.e.,
producing an overapproximation of the original Erlang computations). For this
purpose, we had to take a number of decisions that make the resulting search

space too huge to scale to real world Erlang applications with thousands or
millions of processes. Moreover, there are a number of situations in which we
have to give up (i.e., variable applications, process spawning with an unknown
function or sending a message to an unknown pid) because dealing with them is
simply intractable.

As an alternative, we propose in this section a sound symbolic execution that
computes an underapproximation of the concrete semantics. This is useful for
many applications (like test case generation or model checking), and it is often
more scalable and avoids false positives. Here, we follow the approach of [8, 13]
to so called concolic execution and consider the following scheme:

Processes are slightly extended as follows: 〈p, ec, es, q〉, where p is a pid, ec is a
concrete expression, es is a symbolic expression, and q is the mailbox queue. The
symbolic expression is only used to compute the corresponding path constraint.

Now, one starts the execution with a random test input data and execute
the program using basically the symbolic execution semantics of Fig. 5 using an
initial system like 〈p0, start(1), start(K), [], true〉.

Then, when the computation terminates, we produce a sequence of the form
E0, E1, E2, . . . , En where each Ei is either a constraint Ci (associated to the i-th
computation step) or the symbol α denoting one application of the sched rule.
We now traverse this sequence starting from the last element and either negate
a constraint or consider alternative schedulings, depending on the type of the
considered element. In the case of a negated constraint, we use a constraint
solver to produce a new set of input data. Either way, a new concolic execution
is considered and the process starts again. Usually, backtracking can be used to
explore all possibilities.

If the algorithm terminates and the constraint solver is always able to gen-
erate a new set of input data, concolic execution is both sound and complete;
otherwise, it is only sound (an underapproximation). Termination can be ensured
using, e.g., a maximum depth for symbolic execution.

Example 4. Consider again the program of Example 1 and the initial call start(1).
The initial system is thus (〈p0, start(1), start(K), []〉, [], true). Here, we would
basically perform the same computation shown in Example 2 but using the rules
of Fig. 5 to also obtain the following sequence of constraints and scheduling
steps: (α, 1 >= K) (only the constraints relevant to the symbolic input data,
K, have to be considered). Now, by negating the constraint 1 >= K, we produce
a new value, e.g., K = 5, and consider a new symbolic execution starting from
the system (〈p0, start(5), start(K), []〉, [], true). Finally, one should consider
alternative schedulings (because we reach a symbol α) but no alternative exists.
Therefore, we conclude that executing start(1) and start(5) is sufficient to cover
all possible execution paths for the source program.

5 Discussion

In this paper, we have introduced a high-level concrete semantics for the func-
tional and concurrent language Erlang, and have explored the definition of an as-

sociated symbolic execution technique. We proposed both an overapproximation
and an underapproximation—based on a variant of symbolic execution called
concolic execution—. In principle, it seems that the underapproximation will be
more practical and scalable in order to design a tool for model checking and/or
test case generation. We are only aware of the approach of [3] to symbolic exe-
cution in Erlang, though no formalization is introduced in this paper (it is only
explained informally). Hence we think that our approach is a promising step
towards defining a practical symbolic execution technique for Erlang, which can
be used in different contexts like model checking or test case generation.

References

1. J. Armstrong, R. Virding, and M. Williams. Concurrent programming in Erlang
(2nd edition). Prentice Hall, 1996.

2. T. Arts, J. Hughes, J. Johansson, and U.T. Wiger. Testing telecoms software with
quviq QuickCheck. In Proc. of the Erlang Workshop, pages 2–10. ACM, 2006.

3. C. Benac Earle. Symbolic program execution using the Erlang verification tool.
In Proc. of the 9th Int’l Workshop on Functional and Logic Programming (WFLP
2000), pages 42–55, 2000.

4. K. Claessen and H. Svensson. A semantics for distributed Erlang. In Proc. of the
2005 ACM SIGPLAN Workshop on Erlang, pages 78–87. ACM, 2005.

5. M. Felleisen, D.P. Friedman, E.E. Kohlbecker, and B.F. Duba. A syntactic theory
of sequential control. Theor. Comput. Sci., 52:205–237, 1987.

6. L.-A. Fredlund. A framework for reasoning about Erlang code. PhD thesis, The
Royal Institute of Technology, Sweeden, 2001.

7. L.-A. Fredlund and H. Svensson. McErlang: a model checker for a distributed
functional programming language. In Proc. of ICFP’07, pp. 125–136. ACM, 2007.

8. P. Godefroid, N. Klarlund, and K. Sen. DART: directed automated random testing.
In Proc. of PLDI’05, pages 213–223. ACM, 2005.

9. F. Huch. Verification of Erlang Programs using Abstract Interpretation and Model
Checking. In Proc. of ICFP ’99, pages 261–272. ACM, 1999.

10. T. Noll. A Rewriting Logic Implementation of Erlang. Electr. Notes Theor. Com-
put. Sci., 44(2):206–224, 2001.

11. T. Noll. Equational Abstractions for Model Checking Erlang Programs. Electr.
Notes Theor. Comput. Sci., 118:145–162, 2005.

12. C.S. Pasareanu, W. Visser, D.H. Bushnell, J. Geldenhuys, P.C. Mehlitz, and Neha
Rungta. Symbolic PathFinder: integrating symbolic execution with model checking
for Java bytecode analysis. Autom. Softw. Eng., 20(3):391–425, 2013.

13. K. Sen, D. Marinov, and G. Agha. CUTE: a concolic unit testing engine for C. In
Proc. of ESEC/SIGSOFT FSE 2005, pages 263–272. ACM, 2005.

14. H. Svensson, L.-A. Fredlund, and C. Benac Earle. A unified semantics for future
Erlang. In Proc. of the Erlang Workshop, pages 23–32. ACM, 2010.

15. H. Svensson and L.-A. Fredlund. A more accurate semantics for distributed Erlang.
In Proc. of the Erlang Workshop, pages 43–54. ACM, 2007.

16. G. Vidal. Towards Erlang verification by term rewriting. In Proc. of LOPSTR’13,
pages 161–178. Technical Report TR-11-13, Universidad Complutense de Madrid,
2013. Available from http://users.dsic.upv.es/~gvidal/.

17. G. Vidal. Symbolic execution in Erlang. Technical report, DSIC, UPV, 2014.
Available from http://users.dsic.upv.es/~gvidal/.

