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Abstract. Computing generalizers is relevant in a wide spectrum of au-
tomated reasoning areas where analogical reasoning and inductive infer-
ence are needed. The ACUOS system computes a complete and minimal
set of semantic generalizers (also called “anti-unifiers”) of two struc-
tures in a typed language modulo a set of equational axioms. By sup-
porting types and any (modular) combination of associativity (A), com-
mutativity (C), and unity (U) algebraic axioms for function symbols,
ACUOS allows reasoning about typed data structures, e.g. lists, trees,
and (multi-)sets, and typical hierarchical/structural relations such as is a
and part of. This paper discusses the modular ACU generalization tool
ACUOS and illustrates its use in a classical artificial intelligence problem.

1 Introduction

Generalization is the dual of unification [14]. Roughly speaking, in this work
the generalization problem for two expressions t1 and t2 means finding their
least general generalization (lgg), i.e., the least general expression t such that
both t1 and t2 are instances of t under appropriate substitutions. For instance,
the expression father(X,Y) is a generalizer of both father(john,sam) and
father(tom,sam), but their least general generalizer, also known as most spe-
cific generalizer (msg) and least common anti–instance (lcai), is father(X,sam).
Applications of generalization arise in many artificial intelligence areas, including
case-based reasoning, analogy making, web and data mining, ontology learning,
machine learning, theorem proving, and inductive logic programming, among
others [5,12,13,16].

While ordinary, syntactic generalization is useful for some applications, it
has two important limitations. First, it cannot generalize common data struc-
tures such as records, lists, trees, or (multi-)sets, which satisfy specific premises
such as the order among the elements in a set being irrelevant. For instance, let
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us introduce the constants john, sam, peter, tom, mary, chris, and joan, and
consider the predicate symbols twins, ancestors, spouses, and children that
establish several relations among (a selection of) such constants. Since twins is
a symmetric relation, we would like the pair “john and sam” to be in the relation
twins if the pair “sam and john” is in the relation twins. For the time being,
let us introduce a new tuple constructor symbol (;) to satisfy commutativity
and an overloaded use of twins as a unary symbol such that the expressions
twins((john;sam)) and twins((sam;john)) are equivalent modulo the com-
mutativity of the (;) operator. Then, we can generalize twins((john;sam))

and twins((sam;tom)) as twins((X;sam)), whereas without equational at-
tributes the least general (or most specific) generalizer of twins(john,sam) and
twins(sam,tom) is twins(X,Y).

Similarly, we can express the relation given by the ancestors of a person
by means of a list using the list concatenation operator (.). We assume that
a person’s name is automatically coerced into a singleton list. Due to the as-
sociativity of list concatenation, i.e.,(x.y).z = x.(y.z), we can use the flat-
tened list (john.sam.mary.peter) as a very compact and convenient repre-
sentation for the congruence class modulo associativity whose members are
the different parenthesized list expressions, e.g., ((john.sam).mary).peter,

john.(sam.mary).peter, john.(sam.(mary.peter)), etc. Then, for the ex-
pressions ancestors(chris,(john.sam.mary.peter)) and ancestors(joan,

(tom.mary.john)), the least general generalizer is ancestors(X,(Y.mary.Z)),
which reveals that mary is the only common ancestor of chris and joan. Note
that ancestors(chris,(john.sam.mary.peter)) is an instance (modulo A)
of ancestors(X,(Y.mary.Z)) by the substitution {X/chris, Y/(john.sam),

Z/peter}.
Due to the equational axioms, in general there can be more than one least

general generalizer of two expressions. For instance, let us record the marriage
history of a person using a list, e.g. sam.sam.tom.peter for the marriage history
of mary, where she divorced sam and married him again. Then, the expressions
spouses(mary,(sam.sam.tom.peter)) and spouses(joan,(tom.tom.john))

have two incomparable least general generalizers: (a) spouses(X, (Y.tom.Z))

and (b) spouses(U, (V.V.W)), respectively meaning that both mary and joan

have married tom, and they both repeated marriage (consecutively) with their
first husband. Note that the two generalizers are least general and incomparable,
since neither one is an instance (modulo associativity) of the other.

Furthermore, if we consider the set of children of a person, this set should
be recognized irrespectively of the order in which the children’s names are writ-
ten in the set. Let us introduce a new symbol (&) that satisfies associativ-
ity, commutativity, and unit element ∅; i.e., X & ∅ = X and ∅ & X = X. Then,
we can use the flattened multiset (john & mary & peter & sam) (with a to-
tal order on elements given, e.g., by the lexicographic order) as a very com-
pact and convenient representation for the congruence class modulo associativ-
ity, commutativity, and unit element (written ACU) whose members are the
different parenthesized expressions with all permutations of the elements and



as many occurrences of ∅ as needed, due to unity [6]. Working modulo ACU,
the expressions (i) children(chris,(john & sam & mary & peter)) and (ii)
children(joan,(tom & sam & john)) can be generalized as children(P,(john
& sam & X)) but they can also be generalized as children(P’,(john & sam &

X’ & Y)) since children(joan,(tom & sam & john)) is an instance (modulo
ACU) of children(P’,(john & sam & X’ & Y)) by the substitution {P’/joan,
X’/tom, Y/∅}. Actually, for every least general generalizer t, the set of all ACU
generalizers that are equivalent to t modulo ACU-renaming3 is infinite, i.e.,

children(P0, (john & sam & X0)),
children(P1, (john & sam & X1 & Y1)),
children(P2, (john & sam & X2 & Y2 & Z2)), . . .

yet we can choose one of them, typically the smallest one, as the class repre-
sentative. Note that children(P,(john & sam & X)) is an instance (modulo
ACU) of children(P’,(john & sam & X’ & Y)) by the substitution {X’/X,
Y/∅} but also children(P’,(john & sam & X’ & Y)) is an instance (modulo
ACU) of children(P,(john & sam & X)) by the substitution {X/(X’ & Y)}.

The second problem with ordinary generalization is that it does not cope with
types and subtypes, which can lead to more specific generalizers. For instance, as-
sume that the constants john, sam, peter, and tom belong to type Male and that
mary, joan, and chris belong to type Female. Let us introduce another type Peo-
ple for the typed version of the ACU (multi-)set structures on which the relation
children described above is defined. The Male and Female types can be consid-
ered as subtypes of a common type Person, which is itself a subtype of People
representing a singleton set. Subtyping implies automatic coercion. Note that the
empty set, denoted by ∅, belongs to People. Then, the above expressions (i) and
(ii) have one typed ACU least general generalizer children(P:Female,(john

& sam & X:Male & Y:People)) that we choose as the representative of the in-
finite ACU congruence class. Note that children(P’:Female,(john & sam &

X’:People)) is not a least general generalizer since it is strictly more general; it
suffices to see that the class representative is an instance of it with substitution
{P’:Female/P:Female,X’:People/(X:Male & Y:People)}.

This work presents ACUOS, a mature and highly developed implementation
of the order-sorted ACU least general generalization algorithm that we formal-
ized in [1]. ACUOS has been written in the high-performance language Maude
[11] that supports reasoning modulo algebraic properties and reflection. To the
best of our knowledge, this is the first generalization system that is able to
compute least general generalizers in order-sorted theories modulo equational
axioms.

In Section 2, we describe the system and discuss how it can be used to
address artificial intelligence problems that need a form of ACU generalization.
This is done by focusing on a simple and classical artificial intelligence problem
that is known as the Rutherford analogy [8,9], proving that our system fulfills

3 i.e., the equivalence relation ≈ACU induced by the relative generality (subsumption)
preorder ≤ACU : s ≈ACU t iff s ≤ACU t and t ≤ACU s.



the objective to recognize that atoms resemble tiny solar systems. Experimental
results given in Section 3 show that ACUOS performs efficiently in practice. For
a discussion of the related literature, we refer to [2,3,1,4,10]

2 Use Case: Extracting Analogies

In this section, we analyze and extract structural commonalities between two
representative sets of physical assertions, one of which regards the electromag-
netic forces in the atom while the other one considers gravitational forces in the
solar system. First, we provide a functional representation for the solar system
and the Rutherford model for the atom and then we use ACUOS to automati-
cally extract a precise correspondence between them. Note that this is a classical
example of higher-order generalization [8], in the sense that function symbols
themselves are generalized by using function variables. We explain how higher-
order reasoning can be achieved within our first-order setting by using reflection
through the Maude meta-programming capabilities [7].

2.1 Problem representation

Let us introduce a meta-representation for models by introducing the HModel

sort (or type) that is defined in Figure 1, using (sub-)sorts HTerm and HOperator.
The generic Maude implementation given in Figure 1 is then used in Figure 2 to
specify the operators that describe the two considered systems (i.e., the domain
relations). Each relation r such as mass, charge, or attraction is represented
by an HTerm that is rooted by a suitable operator that is given appropriate
equational axioms, similarly to the operators4 (;), (.), and (&) discussed in
Section 1. In other words, the semantic information concerning each domain is
encoded using appropriate equational attributes for the relation r itself (e.g., the
action-reaction principle of gravitational forces is captured by the commutativity
property of the attraction operator). In Maude syntax, this can be done by
declaring the equational attributes of any given symbol through the use of special
tags. Not only is this concise, it is also efficient because it takes advantage of the
powerful optimizations included in the Maude interpreter [6].

Maude syntax is almost self-explanatory, using explicit keywords such as
fmod, sort, and op to introduce a module, sort, and operator, respectively. The
declaration subsort A1 . . . An < B denotes that A1 . . . An are subsorts of B and
implies automatic coercion. The keywords assoc and comm respectively specify
associativity and commutativity axioms for an operator. The keyword prec es-
tablishes the precedence of an operator. Module inclusion is denoted by inc.
Using this representation, our knowledge of each domain can simply be encoded
as a first-order term of sort HTerm, as shown in Figure 3, which depicts the two
terms that respectively encode the gravitational solar system and the Rutherford
model for the atom.
4 Notice the mixfix notation [6] in the definition of the operators (e.g., op ; : HModel

HModel -> HModel), which uses underscores to indicate that each argument of the
function will replace one of the underscores (e.g., the term (x;y)).



fmod HIGHER -ORDER -metarepresentation is
sorts HModel HTerm HOperator HVariable .
sorts HTermList HTermPair HConj HRule .
subsort HOperator HVariable < HTerm .
subsort HTerm < HTermList HConj HModel .
subsort HRule < HTerm .
op _[_] : HOperator HTermList -> HTerm [prec 10] .
op __ : HOperator HTermPair -> HTerm [prec 10] .
op _,_ : HTermList HTermList -> HTermList [assoc prec 20] .
op <_,_> : HTerm HTerm -> HTermPair [comm prec 20] .
op _/\_ : HConj HConj -> HConj [assoc comm prec 30] .
op _=>_ : HConj HTerm -> HRule [prec 40] .
op _;_ : HModel HModel -> HModel [assoc comm prec 50] .

endfm

Fig. 1: Generic higher-order meta-representation

fmod DOMAIN -OPERATORS is inc HIGHER -ORDER .
ops mass sun planet gravity : -> HOperator .
ops charge coulomb electron nucleus : -> HOperator .
ops attraction distant : -> HOperator [comm] .
ops x y : -> HVariable .

endfm

Fig. 2: Signature of the analogy domain operators

Solar System
mass[sun] ;
mass[planet] ;
distant〈sun,planet〉 ;
mass[x] ∧ mass[y] ⇒ gravity[x,y] ;
gravity[x,y] ⇒ attraction[x,y]

Rutherford Atom Model
charge[y] ∧ charge[x] ⇒ coulomb[x,y] ;
charge[electron] ;
charge[nucleus] ;
distant〈electron,nucleus〉 ;
coulomb[x,y] ⇒ attraction[x,y]

Fig. 3: Analogy problem representation

After feeding the ACUOS generalization tool with the Maude specification
given in Figures 1 and 2, together with the two input terms of Figure 3, we
obtain the least general ACU generalizer shown in Figure 4. For clarity, we omit
the sorting information in the results and summarize it as an annotation at the
bottom of the figure.

Generalization of Solar System and Rutherford Atom
P[X] ;
P[Y] ;
distant〈X,Y〉 ;
P[x] ∧ P[y] ⇒ Q[x,y] ;
Q[x,y] ⇒ attraction[x,y]

where variables P, Q belong to sort HOperator and variables X, Y to sort HTerm; note
that P,Q encode higher-order variables in our first-order setting.

Fig. 4: ACU generalization of the analogy problem



2.2 Further generalization capabilities

The analogy extracted so far relates a planet in the solar system with an electron
in the atom, and the Sun with the atom nucleus. The related entities planet and
electron are the only argument of the relations mass and charge, respectively.
However, they both appear as arguments of the relations gravity and coulomb,
though in different order. Also, the order of appearance of the definitions for
the relations coulomb and gravity differs in both models. Therefore, the corre-
spondence between the two models would have been hard to establish without
considering the commutativity and associativity of the operators ( ∧ ) and ( ; ).

We must often extract analogies from large deductive databases that, un-
like our previous example, contain irrelevant information with respect to the
analogies that we intend to extract. Let us further illustrate the advantages
of our order-sorted, equational generalization approach by slightly modifying
our example with the introduction of irrelevant knowledge. Specifically, suppose
that we add the assertions positive(nucleus) and negative(electron) into
the Rutherford Atom description and the assertion heavier-than(sun,planet)

into the solar system model. Figure 5 below shows the extended domain repre-
sentation together with the recomputed least general generalization result; the
only difference is the addition of a variable Z (of sort HModel), which can be
thought of as a container for the unnecessary pieces of information that are
automatically disregarded in this case.

Extended Solar System
mass[sun] ; mass[planet] ;
distant〈sun,planet〉 ;
mass[x] ∧ mass[y] ⇒ gravity[x,y] ;
gravity[x,y] ⇒ attraction[x,y] ;
heavier-than[sun,planet]

Extended Rutherford Atom Model
charge[y] ∧ charge[x] ⇒ coulomb[x,y] ;
charge[electron] ; charge[nucleus] ;
distant〈electron,nucleus〉 ;
coulomb[x,y] ⇒ attraction[x,y] ;
positive[nucleus] ; negative[electron]

Generalization of Extended Solar System and Extended Rutherford Atom
Z ; P[X] ; P[Y] ; distant〈X,Y〉 ; P[x] ∧ P[y] ⇒ Q[x,y] ; Q[x,y] ⇒ attraction[x,y] ;

Fig. 5: ACU generalization of the extended analogy problem

3 The ACU Generalization System ACUOS

The ACUOS backend consists of about 1000 lines of Maude code that essen-
tially implement the algorithm of [1], making heavy use of the Maude meta-
programming capabilities based on reflection. The algorithm is formalized as
an inference system in the style of [14], with specific rules for solving and de-
composing constraints (i.e., generalization subproblems) involving symbols that
obey equational axioms, such as ACU and their combinations. The number of
independent, order-sorted least general generalizers modulo E-renaming, where
E consists of any combination of associativity, commutativity, and unity axioms
of two expressions, is always finite [1], and our algorithm terminates for every



generalization problem, while computing a complete and minimal generalization
set (that is, a set covering all independent generalizations).

The implementation of [1] in ACUOS has been optimized as follows. First,
we identify many generalization subproblems that are equal modulo (equational)
variable renaming, which enables the use of Maude memoization thus leading
to exponential speed-ups for common generalization problems. Second, we de-
lay adding any sort information for new variables until needed, which avoids
repeated computation of subsorts for the same terms. Finally, those computa-
tions that are deterministic are encoded as Maude equations (instead of rules),
thereby greatly reducing the search space as well as the memory usage due to
the different treatment of rules and equations in Maude [6]. Thanks to these im-
provements, we can handle terms that are up to 50% larger than the preliminary,
näıve implementation reported in [1].

ACUOS is publicly available at http://safe-tools.dsic.upv.es/acuos

and comes with an intuitive web interface which allows the tool to be used
through a Java Web application. Alternatively, ACUOS can also be used without
the Web interface, by directly invoking the Maude generalization routine lggs

that is implemented in the ACUOS backend. This is the preferred approach
to integrate ACUOS with third-party software. For convenience, the system is
also endowed with a Full Maude [6] user-level command allowing the user to
harness the full power of the tool while being liberated from ancillary meta-level
technicalities.

3.1 Experiments

In this section, we report on some experiments we have conducted with the
ACUOS system. When computing modulo equational axioms, the size of the
equivalence classes of the least general generalizers gives a measure of the com-
plexity of the problem (see [15] for some theoretical results on the complexity
of generalization). We use three symbols for denoting the different sizes: 0 when
there is no generalizer for two terms (unlike the case of syntactical generaliza-
tion, in the order-sorted setting the sorts of different kinds5 are incompatible
and then the terms of these sorts have no generalization, not even a variable);
ω when there is a finite number of elements in the equivalence classes of the
generalizers; and ∞ when the equivalence classes (w.r.t. ≈ACU ) can have an
infinite number of ACU-equivalent generalizers. Any combinations of the A and
C axioms are in the ω class. The introduction of the U axiom leads to size ∞
(even if the number of ACU least general generalizers is still finite).

We have tested our tool with several representative generalization problems
taken from the literature that can be found online and in the distribution pack-
age. The benchmarks used for the analysis are: (i) incompatible types, a prob-
lem without any generalizers; (ii) twins, ancestors, spouses, siblings, and

5 Each connected component in the poset of sorts has a top sort that is called the
kind.

http://safe-tools.dsic.upv.es/acuos


children, as described in the introduction; (iii) only-U, a generalization prob-
lem modulo (just) unity axioms, i.e., without A and C; (iv) synthetic, an in-
volved example mixing A, C, and U axioms for different symbols; (v) multiple
inheritance, which uses a classic example of multiple subtyping from [6] to
illustrate the interaction of advanced type hierarchies with order-sorted general-
ization; (vi) rutherford, the example of Section 2; (vii) and chemical, a variant
of the case-based reasoning problem for chemical compounds discussed in [5].

Test G # N ms.

incompatible types 0 2 0 16
twins (C) ω 6 1 16
ancestors (A) ω 22 5 40
spouses (A) ω 16 3 16
spouses (AU) ∞ 16 6 360
siblings (AC) ω 14 2 80
children (ACU) ∞ 12 1 288
only-U (U) ∞ 10 1 16
synthetic ω 20 2 20
multiple inheritance ω 10 4 28
rutherford ω 54 1 462
chemical ω 20 2 240

Table 1: Experimental results

Table 1 shows our experimental results. For each problem, we show its gen-
eralization class (G), the size (number of symbols) of the input terms (#), the
number of least general generalizers for each problem (N), and the total compu-
tation time (ms). As mentioned in Section 3, we achieve a dramatic improvement
w.r.t. the preliminary tool reported in [1], where only the incompatible types and
the twins benchmarks can be run with comparable performance; the rest of the
examples time out for AC or ACU terms with more than six symbols, with the
computation times surpassing one minute. Table 1 reflects that the runtimes of
our algorithm do not just depend on the equational attributes given to each
symbol and the size of the input terms but also on the actual shape of the terms
(in particular, whether there are repeated subterms or not). This demonstrates
the effectivity of the memoization mechanism that we introduced as an improve-
ment in Section 3. Actually, we achieve up to 90% of reduction in the size of the
search space w.r.t. the coarse search space generated without the improvements
discussed in Section 3.

Considering the high combinatorial complexity of the ACU generalization
problem, our implementation is reasonably time efficient. For example, most of
the examples discussed in Section 1 took on the order of 10 ms on standard
hardware (3.30 GHz Intel Xeon E3-1240 with 8Gb of RAM memory).
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