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of representative cases that entail a certain percentage of the population, in 
the accommodation problem. A well-known anthropometric database has 
been used in order to compare our methodology with the common used 
PCA-approach, showing the advantages of our methodology: the level of 
accommodation is reached unlike the PCA approach, no more adjustments 
are necessary, the user can decide the number of archetypes to consider or 
leave the selection by a criterion. Unlike PCA, the objective of the archetypal 
analysis is obtaining extreme individuals, so it is the appropriate statistical 
technique for solving this type of problem. Archetypes cannot be obtained 
with PCA even if we consider all the components, as we show in the appli- 
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Archetypal analysis: contributions for estimating
boundary cases in multivariate accommodation problem

Abstract

The use of archetypal analysis is proposed in order to determine a set of
representative cases that entail a certain percentage of the population, in the
accommodation problem. A well-known anthropometric database has been
used in order to compare our methodology with the common used PCA-
approach, showing the advantages of our methodology: the level of accom-
modation is reached unlike the PCA approach, no more adjustments are nec-
essary, the user can decide the number of archetypes to consider or leave the
selection by a criterion. Unlike PCA, the objective of the archetypal analysis
is obtaining extreme individuals, so it is the appropriate statistical technique
for solving this type of problem. Archetypes cannot be obtained with PCA
even if we consider all the components, as we show in the application.

Keywords: representative case; archetype; percentile; anthropometry;
representative human model generation

1. Introduction

Products intended to “fit” their users must be designed with careful con-
sideration of the size and shape of the user population. In ergonomic design
and evaluation, a small group of human models which represents the anthro-
pometric variability of the target population is commonly used. Use of a
small group of human models provides designers an efficient way to develop
and evaluate a product design. In the multivariate accommodation problem,
a set of representative cases (human models) are searched in order to cover a
certain percentage of the user population. The appropriate selection of this
small group is critical if we want to accommodate a certain percentage of the
population.

Two strategies can be considered in searching the human models accord-
ing to the characteristics of product being designed: searching on a boundary
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or a set of grids. If the product being designed is a a one-size product (one-size
to accommodate people within a designated percentage of the population)
such as a bus operator’s workstation or a helicopter cockpit, the cases are
selected on an accommodation boundary. However, if we are designating a
multiple-size product (n sizes to fit n groups of people within a designated
percentage of the population), being clothing the most apparent example,
the cases are selected over a set of grids formed in the distribution of an-
thropometric dimensions [12]. In this work, we center on the first situation:
one-size product.

It has long been demonstrated that the use of percentiles is not appropri-
ate, due to the fact that, with the exception of 50th percentiles, percentile
values are not additive [17, 26, 23]. Different alternatives have been pro-
posed using different statistical techniques such as regression [23, 7, 16] or
cluster analysis [14]. However, the most common approach is based on the
use of principal component analysis (PCA) [26, 1, 10, 9, 11, 24]. The idea of
this approximation consists in considering the first principal components and
selecting several extreme points in an ellipse (or in a circle if they are stan-
dardized) which covers a certain percentage of the data (95%, for example).
If a workspace is designed to enable all these cases to operate efficiently, then
all other less extreme body types and sizes in the target population (within
the circle) should also be well accommodated.

Friess in [8] makes an excellent analysis of the PCA-approach, where his
comparison reveals that PCA approach have many limits: 1) in its simplest
variant it can lead to enormous portions of the population (nearly 50%) being
left out; 2) an improved version of it requires the use of a great number of
components (if not all) and the contribution of octant points to the deter-
mination of multivariate boundaries remains unclear. Still, even this version
did not achieve the level of accommodation it set out to reach.

Note that the PCA-approach followed for example in [26, 11, 24] has sev-
eral drawbacks. As it only chooses the first components, part of the data
variation is removed (according to the variation explained by the first com-
ponents. In addition, not considered variation may represent cases difficult
to accommodate). Therefore, when building the ellipse, the true covered per-
centage is not the 95%. Furthermore, with two and three components the
selected cases are respectively, eight and fourteen, so the number of cases
would increase if we would want to represent more than three components in
order to consider more variation. It may not be practical to select too many
cases. Moreover, if we restrict ourselves to the chosen components, there
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might be combinations of variables which were not collected by the princi-
pal components (even considering all the possible components) and which
correspond to extreme data, since the goal of PCA is not the calculation of
extreme data. This final consideration will be shown in Section 3.

Therefore, an alternative to the previous methodology, is proposed: the
archetypal analysis [3]. We propose a methodology with which we can assure
the covering of a certain proportion of the population. Archetypal analysis
assumes that there are several “pure” individuals who are on the “edges” of
the data, and all others individuals are considered to be mixtures of these
pure types. Archetypal analysis (AA) estimates the convex hull of a data
set, as such AA favors features that constitute representative “corners” of the
data, i.e. archetypes. Archetypes are almost always easy to interpret as they
represent extreme combinations of features. In the original paper on AA [3]
the method was demonstrated useful in the analysis of air pollution and head
shape and later also for tracking spatio-temporal dynamics. Recently, AA
has found use in benchmarking and market research [15] and in particular, for
identifying typically extreme practices, rather than just good practices [21],
as well as in the analysis of astronomy spectra [2] as an approach for the end-
member extraction problem [20]. Ref. [6] is another interesting contribution
in which archetypal athletes are determined for American basketball and
European soccer, according the data from their most representative leagues.
AA has been shown to be relevant also for a large variety of machine learning
problems and for high-dimensional data arising from video-taped images [18,
19, 25]. A recent application of AA for comparing different species of bats is
found in [4].

Archetypes can be computed easily by means of a library of free software
R [5, 22]. The code developed to calculate them from our data is freely
available and it can be seen in Appendix A. The outline of the paper is as
follows: section 2 describes the data set and the methodology used in this
paper. The application of our procedure is given in Section 3. Conclusions
and possible further developments conclude the paper in Section 4.

2. Materials and Methods

2.1. Data

Our data set comes from the 1967 United States Air Force (USAF) Survey
(available from http://www.dtic.mil/dtic/, and as supplemental material for
be readded with our code). The 1967 USAF Survey was conducted during the
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first three months of 1967 under the direction of the Anthropology Branch of
the Aerospace Medical Research Laboratory, located in Ohio. Subjects were
measured at 17 Air Force bases across the United States of America. A total
of 202 variables (including body dimensions and background variables) were
taken on 2420 Air Force personnel between 21 and 50 years of age. From the
total of variables, we select in particular six anthropometric measurements,
the same selected in [26]. These six dimensions are the so-called cockpit di-
mensions because they are the most important dimensions in order to design
aircraft cockpits. The summary statistics of these variables can be seen in
Table 1. Table 2 gives the description of each one of them, regarding [13].

We have chosen this well-known problem and database in order to high-
light the contribution of our methodology.

Table 1: Summary statistics for the six variables considered.

Measurement (inches) Mean Standard Deviation
Thumb Tip Reach 31.618 1.567
Buttock-Knee Length 23.781 1.064
Popliteal Height Sitting 17.206 0.885
Sitting Height 36.687 1.251
Eye Height Sitting 31.870 1.188
Shoulder Height Sitting 24.037 1.126

Table 2: Description of the six variables considered.
Measurement Description
Thumb Tip Reach Measure the distance from the wall to the tip of the thumb.
Buttock-Knee Length Measure the horizontal distance from the rearmost surface of

the right buttock to the forward surface of the right kneecap.
Popliteal Height Sitting Measure the vertical distance from the footrest surface to the

superior margin of the right kneecap.
Sitting Height Measure the vertical distance from the sitting surface to the

top of the head.
Eye Height Sitting Measure the vertical distance from the sitting surface to the

right external canthus (outer “corner” of eye).
Shoulder Height Sitting Measure the vertical distance from the sitting surface to the

right Acromion - the bony landmark at the tip of the shoulder.

Fig. 1 shows a common skeleton of an aircraft pilot with explanations of
the six selected measurements.

4



Figure 1: Generic skeleton for an aircraft pilot.

2.2. Methodology

2.2.1. Archetypal analysis
Consider an n×m matrix X representing a multivariate data set with n

observations and m variables. The goal of the archetypal analysis is to find
a k×m matrix Z that characterize the archetypal patterns in the data, such
that data can be represented as mixtures of those archetypes. More precisely,
the archetypal analysis aims at obtaining the two n × k coefficient matrices
α and β which minimize the residual sum of squares

RSS =
n∑

i=1

‖xi −
k∑

j=1

αijzj‖2 =
n∑

i=1

‖xi −
k∑

j=1

αij

n∑

l=1

βjlxl‖2 (1)

under the constraints

1)
k∑

j=1

αij = 1 with αij ≥ 0 and i = 1, . . . , n

2)
n∑

i=1

βji = 1 with βji ≥ 0 and j = 1, . . . , k
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Constraint 1) tell us that predictors of xi are finite mixtures of archetypes,

xi =
k∑

j=1

αijzj, while constraint 2) implies that archetypes zj are convex

combinations of the data points, zj =
n∑

l=1

βjlxl.

2.2.2. Calculation of archetypes with a 95% accommodated
The procedure that we propose is as follows. First, we standardize the

variables, as [26]. Since we are looking for archetypes for the 95% of the
sample, we have to remove the more extreme 5% data. We can do this in two
ways. If we assume that the data comes from a multivariate (m-variate) nor-
mal (as we are dealing with anthropometric measurements, we can assume
this), then we can use the fact that the Mahalanobis distance from a obser-
vation to the mean D2 = (x− µ̂)′Σ̂−1(x− µ̂), where µ̂ is the estimated mean
and Σ̂ is the estimated covariance matrix, is distributed according to the Chi-
square distribution with m degrees of freedom. Therefore, those observations
more far away from the 95th percentile of the Chi-square distribution, can
be removed from the analysis. We use this procedure because with the PCA
approach, the normality is assumed when drawing the circle. Anyway, if the
normality hypothesis is not acceptable, a non parametric alternative might
be employed. For example, the depth of each data can be calculated. Then
a removing procedure from the less to the deepest data can be applied until
getting the desired 95%. However, this approach has the disadvantage that
the desired percentage is not under control of the analyst as with the former
procedure. For instance, there was almost a 7% of less deep data in the
USAF Survey (169/2420 = 0.0698), each one of them with the same depth.
We checked that there was pretty agreement using the Mahalanobis distance
and depth procedure with the USAF database. That’s why we only consider
the former approach using the Mahalanobis distance.

After removing the more extreme 5% data, we apply archetypal analysis
to get the archetypes. The number of them is decided by our own criterion or
by an external criterion, as explained in Section 3.2. We would like to point
out that the archetypes are not nested. For instance, if we first calculate
three archetypes and then we calculate four archetypes, there is no reason
so that these four include those first three obtained, as the existing ones can
change to better capture the shape of the data set. The archetypes fall on
the convex hull of the data, except when k = 1, where the archetype obtained
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is the sample mean. Once obtained them (they are measurements for each
dimension), we will be able to calculate to which percentile corresponds each
one of the variables used.

In summary, the steps are the following. First, depending on the problem,
to standardize the data or not (to use standardization depends on one’s sense
about the data, but in this case the variables should be standardized as they
measure different dimensions). Second, to use Mahalanobis distance and Chi-
square distribution to select the subsample for obtaining the archetypes as
the third and last step.

3. Results

3.1. Archetypes for 1967 USAF

We have computed the archetypes from k = 1 to k = 10 (remember that
for k = 1 the mean of each variable is obtained). Fig. 2 displays the per-
centile value of each variable for each archetype, from k = 2 (a) to k = 10 (j).
The percentiles of each archetype are represented by each set of bars, where
a bar represents a different variable, from dark gray (Thumb Tip Reach) to
light gray (Shoulder Height Sitting). For example, in Fig. 2 (a), the first
archetype is low in all variables, whereas the second archetype is high in
the six variables. In Fig. 2 (b), the percentiles for each one of the three
archetypes are shown. The first archetype has small percentiles for the first
three variables (corresponding to limb dimensions), while has average mea-
sures for the last three variables (corresponding to torso dimensions). The
second archetype represents individuals which are huge in all measurements,
and the third archetype represents individuals which are small, although for
the first three variables not very small, around the 25nd percentile. As said
before, archetypes are not nested. As more archetypes are found, the existing
ones can change to better capture the information of the data set. So, we
have to determine which is the number of archetypes to be considered.
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Figure 2: Percentiles of archetypes from k = 2 to k = 10.

3.2. Choosing the number of archetypes

The user can decide how many archetypes wants to consider. However,
in case that you are not sure about which is the best number, the residual
function can orientate you. As in many cases there is no rule for the correct
number of archetypes k. A simple method the determine the value of k is to
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run the algorithm for different numbers of k and use the elbow criterion on
the residual sum of squares, RSS, where a flattening of the curve indicates
the correct value of k. This method is very common in statistics. The RSS
from k = 2 to 15 is graphed in Fig. 3.
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Figure 3: Screeplot of the residual sum of squares.

According to Fig. 3, an elbow occurs at k = 3. There is another one
at k= 7 (there is a flat zone in the plot from k = 7 to k = 8), and maybe
at k = 10. Corresponding to Occam’s razor three and seven archetypes
are considered as the best numbers of archetypes (the law of parsimony is
considered since a large numbers of representative cases may overwhelm the
designer and thus, be counterproductive, although if he/she is interested
in more archetypes, they can be computed). Results for three archetypes
where commented in subsection 3.1. We focus on seven archetypes, whose
percentiles were represented in Fig. 2 (f). The first archetype has high
percentiles for all variables, the opposite to the second archetype with low
percentiles in all variables. The third archetype has high percentiles in the
first three variables (those related with limb dimensions), whereas has middle
percentiles for the last three variables (those related with torso dimensions),
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just the opposite for the fourth archetype (middle percentiles for the first
three variables and high percentiles for the last three variables). In the fifth
archetype, the percentiles are middle-high for the first three variables and low
for the last three, the opposite of the seventh archetype, with low percentiles
for the first three variables and middle-high for the last ones. The sixth
archetype shows a different profile, with high percentiles for all variables
except the first one, the only one related with arms (a man which is huge in
all measurements, but with short arms).

If the body size variability exhibited by these archetypes is accommodated
into a new aircraft design, then the target percentage of the total population
will. This assumes, that the seat, rudder, and other adjustable components
can be adjusted in sufficiently small increments. Without such adjustability,
it may be necessary to pick more representative cases.

3.3. Comparison with PCA results

In order to compare the archetypes obtained with our methodology with
that obtained with PCA as in [26, 24], we have computed PCA for the six
standardized variables and all the individuals. Table 3 shows the coefficients
for the six principal components, the percentage of variance explained for
each component, and the cumulative percentage.

Table 3: PCA coefficients and percentage of explained variance

PC1 PC2 PC3 PC4 PC5 PC6
Thumb Tip Reach -0.364 0.453 0.697 0.418 0.04 -0.001
Buttock-Knee Length -0.36 0.464 -0.716 0.374 0.036 -0.043
Popliteal Height Sitting -0.39 0.408 0.025 -0.809 -0.144 0.077
Sitting Height -0.46 -0.353 0.02 -0.082 0.305 -0.751
Eye Height Sitting -0.449 -0.367 -0.025 0.004 0.494 0.648
Shoulder Height Sitting -0.416 -0.392 -0.01 0.155 -0.8 0.098
% Explained Variance 61.5 21.0 6.59 5.69 4.08 1.07
Cumulative % 61.5 82.6 89.15 94.84 98.93 100

Note that the first two components capture the 82.6% of variability (89.15%
with the first three components). If only the first two components are consid-
ered, some variability (maybe important) is discarded. The first component
can be interpreted as the overall size of the individuals. The second com-
ponent contrasts (the sign is different) the limb dimensions (the first three)
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and the torso dimensions (the last three). The third and fourth components
show a contrast inside the limbs (Thumb Tip Reach versus Buttock-Knee
Length for the third, and Thumb Tip Reach and Buttock-Knee Length versus
Popliteal Height Sitting for the fourth). The torso dimensions are contrasted
instead by the fifth and sixth components (Sitting Height and Eye Height
Sitting versus Shoulder Height Sitting for the fifth, and Sitting Height versus
Eye Height Sitting for the sixth).

Fig. 4 shows the scores for the two first principal components of all
individuals in gray, with the scores for the three archetypes (a), and seven
archetypes (b) in black squares.
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Figure 4: PC scores for three (a) and seven (b) archetypes

The archetypes obtained with k = 3 are similar to those that can be
obtained with the two first principal components (see the results for three
archetypes in subsection 3.1, the second archetype corresponds to an extreme
of PC1, and the first and third archetype correspond to a combination of
extremes of PC1 and PC2, octants). In the case that k = 7 archetypes,
all except the sixth archetype correspond to extreme combinations of PC1
and PC2 (they form a circle). However, the sixth archetype (the one with
scores -1.28 and -0.86 for PC1 and PC2 respectively) cannot be extracted as
a combination of the two first PC. In fact, it cannot be obtained with any
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combination of the PCs.
Table 4 shows the percentile values for the 8 cases extracted with the

classical PCA approach for 95% accommodation (see [24] for details).

Table 4: Percentile values for two principal component representative cases

A B C D W X Y Z
Thumb Tip Reach 98 38 2 62 96 90 4 10
Buttock-Knee Length 98 37 2 63 96 90 4 10
Popliteal Height Sitting 98 31 2 69 97 87 3 13
Sitting Height 80 1 20 99 99 16 1 84
Eye Height Sitting 78 1 22 99 98 16 2 84
Shoulder Height Sitting 74 2 26 98 98 14 2 86

Percentiles for the archetypes with k = 7 appear in table 5.

Table 5: Percentile values for seven archetypes

1 2 3 4 5 6 7
Thumb Tip Reach 94 2 99 44 68 10 6
Buttock-Knee Length 97 1 86 7 89 66 22
Popliteal Height Sitting 94 2 96 37 77 87 0
Sitting Height 99 0 51 86 3 86 57
Eye Height Sitting 99 1 64 85 2 84 64
Shoulder Height Sitting 99 1 29 93 13 68 57

The case W corresponds with archetype 1, the Y with archetype 2. The
case A is in the middle between archetype 1 and 3. There is no case with PCA
for archetype 3. The same occurs with case B, which is in the middle between
archetype 2 and 5. The case X is the nearest to archetype 5, although it does
not correspond exactly. The case C is in the middle between archetype 2 and
7. The case D could be seen as a kind of combination of archetypes 1, 4 and
6, although there is not case for archetypes 4 and 6. The case Z is in the
middle between archetypes 4 and 7. As we have seen, except in two cases
there is no clear coincidence between the cases for PCA and archetypes.

In table 6 and 7 the corresponding values for each variable are displayed.
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Table 6: Variable values for two principal component representative cases

A B C D W X Y Z
Thumb Tip Reach 34.93 31.14 28.31 32.14 34.3 33.61 28.94 29.62
Buttock-Knee Length 26.02 23.44 21.55 24.13 25.60 25.12 21.96 22.44
Popliteal Height Sitting 19.07 16.77 15.35 17.64 18.83 18.21 15.58 16.20
Sitting Height 37.74 33.89 35.63 39.48 39.41 35.46 33.96 37.92
Eye Height Sitting 32.8 29.24 30.98 34.5 34.39 30.67 29.35 33.08
Shoulder Height Sitting 24.77 21.6 23.3 26.48 26.28 22.83 21.8 25.24

Table 7: Variable values for seven archetypes

1 2 3 4 5 6 7
Thumb Tip Reach 34.18 28.51 35.34 31.34 32.33 29.69 29.24
Buttock-Knee Length 25.85 21.23 24.94 22.27 25.09 24.18 22.97
Popliteal Height Sitting 18.65 15.39 18.79 16.89 17.84 18.22 14.99
Sitting Height 39.66 33.57 36.7 38 34.46 38.07 36.88
Eye Height Sitting 35.05 29.24 32.28 33.08 29.58 33.04 32.28
Shoulder Height Sitting 26.73 21.26 23.41 25.8 22.82 24.56 24.22

Fig. 5 shows the skeletons for each one of these seven archetypes.
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Figure 5: Skeleton plots visualizing the seven archetypes.

The nearest individual to each archetype can be obtained by simply com-
puting the distance between the archetypes and the individuals and choosing
the nearest. The code can be seen in Appendix A.

4. Conclusions

We have proposed an alternative to determine test cases based on archety-
pal analysis. This technique effectively considers a certain percentage of the
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population for accommodation, not as the classical PCA where the percent-
age of accommodation is determined without consider all the variability, and
therefore it does not consider effectively the accommodation percentage de-
sired previously. We have applied the technique to a classical database and
we have compared it with the methodology based on PCA, which is the most
common for obtaining the boundary cases. With our methodology, we ob-
tained seven archetypes, one of them could not be extracted by any principal
component. Friess [8] indicates that the contribution of octant points to the
determination of multivariate boundaries with PCA remains unclear, and he
suggests that caution must be used when relying on PCA outcome, as it does
not achieve the level of accommodation it set out to reach. He also recom-
mends that a PCA derived boundary model be systematically tested against
the sample from which it was calculated to allow for possible adjustments.
As the objective of the archetypal analysis is obtaining extreme individuals,
just as the objective of obtaining boundary cases, these adjustments are not
necessary with our methodology. We have shown how to select the number of
the archetypes, based on the elbow criterion for the RSS and the Occam’s ra-
zor, since large numbers of representative cases may overwhelm the designer
and thus, be counterproductive. The archetypes can be obtained easily as
the code is free and open.

The use of archetypal analysis with 3D body scanner is our future study.
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Appendix A: Archetypal Analysis in R with our data

The following commands (also available at http://www3.uji.es/∼epifanio/
RESEARCH/archboundary.rar) show how to reproduce the results from this
article in R. Package archetypes is freely available on http://cran.R-project.org.

First, we read and preprocess the database USAF 1967.

> m <- read.table(med1967.dat, sep =" ")
> #Variable selection:
> sel <- c(48, 40 ,39, 33, 34, 36)
> #Changing to inches:
> mpulg <- m[,sel] / (10 * 2.54)
> #Standarizing (normalizing):
> smpulg <- scale(mpulg, center = mean(mpulg[,]), scale = sd(mpulg[,]))

Next, we remove the more extreme 5% data using the Mahalanobis dis-
tance and we check that calculating the depth of each data, we get very
similar results.

> Sx <- cov(smpulg)
> D2 <- mahalanobis(smpulg, colMeans(smpulg), Sx)
> #Number of individuals not considered:
> sum(D2 > qchisq(0.95, df = 6))
> #Which individuals are not considered:
> qchi <- which(D2 > qchisq(0.95, df = 6))

> library(depth)
> dt = c()
> for(i in 1 : nrow(smpulg)){
dt[i] <- depth(smpulg[i,], smpulg)
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}
> #Number of individuals not considered:
> sum(dt == min(dt))
> #Which individuals are not considered:
> qd <- which(dt == min(dt))

> #Agreement between Mahalanobis and depth:
> intersect(qd, qchi)

Results shown in Section 3 are obtained as follows.

> #Individuals considered for covering 95%:
> qlchi <- which(D2 <= qchisq(0.95, df = 6))
> #Database with the 6 variables and the selected individuals
> lsmpulg <- smpulg[qlchi,]

> library("archetypes")
> #For reproducing results, seed for randomness:
> set.seed(2010)
> #Run archetypes algorithm repeatedly from 1 to 15 archetypes:
> lass15 <- stepArchetypes(data = lsmpulg, k = 1:15,
verbose = FALSE, nrep = 3)
> #Plot from 1 to 15 archetypes:
> screeplot(lass15)
> #3 archetypes:
> a3 <- bestModel(lass15[[3]])
> parameters(a3)
> #7 archetypes:
> a7 <- bestModel(lass15[[7]])
> parameters(a7)
> #Plotting the percentiles of each archetype:
> barplot(a3, smpulg, percentiles = T, which = "beside")
> barplot(a7, smpulg, percentiles = T, which = "beside")

We get the results in Section 3.3 related with PCA.

> pznueva <- prcomp(smpulg, scale = T, retx = T)
> summary(pznueva)
> #PCA scores for 3 archetypes:
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> p3 <- predict(pznueva, parameters(a3))
> #PCA scores for 7 archetypes:
> p7 <- predict(pznueva, parameters(a7))
> #Representing the scores:
> xyplot.pca(p3[,1:2], pznueva$x[,1:2], data.col = gray(0.7), atypes.col =
1, atypes.pch = 15)
> xyplot.pca(p7[,1:2], pznueva$x[,1:2], data.col = gray(0.7), atypes.col =
1, atypes.pch = 15)

At last, we show how the empirical percentiles and the nearest individuals
to each one of archetypes can be obtained.

> #Function for computing empirical percentiles:
> .perc <- function(x, data, digits = 0) {

Fn <- ecdf(data)
round(Fn(x) * 100, digits = digits)

}
> #Percentiles for 3 archetypes:
> .perc(parameters(a3),smpulg)
> #Percentiles for 7 archetypes:
> .perc(parameters(a7), smpulg)

> #Which is the nearest individual to archetypes?.
> #Example for three archetypes:
> i = 3
> ai <- bestModel(lass15[[i]])
> ras <- rbind( parameters(ai),smpulg)
> dras <- dist(ras, method = "euclidean", diag =F, upper = T, p = 2)
> mdras <- as.matrix(dras)
> diag(mdras) = 1e+11
> wh1 <- which.min(mdras[1,]) - (i)
> min(mdras[1,])
> wh2 <- which.min(mdras[2,]) - (i)
> min(mdras[2,])
> wh3 <- which.min(mdras[3,]) - (i)
> min(mdras[3,])
> pa <- parameters(ai)
> dist(rbind(pa[1,],smpulg[wh1,]))
> smpulg[wh1,]

20



In addition, we can turn the standarized values to the original variables.

> parameters(a7)
> p <- parameters(a7)
> m <- mean(mpulg[,])
> s <- sd(mpulg[,])
> d <- p
> for(i in 1 : 6){
d[,i] = p[,i] * s[i] + m[i]
}
> t(d)

The code of function xyplot.pca is the following:

> xyplot.pca <- function(x, y, data.col = 1, data.pch = 19, data.bg = NULL,
atypes.col = 2, atypes.pch = 19, ahull.show = F, ahull.col = atypes.col,
chull = NULL, chull.col = gray(0.7), chull.pch = 19, adata.show = FALSE,
adata.col = 3, adata.pch = 13, link.col = data.col, link.lty = 1, ...){

zs <- x
data <- y

plot(data, col = data.col, pch = data.pch, bg = data.bg, ...)
points(zs, col = atypes.col, pch = atypes.pch, ...)

if(!is.null(chull)){
points(data[chull, ], col = chull.col, pch = chull.pch, ...)
lines(data[c(chull, chull[1]), ], col = chull.col, ...)
}

if(ahull.show)
lines(ahull(zs), col = ahull.col)
if(adata.show){
adata <- fitted(zs)
link.col <- rep(link.col, length = nrow(adata))
link.lty <- rep(link.lty, length = nrow(adata))
points(adata, col = adata.col, pch = adata.pch, ...)
for (i in seq_len(nrow(data)))
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lines(rbind(data[i, ], adata[i, ]), col = link.col[i],
lty = link.lty[i], ...)

}
invisible(NULL)

}
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