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Summary 

The catalyticic activity of gold depends on particle size, with reactivity increasing as 

particle diameter decreases. Investigation of the trends in the subnanometer regime, 

where gold exists as small clusters of a few atoms, is now starting thanks to recent 

advances in synthesis and characterization techniques. An easy method to prepare 

isolated gold atoms supported on functionalized carbon nanotubes and their 

performance in the oxidation of thiophenol with O2 are described. Single gold atoms are 

not active and they aggregate under reaction conditions into gold clusters of low 

atomicity, which show a catalytic activity comparable to that sulfhydryl oxidase 

enzymes. When clusters grow into larger nanoparticles, catalyst activity drops to zero. 

Theoretical calculations show that gold clusters are able to simultaneously activate 

thiophenol and O2, while larger nanoparticles become passivated by strongly adsorbed 

thiolates. The combination of an optimum for reactants activation and product 

desorption makes gold clusters excellent catalysts. 

 

Main Text 

Gold has attracted wide interest as catalyst in the last years due to its unexpected 

activity and, specially, to its high selectivity in organic reactions.
1-3 

The catalytic 

properties of gold depend on several factors that in some cases are intimately related: 

gold particle size and morphology, metal-oxide support interaction, oxidation state of 

the active sites, etc.
4-8

 The influence of particle size has been extensively investigated, 

and a volcano type curve with a maximum in activity at an optimum diameter has been 

reported for CO oxidation,
7
 alkane oxidation,

9
 or propene epoxidation with O2 and H2,

10
 

while in other cases an exponential increase in activity with decreasing particle size has 

been observed.
5,11,12

 However, the trends in catalytic activity when the particle diameter 
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is smaller than 1 nm have been little investigated due to the difficulty in achieving a 

very narrow distribution of cluster sizes and to the detection limit of traditional 

spectroscopic and microscopic techniques. Recent advances in aberration corrected 

scanning transmission electron microscopy (STEM) have allowed imaging with atomic 

resolution. Then, gold atoms in combination with gold clusters and nanoparticles have 

been detected on gold samples prepared by conventional synthesis procedures,
13-15

 

while direct evidence of isolated gold atoms in the absence of clusters or nanoparticles 

has been recently provided by Gates et al.
16,17

 A pronounced sensitivity to cluster size 

and charge state has been found when studying the interaction of small molecules with 

gold atoms and/or clusters,
18-22

 as well as in chemical processes like CO oxidation,
13

 

propene epoxidation,
23

 ethylene hydrogenation,
24

 and iodobenzene dissociation.
25

 

 While it appears that in order to control reactivity, the atomicity control of the 

gold clusters is crucial, the synthesis of size-selected metal clusters and their deposition 

over a solid support is a challenging task.
26

 The wet-chemistry methods for preparing 

supported metal clusters involve the anchoring of well defined precursors to an adequate 

support,
27,28

 followed by removal of the ligands by post-synthesis treatments, trying to 

prevent cluster agglomeration during these steps.
9,29-31,32

 Soft landing of monodisperse 

metal clusters grown in the gas phase and with precise size selection by mass 

spectrometry is a more straightforward method, but it requires sophisticated equipment, 

and the scaling up of the process is a major drawback.
20,23,33

 

 In this work, isolated gold atoms in the absence of gold clusters and/or 

nanoparticles have been synthesized by a very easy, reproducible and environmental 

friendly process, and their performance in the aerobic oxidation of thiophenol with O2 

has been investigated. The isolated gold atoms initially present in the as-prepared 

catalyst aggregate into gold clusters of different atomicity under reaction conditions. It 
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is clearly shown that, while the activity of single isolated gold atoms and of gold 

nanoparticles is negligible, atomic aggregates with 5 to 10 atoms either generated under 

reaction conditions or synthesized separately and deposited on functionalized MWCNTs 

give turnover frequencies (TOF) as high as 7*10
5
 h

-1
, which are of the same order of 

magnitude than those found with sulfhydryl oxidase enzymes.
34,35

 These clusters finally 

aggregate into larger and not active nanoparticles. The reaction mechanism has been 

theoretically studied and it is shown that isolated gold atoms cannot activate O2, while 

small gold clusters are excellent catalysts for O2 activation and formation of disulfide.  

 

Results and discussion 

Catalyst synthesis and characterization. Isolated gold atoms supported on 

functionalized multiwalled carbon nanotubes (MWCNTs) have been synthesized by 

controlling the pH value of the medium, the concentration of the HAuCl4 precursor, and 

by introducing sodium citrate that acts as reducing agent and stabilizer, as described in 

detail in Supplementary Section 1. Cs-corrected high resolution STEM analysis 

confirms the presence of isolated gold atoms. Figure 1a shows a bright field (BF-

STEM) image of sample A containing 0.1wt% gold which does not allow to clearly 

visualize gold atoms supported on the MWCNTs. However, the high-angle annular dark 

field STEM (HAADF-STEM) image shown in Fig. 1b clearly evidences the presence of 

isolated atoms (monomers and some dimers), that appear as white dots which 

correspond to a high Z element and not to defects or carbon atoms (see Supplementary 

Fig. S2 and S3). 

 The chemical nature of these isolated atoms has been investigated by X-ray 

absorption spectroscopy (XAS) and X-ray photoelectron spectroscopy (XPS). 

According to XAS measurements, isolated gold atoms are mostly present as cationic 
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Au
I
 species directly bonded to light elements, most probably O atoms. The XANES 

spectrum of sample A is almost identical to the Au
I
 reference [(PPh3)AuCH3] spectrum 

(Figure 1c). Nonetheless, the first peak in the FT of the EXAFS signal appears at 

slightly lower interatomic distance than the first peak of the reference Au complex due 

to the different overall nature of the gold ligands (Figure 1d). The coexistence of small gold 

clusters or other multimetallic complexes cannot be disentangled from the XAS data 

due to both the intrinsic limitation of the technique and the insufficient data quality for 

EXAFS quantitative analysis. Although the small peaks at 2.3 and 2.7 Å in Figure 1d 

could indicate the presence of such small gold clusters, they could also be arising from 

other ligands and structures present in the sample. In agreement with XAS results, XPS 

analysis performed at -170 ºC shows the presence of Au
I
, with a Au4f7/2 binding energy 

of 85.4 eV (Supplementary Fig. S4). According to Raman and IR analysis, these Au
I
 

species are stabilized by hydroxyl and citrate or dicarboxyacetone (DCA) ligands 

(Supplementary Fig. S5 and S6).  

Catalytic study of thiophenol oxidation to disulfide. The catalytic behaviour of 

sample A in the oxidation of thiophenol to disulfide in the presence of O2 is shown in 

Fig. 2a. The reaction with this catalyst, containing isolated gold atoms and dimers, 

presents an initial induction period. After this period, disulfide is formed at a high 

reaction rate, with 85% conversion being attained after 1 hour. The induction period 

observed with sample A would indicate that the active species are not the isolated gold 

atoms present in the as-prepared catalyst, but other metal species that are being formed 

during the reaction. Therefore, the evolution of the gold species present on the catalyst 

was followed by stopping the reaction at different times, isolating the catalyst, and 

characterizing the species present by means of HAADF-STEM, XAS and UV/Vis 

spectroscopies.  
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 The first catalyst sample extracted from the reaction media (sample B), was 

taken at 6 min, immediately after the induction period when the catalytic reaction starts 

with an initial TOF of 1.1*10
5
 h

-1
. The aberration corrected HAADF-STEM image of 

sample B shows that small clusters with 4–13 gold atoms have been formed, and 

isolated gold species are now minoritary (Figure 3b and Supplementary Fig. S8). When 

reaction time proceeds, (sample C taken at 12 min), metal aggregation occurs and gold 

clusters and nanoparticles can already be observed. After 120 min of reaction (sample 

D), the activity of the catalyst stops. At this point, gold has aggregated into 

nanoparticles with diameter ≥ 2 nm, which represent ~90% of the gold present in the 

catalyst. Atomic gold cluster distributions calculated on samples A, B and C by 

analyzing more than 200 gold species are comparatively depicted in Fig. 3e, in which 

aggregation of the initially isolated gold atoms into clusters and finally nanoparticles is 

clearly observed. This has also been determined by XAS and UV/Vis measurements 

(see Supplementary Fig. S13 and S14).  

 Most importantly is the fact that when sample B, which mainly contains gold 

clusters with 4–13 atoms, is used as the initial catalyst with fresh feed, no induction 

period is observed (see Fig. 2b), and the TOF calculated from the slope of conversion 

versus time, and considering that all atoms in the sample are active, is 0.8*10
5
 h

-1
. 

Meanwhile when catalyst C, which contains ~75% of gold in the form of nanoparticles 

and ~20% as clusters with 4–13 atoms, is used as fresh catalyst, no induction period is 

observed, but the calculated TOF decreases to 0.2*10
5
 h

-1
. At last, when sample D 

mainly containing gold nanoparticles with diameter ≥2 nm is used as fresh catalyst, no 

activity is observed. The above results clearly suggest that neither isolated gold atoms 

nor nanoparticles, but gold clusters with 4–13 atoms are the active species for the 

oxidation of thiophenol.  
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 To double check this conclusion, isolated gold clusters with 3, 5–7 and 7-10 

atoms were prepared separately and deposited on functionalized MWCNTs following 

the procedure described in Methods and in Supplementary Information. The resultant 

materials were used as catalysts for thiophenol oxidation, and the results shown in Fig. 

4 indicate that with Au3 clusters the reaction still presents an induction period of 5 min, 

with Au5–7 clusters the induction period is less than 2 min, and with Au7–10 clusters no 

induction period is observed. In the case of Au3 and Au5–7 clusters the reaction, when 

starts, is very fast (7.5*10
5 

h
-1

) while on Au7–10 the reaction is also very fast (2.8*10
5 

h
-1

) 

but the catalytic activity rapidly decreases and stops at 37% conversion. From these 

results we can conclude that the most active gold species for the oxidation of thiophenol 

to benzene disulfide correspond to small gold clusters containing between 5 and 10 

atoms. Indeed, when the TOF values for samples B and C used as fresh catalysts are 

calculated only on the basis of the clusters with 5–10 atoms, a TOF of 1.2*10
5
 h

-1 
is 

obtained on both samples. This value is of the same order of magnitude than for gold 

prepared in the form of clusters with 5-10 gold atoms. It is interesting to notice that the 

TOF for the aerobic oxidation of thiols with sulfhydryl oxidase enzymes is similar, and 

range from 1.2*10
4
 h

-1 
to 1.2*10

5
 h

-1
.
34,35

 From our experimental results, it is concluded 

that neither gold atoms nor gold nanoparticles larger than 1 nm diameter are active for 

the oxidation of thiophenol. To further confirm this hypothesis, gold nanoparticles of 

0.8 nm (15-25 atoms) and 1.2 nm (~ 50 atoms) were supported on the functionalized 

MWCNTs, and very low or no catalytic activity was observed on these samples 

(Supplementary Fig. S18 and S19). 

 The question then becomes: why neither isolated gold atoms nor gold 

nanoparticles are catalytically active, while gold clusters within 5 and 10 atoms are? To 

answer this question, the most relevant elementary steps involved in the mechanism of 
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thiophenol oxidation to benzene disulfide, i.e., thiophenol dissociation, oxygen 

activation and S-S bond formation, have been studied by means of DFT calculations on 

the isolated Au
I
 species present in the as-prepared catalyst, as well as on small Au3, Au5, 

Au6 and Au7 clusters.  

Theoretical study of the reaction mechanism. As described above, the isolated gold 

species initially present in the catalyst are cationic Au
I
 centres coordinated to hydroxyl 

and carboxy groups from DCA (structure 1 in Fig. 5). Calculations indicate that this 

species does not interact with O2, (Supplementary Fig. S20) but forms a hydrogen 

bonded adsorption complex with thiophenol (structure 2 in Fig. 5) that, via proton 

transfer from S to the OH group produces a H2O molecule and a system in where the 

Ph-S fragment is directly bonded to the Au centre (structures 3 including H2O and 4 

after H2O desorption). The global process 1→4 is almost thermo neutral, and the net 

charge on the Au atom decreases from 0.49 in 1 to 0.36 in 4, reflecting the replacement 

of the HO group by the more electron donating PhS ligand. Adsorption of a second 

thiophenol molecule (complex 5), and subsequent proton transfer from S to a carboxy O 

atom of DCA, results in formation of a highly stable Au-di-thiolate anionic complex 

interacting with the positively charged DCA fragment (structure 6 in Fig. 5). Attempts 

to form disulfide from the two thiolate fragments directly bonded to the same Au atom 

in structure 6 always lead to dissociation of the S-S bond and regeneration of the linear 

PhS-Au
I
-SPh complex. The reason is that, in the global process 1→6, the two S-H 

bonds of the two reactant thiophenol molecules have been dissociated heterolytically, 

and the extra electrons are still over the two thiolate fragments (see charge distribution 

in Fig. 5). The atomic orbital distribution shows that these extra electrons are localized 

on the S lone pair orbitals leading to strong repulsion between them and to incapacity to 

form the S-S bond. However, if the two extra electrons from the Au(S-Ph)2 system are 
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removed and a globally cationic [Au(S-Ph)2]
+
 fragment (structure 7 in Fig. 5) is 

considered, then the S atoms bear a small positive charge of 0.10 e each, and there is a 

reaction pathway leading to formation of disulfide 9 via transition state TS8, with an 

activation barrier of 92 kJ/mol and a reaction energy of 38 kJ/mol. The structures and 

energies obtained here for disulfide formation or dissociation over Au
+
 cation compare 

well with those reported for S-S bond dissociation in several L,L-cystine derivatives.
36 

So, it seems that the key point to form the S-S bond is to first remove the two extra 

electrons from the system, and this should be done by O2. However, neither the initial 

DCA-Au
I
-OH complex 1 nor intermediates 4 and 6 formed by replacing the OH and 

DCA ligands with thiolate fragments, are able to activate molecular O2 (Supplementary 

Fig. S20). The reason is that the HOMO in structures 1, 4 and 6 is mainly a combination 

of the Au-O and Au-S bonds, and does not allow a good overlap with the LUMO of 

molecular O2. As a consequence, the degree of HOMOAuLUMOO2 electron density 

transfer is small –the calculated charge on O2 in the corresponding 1-O2, 4-O2 and 6-O2 

complexes is less than 0.01 e– and O2 is not activated.  

The situation is completely different when small Au3, Au5, Au6 and Au7 clusters 

are considered as active species. Thiophenol adsorbs on all these clusters forming a 

stable Au--S bond and transferring ~0.2 e from the S lone pair to the metal LUMO 

(Supplementary Fig. S21). O2 interaction with Au3 Au5, and Au7, clusters is also 

energetically favorable and involves, in most cases, a noticeable activation of the O–O 

bond (Fig. 6a and S21), in agreement with previous studies showing that O2 is activated 

by small gold clusters with an even number of electrons.
18 

 Co-adsorption of thiophenol 

and O2 is always energetically favorable, and in some cases a synergistic effect leading 

to a higher degree of O2 activation is observed. The origin of this behaviour lies on the 

atomic composition of the molecular orbitals of these small clusters (see Fig. 6a) that 
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consist of several lobes localized on the low coordinated Au atoms and fully accessible 

to interaction with O2. This allows a net transfer of electron density from gold to the 

*OO molecular orbital of O2, leading to its activation. 

 As shown in Fig. 6b for Au5 cluster, which has been experimentally determined 

as the smallest cluster active for thiophenol oxidation, co-adsorption of thiophenol and 

O2 on two neighbouring Au atoms results in formation of a stable intermediate complex 

10, in which hydrogen has been transferred from S to adsorbed O2 without activation 

barrier, yielding co-adsorbed thiolate and hydroperoxide groups. Adsorption and 

deprotonation of a second thiophenol molecule yielding H2O2 co-adsorbed with two 

thiolate fragments (structure 11 in Fig. 6b) is also an exothermic and barrier less 

process. H2O2 formed according to this mechanism would readily decompose over 

small Aun clusters into two OH groups that would finally yield H2O, as previously 

described.
37,38

 H2O2 has been experimentally detected as a reactive intermediate species, 

as well as its final decomposition into H2O (details in Supplementary Section 11).  

After H2O2 desorption, the two thiolate fragments that remain adsorbed on the 

Au5 cluster (structure 12 in Figure 6b) are nearly neutral, bearing each one a net 

negative charge of -0.05 e and, unlike in Au(S-Ph)2 system 6, the HOMO of structure 12 

is not only localized on the S atoms but it also involves important contributions from the 

phenyl rings and the Au atoms (Figure 6c). Therefore, there is not electrostatic repulsion 

between the two S atoms, and the S-S bond can be formed via transition state TS13,  

with the process involving also an important rearrangement of the gold cluster 

geometry. The intrinsic activation energy obtained for this elementary step is 142 

kJ/mol, but the high exothermicity of all previous adsorption steps makes the global 

process  energetically accessible. Thus, the main difference between isolated Au
I
 

species and Aun clusters is the ability of the last ones to transfer electrons from thiolate 
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fragments to O2, making possible the formation of the S-S bond, as it happens with 

sulfhydryl oxidase enzymes. 

A decrease in the activity for disulfide formation with larger particles is 

experimentally observed, together with a poisoning of the gold nanoparticles with 

thiolate groups. This is explained by the lower concentration of active Au atoms 

accessible to reactants as particles grow, and by the strong Au-S interaction, that leads 

to formation of very stable linear RS-Au-SR units or "staple" motifs and passivation of 

the gold NP surface (see Fig. 6d).
39,40 

 

Conclusions 

We have succeeded in preparing single isolated gold atoms on MWCNTs, and have 

studied their performance in the oxidation of thiophenol to disulfide by O2. Following 

the evolution of the catalyst during the reaction we have shown that isolated atoms are 

not active and they aggregate under reaction conditions into gold clusters of low 

atomicity. Gold clusters with 5 to 10 atoms are extremely active for the reaction, with 

TOF in the order of 10
5
 h

-1
. Finally, when clusters grow into nanoparticles of diameter ≥ 

1 nm, the catalyst activity drops to zero. Theoretical calculations show that only gold 

clusters of low atomicity are able to simultaneously adsorb and activate thiophenol and 

O2, while the strong Au-S interaction in 1 nm gold nanoparticles leads to formation of 

very stable RS-Au-SR units that impede the reaction to proceed. The combination of 

reactant activation and desorption facilities makes the cluster successful for this 

oxidation reaction.  
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Methods  

Synthesis. Au/MWCNTs material was synthesized with some modifications of the 

general procedure reported in ref.
41

 and described in detail in Supplementary Section 1. 

Isolated gold clusters with 3, 5-7 and 7-10 atoms were synthesized using modifications 

of the electrochemical method previously reported for nanoparticles 
42 

and described in 

detail in Supplementary Section 8. Once synthesized, the gold clusters were supported 

by a wet impregnation procedure on carbon nanotubes which had been previously 

wrapped with the polyelectrolyte polyallylamine hydrochloride (PAH). A 0,015wt% 

gold loading was used. The atomicity of the gold clusters was checked by UV/Vis, 

photoluminescence emission and mass spectroscopy as described in Supplementary 

Section 8. 

HR-STEM. The samples were characterized in a JEOL JEMARM200F electron 

microscope operated at 80 kV (electron dose of 1.4x10
3
 e

-
/angstrom

2
). The samples 

were dispersed in ethanol and a drop of this suspension was deposited onto a holey 

carbon grid, and immediately allowed to dry at room temperature. STEM images were 

simultaneously recorded in both the HAADF and BF modes. The probe correction was 

performed with a CEOS corrector obtaining a twelve-fold Ronchigram with a flat area 

of ~40 mrad. The probe size was 0.1 nm, and dwell time was 20 msec per pixel. The 

images were registered with a condenser lens aperture of 30 microns (convergence 

angle 25 mrad), the HAADF collection angle ranges from 45 to 180 mrad, the spot size 

used was ~35 pA.  

Catalytic Experiments. The catalytic experiments were carried out at 25ºC and 5bar O2 

using a glass reactor equipped with a manometer and a micro-sampling system which 

allows extracting reaction samples at regular reaction times. Reaction samples were 

analyzed by gas chromatography using a HP-5 capillary column (5% phenyl, 30m x 
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0.25m) and products identified by GC-MS, using a Fison GC 8000 gas chromatograph 

equipped with  DB5 capillary column with a mass spectrometry detector (Fisons MD 

800 quadrupole detector). Under typical reaction conditions 1mmol thiophenol, 20µL 

dodecane as internal standard, 1.2 mL dry toluene and 4mg of catalyst were charged 

into the reactor that was purged with oxygen three times and then pressurized with 5 bar 

of O2. Upon stopping the reaction, the reactor was degassed slowly and the catalyst 

separated by centrifugation. For catalyst reuse, the reaction was stopped at specific 

times and the catalyst removed from the liquid by centrifugation. These catalyst samples 

were used to carry out a new reaction under the same initial conditions.  

Control experiments were done in absence of O2. Working at 5bar of N2 no catalytic 

activity was obtained, evidencing that O2 is required for catalytic performance. On the 

other hand, leaching of gold ions form the catalyst toward the reaction solution was 

tested by filtering the catalysts from the solution and following the activity of the liquid. 

No catalytic activity was detected in absence of the catalyst, and therefore any 

contribution of homogeneous catalysis can be neglected. 

Calculation of turnover frequencies. Turnover frequencies (TOF) were calculated by 

dividing initial reaction rates (measured in molecules of disulfide formed per hour) by 

the number of active gold atoms in the catalyst. It was initially assumed that all gold 

atoms in the size selected clusters with 3, 5-7 and 7-10 gold atoms and in samples B and 

C are active. Then, a second value was calculated for samples B and C assuming that 

only the gold atoms in clusters containing from 5 to 10 atoms are active, as described in 

the main text. 

Computational details. DFT calculations were performed using the hybrid B3LYP
43,44

 

functional as implemented in the Gaussian03 computer program.
45 

The standard 6-

311G(d,p) basis set was used for S, C, O, H and Na atoms,
46,47

 while the effective core 
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potential LANL2DZ basis set was chosen for Au atoms.
48 

Atomic charges were 

calculated using the NBO approach.
49 

The geometries of all structures involved in the 

mechanism were fully optimized without any restriction, except for the Au13 model, in 

which only one Au atom in the system was allowed to move to avoid artificial distortion 

of the nanoparticle. Transition states were characterized by the presence of a single 

imaginary frequency associated to the reaction coordinate. 
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Figure Legends 

2nm1nm

a) b)

d)c)

2nm1nm

a) b)

d)c)

 

Figure 1. Identification of isolated gold atoms. Isolated gold atoms supported on 

functionalized multiwalled carbon nanotubes have been synthesized (sample A) and 

their presence confirmed by Cs-corrected high resolution STEM analysis and XAS 

analysis. a, BF-STEM image of sample A, which does not allow to clearly visualize 

gold atoms supported on the MWCNTs. b, HAADF-STEM image of sample A clearly 

showing the presence of isolated atoms (monomers and some dimers), that appear as 

white dots on the carbon nanotube. c, d, XAS at the Au L3-edge (c) and EXAFS Fourier 

transforms (d) of supported Au NP of 4 nm (red line), of the reference (PPh3)AuCH3 

(blue line), and of sample A (black line). The similarity between the blue and black 
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lines indicates that in the as-prepared catalyst gold is mostly present as isolated cationic 

Au
I
 species directly bonded to light elements. 
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Figure 2. Oxidation of thiophenol to disulfide in the presence of O2. Single isolated 

gold atoms (sample A) are not active in the oxidation of thiophenol showing an 

induction period of 6min, which indicate that other metal species are being formed 

during reaction. The evolution of the gold species was followed by stopping the reaction 

at different times. The catalyst samples (sample B, C, D taken at 6, 12, 120 min of 

reaction of sample A) were used to carry out a new reaction under the same conditions.  

The yield to disulfide with reaction time using as catalyst samples A, B, C, and D is 

shown. Inset: zoom of sample A in the beginning of the reaction showing the induction 

period. 
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Figure 3. Evolution of the gold species present on the catalyst. The evolution of gold 

species present on the catalyst was followed by stopping the reaction at different times, 

isolating the catalyst and characterising it by means of HAADF-STEM. a, Isolated gold 

atoms present on the as-prepared catalyst, sample A. b, Image of sample B taken at 6 

min reaction, showing the presence of small clusters with 4–13 atoms. c, d, Two 

different  images of sample C taken at 12 min reaction, in which both small clusters and 

some large nanoparticles can be observed. e, In sample D, taken after 120 min of 

reaction, most gold has aggregated into nanoparticles with diameter ≥ 2 nm. Additional 

HAADF-STEM images at different magnifications are included as Supplementary 

Figures S9-S12.  f, Comparison of the atomic gold cluster distributions calculated on 

samples A, B and C by analyzing more than 200 gold species. 
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Figure 4. Oxidation of thiophenol to disulfide in the presence of O2 catalysed by 

size selected gold clusters. Gold clusters of Au3, Au5-7 and Au7-10 were synthesised by 

an electrochemical method and deposited on functionalized MWCNT. Their activity 

was tested in the oxidation of thiophenol. Yield to disulfide with reaction time using 

Au3, Au5-7 and Au7-10 gold clusters supported on MWCNs as catalyst. 
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Figure 5. Structures involved in the mechanism of disulfide formation catalyzed by 

Au
I
 species. Gold, Sulfur, Carbon, Oxygen and Hydrogen atoms are depicted in golden, 

blue, orange, red and white, respectively. The italic numbers that appear beside the 

arrows are the reaction and activation (denoted with #) energies in kJ/mol calculated for 

each elementary step. The numbers in blue that appear next to various selected atoms 

are net atomic charges, in units of e. In structure 6, qT is the total charge on each of the 

two fragments framed by dotted lines. TS8 is a transition state structure. Atomic 

distribution of the highest occupied molecular orbitals (HOMOs) of selected structures 

is also depicted. 
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Figure 6. Reactivity of gold clusters of low atomicity. a, Atomic distribution of the 

highest occupied molecular orbitals (HOMOs) of Au3, Au5, Au6 and Au7 clusters, and 

optimized structures of the complexes formed by interaction of these clusters with O2. 

The numbers in black are the optimized O-O bond lengths in Å, and the numbers in blue 

are the net charge on O2 in units of e. b, Structures involved in the mechanism of 
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disulfide formation catalyzed by a Au5 cluster. The numbers that appear next to selected 

bonds are the optimized bond lengths in Å. The italic numbers that appear beside the 

arrows are the reaction and activation (denoted with #) energies in kJ/mol calculated for 

each elementary step. c, Atomic distribution of the highest occupied molecular orbital 

(HOMO) of structure 12. d. Stable linear RS-Au-SR units or "staple" motifs formed 

over Au5 and Au13 systems. The numbers in blue that appear next to to various selected 

atoms are net atomic charges, in units of e. Gold, Sulfur, Carbon, Oxygen and Hydrogen 

atoms are depicted in golden, blue, orange, red and white, respectively. 

 

 

Graphical Abstract 

Gold clusters with 5 to 10 atoms supported on MWCNTs are as active as enzymes in 

the oxidation of thiphenol to dislfide with O2. A combination of theory and experiment 

shows that isolated gold atoms cannot activate reactants, while larger gold nanoparticles 

become passivated by too strong thiolate adsorption. 

 


