

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

 © Sebastian Bauersfeld, Tanja E. J. Vos | ACM 2012. This is the author's version of the
work. It is posted here for your personal use. Not for redistribution. The definitive Version of
Record was published in ASE 2012 Proceedings of the 27th IEEE/ACM International
Conference on Automated Software Engineering,
http://dx.doi.org/10.1145/2351676.2351739

http://dx.doi.org/10.1145/2351676.2351739

http://hdl.handle.net/10251/67331

ACM

Bauersfeld, S.; Vos ., TE. (2012). GUITest: a Java library for fully automated GUI robustness
testing. En ASE 2012 Proceedings of the 27th IEEE/ACM International Conference on
Automated Software Engineering. ACM. 330-333. doi:10.1145/2351676.2351739.

GUITest – A Java Library for fully automated GUI
Robustness Testing.

(Tool Demonstrations)

Sebastian Bauersfeld
Universitat Politècnica de València

Camino de Vera s/n
Valencia, Spain

sbauersfeld@pros.upv.es

Tanja E. J. Vos
Universitat Politècnica de València

Camino de Vera s/n
Valencia, Spain

tvos@pros.upv.es

ABSTRACT
Graphical User Interfaces (GUIs) are substantial parts of to-
day’s applications, no matter whether these run on tablets,
smartphones or desktop platforms. Since the GUI is of-
ten the only component that humans interact with, it de-
mands for thorough testing to ensure an efficient and satis-
factory user experience. Being the glue between almost all
of an application’s components, GUIs also lend themselves
for system level testing. However, GUI testing is inherently
difficult and often involves great manual labor, even with
modern tools which promise automation. This paper in-
troduces a Java library called GUITest1, which allows to
generate fully automated GUI robustness tests for complex
applications, without the need to manually generate mod-
els or input sequences. We will explain how it operates and
present first results on its applicability and effectivity during
a test involving Microsoft Word.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
Testing tools

General Terms
Software Testing

Keywords
gui testing, automated testing, robustness testing

1. INTRODUCTION
Graphical User Interfaces (GUIs) represent the main con-

nection point between a software’s components and its end
users and can be found in almost all modern applications.

1Videos and screenshots available at https://staq.dsic.
upv.es/sbauersfeld/index.html

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASE’12, September 3–7, 2012, Essen, Germany.
Copyright 2012 ACM X-XXXXX-XX-X/XX/XX ...$10.00.

Vendors strive to build more intuitive and efficient inter-
faces to guarantee a better user experience, making them
more powerful but at the same time much more complex.
Especially since the rise of smartphones and tablets, this
complexity has reached a new level and threatens the effi-
cient testability of applications at the GUI level. To cope
with this challenge, it is necessary to automate the testing
process.

Capture and Replay (CR) tools promise to automate test-
ing at the GUI level. However, they have always been con-
troversial, since they require a great amount of manual ef-
fort on the part of the testers[6], who still need to record
and maintain input sequences. Especially in the context of
frequently changing GUIs, CR tools generate high mainte-
nance costs. Despite its disadvantages, the CR method can
be valuable, since the test cases are generated by humans
with domain knowledge. However, the complexity of today’s
GUIs, the manual labor associated with testing them and
the resulting maintenance costs, call for a complementary
method with a truly automatic test environment. In this
environment test case generation, execution and evaluation
should be performed without human intervention. This is
quite difficult, because GUIs are designed to be accessed by
humans, not programs. A program needs to programmati-
cally access the GUI’s state in order to be able to simulate
human-like behavior in the form of clicks, keystrokes and
gestures. Therefore, we developed GUITest, a Java library
which allows to write automated robustness tests for com-
plex graphical applications. In the following we will explain
how GUITest works, why and how it is different from exist-
ing tools and libraries and how it performed during a first
test involving a complex, non-Java desktop application.

2. THE APPROACH
Figure 1 visualizes the basic procedure that a human goes

through when using a graphical user interface. In picture
(a) we can see a phone’s application panel with the corre-
sponding icons. Just by looking at the screen, most humans
intuitively know which actions can be executed in this par-
ticular state. One could for example tap one of the five app
items or swipe to the left or right in order to reveal addi-
tional ones. If the user clicks on the lower left item (b) a
browser app will start (c), offering a variety of actions to
choose from (d). After for example tapping the search field,
a virtual keyboard will appear (e) and again he will have to
make a decision on which action to execute. By repeating

https://staq.dsic.upv.es/sbauersfeld/index.html
https://staq.dsic.upv.es/sbauersfeld/index.html

type: Screen

type: Button
text: "Contacts"
x: 20
y: 20
width: 80
...

type: Button
text: "Game Center"
x: 120
y: 20
width: 80
...

type: Button
text: "Settings"
x: 220
y: 20
width: 80
...

type: Button
text: "Safari"
x: 120
y: 20
width: 80
...

type: Button
text: "Photos"
x: 220
y: 20
width: 80
...

Figure 2: Widget Tree for picture a) of Figure 1.

this process, one can generate arbitrary input sequences and
thus drive the GUI.

In order for a program to drive the GUI in a similar man-
ner, it is necessary to gather enough information about the
GUI’s state, which constitutes the state of its widgets (i.e.
control elements). To be able to perform sensible actions,
it needs to determine the type, position, size and other at-
tributes of all widgets visible in a certain state. GUITest
can determine the current GUI state of the System Under
Test (SUT) in the form of a widget tree. A widget tree is
a hierarchical composition of the widgets currently visible
on the screen, together with the values of associated wid-
get attributes. Figure 2 shows an example of such a tree
for picture (a) . With this information, an automatic test-
ing program can compute sensible default actions: Enabled
buttons, icons and hyperlinks can be tapped, text fields can
be tapped and filled with text, the screen, scrollbars and
sliders may be dragged, etc. GUITest allows to simulate
simple (clicks, keystrokes) as well as complex actions (drag
and drop operations, handwriting and other gestures, etc.)
and can thus drive even sophisticated GUIs. Table 1 lists
some of GUITest’s features.

– implemented in Java
– currently supported OSs: MacOS 10.3 and newer
– platform independent and extensible design
– works with all native applications and applica-

tions that support the MacOSX Accessibility API
– SUT requires no instrumentation
– allows web testing through the Safari browser
– derives sensible default actions for each GUI state
– allows the definition of custom actions
– generated sequences can be saved and replayed
– allows the implementation of fine-grained oracles

for fault detection

Table 1: GUITest Features

3. A FIRST TEST
To evaluate GUITest’s functionality, we implemented a ro-

bustness test for Microsoft Word for Mac2. The goal was to
develop a program which generates random input sequences

2http://www.microsoft.com/mac/word

and automatically detects crashes of the SUT. We consid-
ered the SUT to have crashed if a) it unexpectedly termi-
nated or b) the GUI did not respond to inputs during more
than 60 seconds. We leveraged GUITest’s functionality to
write a completely automated test which requires no super-
vision. Therefore we had to

• supply the name of Word’s executable and the location
of its configuration files: The configuration files need
to be restored before each execution of Word in order
to ensure identical startup conditions during sequence
generation and playback. If these conditions differ (for
example due to a previous run which changed values
in the options dialog) one might not be able to replay
crashing sequences.

• define the set of actions to execute: As mentioned ear-
lier, GUITest already derives default actions for the
majority of widgets. However, one might want to in-
clude additional actions, like dragging clip art symbols
into the document (see Figure 3). It might also be nec-
essary to disallow certain actions, for example: During
our initial tests the program executed the“Shut Down”
and “Restart” menu items in the system menu, which
consequently terminated the entire machine. Other is-
sues arose in the context of file dialogs: Within such
dialogs the program can create, delete or move files,
which might cause severe damage, depending on where
in the file system it is browsing. Print dialogs and the
like should also be treated carefully. Figure 3 shows
typical actions which can be executed as well as certain
widgets for which we intentionally disallowed actions
(notice the print, save and open tool items as well as
the Apple and“Word”menu items). Eventually, we ran
the program in a dedicated user account with stricter
access rights in order to prevent potential damage.

We limited the length of the generated sequences to 200
actions in order to be able to replay crash runs. After
each run, the test program stopped the SUT, saved the se-
quence (if it caused a crash), restored the configuration files,
restarted the SUT and went on to generate the next test
case. Altogether, we wrote four Java class files with a total
of 314 LOC. The automated test ran for 18 hours resulting
in 672 generated sequences. Nine of these sequences caused
Microsoft Word to crash and display an error message. Six
of these we were able to reproduce. Three, however, were
difficult to replay, as the timing during playback played an
important role: During some runs a sequence crashed the
SUT, yet during others it passed through without any prob-
lems. We believe that this is related to external factors
(memory consumption, processor utilization, ...) which are
hard to control. We are currently working to improve se-
quence playback and are considering the use of virtual ma-
chines which could give better control over those conditions.
Another option would be to video record the entire testing
process which would make sequence playback unnecessary.

4. OTHER TOOLS AND TECHNOLOGIES
There are various tools available for GUI testing, includ-

ing commercial, open source and scientific products. A large
part of them falls into the capture and replay (CR) or script-
ing categories. Popular commercial tools are eggPlant3,
3http://www.testplant.com/products/eggplant/

http://www.microsoft.com/mac/word
http://www.testplant.com/products/eggplant/

a) b) c) d) e)

Figure 1: Sequence generation: Scan the GUI, derive sensible actions, select one and execute it.

Figure 3: This is a screenshot of GUITest’s demonstration mode, which displays possible actions within a
particular GUI state. It includes clicks, text input (“Test123”) and drag and drop operations.

TestComplete4 or QF-Test5. Among the open source tools
are Abbot6, Selenium7 and SWTBot8. As mentioned ear-
lier, these tools often induce a lot of manual labor, espe-
cially when a GUI is subject to frequent changes so that
recorded test cases break and need to be repaired. However,
since the test cases are recorded by humans (potentially with
good knowledge about the SUT), they can be very effective.

There have been a few scientific approaches to GUI testing
which are more automatic than the CR method: An inter-
esting one has been realized within the GUITAR framework9

developed under the lead of Atif Memon. Their idea is to
walk through the GUI (by systematically clicking on wid-
gets) and to automatically generate a model (in the form
of an event flow graph) from which they derive test cases
by applying several coverage criteria. [4] gives an overview
over their work. Unfortunately, in their experiments they
only test small Java applications (some of them are syn-
thetic, some are part of a small office suite developed by stu-
dents) which they execute by performing clicks only. They
have problems with the execution of their sequences, since
the GUI model they are derived from is an approximation.
Thus, they generate short sequences (3 to 20 actions) which
they then automatically repair by applying a genetic algo-
rithm.

Artzi et al.[1] perform feedback-directed random test case
generation for JavaScript web applications. Their objectives
are to find test suites with high code coverage as well as se-
quences that exhibit programming errors, like invalid-html
or runtime exceptions. They developed a framework called
Artemis, which triggers events by calling the appropriate
handler methods and supplying them with the necessary
arguments. To direct their search, they use prioritization
functions: They select event handlers at random, but prefer
the ones for which they have have achieved only low branch
coverage during the past sequences.

Marchetto and Tonella [5] generate test suites for AJAX
applications using metaheuristic algorithms. They execute
the applications to obtain a finite state machine. The states
in this machine are instances of the application’s DOM-tree
(Document Object Model) and the transitions are events
(messages from the server / user input). From this FSM
they calculate the set of semantically interacting events. The
goal is to generate test suites with maximally diverse event
interaction sequences, i.e. sequences where each pair of con-
secutive events is semantically interacting.

The strength of our approach is, that it works with large,
native applications which it can drive using complex actions.
The abovementioned approaches either invoke event han-
dlers (which is not applicable to many GUI technologies) or
perform only simple actions (clicks). Moreover, our tech-
nique neither involves manual labor (generation of input se-
quences or models) nor requires the SUT’s source code for
instrumentation. While this is also true for the approach
presented in [4], they only generate short sequences of which
many are invalid. Thus, these sequences need to be re-
paired, which, according to the authors, can take days or

4http://smartbear.com/products/qa-tools/
automated-testing-tools
5http://www.qfs.de/en/qftest/index.html
6http://abbot.sourceforge.net
7http://seleniumhq.org/
8http://www.eclipse.org/swtbot
9Download: http://sourceforge.net/projects/guitar/

even weeks. Finally, the presented technique has very low
maintenance costs, since the tests will continue to work even
if the GUI changes. We are aware, however, that currently
our approach is quite simple (random action selection) and
only suitable for finding severe faults which cause crashes. It
might benefit from ideas of the abovementioned approaches,
as well as vice versa.

5. CONCLUSIONS AND FUTURE WORK
In this paper we presented a robustness test for Microsoft

Word, implemented with the help of our GUI testing library
GUITest. Despite the simplicity of this test, the results are
quite promising and show the applicability of this approach
even for large scale GUI applications with complex inter-
faces. In the future we will focus on the following aspects:

1. More sophisticated action selection: We plan to apply
machine learning techniques and metaheuristics to find
sequences which are more likely to crash the SUT (e.g.
sequences that consume a lot of memory or have long
execution times). In earlier works [3, 2] we presented
some ideas of how this could work.

2. Fine-grained oracles: We will strive to detect faults
other than crashes. The focus is on automated tech-
niques which learn to distinguish correct from erro-
neous behavior.

3. Other GUI technologies: Currently, GUITest only sup-
ports applications running under MacOSX. We have
conducted feasibility studies for other platforms and in
the future plan to support Windows. We also consider
to implement the approach for a tablet or smartphone
platform.

6. ACKNOWLEDGMENTS
This work is supported by EU grant ICT-257574 (FITTEST).

7. REFERENCES
[1] S. Artzi, J. Dolby, S. H. Jensen, A. Møller, and F. Tip.

A framework for automated testing of javascript web
applications. In ICSE’11, 2011.

[2] S. Bauersfeld, S. Wappler, and J. Wegener. An
approach to automatic input sequence generation for
gui testing using ant colony optimization. In
GECCO’11, 2011.

[3] S. Bauersfeld, S. Wappler, and J. Wegener. A
metaheuristic approach to test sequence generation for
applications with a gui. In SSBSE’11, 2011.

[4] S. Huang, M. B. Cohen, and A. M. Memon. Repairing
gui test suites using a genetic algorithm. In ICST’10,
2010.

[5] A. Marchetto and P. Tonella. Using search-based
algorithms for ajax event sequence generation during
testing. Empirical Softw. Engg., 2011.

[6] A. M. Memon. A comprehensive framework for testing
graphical user interfaces. PhD thesis, University of
Pittsburgh, 2001.

http://smartbear.com/products/qa-tools/automated-testing-tools
http://smartbear.com/products/qa-tools/automated-testing-tools
http://www.qfs.de/en/qftest/index.html
http://abbot.sourceforge.net
http://seleniumhq.org/
http://www.eclipse.org/swtbot
http://sourceforge.net/projects/guitar/

APPENDIX
A. PRESENTATION OUTLINE

Currently, we have a running test for Microsoft Word,
which we will present during the conference. On our website
(see below) we have several screenshots and videos which will
be used for the presentation. During a live demonstration
we will explain how the library obtains the GUI states and
calculates possible actions and we will show what a test run
looks like. Eventually, we will present the faults that we
have found for Microsoft Word. By the time the conference
will take place, we will also be able to present results from
tests with other applications.

B. WEBSITE
On https://staq.dsic.upv.es/sbauersfeld/index.html

you can download screenshots, videos and other files related
to GUITest. We also have recordings of some of the crashes
that occurred during our tests.

C. SCREENSHOTS

https://staq.dsic.upv.es/sbauersfeld/index.html

Figure 4: Our test caused Microsoft Word to crash or hang several times.

Figure 5: During our tests with Word the included equation editor also crashed.

Figure 6: Sometimes Word ran out of memory.

Figure 7: GUITest recognizes widgets of all native MacOSX applications, like the standard mail client.

