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Abstract

In the present work, a 3-D, dynamic and non-linear finite el®nto simulate thermoelectric behavior under a hyperdodiat
conduction model is presented. The transport equationigshwiouple electric and thermal energies by 8eebeckPeltier and
Thomsoreffects, are analytically obtained through extended nondibguim thermodynamics, since the local equilibrium hy-
pothesis is not valid under the hyperbolic model. In additib-D analytical solutions are obtained to validate thadiplement
formulation. Numerically, standard isoparametric eigiutee elements with two degrees of freedom (voltage and texhpe) per
node are used. Non-linearities due to the temperaturendepee on the transport properties andlibeleeffects are addressed
with the Newtor-Raphsoralgorithm. For the dynamic problem, HHT ah@&wmarks algorithms are compared to obtain accurate
results, since numerical oscillationSibbsphenomena) are present when the initial boundary condiéwe discontinuous. The
last algorithm, which is regularized by relating time stepsl element sizes, provides the best results. Finally, tite flement
implementation is validated comparing the analytical dredrtumerical solutions.

Keywords:
Thermoelectrics, Dynamics, Non—linear Finite Elementd®e sound, HHT algorithm, Newmarg-algorithm

1. Introduction and in [LQ] a finite difference scheme was developed to com-
pare implicit and explici€uler algorithms. Several FE works

Thermoelectric materials couple electric and thermal enerin which the Cattaneomodel was assumed also have been
gies by means of three separated transpfidces: Seebeck published. For example, inl]] and [12] FE's were formu-
Peltier and Thomson In addition, theOhmand Fourier laws  lated to simulate convection-ision Fick law) and thermo—
that are inherent to electric and thermal fluxes are alseptes mechanical coupling, respectively. For thermoelectiit§13]
Thermoelectric materials are used as heat pumps (heatthg athe Laplacetransform technique was used to solve problems
cooling) and generators, seH.[ In the last decade, miniatur- formulated using the hyperbolic model. There are several FE
ized thermoelectric devices and high—frequency procemses formulations applied to the thermoelectric problem witte th
increasingly applied to cool micro—electronic devices, g Fourier (parabolic) model, seelfi] and [15].

The classicaFourier law leads to a parabolic heat propaga- The aim of the current work is to develop a three-
tion problem that is incorrect from a physical point of viess-  dimensional, transient, non-linear FE formulation to eajen-
pecially in micro—devices and under rapid transid¢fées such  eral thermoelectric problems with the hyperbolic modelr Fo
as micro—pulsesCattaneo[3] proposed a modification to the this purpose, a non—equilibrium entropy depending on tem-
Fourier law that leads to a hyperbolic heat propagation probperature and heat flux is defined and the transport equations
lem. The modification is made through the introduction of aare formulated by applying th®nsagerrelations. Transport
relaxation timer that is an empirical parameter defined as theand balance equations are then transformed into a matrix for
time—interval between two successive collisions at thereric  and implemented into the research FE cé@aP, [16]. The
scopic level of either holes or electrons. non-linearities due to: (iJoule effect, (ii) temperature de-

From a theoretical point of view, classical non—equilibmiu pendence of transport properties and (iii) thermo-electou-
thermodynamics 4] cannot lead to hyperbolic propagation pling, are solved with théNewtor-Raphsornalgorithm. Two
since the local equilibrium hypothesis is not valid. Fostteéa-  discrete algorithms for transient solutions, namely, HHTao
son, extended non—equilibrium thermodynamigls [5] must  [17] and Newmarks (N-8) are compared. Both are regular-
be applied to obtain the correct transport equations. ized by means of linear relationship between time steps and

For heat propagation (without thermoelectric coupling) un element lengths. In order to validate the FE behavior, feur 1
der the Cattaneomodel analytical investigations were per- D analytical solutions are compared with the numericalltesu
formed using thd_aplacetransform technique ing], [7] and  When the initial boundary conditions are discontinuousyrej
[8]. In [9] a mixed Finite Element (FE) formulation using oscillations Gibbsphenomena) are observed and thglsigo-
the Crank-Nicolsonscheme for time—integration was presentedrithm, with modifieds andy parameters, provides results that
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are consistent and accurate with respect to the analytbal s a polarizable material, (iiiM implying no magnetic #ects.
tions. Therefore, the charge and energy balances are

V-j=0; u=-V.-c+i-E 4
2. Thermodynamic formulation : P s+ @

The aim of this section is to obtain balance and transporg-2- Transport equations

equations for the hyperbolic thermoelectric problem. Asime  The extended non—equilibrium thermodynamics theory as-
tioned above, the hyperbolic problem cannot be obtained fro sumes the existence of a non—equilibrium entrspyhat de-
classical non—equilibrium thermodynamics. This is due topends on the state variables and the fluxes. This situation is
the lack of validity of the local equilibrium hypothesis tha called “mixed” in continuum mechanics. Applying the hyper-
states the equality of the local relations between thermodybolic model only to the thermal field depends om andg [4]
namic quantities in a system in and out of equilibriuBj, [The
validity of this hypothesis is closely related with tBeborah
numberDe = 7/7ty < 1, wherery, is the macroscopic experi-

ment or ¢fect duration. For materials such as polymers or unywhereT and « denote temperature and thermal conductivity,
der high—frequencyfeects such as ultrasounds, the time scaleespectively. The entropy balance is obtained by solving fo

is comparable te, De > 1 and extended non—equilibrium ther- (5) and introducing the result into the energy balance equatio
modynamics need to be used. (4)—right

There are several analytical procedures such as ratid8al [
or extended non—equilibrium thermodynamibktp study the . S j-E 1 T .
transport equations wheDe > 1. The former procedure is pS+V: (T) =T ote [V (?) - ﬁg] (6)
axiomatic, therefore in the present work the latter is ugedl a
the transport equations are obtained using a physical pbint where the relatiorV - ¢/T = V- (¢/T) — ¢ - V(1/T) has been
view. used. The general form of the entropy balancéd]s [

u T .
S(U»S‘)—?—WS"S’ (5)

2.1. Balance laws pS+V-js=0° (7)

Cor;sgder a thet;moddynamic gqiverse congjposed from a SySghere |, ando® denote the entropy flux and the rate of entropy
tem of domair(2, boundary” and its surroundings, see Figure production, respectively. To obtain these magnitudesHer t

1. Assuming the validity of a continuum hypothesis, the ba"thermoelectric problensj and (7) are compared
ance laws of continuum physics are those of charge and energy

The first is obtained from Maxwellequation, seel9] ¢ . IE
= = ! o> = — + .
Po==V-] )

Js T T
where a dot'§ denotes a time derivativg,is electric flux and
p,, is charge density.

1 T .
(1) @
The classical form of the entropy production for the thermo-

electric problem, see?fl], is recovered ifr = 0: the hyperbolic

. . . , model adds a term to the entropy production.
An energy balance is obtained by applying the first law of The transport equations will be obtained by expressing the

thermodynamicspu = W + Q, wherep is mass density and L

U, W, Q are rates of internal energy density, electromagneticemropy productionin the forrs]

energy and exchanged heat, respectively. s . - 0s
The rate of electromagnetic energy is given by Fognting oo=]-W+g- dc >0 9)

theorem L9

W=E-P+B-M+j-E 2)

whereE, P, B andM are the electric field, polarization, mag-
netic flux and magnetization, respectively. The first twaonter
on the right—hand side of) represent the reversible work per- ji-
formed by the electromagnetic forces. The last term is the ir
reversible work Jouleheating), that represents the rate of elec-
tromagnetic energy converted into thermal energy.

The rate of exchanged heat is given by

ELECTRIC ENERGY . THERMAL ENERGY

Seebeck
Thomson

Peltier

Q:_V'§+QQ (3)

whereQ, is the heat source created insfd@ndg the heat flux. : V.
In the current work, the following terms are assumed to be

zero: (i) p,, Q, which is valid for most thermoelectric applica-

tions [20], (i) P implying that a thermoelectric material is not Figure 1: Energy balance: thermal flux, reversible and érsible coupling.
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whereV is the voltage. With a dficiently good approximation,
fluxes and gradients are linearly related by phenomenabgic
codficients, which have to satisfy tf@nsagerCasimirrecip-
rocal relation. Finally, the transport equations are

j==yVW-ayVT
: : (10)
c+7¢=—kVT +aT]

whereq, y, k denote theSeebeckodficient, electric and ther-
mal conductivities, respectively. These phenomenoldgioca
efficients are denominated thermoelectric properties in the fo
lowing. Again, if r = 0 in (1L0)—bottom the classical transport
equations are restored.

Although linear relationships between fluxes and gradients
have been used, the thermoelectric properties dependytron
on temperature (material non-linearity), accordingly lire t
present work

A= (Va, Ta)

ao(T) =1.98x 10%+3.35x 10°'T — 7.52x 1071012
Y(T) =1.09x 10° = 559x 10° T + 2.49T? (11) Figure 2: Domain discretization. 3—-D and interface finieneénts.

k(T)=1.66-358x103T +3.19x 10°°T?

left—hand) and therefore the classical paradox of the tefire-
locity is avoided. The right—-hand terms represent sevdral e
fects: the first classical heat conductidyrier), the second
Joule the thirdThomsoreffect and the last a dissipation related

2.3. Strong form .
. . N to the hyperbolic model.
From the previous equations and taking into account the cou- Figure 1 schematizes the energy balance of the thermody-

pled nature of the thermoelectric problem, the strong fesm i namics formulation. Electric and thermal energies areeepr

fprmed ;\S aI system of tV\:cO cogpleéi p_)art(|j<’=\1t1:‘ﬁhem:al €aua-  gsented left and right, respectively: sources top and theoftix
tions. The electric strong form is obtained by replacii@¢ 1,1, The electric energy is irreversibly converted intorthal

top into {@)-left and_ considering the temperature—dependencsy theJouleeffect, therefore the related arrow points towards
of the thermoelectric properties) the thermal energy side. Inside the domain, electric enisrgy
Y(T) V2V + d1{y(T)} VT - WV = reversibly converted into thermal and vice versa by thrge se
2 (12)  arated &ects: Seebeckthermal into electric)Peltier (electric
= [A(T) r{(T)} + a(T) Or{y(T)} + (T) (T)] VT

into thermal) and’homsorin both ways.
Here and in the followingg+ implies partial derivation with
respect to the subscript, in this equation the temperdtul® 3. EEM formulation
order to obtain analytical solutions, froh@)—top

in which dimensions are [V/K], y [A/mV], k [W/mK] but the
temperature is introduced @elsius°C degrees, se@¥§].

] The aim of this section is to develop a variational formula-

VV = —a(T) VT — o (13) tion within the FI_E framewor_k to permit the implementatipn of

¥(T) the thermoelectric problem into a computer code. For this pu
fose, consider a thermoelectric body of dom@iand bound-
aryT" governed by balance and transport equations obtained in
the previous sections. In order to avoid a mixed Finite Eleme
Method (FEM) formulation, the hyperbolic partg from the
thermal transport equatiof@)—bottom is introduced in the en-
ergy balance4)-right, and the expression of the pure parabolic

heat fluxq is recovered

where the first term in the right—-hand represents the therm
energy converted into electric by tt&eebecleffect. Due to
restrictions in analytical solutions (not in the numerioaks),
in this article we present cases in which onlys variable with
T. The values ok, y will be evaluated at a certain average
temperature from1(1).

The thermal strong form is obtained substitutih§)-bottom
into (4)—right and using4)—left. Furthermore, the relations= tpcT+pcT==V-q-j-VW—-18{j-VV}
c T (c, specific capacity)E = —VV and (L1) are introduced _ (15)

q=-«VT +aT]

TpCTHpCT = The governing equations are complemente®iichlet (on

k V2T + J—Z —th VT - j—70{j-VV} (14) boundaried’y, I'r) andNeumann(on T}, I'y) boundary condi-
0% ! tions for electric and thermal fields
wheret, = T[da(T)/dT] is the Thomsorcoeficient. This ex- V=V only; j-n=j¢ onlj
pression is an hyperbolic equation (notice the first termhen t T=T on Iy g-n=g. only
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whereV, T, jc andq. are prescribed voltage, temperature, elecdntroducing these discretizations into the transport &qoa
tric flux and thermal flux, respectively, and the outward narm (10)—top and {5)—bottom

is denoted byr. Boundaries satisfy the conditiofig UT'j =T,
rvﬂrj =0andlt UFq =I, It qu =0.

3.1. Weak forms
According to standard variational method??, the weak

Je=-yBeVe—ayBeTe
(21)
qe=_KBeTe_ayNeTeBeVe_azyNeBeTg

Introducing now £8) to (20) into (17) theGalerkinforms are

forms are obtained by multiplying the balance equatiaghs ( obtained

left and (L5)—top by variations of the degrees of freedéi,
6T and integrating ove®

favv-jdsz =0
Q

f5Tv-qu+f5Tj-VVdQ+f5Tch'dQ (16)
Q Q Q

+f6T76t{j-VV} dQ +f5TTchdQ =0
Q Q

_f B‘ejedQe+fN‘ejcdl"e=0
Qe Te

_f BteqedQe+f Nte jeBeVedQe +

Qe Qe

er‘eat{jeBeve} dQe+fTN‘echeTedQe
Qe Qe

+f ngcNeTedQe+ngqure =0
Qe Te

(22)

The r andp—terms are added to the formulation developed in3.3. Non-linear transient solution form

[15]. The divergence theorem is now applied to the first term of

both equations, an@boundary conditions are introduced.

—deV-de+f6Vjcd1" =0
Q T

—fVéT-qu+f6Tj-VVdQ +
Q Q (17)

f&TT&t{j-VV} dQ +f5TTchdQ +
Q Q

f&TchdQ+f6T0pdl" =0
Q r

3.2. Discretization

The continuum domaif? is discretized with elementQ,,
see Figur@. ThereforeQ = UEiQe whereng is the total num-
ber of elements, each one delimitediyy = 8 nodes. In turn,

each node relates to two degrees of freedom (voltage, temper
ture) per node. For an elemaxntegrees of freedom and spatial

In the present work a non—linear, transient hyperbolic prob
lem is studied. The non-linearities are due to:JGule heat-
ing, (ii) material dependence on temperature and (iii) diogp
between electric and thermal fluxes. The transient behawior
relevant only for the thermal field, singe in (1) is assumed to
be zero.

In order to solve the transient problem, the time interval of
interest is divided into small incrementat, and the NS or
HHT method is introduced to replace time derivatives by dis-
crete forms. Then for each time point thewtor-Raphson
method is used to solve the resulting non-linear algebrais-p
lem. These transient algorithms have been widely usedin-str
tural and solid mechanics (se2?]) and will not be described in
detail here. Basically, the assembled non-linear FE eqgusti
are written in a residual forrR and linearized by

R k
R = - Tl g

OB (23)

coordinatex are approximated using 3—-D isoparametric shapavhere A, B are the global numbering of two nodés,the

functionsNe
V ~ Vh = NeVe X T = Th = NeTe
.. : L . (18)
T ~ Th = NeTe ) T~= Th = NeTe
X~ x" = NeXe

whereVe = {(V1, .., Va™}, Te = {TZ, ..., To*} andBe is the dis-
cretized gradient matrix of the element

g _[ONa ONa  ONa

- |== A 19
A X1 X2 0X3 ( )

where ()! denotes matrix transpose. Similarly, the variations

are discretized as

6V ~ V" = NebVe: 6T ~6Th  =NeTe

(20)

V6V ~ VSV = BesVe ; VoT =~ V6T =BesTe

Newtor-Raphsoniteration counter andj, derivatives of the

jc=s
A X3 ]
T V=0
1.14 lj lq
X2
1.4

Figure 3: Thermoelement geometry and applied boundaryitonsl



degrees of freedom at node value asUp = {Va, TA}t.,. first  Similar tangent matrices were obtained irf for the steady—

derjyative asU = {Va, Tal, and second derivative d$ = state problem, for which both theories (parabolic and hyper
{0, Ta}t. The algorithms for time integration are taken as bolic) are equivalent. Usin@() and the chain rule
K Ovglj} = -y Bs
oR 8
- 6—A = C1Kag+C2Cag+C3Map (24) _
% j 914j) = — v Bs — Orla} Noy Bs T
The parameters, c; andcs are given in Tabld in terms of3, v
for the N-g algorithm and in addition for the HHT algorithm. —dt{y}(Be Vs + @ Bg Ts) Ns 28)
| | Parameters | Ove{Q) = @ Ng Tedv,{]}
Method & | 2 | % Or,() = @ Ne Tedry ]} + @ jg Ne — x By
N-8 1| — | —
2 .
%Ayt ﬂAlt +dt{a} Ng Tg jg Ng — d1{k} Bg Te Ng
HHT @ | — | =— - i i
¢ BAL | BAt? From 25-middle and 26), the capacity matrices are
Table 1: Tangent matrix parameters for Newmark and HHT élyos. CX\B/ = —GVB{RX} =0; CXE = —6-,'—B{RX} =0
The consistent tangent, capacity and mass matrices, aveder TV T f .
. . = -0y.{Ry} = — Na 0y, Bg Vg dQ
for each iteration Cag = ~0v(Ral = = 0 9, {1} Ba Ve d
6RA 6RA 6RA
Kap=—=—; Cpap=—-——; Map=—-—— (25 - i
8=~ 50a AB =~ AB = —om (25) TfQ Na jg Bg dQ (29)
Finally, the solution is updated g = g +dgf. Note that to T . _
ensure a correct derivation of the tangent matrix, Nlesvtorn- Cag = —01,{Ra) = _ng Na 7, (]} Be Ve dQ
Raphsorshould exhibit a quadratic asymptotic rate of conver-
gence. _
From 22), the assembled residuals for each field at each LNA'O ¢ Ng A0

global node are formulated as where the derivatives are obtained applying the chain culle¢

] . discretized transport equatiorislj
R\A’z—fB}\JAdQ+fNAJCdF
o g Oell} = -7 Bs; Ol = —a v Bs (30)
T _ t i
Ra= jg; Ba Ga A2 + jg; Na Ja BaVadQ + o6 Again the symboby;,, implies second partial derivative with
_ . (26) respect to the time and the temporal derivative of the veltag
fQ Na 73 {ja BaVa} d2+ fQ Na7pCTadQ+ From 25-right and 26), the mass matrices are obtained by
f NapcTadQ+ f Na gedl Mg = -9y, (Ri} =0 Mug =-04,(Ri} =0
Q r
TV T
whereB, is the discretized gradient vector at nofle From Mag = —0y{Ral = 0 (31)
(25)—left and @6), the tangent sfiness matrices are
Mg = —01,(RA} = —f Na 7 p ¢ N dQ
KXY = -0 iR = [ Bl ov,(i) a0 o
Q The final assembled matrix problem is given by
Kie = —OmalRa) = fQ Bl ral} 0 KT+ CTT4+eMTT KTV 6,CTV] [dT ¢ (RT\
ciKVT ek VY ]{dv} - {RV}
KL\g/ = —8VB{RX} = f B}_\ 8VB{q} daQ - 1 1 il ‘ «
Q S (T T
fNAaVB{j}BBVBdQ_fNA jaBgdQ - (27) \Y, |V dv
Q Q (32)
fg Na 7 dvsl]} Be Ve dQ2 - fg Na7 dklj) Ba di2 The present formulation is implemented as a user elemenein t
T T ¢ non-linear finite element codeEAP, see [L6]. Each element
Kag = —0ms{Ral = LBA drela}dQ - uses a standard (in the FEM sense) eight—-node isoparametric
i _ . element with two degrees of freedom per node: voltdgeand
f Na 61’5{]} Bg Vg daQ — f Na T 61’8{]} Bg Vg dQ temperaturé'A.
Q Q



\Voltage [mV]

5.85

1.85

-2.15

-6.15

\Voltage [mV]

Temperature °C

Temperture °C

a1
N

w
~

N
N

~

N
~

=
N

]
w

. o’

.,
~
e

&""G---.@.---@--"

>
I
.
o=

’

(0]

’

o .
o -0-0-°
1 1

0.7
X3 [mm]

1.05 0 0.35 0.7

X3 [mm]

1.05

Figure 4: Voltage (left) and temperature (right) distribos along thermoelement for cases | (top row) and Il (bottom) and for three time instants. Analytical
results with dfferent line types, finite element with circles.
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Figure 5: Thermal fluxes in cases | (left) and Il (right) andtftree times. Analytical results represented witfiedent line types, finite element with circles.

4. Validations dence has been verified i3] using experimental results.

For all cases, a p—type thermoelement device manufactured

The aim of this section is to validate the FE developed in Secby MELCOR [24] with properties given in11) is modeled. The
tion 3 by means of four cases for which analytical solutions arghermoelement is a parallelepiped of dimensiodx1.4x1.14
found in the literature, modified or developed. These sohgi [mm]. For a p—type thermoelement, the electric flux diractio
are 1-D simplifications of the coupled partiaffdrential equa- is co-linear with the heat flux. The boundary conditions are
tions (13), (14) and are summarized in Tal?eDue to dificulty ~ discontinuous: initially the temperatureTs= 0 everywhere.
in developing analytical solutions, the temperature ddpane  Fort > 0 the boundary temperatures are set¢c= 30 on the
of the electric and thermal conductivities is not includedhie  cold face and tal,, = 50°C on the hot face. The boundary
validations. However, for the steady—state problem, tejgeth-  voltage is set t&/ = 0 [V] on the cold face. Figur8 shows the



geometric dimensions and the boundary conditions.
| Case| Simplifications | Effects |
| 7=0;j=0;a,v,k=cte F S
Il 7=0;j#0;a,v,k=cte FS,J
N | 7=0;j#0;aT);y.c=cte| F,S,J, Th
IV | 7#20;j#20;a);y,k=cte| F S, J, Th, s

Table 2: 1-D validation cases, simplifications and incluelégcts: F +ourier,

S - Seebeck] -Joule Th - Thomsonss - second sound

For cases I, Il and IV, an electric flux in the; direction
is prescribed using the special interface element devdlbge
the authors in23], see Figure2. The applied intensity is 5.2
[A] is an average of the ones specified by the manufacturerand IV :

50 T T T T T ]
O
® 35 1
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Figure 6: Analytical temperature solution foe 0.06, 7 = 0.02 [s],C = 1/6
(top). N-8 and HHT parameters to stu@ibbsphenomena (middle), see Table

3. Effect of theCourantnumber in Tesb by trial and error (bottom).

corresponds to an electric flyy = 2.65x 10° [A/m?].

The constant parameters for y, « are obtained from1(1)
using an average temperatdnig = (Th + T¢)/2.

For all cases, the electric strong form is directly given by
(13), however, the thermal strong form for each case must be
obtained by introducing the simplifications from Tal@lénto
(14.

1 k0xx{T}=pCa{T)
1: kdedT)=pcadT) - j2ly

N kOdTY=pCadT) = j2/y +th j 0T} (33)

KOxdT) = p COHIT) = J2/y +1tn j AT} +
73 {j OV} + 7 p C T}

The fourth and fifth terms on the right side of case IV (sec-
ond line) represent the second soufieets: irreversibility, 8)—
right, and hyperbolicity, respectively.

4.1. Casesltolll

For these cases, = 0 and the thermal strong form83)
are difusive: second order parabolic partiaffdrential equa-
tions. For I, the situation is linear and homogeneous; for I
linear and non—homogeneous and for Il non-linear and non—
homogeneous.

Analytical solutions for the thermal field in cases | and Il
are given in R5], while the electrical fields can be calculated
from (13), see the Appendix. For Ill, the thermal and electrical
solutions are given inZ6).

Numerical solutions are obtained using a structured (e)ars
mesh of 11 elements in the direction. Only one element is
used in thex; and x, directions since the problem is funda-
mentally 1-D. A time step oAt = 0.1 and the standard 8-
parameterg = 0.25,y = 0.5 are used.

Figure4 shows the voltage (left) and temperature (right) dis-
tributions along the¢; direction for case | (top), and for cases
Il and Il (bottom). Solutions at = 0.05,0.3,5 [s] are repre-
sented: the analytical ones with lines and the FEM resultis wi
circles. For case I, th& distributions are quadratic in nature
during the initial transient response due to the boundany co
ditions. At near steady—state (e.g5 5) they become nearly
linear, since this problem is of theaplace-type: the lack of
electric current implies the absence oflaule effect. TheV
distributions are proportional 0, with « being the slope, see
(13.

For case Il, near quadratic distributions appear for the
steady-state due to tleuleeffect: this is @Poissortype prob-
lem. Now,V distributions are not proportional b, since the
potential drop increases due to electric energy being ctede
into thermal energy. Results for case Ill are very similarce
the Thomsoreffect is not relevant under the applied intensity,
see [L5). As expected for these simple cases, the agreement
between analytical and FEM distributions is very good.

Figure 5 shows thexs thermal flux vs. length. Analytical
and FE results dlier slightly at the edges, since the mesh is not
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Figure 7: Voltage (left) and temperature (right) vs. thesfement length at several time instants. For voltage, onitefelement results. For temperature, analytical
results are shown with fierent line types and corresponding finite element results eiicles.

highly refined to capture thé boundary condition. For short  Differences between the parabolic and the hyperbolic models
times, the flux distributions are very similar in both casiisce  appear in the early times where tMeT distributions appear as
the T distributions have the same shape. Near steady—state pgecewise functions with sharp discontinuities near thgesd
constant distribution is obtained for case | (from the Im€a  This occurs since both energies travel as finite velocityesav
distribution) and a linear for case Il (from a quadrafic In  see Figures. In addition, strong changes of temperature oc-
addition, for case Il the heat flux changes sign due to thengkco cur when discontinuous initial boundary conditions aredyse
term in the right—face ofl(5)—bottom prevailing over the first inducing aGibbsphenomena. For larger times, the parabolic
one. Note that the prescribed electric flux is negative,i@icg  model dominates and, therefore, the numerical algorithratmu
to the flux direction into the p—type thermoelement. Agaasec be:
Il is similar to case Il and is not shown.

e robust and fficient to automatically solve both parabolic
49 Case |V and hyperbolic problems depending on the time instant.

Case IV is a non-linear and non-homogeneous hyperbolic ® able to have controllable numerical dissipation to mitgat
problem. The analytical solution for the temperature iegiv the Gibbsphenomena.

in [13] and is based on kaplacetransform solution technigue. . . .

However, several dfierences between this solution and our nu- . qu a Ime_ar p“’b'e”f‘ and accordllng 0] no nu_mencal 0s-
merical results are found, thus, a new corrected compasigon cillations W'_” appear if the dynamic al_gorlthm Is reguized
lution is deduced and summarized in the Appendix. Furtherpy the relationshipit < Chyv, _whereC s the C(_)urantnum-
more, in the present work the heat flux is calculated using ger [2.7] and_v = Vx/pcr, the linear wave veIouty. The cases
semi—analytical procedure that combines the analyticape- considered in the present work are h|ghly non-linear, foeee
ature solution with finite dierences to obtain the gradient in the.spe_ctrum of the glgorlthm is not evident enough for a good
(15)-bottom. No analytical results for voltage are generatet?sumat'on of the ratiat/h. In our analyses a structured mesh

_ On O
due to the necessity of using numerical techniques in gikste Of_ 200 eleme_ntsl"(_ 8.1429x 10.) n thexs dweghon N useq.
Since a precise spectral analysis is not an objective ofpidis

per, a valueC = 1/6 is chosen selected based on a series of
numerical tests. If smaller values Gf(e.g., ¥10 and conse-
quently smallerAt) are used the oscillation appear again, as
seen in Figures bottom. Larger values of will artificially
FEM o | smear the distribution at the front itself.
In order to evaluate the performance of the time integration
PPN e scheme, Ng and HHT algorithms are compared using param-
eters that produce fierent spectral radjp, see 8] and Table
-4+ . 3. According to R9], p should stay close to unity for small
to intermediate time steps and decreasg to 0.5 only when
At/T — oo, whereT is the undamped natural period.
0 0.35 0.7 1.05 Figure6 top showsT vs. lengthxs for an assumed = 0.02
X3 [mm] (as in most of this section) at= 0.06; for shorter times the
comparison analytical solution does not converge; the mume
Figure 8: Thermal flux vs. thermoelement lengthtfer 0.06. Semi-analytical ~ cal one does although with increasi@gbbsnoise. The analyt-
result represented by solid lines and finite element byestcl ical solution (solid line) and the FE (dashed) are obtaingd w

Semi-analytical—

gs x 10° [W/m?]




N-8 and HHT algorithms (these are unconditionally stable forinstants and becomes parabolic later. This is clearly seEiyt

the parameters tested when applied to linear problems). ure9 top, where the heat flux is plotted for several times. For
_ t < 0.06 the peaks described in the previous figure are visible,
| Test| Algorithm [p [B |y |a | but for larger times they become smoother. tAt 0.13 both
a N-8 1 14 | 1/2 - waves collide, and after that the flux will be linear as in Feu
N-3 32| 914 | 1649 - 5. The mathematical explanation of this attenuation can be se
N 121 49 |56 - in (15)—top: the first term in the left hand side is hyperbolic, the
b N-3 0 1 32 - second parabolic and the last in the right dispersive. Inrthe
HAT 32| 914 | 1649 | 6/7 tial .|nstants the hyperbo_lpterm is dommant; physicdiigtcan
c AT 17249 |56 23 be interpreted as a ballistic motion of either electronsaes

The wave is constantly attenuated by the dissipation inired
Table 3:Newmarkg and HHT parameters used for numerical testing. by the last term up to a time in which the influence of the
terms vanish, and the first time derivative is the dominamhte
For N-8, the use of standard parameters (fstesults in The last attenuation is obviouslytacted by the value of the
numerical oscillations since this algorithm is non—diasije.  constantr, see Figureé bottom, where it can be seen that for
The HHT algorithm (test) slightly oscillates due to its low largerr the behavior will be more hyperbolic (mordiitult to
numerical damping. Therefore, in the remainder of the prese simulate) and vice—versa. This figure is a test for the rotmsst
work the parameters of tebtwill be used, since according to of the finite element performance, but even foe= 0.06 the
[28] this choice results in the highest numerical dissipation.  simulation is satisfactory as long as the ratto< Ch/vis used.
Figure7 shows theV (left) andT (right) distributions along
the thermoelement at several instants of time. In the firsgn
be observed the transition from very small times and hyda&rbo
solution to higher ones and parabolic, the last with alninetlr
distribution between boundary values. Notice in the cuore f
t = 0.06 the electric wave fronts from left and right at around
0.28 and 0.8 [mm], with a non-linear distribution inside the
wave and linear between the fronts. Eer 0.13 the both waves
almost collide at around 0.63 [mm], point shifted to the tigh
This is so since th&@ boundary condition is higher in the left:
the energy and consequently velocity are also higher ingtte |
wave.
In the T distribution a similar transition from hyperbolic to
parabolic can be seen. The collision between the thermasvav

i in clear fot = 0.1 h me thermoelement poin - ; .
s again clear fot = 0.13 at the same thermoelement point, aarycondmons. In this example, voltage and temperatustidi

logical result since the thermal and electric waves are lealip . ) o .
Fort = 0.06 it can be appreciated that inside the wave zonebUtlonS present sharp discontinuities, and the numeresailts

the slope of the distribution is higher than the obtainedhait numerical oscillations. To mitigate thisibbsphenomena three

arabolic model, with the consequence of a higher ener connumerical test have been developblewmarky with standard
b ' q g 9y arameters, HHT anNewmarkg with 3 = 1,y = 3/2. The

fined in maller volume. Th reemen ween analyti . . . .
ed in a smaller volume e agreement between analytic atter test provides the best results since this paranatiiz

and numerical results is very good, except for a small region. . . L " .
around the wave front at= O.0y69this is dueE[)o the intrinsic 03- gives the highest numerical dissipation. In addition, et

o . o . . steps and element sizes have been regularized using arn@ear
cillations from the discrete time integration scheme angiy : . X
difficult to avoid lationship with aCourantnumberC = 1/6. ThisC has been

Figure 8 compares the semi—analytical and FEM thermaIChosen by means of trial and error, since the problem is ighl

fluxes fort = 0.06. Two peaks due to the discontinuous bound_non—lmear and a spectral analysis is not one of the currerit w

. . . objectives. Physically, the obtained results show a wawee-pr
ary conditions at the wave front are evident, representieg t .

. . . i agation of temperature, of thermal flux and of voltage (due to
propagation of this wave. Even if a nil flux at the thermoele-

. . the thermoelectric coupling). This numerical tool can be ap
ment center could be expected, it has a constant negative.val lied to the desian of micro—devices for novel apolicatiof
The reason is found i) bottom: the first right—term is zero P g bp

due to a constant distribution where the wave is not present fast processes, where the second soufetecould be relevant.

(see Figurey), distribution that is due to the electric coupling,

see the last term irlf) top. But the second term iri§) bot- 6. Acknowledgments
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5. Conclusions

This article has presented a non-linear and transient finite
element formulation to simulate thermoelectric behavitder
hyperbolic heat conduction. The formulation has been imple
mented into the computational coBBAP. Numerically, non—
linearities and transient hyperbolicity have been adee &y
Newtor-Rhapsorand byNewmark3 and HHT algorithms, re-
spectively. Analytically, four 1-D solutions have been ob-
tained to validate the finite element results; the first tiaaee
parabolic problems and both result types agree very wetigus
standard parameters NEwmarkg. The fourth validation con-
sists on a hyperbolic problem with discontinuous initialibd-
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Appendix A. Analytical solutions

The analytical solution of case Ill is given i&€]. In this ap-
pendix specially developed solutions for I, II, IV are pretsesl.

The temperature distribution along the thermoelement,for |

Il are reported in25). The voltage distributions are calculated
by means of13) and the thermal flux bylG)—bottom.

Case |

AT S
V(xs, 1) = —a (T X3 — AT + Z Ch Sx e"“]

n=1

AT =
Tt =Tet X+ Z Cn Sx &M (A.1)
n=1
3 AT . _a
Os(Xs, t) = _K[T + ch Cx T ¢ )
n=1
where AT = Th - Te, A = B(nr/L)% B = «/pc, SX =

sin(hrxs/L), Cx
length. In addition

cosfirxz/L) andL is the thermoelement

2 (t AT
Ch=— f Te— —X3| Sx dxs (A2)
L Jo L
Casel ll
V(Xs, t) = ELx +a (£ - A1X3) Lx
Yy L
- Z Cn Sx e’“}
n=1
(A.3)

A (o)
T(x3,1) = szg + T — AgX§ + Z c, SxeM

n=1
nr
At
L

where Lx = L — X3, Ar = ja/2y, Ao = AT + j5L%/2Bpcy,
A = j3/2Bpcy and

L

A

= T. -
fo(LX3+C

A o0
Os(Xs, t) = —K(Tz — 2A3X3 + Z ¢, Cx
n=1

+aT(Xs,t)]3

2

Ch = 3 (A.4)

Az Xg) Sx dX3
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Case lV

The temperature distribution along the thermoelement was
reported in L3 using theLaplacetransform technique. How-
ever, we believe there are several errors in this work, fackvh
the result is developed again. From the reference, we use the
dimensionless parametefs= x3/L andy = tk/pcL? but (14)
is rewritten in an amenable form to be solved by tiaplace
technique

0TI+ F1O0AT) + Fo = 0,{T} =7 F30,,,{T} +

A akA
TF4 0, {Fg T Flag{T}} =0 (A-5)
TE0)=0; TOmM=Th; TLn=T.

Note that the boundary conditions have been included. Regar
ing [13], F1 = —tplL/kA, F2 = 1?L?/kyA? have been modified
andF3 = k/pcl?, F4 = 1/pcAare added. Applying thieaplace
transform

F2

_ 1€ wy —— S —

W(E, 5) = Ppietsé + Plzeilr + S(tFa& + S)T (A.6)
WE@=0; WO)=-=; W)= ?h

wheres is time in theLaplacedomain. The boundary condi-
tions in (A.6) are diferent from those in13]: in this reference
they are not transformed. Then, the following parametess ar
modified

E glz L _ E _ L
P (tF3?+9) s/ s(tF3?+9)
n= el — eli2
T F»
Po=-—S-P
2 U rFs + 5)
A11 1
=3 (—Al T A2 - 451)
A12

A = F1(tal? + AaxtsFs) ; By = —t2L%(s+ Fas’r)
(A7)
Finally, (A.6) are inverted using thRiemanrsum approxi-

mation as in 13].



