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Abstract

Cortical bone tissue is the responsible of giving support and structure to ver-

tebrates. For that reason, understanding and analyzing its behavior is needed

from each different hierarchical level that composes it. The lower the struc-

tural scale is, the greater the complexity and scarcity of studies in literature.

These studies are relevant for understanding, preventing and solving impor-

tant health problems that affect human beings.

From a mechanical point of view is interesting to evaluate and apply engineer-

ing numerical tools to analyze complex materials as biological tissues, increas-

ing the state of the art in different disciplines that can be applied in numerous

fields as material science, biomechanics, numerical methods, medicine and

more.

In this Thesis the mechanical behavior of cortical bone at microstructural

level is analyzed, with finite element models of its basic structure, the osteon.

The microstructure of osteons, composed of mineralized collagen fibrils in

layers with different orientations disposed concentrically around blood vessels

is considered in the models for the calculation of elastic properties and failure

criteria definition.

For obtaining elastic properties, the use of micromechanical finite element

models is considered, with heterogeneous composition for both mineralized col-
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lagen fibrils (at nanostructural level) and lamellar level (at sub-microstructural

level).

The failure analysis for realistic geometries is applied after comparing differ-

ent models that involve, on one hand the growth of microcracks with contact

conditions and on the other, degradation of elastic material properties by user

subroutines of the finite element code, the latter being the one that brings

better results from a computational cost viewpoint. Therefore an interesting

alternative is here presented that can be used to evaluate the damage prop-

agation at three-dimensional level, which with other methods as X-FEM can

be computationally unaffordable.

Composite materials failure criteria are applied to osteon analysis and the

results are related with experimental tests from bibliography, showing the

relevance of shear stresses between lamellae for failure initiation and prop-

agation. In a two-dimensional study it is also shown the important role of

osteocyte lacunae in the failure initiation, what is interesting from a cellular

mechanotransduction approach.
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Resumen

El tejido óseo cortical es el encargado de dar soporte y estructura a los verte-

brados. Existe por tanto una necesidad de conocer y analizar mecánicamente

su comportamiento desde los distintos niveles jerárquicos que lo componen,

siendo mayor la complejidad y más escasos los estudios disponibles en la lit-

eratura cuanto más pequeña es la escala estructural que se analiza. Estos

estudios son relevantes para comprender, prevenir y solucionar problemas de

salud importantes que afectan al ser humano.

Desde el punto de vista mecánico es interesante evaluar y aplicar herramientas

numéricas ingenieriles para el análisis de materiales más complejos como son

los biológicos, incrementando el estado del arte en distintas disciplinas que

pueden ser aplicadas en numerosos campos como la ciencia de los materiales,

la biomecánica, los métodos numéricos o la medicina, entre otras.

En esta Tesis se analiza el comportamiento mecánico del hueso cortical a nivel

microestructural, donde se modela mediante el método de los elementos finitos

su unidad básica, la osteona. Para la obtención de las propiedades elásticas se

considera en los modelos la microestructura compuesta por capas de colágeno

mineralizado con diferentes orientaciones, dispuestas de manera concéntrica

alrededor de los canales vasculares.
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Se incluye además la utilización de modelos micromecánicos de elementos fini-

tos que tienen en cuenta la composición heterogénea tanto para el nivel del

fibrilo de colágeno mineralizado (nivel nanoestructural) como para el nivel de

lamela (nivel sub microestructural).

El análisis del fallo para geometŕıas realistas se aplica tras comparar varios

modelos que involucran por un lado el crecimiento de grietas mediante condi-

ciones de contacto y por otro, degradación de las propiedades elásticas del ma-

terial mediante subrutinas de usuario del código de elementos finitos, siendo

este último el que mejores resultados presenta desde el punto de vista del coste

computacional. De esta manera se presenta una alternativa interesante que

permite evaluar la propagación del daño a nivel tridimensional, lo que con

otros métodos como el X-FEM puede ser computacionalmente inabordable.

Se aplican criterios de fallo utilizados para materiales compuestos en ingenieŕıa

estructural a las osteonas y los resultados se relacionan con los de los ensayos

experimentales disponibles en la bibliograf́ıa, mostrando la relevancia de las

tensiones de cortadura entre lamelas para la iniciación y propagación del daño.

En un estudio bidimensional, también se muestra la participación importante

en la fase de inicio de daño de las lagunas de osteocitos lo que es interesante

desde un enfoque de mecanotransducción celular.
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Resum

El teixit ossi cortical és l’encarregat de donar suport i estructura als vertebrats.

Existeix per tant una necessitat de conèixer i analitzar mecànicament el seu

comportament des dels diferents nivells jeràrquics que ho componen, sent ma-

jor la complexitat i més escassos els estudis disponibles en la literatura com

més xicoteta és l’escala estructural que s’analitza. Aquests estudis són relle-

vants per a comprendre, prevenir i solucionar problemes de salut importants

que afecten a l’ésser humà.

Des del punt de vista mecànic és interessant avaluar i aplicar eines numèriques

ingenieriles per a l’anàlisi de materials més complexos com són els biològics,

incrementant l’estat de l’art en diferents disciplines que poden ser aplicades en

nombrosos camps com la ciència dels materials, la biomecànica, els mètodes

numèrics o la medicina, entre altres.

En aquesta Tesi s’analitza el comportament mecànic de l’os cortical a nivell

microestructural, on es modela mitjançant el mètode dels elements finits la

seua unitat bàsica, la osteona. Per a l’obtenció de les propietats elàstiques es

considera en els models la microestructura composta per capes de col·làgen
mineralitzat amb diferents orientacions, disposades de manera concèntrica al

voltant dels canals vasculars.
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S’inclou a més la utilització de models micromecànics d’elements finits que

tenen en compte la composició heterogènia tant per al nivell del fibril de

col·làgen mineralitzat (nivell nanoestructural) com per al nivell de lamela (niv-

ell submicroestructural).

L’anàlisi de la fallada per a geometries realistes s’aplica després de comparar

diversos models que involucren d’una banda el creixement de clavills mit-

jançant condicions de contacte i per un altre, degradació de les propietats

elàstiques del material mitjançant subrutines d’usuari del codi d’elements

finits, sent aquest últim el que millors resultats presenta des del punt de vista

del cost computacional. D’aquesta manera es presenta una alternativa in-

teressant que permet avaluar la propagació del dany a nivell tridimensional,

la qual cosa amb altres mètodes com el X-FEM pot ser computacionalment

inabordable.

S’apliquen criteris de fallada utilitzats per a materials compostos en enginyeria

estructural a les osteones i els resultats es relacionen amb els de els assajos

experimentals disponibles en la bibliografia, mostrant la rellevància de les

tensions de cisallament entre lameles per a la iniciació i propagació del dany.

En un estudi bidimensional, també es mostra la participació important en la

fase d’inici de dany de les llacunes d’osteòcits el que és interessant des d’un

enfocament de mecanotransducción cel·lular.
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Chapter 1

Introduction

“If bone is the answer, then what is the question?”

Rik Huiskes

1.1 Introduction and aim

The study of bones has a great importance on scientific investigation. In the past two

decades the quantity of people involved and contributions to literature have exponen-

tially increased achieving important discoveries with a high social impact. Although

because of its complexity at multiple approaches, there are many fields in which more

insight and knowledge is still necessary to understand its behavior.

Nowadays, the diagnostic, prediction and risk control of bone fracture have a socioe-

conomic and life quality impact, especially taking into account important diseases as

osteoporosis. Additionally, it has been proved that diagnostic tests exclusively based

on bone mineral density (BMD) (the most common at present) are not enough in or-

der to characterize the risk of fracture. That is why recently less simplistic indicators
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Chapter 1. Introduction

based on other factors as bone structure morphology and some mechanical properties

as elastic modulus at microstructural level have been suggested.

Therefore the aim of this Thesis is the development of numerical models to predict

the elastic properties and the progressive failure of cortical bone tissue by the finite

element method in order to find an equilibrium between the computational cost and

the obtained failure simulation.

The micromechanical models developed in this Thesis have into consideration two

principal aspects: on one hand the microstructural characteristics that define cortical

tissue (spatial distribution, elastic properties, morphology, etc.) and on the other,

the simulation of damage propagation through property degradation of the tissue

under mechanical loads. The presence of microcracks and lacunae it is also simulated

by using advanced finite element techniques. These models enable the reproduction

with higher accuracy of the elastic and strength behaviors for this kind of tissues and

characterize the mechanical microstructural response.

1.2 Organization of the Thesis

The main structure of this Thesis consists of nine chapters. The first five chapters

correspond to: first, the introduction and description of the experimental tests found

in the literature that motivated this work and second the calculation and description

of the material properties used in the numerical models presented in the final chapters.

Chapter 2 contains an introduction to microstructural composition of bones and de-

scription of the hierarchical levels considered in this Thesis.

Chapter 3 is about a numerical homogenization developed with the finite element

method for the calculation of the elastic properties at sub-microstructural level as

well as the properties used for micro-structural models. The relevance and implication

of these resultant properties for the fulfilment of thermodynamic restrictions is also

analyzed.
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1.2. Organization of the Thesis

In Chapter 4 the strength properties used in the FE models are described. These are

obtained both from literature and from proposed relationships of fracture mechanics

for not reported data.

Chapter 5 is an introduction to finite element analysis applied to cortical bone failure.

Also a damage background is presented; some relevant works of the state of the art for

this Thesis are referred from literature and finally there is an explanation of dominant

failure criteria used for the analysis of a single osteon.

In Chapters 6, 7 and 8 the 2D and 3D respectively computationally efficient finite

element models with failure implementation through damage propagation of corti-

cal bone are detailed aiming at reducing the computational cost of an explicit crack

model. The 2D models of Chapter 6 include geometries from half a single osteon with

circumferential shape and lacunae to more realistic geometry models based on micro-

graphs from literature. A three point bending load case of ovine bone is simulated

and the correspondent mechanical tests performed in the context of this Thesis are

described in Chapter 7.

In Chapter 8 models with a more detailed geometry are analyzed and the resulting

damage patterns are compared with epi-fluorescence micrographs available in bibli-

ography. The conclusions of the Thesis are presented in Chapter 9.
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Chapter 2

Introduction to hierarchical

levels of bone

The skeletal system is very important for vertebrate bodies both metabolically and

biomechanically (Cowin [2001]). It is composed of individual bones and the tissues

that connect them. Bones are the principal constituents of the system differing from

the rest of tissues in stiffness and hardness. These characteristics are derived from

constituents as inorganic salts that mineralize a collagen fibril matrix and multiple

non collagenous proteins. The stiffness and hardness of bones permits skeleton to

keep its shape, protecting smooth tissues in craniums, thorax and pelvic cavities. It

also gives protection to bone marrow and transmits forces from muscular contraction

from one part of the body to others during movement. The mineral content works

as ion supply, particularly of calcium that in addition of being fundamental to bone

structure, allows the contraction of muscles as the heart.

One of the particularities and exceptional characteristics of bone is that it can regen-

erate itself, reshaping and adapting its mass and properties to changes and mechanic

requirements from bodies. The bone structure even at its global level is very complex

and it can be considered as a composite from many hierarchical levels (Cowin [2001];

Rho et al. [1998]; Taylor et al. [2007]). In order to understand the mechanical prop-
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Chapter 2. Introduction to hierarchical levels of bone

Figure 2.1: Long bone structure.

erties of bone tissues it is important to recognize each of its phases, also knowing the

mechanical properties of its constituents, leading to the complexity of its study.

In the next sections the fundamental composition of cortical bone from macroscopic

to microstructural level (the context of this Thesis) is described.

2.1 Macrostructural level

Among different types of bone, long bones are responsible of weight support during

activities giving structure and mobility. A typical adult long bone structure (Fig. 2.1)

consists of a cylindrical axis in the middle, called diaphysis and two rounded extremes

called epiphysis. Connecting these two parts is the metaphysis. The extremes of long

bones are covered by articular cartilage.

6 C. Arango Villegas



2.2. Microstructural level (10-500 µm)

Bones are composed of two principal types of tissues: cortical (compact) bone and

trabecular (porous) or cancellous bone (Fig. 2.1). The diaphysis is composed princi-

pally of cortical bone that protects the bone marrow, the epiphysis and metaphysis

are composed of both cortical and trabecular tissues. The percentage of each one

of these parts depends on the function of the bone although approximately 80% of

adult skeleton mass corresponds to cortical bone that constitute the external walls

of bones. The cortical bone shell can reach a thickness between several tenths of

a millimeter (in vertebrae) and several millimeters (in the mid-shaft of long bones)

(Launey et al. [2010]) and it is responsible of protection and support. Trabecular

bone is more vascularized and contains the red bone marrow where hematopoiesis

(blood cell production) is generated.

2.2 Microstructural level (10-500 µm)

When bone begins to be formed, its first structure is formed by concentric fibers with

low mineral content. This structure is called primary osteon. The osteon is the basic

structural unity of cortical bone (Fig. 2.2). When this process of formation and

mineralization ends, there is a need of adapting to the mechanical demands changing

the shape and configuration when it is needed. That is achieved by new concentric

structures overlapping the original tissue, called secondary osteons.

Secondary osteons are composed of layers called lamellae with thicknesses between

3-7 µm (Cowin [2001]; Rho et al. [1998]) that are arranged concentrically around

blood vessels canals, called Haversian canals, that is the reason this level is also called

Haversian system. The final structure is close to a cylindrical shape with diameter

between 100-300 µm.

2.3 Sub-microstructural level (1-10 µm)

The sub-microstructural level begins at lamellae composed by arrays of mineralized

collagen fibrils specifically oriented, being this orientation different from subsequent

adjacent sublayers (Akiva et al. [1998]) as shown in Fig. 2.3. The orientations of

C. Arango Villegas 7



Chapter 2. Introduction to hierarchical levels of bone

Figure 2.2: From left to right different scales of long bones. Left: bone at macroscale

composed of cortical and trabecular tissues. Middle: microscale of a transversal section of

cortical bone, composed of osteons and interstitial tissue. Right: an osteon composed of

concentric lamellae and surrounded by a cement line.

these arrays differ in each sublayer, in such a way that a complex rotated plywood-

like structure is formed (Weiner et al. [1999]).

Between osteon lamellae, there are the so-called osteocyte lacunae, where important

cells (osteocytes) in the remodeling process of bone (Cowin [2001]) are located. Nu-

merous works have proved the important role of osteocytes (Cowin [2001]; Cowin et

al. [1991]; Klein-Nulend et al. [2012]; Cox et al. [2011]) relating cellular biology with

fracture mechanics focused on the networking between cells acting as sensors and

starters of bone remodeling.

2.4 Nanostructural and sub-nanostructural levels

(less than 1µm)

At nanostructural level, bone is composed of fibers where mineralized collagen fibrils

(Fig. 2.3) are grouped. Type-I mineralized collagen fibrils are the building blocks

of the lamellae and are composed of tropocollagen molecules and hydroxyapatite

minerals periodically arranged. It is well known that the collagen fibril orientation

8 C. Arango Villegas



2.4. Nanostructural and sub-nanostructural levels
(less than 1µm)

Figure 2.3: (a) Micrograph of an osteon, (b) sub-microstructural level (lamellae and sublayer

variations are observable between white lines) (Wagner and Weiner [1992]), (c) lamellar fibrils

structure scheme and different sublayer numeration according to Weiner et al. [1999], (d)

mineralized collagen fibril structure scheme (Vercher et al. [2014]).
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Chapter 2. Introduction to hierarchical levels of bone

Figure 2.4: Schematic view of some of the hierarchical features of collagen, ranging from the

amino acid sequence level at nanoscale up to the scale of collagen fibers with lengths on the

order of 10 µm.

pattern in the lamella is an important feature because mechanical properties depend

on bone structure at the very small scale.

At a molecular scale, collagen type I (Fig. 2.4) and carbonate apatite crystals are

the basic constituents of mineralized collagen fibrils. The mineral is largely impure

hydroxyapatite Ca10(PO4)6(OH)2 containing constituents such as carbonate, citrate,

magnesium, fluoride, and strontium incorporated into the crystal lattice or absorbed

onto the crystal surface (Cowin [2001]). The organic matrix consists of 90% collagen

and about 10% of various non-collagenous proteins (Cowin [2001]). Each fibril is

made up of three polypeptide chains about 1000 amino acids long. These are wound

together in a triple helix. A triple-helical molecule is thus cylindrically shaped, with

an average diameter of about 1.5 nm, and lengths of 300 nm (Weiner and Wagner

[1998]).

The orientation of collagen fibrils varies in successive layers. Reisinger et al. [2011]

developed a detailed analysis of elastic properties of the microstructure using a finite

element model in which the elastic constants of lamellar bone have been calculated

using homogenization theories from a previous work (Reisinger et al. [2010]). Because

of the complexity of bone at small scales these models are developed in order to
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2.4. Nanostructural and sub-nanostructural levels
(less than 1µm)

understand the mechanical behavior and that is the reason why these authors analyze

several collagen fibril orientation patterns. They conclude that the model proposed

by Weiner et al. [1999], based on a 5-layered structure in an individual lamella (Fig.

2.3), is in good agreement with experimental results. Therefore this model is taken

as a reference in this Thesis.

C. Arango Villegas 11





Chapter 3

Elastic properties of cortical

bone

3.1 Introduction

The lamellar configuration of bone has always been a controversial topic, and various

models have been proposed for the structure of bone lamellae. In the last decade of

17th century, Clopton Havers was a pioneer anatomist and one of the most notable

histologists of all time who first described what we now call the Haversian canals.

Gebhardt [1905] was the first to suggest that all lamellae are dense fibrous layers in

which collagen fibers lie parallel; the difference between successive lamellae consists

solely in the orientation of the fibrils, which may vary through an angle of 0–90◦. In

all other models subsequently proposed, the lamellar pattern of the bone is assumed

to depend on the alternation of layers of heterogeneous structure. Later, Ascenzi and

Bonucci [1967, 1968] held the idea of a unidirectional collagen fibril orientation in

each lamella, basing their results on polarized light microscopy (PLM) of secondary

osteons. Subsequently, Wagner and Weiner [1992] also suggested a unidirectional

fibril orientation in each lamella. These authors calculated elastic constants of an

13



Chapter 3. Elastic properties of cortical bone

individual lamella by using several composite material models (Padawer and Beecher

[1970]; Lusis et al. [1973]; Halpin [1992]).

Regarding microstructural and nanostructural levels, Zysset et al. [1999] propose a

nanoindentation technique to quantify the elastic properties of lamellar bone and

compared these properties between osteonal, interstitial and trabecular microstruc-

tures from the diaphysis and the neck of the human femur. Rho et al. [1998] present

a literature review of the mechanical properties of bone with an emphasis on the

relationship between the complexity of the hierarchical structure and its mechanical

properties, highlighting that an accurate model should include the molecular interac-

tions or physical mechanisms involved in the transfer of load across the bone material

subunits, which makes the rule of mixtures a moderately successful formulation.

Although the vast majority of authors in bibliography support the idea of lamellar

structure with the alternation of fibrils at different directions inside lamellae, Marotti

et al. have remarkable works based on scanning electron microscopy (SEM) where a

different model that is not in agreement with that assumption is proposed. In their

works, lamellar bone is proposed as an alternation of dense-acellular lamellae (collagen

rich) and loose-cellular lamellae (collagen poor), all exhibiting an interwoven texture

of collagen fibers (Marotti and Muglia [1994]; Marotti et al. [2013]).

It seems that the first investigators who analyzed a lamella as a two-phase composite

material were Currey [1962] and Bonfield and Li [1967]. More recent investigations

consider a lamella as a layered structure where a collagen fibril orientation pattern

exists (Weiner et al. [1999]; Akiva et al. [1998]; Giraud-Guille [1988]; Wagermaier et

al. [2006]). The bibliography about elastic properties of platelet or ribbon reinforced

composites is scarce. According to Halpin [1992], the following equations are used to

calculate certain elastic constants:

p

pm
=

(1 + ζηVf )

(1− ηVf )
(3.1)

η =
(pf/pm − 1)

(pf/pm + ζ)
(3.2)
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3.1. Introduction

where:

p: composite properties E11, E22, G12, G23, ν12, ν23
pf : reinforcement properties Ef , Gf , νf
pm: matrix properties Em, Gm, νm
Vf : reinforcement volume fraction

ζ: constant that is a function of reinforcement geometry, packing and loading condi-

tions.

1, 2, 3 subscripts are the directions of the reference local system as shown in Fig. 3.1.

The volume fraction of the reinforcement platelet Vf is given by:

Vf =
LWT

(L+ dL)(W + dW )(T + dT )
(3.3)

where L is the platelet longitude, W is the width and T is the thickness. dL, dW
and dT are the distances between platelets: longitudinal, transversal on plane and

transversal out of plane, respectively as shown in Figs. 3.1 and 3.12.

The factor ζ can be considered as a reinforcement measure that is function of boundary

conditions. In Halpin [1984], the following expressions for calculating ζ for different

elastic properties are proposed:

ζE11
= 2(L/T ) + 40V 10

f (3.4)

ζE22
= 2(W/T ) + 40V 10

f (3.5)

ζG12
= ((L+ T )/2T )

√
3 + 40V 10

f (3.6)

ζG23
=

1

4− 3νm
(3.7)

ζν12 = ∞ (3.8)

ζν23 = 0 (3.9)
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Chapter 3. Elastic properties of cortical bone

From Eq. 3.1 we can obtain the following properties: E11/Em, E22/Em, G12/Gm,

G23/Gm, ν12/νm and ν23/νm. However we cannot obtain expressions to calculate:

ζ for out of plane Young’s modulus, E33, shearing modulus, G31, or Poisson’s ratio

ν31. Therefore according to Akiva et al. [1998] in this work we assume that ζE33
=

2T/(L+W ), ζG31
= ζG23

and ζν31 = ζν23 .

Figure 3.1: Unit cell volume a× b× c and principal dimensions of the domain (in each view,

proportions are preserved).

Figure 3.2: Cylindrical coordinate system (r, θ, z) is used as a global coordinate system, and

a local auxiliary coordinate system (x, y, z) is defined at any point, being (x, y, z) coincident

with (θ, z, r), respectively.
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3.1. Introduction

On the other hand, the elastic compliance matrix for an orthotropic material, Sl is

given by:

Sl =













































1

E11

−ν21
E22

−ν31
E33

0 0 0

−ν12
E11

1

E22

−ν32
E33

0 0 0

−ν13
E11

−ν23
E22

1

E33

0 0 0

0 0 0
1

G23

0 0

0 0 0 0
1

G31

0

0 0 0 0 0
1

G12













































(3.10)

where superindex l makes reference to the local coordinate system (1,2,3), see Fig. 3.1,

where Cl = (Sl)−1 is the orthotropic stiffness matrix. In Eq. 3.10 the nine indepen-

dent elastic constants of the material can be calculated with Halpin-Tsai equations

described above. Therefore it is posible to characterize the elastic behaviour of the

fibril if it is considered as an orthotropic material. More recent studies of the con-

figuration of crystals inside fibrils show an anisotropic behavior. That is why the

objective of next sections of this Thesis is to obtain the constitutive matrix of the

fibril by a FE model using homogenization procedures.

3.1.1 Lekhnitskii transformation

The following equation corresponds to the mineralized collagen fibril compliance ma-

trix. It is expressed in the local coordinate system (x, y, z) that is directly related

with the global cylindrical system (θ,z,r) (see Fig. 3.2):

Sg = qTSlq (3.11)
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Chapter 3. Elastic properties of cortical bone

where q is the transformation matrix corresponding to Lekhnitskii equations (Lekhnit-

skii [1963]):

q =



































α2
1 α2

2 α3
1 −2α2α3 −2α3α1 −2α1α2

β2
1 β2

2 β3
1 −2β2β3 −2β3β1 −2β1β2

γ21 γ22 γ31 −2γ2γ3 −2γ3γ1 −2γ1γ2

−β1γ1 −β2γ2 −β3γ3 β2γ3 + β3γ2 β1γ3 + β3γ1 β1γ2 + β2γ1

−γ1α1 −γ2α2 −γ3α3 γ2α3 + γ3α2 γ1α3 + γ3α1 γ1α2 + γ2α1

−α1β1 −α2β2 −α3β3 α2β3 + α3β2 α1β3 + α3β1 α1β2 + α2β1



































(3.12)

where αi, βi and γi are the director cosines that relate the auxiliary local system of

coordinates (x, y, z) with respect to the local oriented system (1,2,3).

In this Thesis and past publications of the research group (Vercher et al. [2014];

Vercher-Mart́ınez et al. [2015]; Giner et al. [2014]), the fibril orientation pattern pro-

posed by Weiner et al. [1999] is considered. These authors base their study on several

TEM and SEM micrographies concluding that a lamellar unit is an asymmetric struc-

ture formed by five sublayers in which fibrils change their orientation. These authors

infer from several studies that the variation of the sublayer thickness is directly related

to the strength capabilities of the bone.

In this chapter the different hierarchical level definition of elastic properties is de-

scribed. First, the unitary cell of a mineralized collagen fibril with staggered configu-

ration of crystals inside the matrix. Second, followed by the next lamellar level that

is composed of arrays of mineralized collagen fibrils. Finally the osteon composed

of lamellae grouped into two types and surrounded by cement lines and interstitial

tissue.
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3.1. Introduction

3.1.2 Unitary cell of a composite material

In order to characterize an heterogeneous material, a unitary cell model can be used

(Suquet [1987]; Hohe [2003]; Pahr and Zysset [2007]). If periodic boundary conditions

are considered, the response of the unit cell will be representative of the whole struc-

ture. Following Reisinger et al. [2011], periodic boundary conditions must fulfill two

conditions: the stress field must be periodic, σ+
ij = σ−

ij (see Fig. 3.3 for the nomen-

clature of representative volume element faces), and the shapes of opposite sides of

the unit cell must be identical allowing strain-periodic displacement field. Six inde-

pendent unitary strain fields are applied in order to obtain the corresponding column

i of the stiffness matrix, C∗i.

The Lamé–Hooke constitutive equation, is given by:

σ = C · ǫ (3.13)

where σ = (σxx σyy σzz τyz τzx τxy)
T is the stress vector, C is the stiffness matrix

and ǫ = (ǫxx ǫyy ǫzz γyz γzx γxy)
T is the strain vector imposed, i.e.:

Load case 1: ǫ1 = (1 0 0 0 0 0)T, then C∗1 = σ1.

Load case 2: ǫ2 = (0 1 0 0 0 0)T, then C∗2 = σ2.

. . .

Load case 6: ǫ6 = (0 0 0 0 0 1)T, then C∗6 = σ6.

where σi is the equilibrium stress vector corresponding to the strain field ǫi. Stress

components are obtained from the finite element model.

Periodic boundary conditions have to be applied in order to ensure that the analyzed

hexahedron is a representative volume of the entire domain and displacement gradients

along the corresponding external surface must be equal. In this work, equations

proposed by Hohe [2003] are used. In addition, it is necessary to fully constrain

the model to avoid rigid solid motions and, therefore, the central node of the finite

C. Arango Villegas 19



Chapter 3. Elastic properties of cortical bone

element model is constrained. The 3D finite element model was made with hexahedral

elements and the constraint equations were applied in the commercial code Ansys by

the command Constraint Equation.

The three-dimensional periodicity of the volume implies the following relationships:

u1+ = u1− + aǫi1 (3.14)

v1+ = v1− +
1

2
aǫi6 (3.15)

w1+ = w1− +
1

2
aǫi5 (3.16)

u2+ = u2− +
1

2
bǫi6 (3.17)

v2+ = v2− + bǫi2 (3.18)

w2+ = w2− +
1

2
bǫi4 (3.19)

u3+ = u3− +
1

2
cǫi5 (3.20)

v3+ = v3− +
1

2
cǫi4 (3.21)

w3+ = w3− + cǫi3 (3.22)

where u, v and w are nodal displacements in the three directions; 1, 2 and 3 are the

hexahedral surfaces to which the nodes belong.

In order to verify the implemented equations, we had previously analyzed it with

an isotropic material. The previous equations are applied for each one of the six

canonical cases and the resultant deformation of the unitary cell is shown in Fig. 3.4.

Hexahedral dimensions are a, b, c and the opposite surfaces are indicated with signs

”+” and ”−” respectively. It is important to restrict the model in order to avoid rigid

solid displacements. Hence all degrees of freedom of the central node are constrained.

Rotations are avoided by the periodic boundary conditions imposed (Vercher et al.

[2014]).
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3.1. Introduction

Figure 3.3: Schematic illustration of a representative cell and finite element model for an

isotropic material.

Figure 3.4: Deformed shape of each unitary strain field, applied to calculate the homogenized

stiffness matrix of an isotropic material (Vercher et al. [2014]).
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Chapter 3. Elastic properties of cortical bone

3.2 Elastic properties at nanostructural and sub-

nanostructural levels

3.2.1 Unitary cell of a mineralized collagen fibril

After obtaining the expected results with the homogenization procedure described in

Section 3.1.2 for an isotropic material, we proceeded with the collagen fibril structure.

Fibrils have a diameter about 80-200 nm and its length is not a well known parameter

due to distinction difficulties in micrographs caused by a tendency to coalescence. This

associated structure of aligned fibrils forms a larger structure called fiber (Weiner et al.

[1999]). As explained in Section 2.3, each fibril is composed of tropocollagen molecules

forming a triple helix of approximately 300 nm of longitude and other non collagenous

proteins which volume fraction is less than 10% (Yuan et al. [2011]). Bone crystals

tend to form platelet shapes and there is a big dimension range in bibliography: 15–

150 nm length, 10–80 nm width and 2–7 nm of thickness (Rubin et al. [2002]). Water

is the third component in fibrils and although its presence is relevant, in the following

calculations its influence is not estimated. Instead we consider it by using wet-collagen

elastic properties.

Collagen molecules are staggered at a periodic axial distance D=67 nm and the

molecule longitude is approximately of 4.4×D = 294.8 nm (Rho et al. [1998]; Orgel et

al. [2001]). From electronic micrographs and X–ray images reported in bibliography

(Cowin [2001]; Wagner and Weiner [1992]; Weiner et al. [1991]; Nalla et al. [2003]) is

evident that mineral platelets follow a staggered configuration in the axial direction

of the fibril and also it is apparent from numerous studies that crystals form their

nucleus between collagen molecules gaps and then compress the collagen molecules

as they grow (Cowin [2001]). At radial (or transversal) direction the distribution or

pattern is still uncertain in bibliography (Yuan et al. [2011]).

Inspired in many authors, in this work the crystal configuration is considered as a

parallel layered structure in the fibril radial direction (Wagner and Weiner [1992];

Weiner et al. [1991]; Landis [2007]; Erts et al. [1994]). Nevertheless in the work by

Yuan et al. [2011] it is established that the configuration of crystals in parallel layers

is only valid at a small scale. At large scale, the collagen molecules are arranged in a
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3.2. Elastic properties at nanostructural and sub-nanostructural levels

Figure 3.5: Representative volume element of a typical fibril structure modelled using finite

elements by imposing periodical boundary conditions.

concentric pattern (Fig. 3.6) (Hulmes et al. [1995]). In this way the mineral platelets

would grow concentrically around fibril (Jäger and Fratzl [2000]).

For the unitary cell of a mineralized collagen fibril, the crystals have been modeled

as platelets with L×W ×T dimensions. In Fig. 3.1 it can be observed the staggered

pattern in the axial direction and crystals are assumed parallel in radial direction of

the fibril. An hexahedral of dimensions a × b × c is then analysed. The geometrical

model has been meshed with hexahedral solid elements. In Fig. 3.5 a detail of the

model is shown. The constitutive matrix is obtained by applying boundary conditions

described in Vercher et al. [2014] and the six unitary independent strain canonical

cases.

The platelet dimensions considered are L = 132.07 nm (from Eq. 3.3), W = 30 nm

and T = 5 nm, with a volume fraction of 0.3 (Vercher et al. [2014]; Vercher-Mart́ınez

et al. [2015]; Giner et al. [2014]). The distance between crystals in the longitudinal

direction dL, has been calculated by dL=4.4D − L because the periodic unit in this

direction must be equal to the molecule longitude. The other distances dW and dT
are 2 nm (see Fig. 3.1).

In fact the crystals not only nucleate between molecule gaps but probably also lon-

gitudinally across the molecule, although, this distribution is not well established in
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Chapter 3. Elastic properties of cortical bone

Figure 3.6: Mineralized collagen fibril structure proposed by Yuan et al. [2011] Left: 3-D

axial symmetric structure (without considering individual platelets for the mineral phase);

right: the 3-D complex model.

literature. We have considered the isotropic properties and dimensions reported in the

work by Reisinger et al. [2011]: Ecol = 5 GPa, Eap = 110.5 GPa, νcol = 0.3 (Cusack

and Miller [1979]) and νap = 0.28 (Yao et al. [2007]) and the periodical arrangement

of the representative hexahedral shown in Fig. 3.5 with size: a = 294.8 nm, b = 32

nm and c = 154 nm.
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3.2. Elastic properties at nanostructural and sub-nanostructural levels

Figure 3.7: Deformed shape detail of each unitary strain field, applied to calculate the

homogenized stiffness matrix of a mineralized collagen fibril with Vf = 0.3.
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Chapter 3. Elastic properties of cortical bone

3.2.2 Numerical homogenization model of a mineralized colla-

gen fibril

After applying the six canonical cases described in the previous section, the homoge-

nized constitutive matrix of mineralized collagen fibril obtained Cfib, is the following:

Cfib =



































31.790 7.008 4.115 0 1.066 0

25.050 3.666 0 0.162 0

9.706 0 0.001 0

2.789 0 0.219

sym 2.888 0

7.74



































GPa (3.23)

The obtained results show a monoclinic behaviour as was expected because the stag-

gered pattern of the crystals has just one symmetry plane. The compliance matrix for

the fibril has been calculated in the local coordinate system (1,2,3) shown in Fig. 3.1

by Sl = (Cfib)−1. The elastic properties obtained with Eq. 3.23 are listed in Table

3.1. In Table 3.2 the simulation results are compared with other works which differ in

geometrical and elastic property definition of collagen and mineral, some of them also

include the presence of water which is not considered in this work. The last values

are obtained with the same procedure explained in this Chapter but with different

properties obtained by Mart́ınez-Reina et al. [2010] and Rubin et al. [2003] for the

first results and by Cusack and Miller [1979] and Yao et al. [2007] for the latter.

Fig. 3.7 shows a detail of the deformed shape of the fibril unitary volume where the

stresses and strain components have been checked as equal at opposite faces.

The previous procedure can be used for any parameters of size and distribution of

mineral and collagen if thermodynamical restrictions are satisfied. In this Thesis the

properties used are from reported data on bibliography. Nevertheless in Vercher-

Mart́ınez et al. [2015], we provide numerical values and trends for all the elastic
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3.2. Elastic properties at nanostructural and sub-nanostructural levels

Table 3.1: Elastic properties obtained by Eq. 3.23.

E11 28.42 GPa

E22 22.67 GPa

E33 8.84 GPa

ν12 0.228

ν23 0.301

ν31 0.105

G12 7.73 GPa

G23 2.78 GPa

G31 2.85 GPa

Table 3.2: Elastic properties of mineralized collagen fibril reported values.

Author Ecol Emin φmin Efib

Barkaoui et al. [2014] 2.5 GPa 120 GPa 0.24 0.9 GPa

Bar-On and Wagner [2013b] 1 GPa 100 GPa 0.3 4 GPa

Yoon and Cowin [2008] 1.26 GPa 114 GPa 0.25 3.4 GPa

Bar-On and Wagner [2013b] (H-T)model 1 GPa 100 GPa 0.3 15 GPa

Akkus [2005] 2.9 GPa 74 GPa 0.3 17.69 GPa

Reisinger et al. [2010] 5 GPa 110.15 GPa 0.3 18 GPa

Present Thesis 1.2 GPa 114 GPa 0.3 14.67 GPa

Present Thesis 5 GPa 110.15 GPa 0.3 28.42 GPa
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Chapter 3. Elastic properties of cortical bone

constants of the mineralized collagen fibril as a function of the volume fraction of

mineral. In our results, we verify the large influence of the mineral overlapping on the

mechanical response of the fibril and we highlight that the lateral distance between

crystals is relevant to the mechanical behavior of the fibril and not only the mineral

overlapping in the axial direction.

3.2.3 Effect of longitudinal and lateral overlap

In Fig. 3.8 an example of variation of cristal lengths inside unitary cell volumes models

of mineralized collagen fibrils is shown, where width (W ) and thickness (T ) dimensions

remain constant. In Fig. 3.9 we can see the influence of mineral overlapping on the

Young’s modulus for different elastic properties and volume fraction of constituents.

Collagen and mineral have been assumed isotropic and two sets of material properties,

widely used in the literature, have been considered.

The properties referenced as “Prop1” are taken from the work by Mart́ınez-Reina

et al. [2010]: Ecol = 1.2 GPa, Eap = 114 GPa, νcol = 0.35 and νap = 0.28. The

properties denoted as “Prop2” are taken from Reisinger et al. [2011] and were used

in previous works (Vercher et al. [2014]): Ecol = 5 GPa, Eap = 110.5 GPa, νcol = 0.3

and νap = 0.28.

Fig. 3.9 shows an abrupt change in the slope of Ex and then, the curve intersects

the transverse Young’s modulus, Ey for both sets of material properties. This trend

is also noticed in Gao et al. [2003] and Bar-On and Wagner [2013b,a]. From the

intersecting point rightwards, the mineralized collagen fibril begins to benefit from

the mineral stiffness. It is important to notice that the constituent properties have a

quantitative (but not qualitative) influence on the results, principally in the results

of Ex. A change in the slope of Ey and Ex is observed. We note in passing that this

should be carefully analyzed if the materials were not isotropic.

In Fig. 3.11, Young’s moduli evolution is represented as a function of the volume

fraction of mineral, by varying the lateral space between platelets. For the sake of

clarity, only the results for the platelet length of L = 66 nm are depicted. It is

noticeable that again a steep change occurs in the behavior of Ex.
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3.3. Elastic properties at lamellar level

By reducing the lateral space between platelets, the mineralized collagen fibril can

exhibit a higher stiffness in the axial direction of the fibril as a consequence of the

platelet alignment. However this behavior is also dependent on the platelet length:

there exist lengths for which this phenomenon never occurs (Vercher-Mart́ınez et al.

[2015]).

From Figs. 3.9 and 3.11 it can be observed that both mineral length and lateral

distance between layers have an important role in the elastic behavior of the fibril. In

this sense, in Vercher-Mart́ınez et al. [2015] it is shown that both variables are closely

related.

3.3 Elastic properties at lamellar level

It is important to remark that the constitutive matrix Eq. 3.23 of the mineralized

collagen fibril obtained previously is expressed in a local coordinate system (with ψ1

= ψ2 = 0) and, in order to associate it with a cylindrical osteon system (r, θ, z) (see

Figs. 3.12 and 3.13), the following cases should be considered:

• Firstly, the crystal can rotate an angle ψ1 with respect of the osteon radial axis.

Note that the unidirectional fibril orientation is approximately parallel to the

principal c axis of its crystals, as is described on Akiva et al. [1998], see Fig.

3.12.

• Secondly, the apatite crystal can rotate an angle ψ2 over its own c axis, as it is

represented in Fig. 3.12.

Table 3.3 shows the cosines of the angles that the local auxiliary coordinate system

(x,y,z) with respect to the oriented coordinate system (1,2,3) are listed. The equa-

tions of Akiva et al. [1998] were used to obtain these values where two rotations ψ1

and ψ2 have been considered.
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Chapter 3. Elastic properties of cortical bone

Figure 3.8: Example of some cell volumes analyzed with different mineral lengths, from L

= 40 nm to L = 140 nm with increments of 20 nm. Dimensions W, T and dW remain

constant. In this figure, dT = 2 nm. The mineral is represented in blue and collagen in

white (Vercher-Mart́ınez et al. [2015]).
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Figure 3.9: Variation of Young’s moduli with volume fraction of mineral by considering

different platelet lengths, in the range L ∈ [40, 150] nm. Results are obtained for two sets

of constituent elastic properties. Lateral space between platelets, dT , remains constant and

equal to 2 nm (Vercher-Mart́ınez et al. [2015]).

C. Arango Villegas 31



Chapter 3. Elastic properties of cortical bone

Figure 3.10: Example of cell volumes analyzed varying the lateral space between minerals,

in the range dT ∈ [3, -3] nm. Dimensions W, T and dW remain constant. In this figure, L

= 40 nm. The mineral is represented in blue and collagen in white (Vercher-Mart́ınez et al.

[2015]).
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Figure 3.11: Variation of Young’s moduli with volume fraction of mineral by considering

different lateral space between platelets, in the range dT ∈ [3, -3] nm. Results are obtained

for a constant platelet length, L = 66 nm (Vercher-Mart́ınez et al. [2015]).
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Table 3.3: Cosines of the angles that the local auxiliary directions (x, y, z) form with respect

to the local orientated directions (1, 2, 3)

1 2 3

x α1 β1 γ1
y α2 β2 γ2
z α3 β3 γ3

where

α1 = cos(ψ1) β1 = sin(ψ1) cos(ψ2) γ1 = − sin(ψ1) sin(ψ2)

α2 = − sin(ψ1) β2 = cos(ψ1) cos(ψ2) γ2 = − cos(ψ1) sin(ψ2)

α3 = 0 β3 = sin(ψ2) γ3 = cos(ψ2)

The matrix Sg in Eq. 3.24, refers to a mineralized collagen fibril expressed in the

global coordinate system of the osteon. This can lead to a constitutive matrix of an

anisotropic material that can be expressed as a function of engineering constants.

Sg =













































1

Exx

−νyx
Eyy

−νzx
Ezz

ηx,yz
Gyz

ηx,zx
Gzx

ηx,xy
Gxy

−νxy
Exx

1

Eyy

−νzy
Ezz

ηy,yz
Gyz

ηy,zx
Gzx

ηy,xy
Gxy

−νxz
Exx

−νyz
Eyy

1

Ezz

ηz,yz
Gyz

ηz,zx
Gzx

ηz,xy
Gxy

ηyz,x
Exx

ηyz,y
Eyy

ηyz,z
Ezz

1

Gyz

µyz,zx

Gzx

µyz,xy

Gxy

ηzx,x
Exx

ηzx,y
Eyy

ηyz,z
Ezz

µzx,yz

Gyz

1

Gzx

µzx,xy

Gxy

ηxy,x
Exx

ηxy,y
Eyy

ηxy,z
Ezz

µxy,yz

Gyz

µxy,zx

Gzx

1

Gxy













































(3.24)

where ηi,jk the mutual influence coefficients (type 1 and 2) defined by Lekhnitskii

[1963]; µij,kl are Chentsov coefficients or ratios between shear strains caused by a
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3.3. Elastic properties at lamellar level

Figure 3.12: Schematic illustration of several details at different scales: (a) Crystal dimen-

sions L,W and T , c represents the principal axis of the crystal which remains always parallel

to the lamella plane. (b) Staggered crystal distribution. Local or orientated coordinate sys-

tem (1, 2, 3) in which elastic constants are calculated through Halpin-Tsai equations. dL, dT
and dW , are the distances between crystals in three dimensions. (c) Following Akiva et al.

[1998], two possible rotations of the crystals are defined: ψ1 is the angle rotated around the

normal direction of the lamella plane and ψ2 is the angle rotated around their own principal

axis, c.
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Chapter 3. Elastic properties of cortical bone

Figure 3.13: Coordinate system scheme. Cylindrical coordinate system (r, θ, z) is used as a

global coordinate system, and a local auxiliary coordinate system (x, y, z) is defined at any

point, being (x, y, z) coincident with (θ, z, r), respectively.
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3.3. Elastic properties at lamellar level

shear stress. Now it is possible to obtain the elastic constants in the cylindric system

with the following expressions:

Err =
1

Sg
33

Grθ =
1

Sg
55

νrθ =− Sg
13

1

Sg
33

Eθθ =
1

Sg
11

Gθz =
1

Sg
66

νθz =− Sg
21

1

Sg
11

Ezz =
1

Sg
22

Gzr =
1

Sg
44

νzr =− Sg
32

1

Sg
22

(3.25)

where numerical subscripts are referred to the entries of Sg matrix and where local

auxiliary coordinate system (x, y, z) used in Eq. 3.11 and 3.24, corresponds directly

to the global system of the osteon. Analogously, the constitutive matrix of the fibril

in the global coordinate system will show a complete matrix with the form:

Cg =







































C11 C12 C13 C14 C15 C16

C21 C22 C23 C24 C25 C26

C31 C32 C33 C34 C35 C36

C41 C42 C43 C44 C45 C46

C51 C52 C53 C54 C55 C56

C61 C62 C63 C64 C65 C66







































(3.26)

Using Eq. 3.25 Young’s modulus, Poisson’s ratios and shear modulus can be obtained

for the mineralized collagen fibril. For example, considering all crystals aligned with

longitudinal axis of the osteon and with no rotation over its own c axis, i.e. ψ1 = ψ2

= 0, the properties obtained are listed in Table 3.1.

Fig. 3.15 represents the variation of Young’s modulus in different local auxiliary direc-

tions x e y when ψ1 takes values between 0◦ and 90◦. In this case, as ψ2 = 0◦, Young’s

modulus Efib
zz is coincident with Efib

33 and has a constant value of 8.84 GPa. It should
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Chapter 3. Elastic properties of cortical bone

Figure 3.14: Model of an osteon with thin and thick lamellae, showing the cylindrical ref-

erence system (r, θ, z) aligned with the osteon axis. Condensation of the 5 sublamellar

structure, with 5 different mineralized fibril orientations, into two equivalent layers: thin

and thick lamellae.
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3.3. Elastic properties at lamellar level

Figure 3.15: Variation of mineralized collagen fibril Young’s moduli (Efib
xx , E

fib
yy ) in plane xy.

ψ1 is the rotation angle (Vercher et al. [2014]).

be noted that Efib
yy is the one that initially shows lower values, being its minimum of

20.54 GPa near ψ1= 35◦. Efib
xx shows a complementary trend with respect to Efib

yy

being its minimum value at ψ1=55o.

The trends for Poisson’s ratios and shear moduli are summarized next. The Poisson’s

ratio that shows the greatest variation with ψ1 is νfibxy , being its maximum value 0.346

at ψ1 = 40◦ and its minimum value 0.182 at ψ1 = 90◦. νfibyz and νfibzx present more

uniform values indicating a high anisotropic behavior. Shear moduli Gfib
yz and Gfib

zx

remain almost constant about 2.8 GPa. The maximum value is reached by Gfib
xy =

10.5 GPa at ψ1 = 45o.

Poisson’s ratios and shear moduli variations with the angle ψ2 are shown in Figs.

3.18–3.20. As ψ1= 0, Young’s modulus in x direction is constant, Efib
xx = 32.53 GPa

and is coincident with Efib
11 . It should be noticed that Efib

zz firstly decreases with

respect to ψ2 reaching its minimum value of 7.68 GPa approximately at ψ2 = 35◦

(Fig. 3.18). As expected, Efib
yy shows a complementary trend with respect to Efib

zz

being its minimum value around ψ2 = 55◦.
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Chapter 3. Elastic properties of cortical bone

Figure 3.16: Variation of mineralized collagen fibril Poisson ratios (νfibxy , νfibyz , νfibzx ) in plane

z. ψ1 is the rotation angle (Vercher et al. [2014]).

Figure 3.17: Variation of mineralized collagen fibril shear moduli (Gfib
xy , G

fib
yz , G

fib
zx ) in plane

z. ψ1 is the rotation angle (Vercher et al. [2014]).
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3.3. Elastic properties at lamellar level

Figure 3.18: Variation of mineralized collagen fibril Young’s moduli (Efib
xx , E

fib
yy ) in plane x.

ψ2 is the rotation angle (Vercher et al. [2014]).

Figure 3.19: Variation of mineralized collagen fibril Poisson ratios (νfibxy , νfibyz , νfibzx ) in plane

x. ψ2 is the rotation angle (Vercher et al. [2014]).
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Chapter 3. Elastic properties of cortical bone

Figure 3.20: Variation of mineralized collagen fibril shear moduli (Gfib
xy , G

fib
yz , G

fib
zx ) in plane

x. ψ2 is the rotation angle (Vercher et al. [2014]).

The Poisson’s ratio νfibxy does not vary much with ψ2, taking values between 0.228

and 0.33, see Fig. 3.19. The greatest variation in its plane occurs for νfibyz with a

maximum value of 0.503 at about ψ2 = 35◦ with a minimum value of 0.122 at ψ2 =

90◦. The variation of νfibzx with the angle ψ2 is similar to that shown with the angle

ψ1 (Fig. 3.16). Also it can be noticed that all shear moduli vary widely with ψ2. G
fib
xy

and Gfib
zx show the same maximum value (7.73 GPa) at ψ2 =0 and 90◦ respectively,

exhibiting also a symmetrical trend with respect to each other (Fig. 3.20). Gfib
yz is

maximum at ψ2 = 45◦ with 5.4 GPa.

3.3.1 Elastic properties of secondary osteons

From mineralized collagen fibril elastic properties, the next hierarchical level proper-

ties i.e. lamellar properties, can be derived.

Following the structure proposed by Weiner et al. [1991] described in the previous

Chapter 2, the sublayer with fibrils at 0◦ (sublayer 1 in Fig. 2.3) is parallel to superior
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3.3. Elastic properties at lamellar level

Table 3.4: ψ1 collagen fibril angles and ψ2 for crystals with respect to its own axis for each

sublayer of thin lamella

ψ1(
o) ψ2(

o) t (µm)

sublayer 1 0 0 0.4

sublayer 2 30 0 0.2

sublayer 3 60 0 0.2

Table 3.5: ψ1 collagen fibril angles and ψ2 for crystals with respect to its own axis for each

sublayer of thick lamella

ψ1(
o) ψ2(

o) t (µm)

sublayer 4 90 70 1.8

sublayer 5 120 30 0.6

and inferior limits of the lamellae. Here the c axis of crystals are in a perpendicular

orientation with respect to the longitudinal axis of the osteon. This sublayer is called

thin lamellae by Akiva et al. and has a thickness of 0.4 nm (Akiva et al. [1998]).

In successive sublayers, the c axis of crystals rotates as follows: ψ1=(30◦, 60◦, 90◦,

120◦). The angle ψ2 (rotation of the crystals over its own axis) is not quantified yet

in literature (Akiva et al. [1998]). Second and third sublayers constitute a transition

zone of approximately 0.4 µm. In Akiva et al. [1998], sublayers fourth and fifth are

called “thick lamella” and “back − flip lamella”, and have a thickness of 1.8 µm

and 0.6 µm respectively. This pattern can fit the configuration of a rotated staggered

structure.

The procedure for obtaining the constitutive matrices of a lamella is analogous to the

one followed for the collagen fibril:

• According to Table 3.3 of Section 3.3, the cosines of ψ1 and ψ2 are calculated.

These angles are formed by the local auxiliary system of coordinates (x,y,z)
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Chapter 3. Elastic properties of cortical bone

Figure 3.21: Schematic illustration of five lamellar sublayers grouped as thick (green) and

thin (purple) lamellae.

with the oriented one (1,2,3) for each one of the five sublamellae. The angles

used are in Tables 3.4 and 3.5.

• The matrix q (Eq. 3.12) of coordinate transformation is calculated from director

cosines obtained for each sublayer in the previous step.

• From Eq. 3.11 we obtain the compliance matrix for each sublayer with its

particular crystal orientation.

• The constitutive matrices are obtained by Cg = (Sg)−1.

• With the obtained constitutive matrices for each sublamella, the matrix of the

group can be obtained by the rule of mixtures which will be explained in the

following Subsection 3.3.2.
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3.3.2 Homogenized properties for thick and thin lamellae

Defining explicitly 5 sublayers in each lamella, is a difficult and high computational

cost procedure if we want to represent the microstructural level of cortical bone (tens

of lamellae). In order to simplify the FE model of the osteon, we have grouped the

5 sublayers in two that will be called in this Thesis as thick and thin lamellae with

thicknesses of 0.8 µm and 2.4 µm respectively, as shown in Fig. 3.21.

The rule of mixtures is a well known procedure to estimate elastic properties in

composite materials. The following equations 3.27 and 3.28 are used for thick and

thin lamellae constitutive properties (Tables 3.4 and 3.5). These values are taken

from Akiva et al. [1998].

Dthin =
1

Tthin
(T1D1 + T2D2 + T3D3) (3.27)

Dthick =
1

Tthick
(T4D4 + T5D5) (3.28)

where D is the elastic property and T is the thickness of each sublamella, Tthin =

T1 + T2 + T3 ; Tthick = T4 + T5

This procedure is applied to each one of the terms of Cg matrix for thin and thick

lamellae and finally the group property is obtained.

Cthin =



































27.136 9.977 4.003 0.729 0.699 −0.254

23.766 3.779 0.729 0.335 −0.166

9.706 0.097 0.001 −0.0004

−0.014 0.124 6.531

sym 4.102 1.052

−0.014



































GPa (3.29)
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Cthick =



































13.567 6.241 0.316 0.122 −2.741 3.299

29.934 −0.606 −0.219 −1.182 6.137

−0.039 0.539 −2.316 21.269

0.139 −0.129 4.191

sim 7.04 −0.324

3.079



































GPa (3.30)

3.3.3 Elastic properties of interstitial tissue

The first type of bone in mammals is an interwoven tissue with course collagen fibers

with randomly organized osteocytes (Cowin [2001]). In human, woven bone is re-

sorbed and replaced by lamellar bone at age 2 and 3 years where fibrils are arranged

into plywood-like layers. That tissue is called primary bone. With time and growth,

bones need to reshape and remodel by forming new osteons over that primary tissue

(that continues with the lamellar structure) that is called interstitial tissue. Some

authors affirm that interstitial tissue is more mineralized because minerals continue

growing after remodeling (Mart́ınez-Reina et al. [2010]; Ascenzi et al. [2013]; Pren-

dergast and Huiskes [1996]). That theory is reasonable from the point of view of the

protecting role that more fragility can give to interstitial bone over osteons (Schaffler

et al. [1995]). This idea is reinforced in Cowin [2001]: “Although the magnitudes of

crack density vary greatly between investigators, approximately half to two thirds of

the total in vivo cracks have been observed in the interstitial tissue. Only a small

fraction of the cracks were observed entirely within osteons.” (Cowin [2001]).

Although the bibliography about elastic properties of interstitial tissue is scarce, there

is consensus that it is a stiffer tissue than secondary osteons by 10-15 % (Rho et al.

[2001]; Chan and Nicolella [2012]; Budyn and Hoc [2007]; Li et al. [2013]). Hence,

in this Thesis the constitutive matrix of interstitial tissue is calculated by Eq. 3.31,

whereCosteon is the constitutive matrix of the five sublayered osteon lamella, obtained

by applying the rule of mixtures explained in Section 3.3.2. In Table 3.6 there are
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Table 3.6: Elastic properties of interstitial bone reported in literature, where E is Young’s

modulus in the longitudinal orientation of bone and ν is the Poisson’s ratio

Author E (GPa) ν Source

Rho et al. [1997] 25.8 ± 0.7 0.3 Human

Zysset et al. [1999] 25 ± 4.3 0.3 Human

Dong and Guo [2006] 19.31 0.3 Human

Li et al. [2013] 14.12 0.153 Human

Nobakhti et al. [2014] 13.73 ± 6.56 0.3 Bovine

some values of Young’s modulus and Poisson’s ratios from different authors, but for

consistency with the properties previously defined, Eq. 3.31 is used.

Cinterstitial = Costeon × 1.10 (3.31)

3.3.4 Elastic properties of cement line

During bone remodeling, osteoclasts (bone resorption cells) demarcate a zone over

interstitial tissue for new material to be deposited. The cement line corresponds to

the thin line delimitating the new osteon.

At microstructural scale, in a composite where secondary osteons can be considered as

reinforcement fibers and interstitial tissue as the matrix, cement lines would act as an

interface. The cement line is a very thin layer (≈ 1 µm) compared with lamellae and

its composition and degree of mineralization compared with other elements of cortical

bone (osteons and interstitial tissue) is still a discussed topic in bibliography. There

are authors that suggest that collagen fibers of osteons do not pass through cement

lines, making them the weakest link of cortical bone, and that could be a reason to the

common phenomenon of microcracks firstly propagating through cement lines than

penetrating osteons (Skedros et al. [2005]).
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Table 3.7: Elastic properties of cement line in literature

Low mineralized CL High mineralized CL

Fawns and Landells [1953] Skedros et al. [2005]

Lakes et al. [1979] Davies [2007]

Frasca et al. [1981] Busse et al. [2009]

Burr et al. [1988] Launey et al. [2010]

Park and Lakes [1986]

Nobakhti et al. [2014]

In Burr et al. [1988] a constituent analysis of cement line with the suggestion of a

low mineralized composition is made. This theory is consistent with the hypothesis

that cement line provides a weak interface with interstitial tissue and is consistent

with the differences found in punctual specific stiffness in their experiments. A weak

interface between interstitial tissue (matrix) and osteons (reinforcement) leads to a

poor stress transmission capacity that promotes crack initiation in cement lines but

slows it down in interstitial matrix, thus representing a barrier to osteons. Burr et

al. [1988] also suggest that cement lines are responsible of a portion of viscoelasticity

of bone, particularly in long time and slow frequencies for bovine and human bone.

There are also authors that question and contradict the premise of low content of

mineral in cement lines with experimental results affirming a high mineralization

level (Davies [2007]). See Table 3.7 for a comparison between these two positions in

literature.

It is demonstrated for composite materials that shear modulus in the plane perpen-

dicular to the direction of fibers is highly affected if the number of interfaces number

is increased (Dasgupta and Bhandarkar [1992]). In bone, cement lines could act as a

mechanism of energy dissipation through damage generation. In the work of Nobakhti

et al. [2014] the behavior of a cement line in cortical bone is analyzed with a three-

dimensional model and it can be concluded that in a bending load case, interfaces

increase strains but decrease stresses.

In Table 3.8 some elastic properties in literature used in this Thesis are listed.
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Table 3.8: Elastic properties of cement line in literature

Author E ν

Prendergast and Huiskes [1996] 6 GPa 0.25

Ascenzi et al. [2013] 3.29 GPa 0.3

Li et al. [2013] (2013) 9.64 GPa 0.3

Nobakhti et al. [2014] 88.5 ± 22.42 MPa 0.3

3.4 Fulfilment of thermodynamic restrictions

In order to fulfill thermodynamic principles, the compliance and stiffness matrices

have to be positive definite, see e.g. Gurtin [1973]. Hence, this condition implies that

the elastic constants of the stiffness matrix have to verify some relationships.

Lempriere [1968] expressed these relationships for an orthotropic material as follows:

E11, E22, E33, G23, G31, G12 > 0 (3.32)

|ν21| <
(

E22

E11

)0.5

|ν12| <
(

E11

E22

)0.5

(3.33)

|ν13| <
(

E11

E33

)0.5

|ν31| <
(

E33

E11

)0.5

(3.34)

|ν23| <
(

E22

E33

)0.5

|ν32| <
(

E33

E22

)0.5

(3.35)

1− ν21ν12 − ν13ν31 − ν32ν23 − 2ν12ν31ν23 > 0 (3.36)

1− ν13ν31 > 0 (3.37)

1− ν21ν12 > 0 (3.38)
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1− ν32ν23 > 0 (3.39)

ν21ν32ν13 <

1− ν221

(

E11

E22

)

− ν232

(

E22

E33

)

− ν213

(

E33

E11

)

2
<

1

2
(3.40)

Additionally, from the symmetry of the compliance matrix we have:

ν12
E11

=
ν21
E22

;
ν13
E11

=
ν31
E33

;
ν23
E22

=
ν32
E33

(3.41)

In a technical note by Cowin and Van Buskirk [1986], these thermodynamic restric-

tions are summarized and they were used to verify the elastic constants of bone

obtained by Ashman et al. [1984] through ultrasound techniques.

As mentioned above, a wide range of crystal platelet dimensions can be found in the

bibliography. When Halpin-Tsai equations are used to estimate theoretically elastic

constants of a mineralized collagen fibril for typical constituent properties (Wagner

and Weiner [1992]; Akiva et al. [1998]), one should pay attention to the values of

crystal aspect ratios, L/T and W/T , because not all the possible crystal aspect

ratios verify the thermodynamical restriction summarized before.

In Vercher et al. [2014] a detailed study of the influence of the aspect ratios on the

elastic constants is presented for Halpin-Tsai equations, and the range of aspect ratios

that fulfill the thermodynamic restrictions is provided. In Fig. 3.22 a results sum-

mary of the dimension ranges that fulfill the thermodynamic restrictions is presented.

Combinations of aspect ratios that are not given in the ranges of Rubin et al. [2003]

are indicated in the table by “out-of-range values”. It can be observed that only a

small range of values satisfies simultaneously all thermodynamic restrictions when

Halpin-Tsai equations are used. Therefore, the Halpin-Tsai equations must be used

with caution for certain constituent properties.
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Figure 3.22: Results summary for all thermodynamic restrictions when Halpin-Tsai equa-

tions are applied (Vercher et al. [2014]). LT = L/T andWT =W/T . Constituent properties

are taken from Akiva et al. [1998].
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Chapter 4

Strength properties of cortical

bone

4.1 Introduction

In the literature about experimental tests in order to characterize the strength prop-

erties of cortical bone, the contribution of Ascenzi et al. is remarkable not only for the

quantity of works but for the innovation at that time in developing tools and methods.

These methods allowed to explain for the first time some phenomena at small scales

of bone and particularly for osteons. These authors achieved the isolation of osteons

in form of cylindrical microsamples and subjected them to numerous mechanical tests

(Ascenzi and Bonucci [1967, 1968, 1972]; Ascenzi et al. [1973]; Ascenzi [1988]).

As a first approach of this Thesis, the modeling of an isolated osteon is an aim, and

thus, the works of Ascenzi et al. are a reference and an experimental support in order

to validate the models.

In Ascenzi et al. [1973] the osteon is analyzed under compressive loads. The sketch

in Fig. 4.1 shows the simple configuration used, in which a section of an osteon
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Figure 4.1: Radial compressive loading test by Ascenzi et al. [1973].

(30-40 µmm thick) is placed on a slide and pressed against the side of a coverslip

(160 µm thick) using a spatula, thus being subjected to radial loading. In the work

by Ascenzi et al. [1973] detailed indications about the experimental procedure are

provided. In a previous work, Ascenzi and Bonucci [1968] also described the procedure

followed to extract microsamples of single osteons from cortical tissue. Due to the

sample extracting procedure, the osteon geometry can be assumed to be cylindrical in

practice. In fact, the authors selected those osteons whose geometry was essentially

circular on a transverse plane.

We will focus on the dominant type of osteon that can be found in the cortical tissue

of long bones, named type I in Ascenzi et al. [1973]. Its main feature is an alternated

lamellar arrangement, sketched in Fig. 4.2: lamellae with fibrils essentially aligned

in the axial direction of the osteon alternated with lamellae whose fibrils are mainly

aligned in the circumferential direction. Here, the authors suggest that fibrils in

one lamella make an angle of nearly 90◦ with the fibrils in the next. Ascenzi and

Bonucci arrived to this conclusion by observing the osteons under polarized light,

which exhibits an alternate pattern, and the corresponding correlation with electron

microscopy.

In addition, the authors referred that the fibrils of the innermost and outermost

lamellae are essentially oriented in a circumferential direction (Ascenzi et al. [1973]).

We note in passing that the cement line (1 µm thick) is not considered in the single

osteon models of this Thesis because it is expected that this layer was fully damaged

or eliminated during the osteon extraction process. In their work, these authors also
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Figure 4.2: Sketch of the laminated structure of osteon types I and II, following Ascenzi et

al. [1973].

consider another type of osteon (type II), with lamellae showing a spiral course fibril

arrangement, close to the axial direction of the osteon (see Fig. 4.2). Even in this type

of osteon, Ascenzi and Bonucci reported that fibrils of the innermost and outermost

lamellae are essentially oriented in a circumferential direction. The principle of having

alternated lamellae and the more recent sublayered lamellar structure proposed by

Weiner et al. [1999] are both assumed in this Thesis.

Experimentally, and for type I osteons (the type analyzed in this work), we can verify

that the application of a compressive radial load leads to the generation of microcracks

in circumferential direction, as described in a comprehensive way by Ascenzi et al.

[1973]. These authors reported the following experimental evidences:

• Microcracks are circumferential and they appear mainly in the lamellae whose

fibrils are aligned in the axial direction of the osteon (longitudinal lamellae).

Some of them are located along the interfaces of the lamellae. In addition,

microcracks extend through the whole thickness of the analyzed section.

• Microcracks begin in the longitudinal lamellae that are near the haversian canal.

• Microcracks appear in the four quadrants and concentrate in circular sectors

located in a region between 20◦and 50◦with respect to the loading direction.

• The lamellae with fibrils essentially arranged in the circumferential direction

(transverse lamellae) do not show apparent damage in this process. Fig. 4.3
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Figure 4.3: Behavior under compressive load of an osteon type I: left, before loading; right,

after loading, showing the generation of microcracks by Ascenzi et al. [1973].

shows a portion of a tested osteon before the load application (left) and under

the application of the load that causes the circumferential microcracks (right).

Further analysis with electron microscopy shows that the microcracks within

the longitudinal lamellae advance through the interfibrillar substance (that acts

as a matrix), indicating that the strength of this substance is clearly lower than

the fibril strength.

Recently, Ebacher et al. [2012] also carried out experimental tests by compressing a

portion of cortical tissue in the radial direction. Their results are in full agreement

with those observed by Ascenzi et al. From all the above experimental observations,

it can be inferred that the matrix failure that appears in the longitudinal lamellae

is caused by either a normal tensile traction that acts in the radial direction, or

a shearing traction, or a combination of both. This behavior is analogous to the

delamination processes that can be found in structural fiber reinforced composite

materials due to the existence of interlaminar stresses. This will be verified by the

numerical analyses presented in Chapter 6.
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4.2 Strength properties of an osteon

One of the load conditions analyzed in this Thesis (compressive diametral loading of

the osteon) is essentially an in-plane loading state. It is expected that the failure is

governed by the plane stress state shown in Fig. 3.14 in regions where circumferential

(or hoop) σθθ, radial σrr or shear σrθ stresses are large compared to their respective

strength limits. Following customary terminology in structural composite materials,

the circumferential stress σrr can be considered an intralaminar stress, whereas σrr
and σrθ correspond to interlaminar stresses that cause eventual delamination.

It is also expected that the thick lamellae exhibit a low strength to these stresses,

because the mineralized collagen fibrils are essentially aligned in the out-of-plane

direction (i.e. the osteon z-axis direction, see Fig. 3.14). For thick lamellae and

for in-plane loads, the interfibrillar matrix is the main load-bearing material and its

relative low strength can lead to matrix microcracking. This is in accordance with

the experimental evidences commented in Chapter 2 and is verified numerically in the

following chapters.

As explained in the background Chapter 2, in the works by Ascenzi and Bonucci [1967,

1968, 1972] extensive experimental testing on isolated osteons to characterize the

tensile, compressive and shear properties are carried out. In this Thesis and previous

works of the research group, we estimate the strength properties from Ascenzi and

Bonucci’s tests on osteons subjected to tensile load in the osteon z-axis and from shear

tests performed by application of a punch centered on the osteon in the z-axis. From

all available data, we have considered the results for 25-30 year-old donors with a high

calcification degree, determined by microradiography and tested on wet conditions.

Osteons with a high calcification degree are stiffer, stronger and with a more linear

elastic behaviour up to rupture than those with low calcification (Ascenzi and Bonucci

[1972]).

It is well known that the stiffness and strength properties depend not only on the

calcification degree, but also on the humidity condition and age (Ascenzi et al. [1973]).

The change in tensile stiffness and strength in the axial direction due to humidity is

very significant, being larger for dry samples than for wet samples. The effect of the

calcification degree is not so important although, as expected, it is shown that the
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stiffness and strength values are smaller for a low calcification degree. Finally, the

influence of age is not so considerable.

Despite the fracture planes intersected some lacunae in their experimental tests, it

is worth remarking that in Ascenzi and Bonucci [1967, 1972], the authors did not

find a clear evidence that may correlate the lacunae density with the tensile or shear

strengths. Note that cortical bone exhibits a considerable inelastic deformation, re-

laxing stress concentrations and increasing its toughness (Ebacher et al. [2012]). It

is often suggested that the strain amplification at the osteocyte lacunae increases the

strain perceived by the osteocytes and the subsequent bone remodelling signaling e.g.

Prendergast and Huiskes [1996]; Ascenzi et al. [2004].

4.2.1 Strength properties of thick and thin lamellae

Circumferential tension strength

Given the fibril arrangement in the thin lamellae (see Fig. 3.14), the circumferential

tensile strength of the thin lamellae must be clearly greater than for thick lamellae,

i.e. Sthin
θθ,t > Sthick

θθ,t . As expected, Ascenzi and Bonucci reported that the maximum

stiffness and strength for an osteon loaded in the axial z-axis is found for type II

osteons (following the nomenclature of Fig. 3.14) (Ascenzi and Bonucci [1967]). With

the exception of the innermost and outermost lamellae, type II osteons have lamellae

oriented mainly in the axial direction of the osteon. The strength value of this type

of osteons loaded in a tensile test was reported as 120 MPa in Ascenzi and Bonucci

[1967] (for a dry condition, this value increases up to 193 MPa). Therefore, it seems

reasonable to assume that the strength of a sublamella loaded in the fibril direction

is about this value. Hence, the circumferential tensile strength of thin lamellae will

be estimated as Sthin
θθ,t=120 MPa.

The estimation of the circumferential tensile strength for the thick lamellae is more

elusive. From tensile tests carried out in the z-axis for type I osteons, Fig. 4.2, we

have considered in this work that the onset of the failure of the weakest lamellae

under the tensile test corresponds to a clear depart from the linear response in a σ–ǫ

diagram. These diagrams are available in the work by Ascenzi and Bonucci [1967] for
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Figure 4.4: Stress strain curves for tensile tests in the z-axis of single osteons by Ascenzi and

Bonucci [1967]. Curve (a) corresponds to a wet and fully calcified type I osteon,taken from

a 30 years old man. Curve (b) same from a 80 years old man. Note: 1 gr /µ2
≈ 104 MPa.

type I osteons. Under a tensile test in z–axis for type I osteons, the first failure will

occur for lamellae whose fibrils are orientated perpendicularly to the loading direction

and this will introduce a loss of linear behaviour in the σ–ǫ response. This value has

been estimated in an approximated way from Fig. 4.4, reproduced from Ascenzi and

Bonucci [1967], and is about 50 MPa, that can be assumed to be the strength of a

thin lamella when loaded in the osteon z–direction. We make a further assumption by

considering that this strength is equal to the strength of a thick lamella when loaded

in the circumferential direction and hence Sthick
θθ,t =50 MPa.

Radial tensile strength

A tensile failure in the radial direction is an interlaminar failure that implies the

fracture of the interfibrillar matrix without affecting the mineralized collagen fibrils.

Therefore, the radial tensile strength will be approximately the same for all sub-

lamellae or their grouping into either thin or thick lamellae. Thus, we can write

Sthin
rr,t ≈ Sthick

rr,t and it will simply denoted as Srr,t. Since this failure mode is similar
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to the failure mode of a thick lamella loaded circumferentially (both modes imply the

damaging of the interfibrillar matrix), it is reasonable to assume that Srr,t ≈ Sthick
θθ,t

= 50 MPa. When no better estimates are available, this hypothesis is also usual in

the analysis of delamination of structural composite materials (Brewer and Lagace

[1988]).

Shear strength

Ascenzi and Bonucci carried out shear tests by micropunching the center of osteons

in the axial direction (Ascenzi and Bonucci [1972]). This type of test led to the

separation, almost cylindrical, of a set of inner lamellae with respect the outer. Their

results show that the shear stiffness and strength depend slightly on the type of osteon

(I or II): the shear strength Ss,mpunch varies between 56 MPa for type I and 46 MPa

for type II. It can be assumed that the shear strength of a thick lamella in the r − z

plane (see reference system in Fig. 3.14) under the micropunch test is similar to the

shear strength in the plane r-θ of a thin lamella. Therefore, we will assume that

Sthin
rθ,s = 46 MPa.

The shear strength in the plane r-θ for thick lamellae must be clearly lower than

46 MPa, since this shear mode does not involve the shearing of mineralized fibrils,

which are essentially normal to the plane r-θ. The shearing failure will involve mainly

shearing of the interfibrillar matrix. This value has been estimated as Sthick
rθ,s ≈ 20

MPa.

It is worth emphasizing that the estimated values given above must be considered as

a first approximation, being the deviations large in practice due to several factors,

such as calcification degree or water content. Another aspect not considered here

is the variation of properties from inner lamellae to outer lamellae, which has been

reported for elastic behaviour, e.g. in Faingold et al. [2012]. The literature on strength

properties is scarce and further research is necessary to have better characterization

of the strength properties of these tissues.
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Table 4.1: Strength values by Ascenzi et al. [1973] and specific fracture energies in the

transversal plane (normal to the osteon axis) used for osteon, interstitial tissue and cement

line by Li et al. [2013].

Su,osteon shear Su,osteon radial GI,osteon GI,inter GI,CL

20 MPa 47 MPa 860 N/m 238 N/m 146 N/m

4.3 Strength properties of cement line and intersti-

tial tissue

Damage simulation in cortical bone is a very complex problem that depends on multi-

ple variables that increase as the structural scale is reduced. The strength properties

are more difficult to determine from different tests than elastic properties, because

some properties as humidity, age, mineralization and more can change for each sample.

In this work we used the strength properties indicated in Table 4.1. For osteons

(lamellae) the strength values are taken from the works by Ascenzi et al. where

numerous tests were made on isolated osteons (Ascenzi et al. [1973]). We focused on

results of tensile and shearing punching tests both in the osteon longitudinal direction.

For this study we have considered high mineralization data measured for human

femur of 25-30 years old and tested under humid conditions. The osteons with high

calcification degree have high values of stiffness, strength and a more lineal elastic

behavior to failure than the ones with low degree of mineralization (Ascenzi et al.

[1973]).

The bibliography for strength estimation of properties for interstitial bone and cement

lines is scarce. Numerous studies of failure and fatigue tests on cortical bone conclude

that the strain energy release is higher at osteons and lower at cement lines, being

this closer to interstitial tissue values (Li et al. [2013]).

Tensile works from Rho et al. [2001] show evidence that osteons have 30% less strength

values than interstitial tissue. In Burr et al. [1988] there is a reference of works

from Aoji et al. showing that for compression cases strength of bone is inversely

proportional to the quantity of interstitial bone. The works of Chan and Nicolella
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[2012] and Ritchie et al. [2005] report some experimental data of strain energy release

for osteons, interstitial tissue and cement lines. Due to the gaps in data and taking

into account the previous ideas, we propose a proportional relation that relates the

strength properties and the specific fracture energies for osteon, interstitial bone and

cement line. We assume a given geometry with a crack longitude a and the same

geometry and crack are supposed for the osteon and interstitial materials.

The objective of this Section is to calculate Su,inter and Su,CL given the values in

Table 4.1.

For mode I fracture, the ultimate tensile strength for a given crack a, for each material

(osteon and interstitial tissue) is:

σc,osteon =
KIc,osteon

C
√
πa

; σc,inter =
KIc,inter

C
√
πa

(4.1)

where KIc is the critical stress intensity factor or fracture toughness and C is the

geometrical factor. From 4.1 we have:

σc,osteon
σc,inter

=
KIc,osteon

KIc,inter

(4.2)

On the other hand, the strain energy release rate G is related to the stress intensity

factor for mode I fracture, as follows:

GI =
(KI)

2

E′
(4.3)

where E′ is related to Young’s modulus (depending on a plane stress or plane strain

condition) although this is not relevant in the following analysis.

Although σc,osteon and σc,inter are ultimate tensile stresses for a given crack length,

it looks reasonable to keep this relationship for the general strength values under the

hypothesis of linear elastic fracture mechanics:

Su,osteon

Su,inter

≈ σc,osteon
σc,inter

≈ KIc,osteon

KIc,inter

≈
√

GIc,osteon

GIc,inter

Eosteon

Einter

(4.4)
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Table 4.2: Strength properties for cement line calculated using Eq. 4.6

ECL A Sshear
u,CL Snormal

u,CL

3.29 GPa 7.60 2.99 MPa 7.03 MPa

6.0 GPa 4.17 4.04 MPa 9.48 MPa

9.64 GPa 2.6 5.11 MPa 12.01 MPa

Since the Young’s modulus of the interstitial tissue is about 10% greater than the

osteon modulus, we can write:

Su,osteon

Su,inter

≈
√

GIc,osteon

GIc,inter

Eosteon

Einter

=

√

GIc,osteon

GIc,inter

1.10 (4.5)

where osteon properties and strain energy release rate of interstitial tissue are known

(see Table 4.1) and the strength value Su,inter is calculated using Eq. 4.5.

In order to estimate the strength of the cement line Su,CL and taking into account

the elastic properties from Subsection 3.3.1, we perform a similar calculation:

Su,osteon

Su,CL

≈
√

GIc,osteon

GIc,CL

Eosteon

ECL

=

√

GIc,osteon

GIc,CL

A (4.6)

were A is the ratio of osteon and cement line modulus. For CL we have taken three

values for ECL from bibliography (Chapter 2), yielding result values for the ultimate

strength of the CL in the normal direction in the range 7.03-12.01 MPa (see Table

4.2). An analogous procedure is followed to predict Sshear
u,CL.

C. Arango Villegas 63





Chapter 5

Introduction to FEM in bone

analysis

The finite element method is a very useful technique for mechanical simulation and

structural analysis. Nowadays it is the most used technique, not only for the linear

elasticity problem in structural analysis, but also for plasticity, electromagnetism, heat

transfer, etc. The FEM is a very flexible tool that can be applied in a vast amount of

engineering applications and in a wide variety of materials. As it has been explained

in previous chapters of this Thesis, the finite element method can be applied to study

the mechanical behavior of bone from the smallest structural hierarchical level as can

be the unitary cell of the mineralized collagen fibril, as to the macrostructural level

of the whole skeletal system.

After obtaining the elastic and strength material properties, the aim of the following

sections and chapters is to apply the finite element method to analyze the mechanical

behavior of cortical bone from the model of a single osteon with simplified geometry

to a system composed of osteons, interstitial tissue and cement lines with realistic

geometries and both for two-dimensional and three-dimensional models.
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Figure 5.1: Finite element mesh for hollow three-component quarter-fiber model by Hogan

[1992].

In literature there are interesting works regarding the modeling of cortical bone at

osteonal level. One of first numerical microstructural models in bone was proposed

by Hogan [1992], who modeled the cortical bone at microstructural level with the

finite element model of Fig. 5.1. This model is an extension of micromechanical

2D techniques used in structural fiber-reinforced composites where osteons act like

fibers and interstitial tissue as matrix. The cement line is defined as the interface

between these two. The prediction of macroscopic properties through the model is

well correlated with experimental data, although the big dependence of constituent

material properties is recognized.

Prendergast and Huiskes [1996] also proposed a 2D finite element model of an osteon,

(Fig. 5.2) considering the main morphology details in a cross-section (Haversian

canal, concentric lamellae, cement line and lacunae, also including interstitial matrix

surrounding the osteon). In their work, the model is used to evaluate the strains in

lacunae under the presence of microcracks (some authors suggest that bone regen-

eration mechanisms are related to the changes of size and local strains near lacunae

acting as sensors in the process).
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Figure 5.2: Left: 2D finite element model of a osteon by Prendergast and Huiskes [1996].

Right: ad hoc inclusion of microcracks.

More recent works as the proposed by Ascenzi et al. [2013] analyse the mechanical

behavior of bone with a complete three-dimensional multiscale model with patient-

specific material properties presented with experimental validation at each structural

level (micro-macro), where mechanical response is predicted in order to analyze strains

under physiological loading conditions for long bones. In Fig. 5.3 we can see the

microstructural model where 6-node-wedge and 8-node-brick elements were used to

mesh the interstitial bone and 8-node-brick elements and 20-node-brick elements to

mesh the osteon. The interstitial bone model has an hexahedron dominated mesh

due to the complexity of the geometry to fit with osteons geometry.

In other works of Maria-Grazia Ascenzi et al., the lacunar distribution and fibril ori-

entation is analyzed from experimental data. Numerical scripts for random modeling

according to experimental distribution are developed to investigate how orientation

relates to strains and stresses during mechanical testing (Ascenzi and Lomovtsev

[2006]; Ascenzi et al. [2008]).

5.1 Bone failure and damage background

It is known that both cortical and trabecular bone have the property of noticing the

presence of microcracks and other kind of damage and replace these regions with
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Figure 5.3: Micro-FE model by Ascenzi et al. [2013]. (a) This 0.5 mm model contains

four heterogeneous osteon models with (b) osteocyte lacunae viewed in cross-sections. The

models of cement lines (c) at the interface with interstitial bone model are also included.
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new material. This mechanism is triggered by the presence of microdamage (one of

the factors for bone remodeling) and it allows naturally to optimize the geometry and

bone mass. The analysis of these mechanisms is of great importance in healing of bone

fractures, implants, bone degeneration with age and bone diseases. The biomechanical

treatment of the problem has given place to a vast literature in the past decades given

the importance of the problem and its social transcendence, but still there are many

aspects unknown (Cowin [2001]). As previously mentioned, this Thesis is focused on

the microstructural and sub-microstructural levels of cortical bone.

There are different methods to simulate failure in quasi-fragile materials as cortical

bone. With the finite element method different techniques can be applied for explicit

and implicit crack propagation; in the fracture mechanics context the cohesive zone

models (CZM), applied in structural mechanics can be extended to the biomaterial

field after a convenient adaptation and setup (Yang et al. [2006]; Cox and Yang

[2007]). Some models and fracture toughness calculations for cortical tissue have been

achieved under the linear elastic fracture mechanics (LEFM) although it is starting

to be admitted that LEFM does not give an exhaustive and complete description and

it is not sufficiently consistent (Yang et al. [2006]; Cox and Yang [2007]).

The CZM have begun to be implemented to the analysis of cortical bone tissue (Yang

et al. [2006]) and have the advantage of giving the possibility to consider the situation

of “no damage” and locate the damage progressively depending on whether the critical

values defined when the failure criterion is achieved. In addition, consideration of such

nonlinear models is a valid alternative, since it is only possible to apply LEFM when

cracks are much greater than a certain length (Bažant [2002] indicates D/l ≥ 100,

where D is the cross-section dimension and l the characteristic fracture zone length),

in the human cortical bone case crack lengths ranging from 3 to 10 mm according to

Yang et al. [2006]; Cox and Yang [2007]. Another disadvantage of the LEFM is that

it assumes the existence of an initial crack. By contrast, CZM can be applied in the

vicinity of notches or stress concentrators.

The CZM models formulated through cohesive interface elements (zero thickness) are

also suitable in situations where it is possible to define a priori the location of cracks

and their potential propagation path (e.g. adhesive bonding and delamination in

laminated analysis (Turon et al. [2007])), as it is required to set the cohesive elements

in the mesh. For cortical bone microstructure these elements could be introduced at

the interfaces between osteon lamellae and interstitial matrix and also in the cement
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Figure 5.4: An optical micrograph of a crack in 34-year-old human cortical bone. Note the

formation of daughter cracks and corresponding uncracked ligaments, by Yang et al. [2006].

line, since experiments show that the microcracks tend to start between the lamellae

and progress along the cement line when are reached (see Fig. 5.4).

The works that exemplify the implementation of the CZM to bone tissue models are

relatively recent. Ural and Vashishth [2006]; Ural [2009] and Yang et al. [2006] have

applied models of cohesive fracture to the behavior of cortical bone from a macroscopic

point of view, relating it to the fracture toughness of the material from tests on

compact-tension (CT) specimens collected in literature or to fracture modeling of

bone. Additionally, Tomar [2009] applied the cohesive model to trabecular bone and

Ichim et al. [2007] to dentin and enamel.

Other authors combine the use of failure modes in structural components with X-

FEM introducing discontinuities of displacements in a FE mesh and simulating the

separation between crack faces with the possibility of incorporating additional terms

for modeling singular fields of LEFM surrounding the crack tip. This methodology

is not commonly used in the modeling of microstructural biomaterials because of

the complexity of the models that promote the use of alternative techniques for pre-

dicting the failure propagation. Between the works that incorporate X-FEM to the

micromechanical failure of cortical tissue, the works by Budyn and Hoc [2007] are re-

markable although in the context of LEFM. This model (see Fig. 5.5) presents some

deficiencies derived from the X-FEM standard approach: it is assumed that crack

initiation is at Haversian canals due to stress concentration from geometry (when it

70 C. Arango Villegas



5.1. Bone failure and damage background

is well known that cracks initiate principally between interfaces as cement lines or

interstitial lamellae (O’Brien et al. [2003, 2005]; Nalla et al. [2005])).

There are two distinct approaches for damage study (Taylor et al. [2007]): the first

one is based on damage mechanics, modeling the system as a continuum, assuming

that the quantity of damage over a region grows as function of a local parameter, as

can be the strain energy density. The second approach is the mechanistic and regards

to the microstructural details trying to explain the complex mechanisms behind micro

damage processes. The latter the one selected in this Thesis and it can be useful to

develop numerical models of the mechanical behavior of microstructure that include

the explicit presence of microcracks.

There is consensus in the literature (Taylor et al. [2007]; Yang et al. [2006]; Vashishth

[2007]) that two modes of microdamage can be identified at cortical bone: on one hand

the existence of microcracks (with size between 50 and 200 µm) and on the other hand

the presence of diffuse microdamage that is at the same level of mineralized collagen

fibers, associated with a lower hierarchical scale. The mechanisms that relate the

level of microdamage with a higher risk of fracture are not still well defined, but

the relation between these levels and a higher degradation of tissue toughness results

unquestionable (Yang et al. [2006]). Taylor et al. have developed numerous works

regarding the relationship between microstructure and microcracks in cortical bone.

It has been proved that for the most of microcracks, osteons and cement lines act like

growing barriers (O’Brien et al. [2003, 2005]). Only for microcracks large enough this

barrier is exceeded, where osteons present less strength for growing. In O’Brien et

al. [2003] there is a study of accumulation, distribution and microcracks spreading as

result of fatigue tests, describing a model for the simulation of fatigue processes.

From a mechanical point of view, the cortical tissue belongs to the vast group of

quasi-fragile materials (Hambli et al. [2012]). The failure of these materials is usually

preceded by the formation of a certain type of distributed damage. This is the case

of concrete, rocks, polymers, plastic fiber reinforced composites, etc. in addition to

other biomaterials.

The growing and coalescence of cracks and diffuse damage leads to a gradual genera-

tion of highly located damage zones that act as precursors of fracture at macroscopic

level.
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Figure 5.5: Crack propagation for different X-FEM model configurations of cortical bone by

Budyn and Hoc [2007].
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5.1. Bone failure and damage background

Prendergast and Huiskes [1996] also consider degradation phenomena of material

stiffness in the zones of high strains. The deficiency of the model is that it does

not predict the initiation of cracks or degradation zones but it includes them ad hoc

between the lamellae and the cement line (Fig. 5.2) in order to evaluate their effect.

The degradation is included by simple modification of Young’s modulus of elements

near lacunae. To improve this limitation is one of the objetives of this Thesis.

The progressive damage technique in FEM appeared from the necessity of more ac-

curate and less computational expensive methods to evaluate the damage tolerance

for the composite material elements used in aeronautic industry.

The bases of the damage tolerant methodology are the knowledge of mechanical be-

havior of composite materials, including the mechanisms and progression of failure.

With that aim, some computational and analytical tools have been created, in order

to predict the progression of damage in more advanced stages than initiation or first

ply failure (FPF). These tools usually used a material properties variation. The most

commonly used methods at present are the material properties/stiffness degradation

method (known as MPDM) and the element failure method (EFM) (Tan and Nuis-

mer [1989]; Tan [1991]; Tan and Perez [1993]). In both cases it is important to choose

an appropriate failure criterion for each model because the degree of precision with

respect to experimental tests will depend on its implementation.

Two of the most recent damage theories applied to composite materials are the mul-

ticontinnum theory (MCT) (Mayes and Hansen [2004]) and micro-mechanical failure

(MMF) (Ha et al. [2008]). These theories have important differences with respect to

less recent criteria as Tsai-Wu, because incorporate micromechanical aspects and dif-

ferentiate between fiber or matrix dominated modes of failure (Tay et al. [2008]). Both

MCT and MMF evaluate the composite failure based on constituent stresses (fiber

and matrix), but are based on different methods to calculate stresses. The MCT

uses phase averaging while MMF uses representative elementary models of fiber and

matrix.

For progressive damage, both methods (MCT and MMF) can be implemented in

finite element codes with procedures as element-failure algorithm (Tay et al. [2003])

or stiffness degradation (Chang and Chang [1987]). In this latter some values of

material stiffness are reduced when the failure of the composite has been reached

according with the corresponding mode. That fact requires that the code recalculates
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the element and global stiffness every time that an element fails. In the element-

failure method, the damage is modelated directly from manipulation of nodal forces

of the element that fails instead of modifying the stiffness. This way some convergence

problems can be avoided. In Tay et al. [2009] a composite analysis with failure and

reparation is developed, the model is done in Abaqus and a subroutine is used for

implementing degradation (in this case the stiffness degradation method is used) based

on the micromechanical damage criterion (MMF). In Hou et al. [2000] some damage

criteria are implemented for laminates using the finite element code DYNA3D, where

an impact test is simulated.

5.1.1 Stiffness degradation method (MPDM)

This method consists in modeling the material degradation that starts after an initial

failure is reached in one of the elements of the mesh. This degradation is achieved

by reduction of the material properties. In this way, through implementation of field

variables (sometimes are also called degradation constants) it is possible to simulate

the propagation of failure of failed elements. For example, a two-dimensional plane-

stress model proposed by Tan and Nuismer [1989]; Tan [1991]; Tan and Perez [1993],

the field variables for properties degradation are Di in Eq. 5.1. It is important to

remark that in these works, the Poisson coefficients are not modified or degraded for

failed elements, only Young’s modulus and stiffness.

E11 = D1E
0
11

E22 = D2E
0
22

G12 = D6G
0
12

(5.1)

where E11 and G12 are the effective material properties with damage and E0
11, E

0
22 and

G0
12 are the material properties without damage. The patterns in damage progression

are in agreement with experimental results obtained by Tan et al., but it was observed

that the estimated strength values are very sensitive to selected values of internal

variables.

Camanho and Matthews [1999] found a good adjustment of analytical and experimen-

tal results for a carbon reinforced plastic. The next values are the assigned damage
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degradation constants for bending, traction and shearing: DT
1 =0.07, DT

2 =D
T
4 =0.2,

DC
1 =0.14, DC

2 =D
C
4 =0.4, where T is for tension and C for compression.

For matrix tensile traction (and shearing cracks): Ed
2=D

T
2 E2; G

d
12=D

T
4 G12; G

d
23=D

T
4 G23

For fiber tensile traction: Ed
1=D

T
1 E1

For matrix compression (and shearing cracks): Ed
2=D

C
2 E2; G

d
12=D

C
4 G12; G

d
23=D

C
4 G23

For fiber compression: Ed
1=D

C
1 E1

In the work of Chang et al. [1991] a comparison between experimental and numerical

results for a holed laminated is presented. In this work different failure criteria are

presented too. They differ from previous commented works because the material

properties are reduced to 0.0, including Poisson ratios when the criteria are reached.

In the documentation of the user subroutine USDFLD of the finite element software

Abaqus, a simulation of the test of this work is made with multiple failure modes of an

epoxy-graphite laminated (-45/+45) composed of 24 layers. The material is defined

as a laminated with the option *Material (Type=LAMINA) where elastic properties

defined for a planar state of stress are the following: Ex, Ey, νxy, Gxy.

In the example the subroutine is applied to solid linear materials CPS4 of full inte-

gration and CPS4R of reduced integration.

The failure criteria proposed by the authors for this analysis are developed in their

work and are the following: matrix failure, shearing fiber/matrix, shearing failure of

the entire composite and combination of these.

The Abaqus results are compared with experimental load-displacement data (Fig.

5.6) with excellent agreement up to the point where the load maximum is reached.

After that, the numerical load-displacement curve drops off sharply, whereas the

experimental data indicate that the load remains more or less constant (Systemes).

The dominant failure mode is the fiber/matrix shearing. In the analysis is commented

that a better adjustment on the results could be achieved if some after-failure material

data were available. Without these, the behavior is very sensitive to the mesh and

type of element which is very clear in the difference between curves in Fig. 5.6.
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Figure 5.6: Experimental and numerical (Abaqus/Standard (Systemes)) load displacement

curves from Chang et al. [1991].

5.1.2 Element failure method (EFM)

In the literature there is a more frequent use of MPDM for the progressive damage

analysis. Nevertheless is important to remark that has potential disadvantages when

the stiffness matrix values are zero or close to zero. As an alternative to avoid this

disadvantages, Tay et al. [2003] proposed the EFM for the progressive damage in

composites for a fast convergence. Essentially, the method manipulates the element

nodal forces directly in order to simulate the damage effect without making any change

in the material stiffness. The failed elements are not eliminated of the mesh, instead

a number of equivalent forces are applied to the internal forces acting on these nodes.

If we have for example a 2D finite element, the relationship between node forces and

stiffness is:

K u = f (5.2)
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Where u is the nodal displacements vector, f is the nodal forces vector and K is the

master stiffness matrix without damage. Integrating over the domain Ω we have the

equation 5.3.

K =

∫

Ω

BTC B dΩ (5.3)

where C is the stress-strain matrix and B is the matrix that relates strains with nodal

displacements.

By performing the corresponding operations for plane stress or plane strain 2D prob-

lems, we have the following forces (the example is in 2D but in 3D is absolutely

analogous):

fxi = C11

∫

Ω

Ni,x





m
∑

j=1

Nj,xuxj



 dΩ

+ C12

∫

Ω

Ni,x





m
∑

j=1

Nj,yuyj



 dΩ

+ C66

∫

Ω

Ni,y





m
∑

j=1

Nj,yuxj +
m
∑

j=1

Nj,xuyj



 dΩ

(5.4)

fyi = C12

∫

Ω

Ni,y





m
∑

j=1

Nj,xuxj



 dΩ

+ C22

∫

Ω

Ni,y





m
∑

j=1

Nj,yuyj



 dΩ

+ C66

∫

Ω

Ni,x





m
∑

j=1

Nj,yuxj +

m
∑

j=1

Nj,xuyj



 dΩ

(5.5)
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It is clear that for every coefficient change Cij of the stiffness matrix, it would be the

correspondent change on nodal forces. It is always possible to calculate the equivalent

forces for each particular material stiffness while the contrary is not always satisfied.

In other words, applying changes on nodal forces not always correspond to identifiable

changes on stiffness material properties. For this reason, the EFM is a more general

method than MPDM.

If for example, a finite element of a material without damage that has a group of nodal

forces that have been obtained in the equilibrium condition (see Fig. 5.7). These

forces can be calculated on parallel and perpendicular direction from fibers. The

group of internal nodal forces of the element will be in equilibrium with the opposite

group of nodal forces of the adjacent elements that are connected with. However,

for an element that has reached the damage, the load capacity will be compromised

in a dependent dimension and spatial way. For example, if most part of damage is

generated by transversal matrix microcracks, it is evident that the element will have

a reduction on the load capacity on the transversal direction from fibers.

The illustrated process of Fig. 5.7 corresponds to a completely failed element; the

damage is extended in both directions: fiber and transversal to fiber and for that

reason the element should not be able to support any load. As commented before, in

a previous state from failure of the element, the nodal forces are in equilibrium with

the external forces of the adjacent elements (Fig. 5.7). When the element reaches the

failure, some iterative external forces are applied (black arrows in Fig. 5.7c) in such

a way the corresponding forces of the adjacent elements of the mesh are cancelled.

After every successful step, the internal nodal forces of the mesh (pointed arrows)

will decrease in magnitude until a very small value remains (close to zero or to a very

small percentage from the original value). This process is automatized and a very

small residual value is specified. In that way the iterative process will end when that

residual value will be reached. Fig. 5.8 shows a flux diagram for the implementation

of this method.

Is important to remark that the cancelled forces in this process are not the internal

nodal forces of the element but the internal nodal forces of adjacent elements of the

finite element mesh. The failed element has been strained under the applied external

forces; because of this the internal stresses of the damaged element do not conserve a

physical meaning.
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Figure 5.7: The EFM procedure by Tay et al. [2008].
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Figure 5.8: Flowchart for implementation of EFM by Tay et al. [2008].
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One advantage of this technique is that it allows the crack propagation in any direction

without the need to re-mesh or modify the constitutive material matrix.

5.2 Failure criteria

As explained in previous sections, there are multiple theories in literature for im-

plementing damage that are used not only to predict failure initiation but also for

predicting a damage pattern after reaching material ultimate strength. If we consider

an osteon as a laminate composed of multiple thick and thin lamellae, we can group

the most influent stresses to failure as intralaminar and interlaminar.

In composites, intralaminar failure criteria can be classified in three groups: non-

interactive (the most known are maximum stress and maximum strain), interactive

(as Tsai-Hill and Tsai-Wu (Tsai and Wu [1971])), partially interactive or failure mode

based (as Hashin and Rotem [1973] and Puck [1998]). The validity and applicability

of each one depends on the convenience of the application and the adjustment with

experimental results (Daniel [2007]).

The maximum stress and maximum strain criteria are typical examples of non-

interactive theories that do not predict failure accurately because they overestimate

the failure strength without having into account the interaction of different modes.

Interactive theories as Tsai-Wu have better agreement with experimental results.

In composites, failure highly depends on the loading pattern. The most common

failure in laminates is delamination, defined as separation between adjacent layers.

Other analyzed failure modes for this type of materials are the matrix itself, fiber

breaking or pullout of fibers. In laminates, the shearing failure can lead to low nominal

stresses due to the weakening of interlaminar area.

In fracture mechanics the failure analysis is based on the stress-strain state that

is required for a preexisting crack to propagate. The theories and failure modes

observed in composites are applicable to bone tissue (Cowin [2001]). The problem in

cortical bone lies in the complexity of obtaining experimental data at microstructural

or inferior levels in order to set the failure modes, critical loads for failure initiation and
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stress levels for crack propagation. As a conclusion of a large number of works, from

Cowin [2001] it can be inferred the importance of interfaces at different hierarchical

levels for evaluating failure criteria and the large dispersion of experimental data.

As described previously, the interface between collagen and hydroxyapatite reinforce-

ment plays an important role in the mechanical analysis of cortical bone and in that

aspect it is important to know the loading transmission between matrix and fibers. In

composite material theories it is commonly assumed a perfect bond mathematically

described as continuity in matrix and fiber displacement.

In Bundy [1985] is demonstrated that a composite modulus decrease if there is at

least a portion of mineral that debonds and at the same time, this indicates that the

continuity condition is not fitted. The initial models in literature are very simplified

and the evolution on experimental techniques (Zysset et al. [1999]; Ebacher et al.

[2012]; Gupta et al. [2006]; Gupta and Zioupos [2008]; Gupta et al. [2013]) as electronic

microscopy, computerized tomography, X-Ray scattering, etc. has induced to more

complex models that can analyze with more detail the intralamelar level.

In Chapter 4 the strength lamellar properties have been derived from homogenized

values so the effect of damage between the interface collagen-matrix is not taken into

account. In order to analyze the interlaminar failure, the Brewer and Lagace quadratic

criterion of Eq. 5.6 has been chosen (Brewer and Lagace [1988]). This criterion is

widely used in the context of composite materials to analyze the delamination with

excellent correlation with experimental tests.

( 〈σrr〉
Srr,t

)2

+

(

σrθ
Srθ,s

)2

≥ 1 con σrr > 0 (5.6)

where

σrr = radial stress

σrθ = shear stress

Srr,t = radial tensile strength

Srθ,s = shear strength
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The Macaulay bracket operator 〈 〉 in the first term denotes the positive part and

indicates that the radial stress must be included only if σrr > 0, because compressive

radial stresses tend to close any eventual microcrack and therefore make no contri-

bution to the interlaminar failure criterion. The criterion is interactive in the sense

that accounts for the simultaneous contribution of the radial and shear stresses. In

the context of structural composites, this criterion is used to predict delamination

between laminate plies.

The intralaminar failure of a lamella requires the individual verification of the follow-

ing relationship for each lamella:

σθθ ≥ Sθθ (5.7)

which simply checks whether the lamella fails under circumferential tensile stress or

not. Note that circumferential compressive stresses are considered not to lead to

intralamellar failure.
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2D cortical bone models

6.1 Single osteon model

As a first approach to the analysis of cortical bone a 2D model of a single osteon

is proposed. The aim of this finite element model is to determine the inplane stress

distribution and predict the location of microcrack initiation and further propagation

based on Ascenzi et al. compression tests (Ascenzi et al. [1973]). The geometry has

been simplified to a half circular ring, including 17 thin lamellae and thick lamellae,

see Fig. 6.2. The alternating arrangement of these lamella resembles the type I osteon

described by Ascenzi et al. [1973], see Fig. 4.2. The first lamella around the haver-

sian canal is a thin lamella, with a dominant fibril orientation in the circumferential

direction Ascenzi et al. [1973].

Although it is well known that lamellae have thicknesses variations, we have assumed

that the thin and thick lamellae have constant thicknesses of 0.8 µm and 2.4 µm,

respectively, according to the arrangement described in Section 3.2. The diameter of

the haversian canal is 40 µm and hence the total diameter of the osteon is 148.8 µm.

All these dimensions are in agreement with the secondary osteon dimensions reported

in Cowin [2001]. Due to the small thickness of the specimen tested by Ascenzi et
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Figure 6.1: FE mesh without lacunae, clear color is for thin lamellae and dark for thick

lamellae.

al. sketched in Fig. 4.1, a plane stress condition has been assumed, with unitary

thickness. The applied pressure p is distributed along a 60◦ circular arc, being its

magnitude increased through the analysis. In this research half ring has been used

to model the osteon because it is intended to analyse the effect of the asymmetric

distribution of lacunae, although a quarter would be mathematically sufficient for a

symmetric geometry.

A structured mesh has been generated that facilitates the definition of the lamellae

boundaries. Since some contact surface procedures are involved in the analysis, a

4-node bilinear element has been used (CPS4 in Abaqus). In the following Subsection

6.1.1 the procedure of adding lacunae to the model is explained.

To ease the introduction of anisotropic properties and application of failure criteria,

an essential feature of the model is the alignment of the material axes with the cir-

cumferential and radial directions of the osteon reference system, see Fig. 3.14. All

the resulting stresses are also referred to the axes r and θ of Fig. 3.14.
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Figure 6.2: Finite element model, showing the applied load, the displacement constraints, the

lamellae and the lacunae considered. The mesh is structured, enabling the arrangement into

thin and thick lamellae of constant thickness and the cylindrical orientation of the material

axis for each lamella. The detailed view shows the modification of the structured mesh to

allow for the presence of lacunae.

6.1.1 Including lacunae to the model

During forming and remodeling stages of osteons a big number of cellular processes are

active, being these achieved by three principal types of cells beside blood cells: osteo-

clasts, that absorb old tissue and leave space for next type of cells: osteoblasts, that

nucleate and synthesize bone, and finally osteocytes that are osteoblasts “trapped”

into the lamellar tissue but keeping a structured net of fine canaliculi between them,

see Fig. 6.3. The space they fill into the tissue is called lacuna and has an approx-

imated ellipsoidal shape that is very important for the remodeling process because

of its known role as sensors of the mechanical state of the osteon and for triggering

the remodeling process when it is needed (Klein-Nulend et al. [2012]; Ascenzi et al.

[2008]; Nicolella et al. [2006]; Knothe Tate et al. [2004]).

In order to include lacunae to the FE mesh, a subroutine in Matlab has been de-

veloped, starting with a central node as an input. The shape of the elements that

surround the center is transformed into ellipses trying to preserve the good quality of

the original structured mesh. This script is programmed in a way that is possible to

include a lacuna anywhere in the mesh. Shown in Fig. 6.1.

C. Arango Villegas 87



Chapter 6. 2D cortical bone models

Figure 6.3: Diagram depicting transverse section of cortical bone at microstructural level.

The geometry of the lacunae is based on the features given by Prendergast and Huiskes

[1996], where the lacunae are described as ellipsoids of dimensions 22µm x 9µm x 4µm,

with a major axis forming about 26◦ with the osteon axis and located in the boundary

between lamellae (Currey [1962]). Therefore, the ellipses modelled in this work are

a section of the 3D ellipsoids, assuming all the intersected lacunae are located in

the same transverse plane. Hence the dimensions of lacunae are approximately the

same (with minimum variations generated by the different sizes of elements and its

orientation). The spatial distribution of the lacunae is based on the data found in

Cowin [2001], that report an average density in cortical bone of 460 lacunae per mm2

and an average lacunae area of about 30 to 40 µm2.

The subroutine for generating lacunae from a structured FEM mesh has the following

procedure:

• The stated shape has different element sizes, hence the exact geometry of lacu-

nae depends on the elements that compose it and the place that are located.

• The lacunae size is taken from bibliography: ellipsoids between lamellae with

approximated dimensions of principal axes: 22 µm x 9 µm x 4µm (Prendergast

and Huiskes [1996]). In order to model the transversal section is assumed in
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Figure 6.4: Sequence for including lacunae to the mesh. Firstly the central node is identified,

secondly the neighboring elements are deleted and finally the surrounding nodes are relocated

in ellipsoidal shapes.

this model that all the lacunae are in the same plane of the osteon, hence the

dimension of lacunae are approximately the same (with minimum variations

generated by the different sizes of elements and its orientation).

• The size of elements neighboring the central node (input) is read from the

coordinate matrix and it is compared with the size of principal axes of lacunae.

The subroutine calculates the number of elements that are totally contained in

the lacuna and eliminates them from the mesh (Fig. 6.4).

• The coordinates of the remaining nodes in contour are modified in such a way

that they are moved to the ellipse contour, trying to preserve the side orientation

of elements.

Using this procedure and the correlation with some images in the literature, 10 lacunae

have been included in the half-model of an osteon shown in Fig. 6.2.

Lacunae are placed in the osteon taking images from literature as reference. In Ascenzi

et al. [2008] a periodic structure of lacunae is proposed that fulfils the characteristic

patterns of spacing and distribution of micrographs. According to Cowin [2001],

the mean area of a lacuna is from 30 to 40 µm2 and its cortical bone density is

460 lacunae per mm2. In agreement with these data and relating to micrographs in

literature, 10 lacunae have been included in the mesh. Fig. 6.2 shows the result of

the inclusion following the previous procedure and concluding the geometrical model.

The material axes of the modified elements are also defined in accordance to the global

circumferential and radial directions.
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6.2 Material model

The material definition in Abaqus as in the most common finite element codes has

the following characteristics:

• It specifies the material behavior and set all the relevant property parameters.

• It can define multiple material behaviors.

• The material has an assigned name that is used to define all the elements that

are represented by the same properties.

• It can be variable field dependent and can be assigned to solution dependent

field variables.

• It can be specified in a local coordinate system. This is required for non-

isotropic materials.

The anisotropic elastic material properties for thick and thin lamellae that have been

calculated in Chapter 3 are defined in Abaqus through the *elastic command with

type=anisotropic and followed by the constant values lines of the constitutive matrix

with the structure shown in Eq. 6.1.
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(6.1)

where 1 = x, 2 = y and 3 = z of the coordinate system of Fig. 6.1.
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Figure 6.5: Detail of the local coordinate system of each element of the mesh. Thin lamellae

are shown in red.

6.3 Coordinate systems

For the anisotropic material orientation definition and setting of failure criteria is

essential to use a local coordinate system for elements with the polar coordinate

arrangement of Fig. 3.14, with axes parallel to radial and circumferential directions.

In Fig. 6.5 the local system defined for the thick and thin lamellae materials is shown,

having all the properties defined in this reference system.

The definition of the coordinate system in the Abaqus input is made by the coor-

dinates of two points that are situated on the z axis of the cylindrical coordinate

system of Fig. 6.6. The command is: ∗ORIENTATION, DEFINITION=COORDINATES,

SYSTEM=CYLINDRICAL.

Additionally, the boundary conditions for a single osteon model are the displacement

constraint of the two inferior surfaces that correspond to the symmetry axis of Fig.

6.2 (applied in the input file with the command ∗BOUNDARY, TYPE=DISPLACEMENT).
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Figure 6.6: Cylindrical coordinate system defined in Abaqus by the coordinates of points a

and b.

6.4 Failure initiation

In order to determine the interlaminar failure, the Brewer and Lagacé criterion (Eq.

5.6) has been implemented in Abaqus and applied to the stress evolution resulting

from increasing the applied pressure p. Fig. 6.7 shows a contour map of the value

given by the left side of Eq. 5.6. The interlaminar failure initiates when this value is 1

and the first occurrence takes place in a thick lamella (indicated by an arrow), about

45◦ with respect to the vertical axis and in the neighborhood of a lacuna that acts as

a local stress raiser. The failure load at this instant is p ≈ 14 MPa. The region where

the failure initiates is in agreement with the experimental evidences commented in

Chapter 4.

The mode failure is mainly by interlaminar shear, since σrθ reaches its strength limit

Sthick
rθ,s ≈ 20 MPa, as shown in Fig. 6.8(c). In Fig. 6.8(a) it can be observed that,

in the regions of high σrθ, the interlaminar radial stress σrr is small compared with

its strength limit Srr,t = 50 MPa, and therefore contributes very little to the failure

criterion 5.6. The different shear limits in thick and thin lamellae and their interaction

due to their different stiffness, tend to concentrate the failure initiation in regions

at about 45◦ with the vertical axis. Note in Fig. 6.8(c) that the lacuna presence

exacerbates the stress concentration locally, causing the failure initiation.
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Figure 6.7: Initiation criterion. Application of the failure criterion of Brewer and Lagacé to

determine the initiation of failure, reached at a load of p ≈ 14 MPa.

6.5 Interlaminar failure propagation using the node

release technique

After determining the initiation of failure and its location, the propagation has been

carried out using two different techniques: the node release technique and the pro-

gressive damage approach. In the node release technique (NRT), contact surfaces

are defined along the prospective crack propagation direction. This technique is of-

ten used to model debonding of surfaces along a specified direction. It involves the

definition of master and slave contact surfaces.

The slave nodes are constrained not to penetrate into the master surface; however, the

nodes of the master surface can, in principle, penetrate into the slave surface. This

has been accomplished by duplication of nodes along the interfaces between thick and

thin lamellae, where microcracks are expected to grow.

The two surfaces are initially tied and act as a single surface until a prescribed failure

or fracture criterion is satisfied. When the criterion is reached, the connection between

the surfaces is released.
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Figure 6.8: Initiation criterion. Application of the failure criterion of Brewer and Lagacé to

determine the initiation of failure, reached at a load of p ≈ 14 MPa. S11 is for circumferential

stresses, S22 for radial stresses and S12 for shearing stresses.
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In combination with the contact procedures available in Abaqus (Systemes), the same

master and slave surfaces shown in Fig. 6.9 are used to enable the contact between

crack faces after the microcrack growth. This contact exists due to the compressive

nature of the applied load. The analysis of the proposed model is computationally

expensive, especially because the number of potentially debonding and contacting

surfaces is high (all interfaces between thick and thin lamellae). An implicit incre-

mental approach has been used for the analysis of propagation, where debonding,

contact and loss of stiffness is expected during the nonlinear analysis.

As explained before, the initiation conditions at an interface are determined using the

Brewer and Lagacé criterion (Fig. 6.7). Initially, only one node is released at this

point. The eventual propagation of the microcrack (equivalent to a surface delami-

nation) is also governed by the Brewer and Lagacé criterion. The Abaqus command

*Debond (see Fig. 6.9) is used to release the initially tied nodes as the load increases.

In the simulation, initiation points of new microcracks depend on the previous micro-

crack evolution.

In order to evaluate the crack propagation condition, an approach based on ener-

getic considerations, such as the strain energy release rate G should be considered.

However, critical values for the specific energy at fracture Gc are not available at

the interlamellar and intralamellar level. Hence, we resolved to use a stress-based ap-

proach considering the Brewer and Lagacé criterion at a certain characteristic distance

d.

The Abaqus command *Debond involves the values of contact pressure CPRESS and

contact shear CSHEAR. The criterion is then evaluated at a distance d ahead the

crack tips of the generated microcrack, thus avoiding the theoretical singularity at

the crack tips. The problem turns out to be the choice of the distance d. We have

chosen a distance d = 1.5 µm ahead the crack tip, which provides reasonable results.

A sensitivity analysis has been carried out regarding this distance, as commented at

the end of this section.

The following characteristics should be fulfilled for surfaces to be debonded (Sys-

temes):

• Both surfaces must have the same normal.
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Figure 6.9: Schematic definition of the Abaqus critical stress criterion applied between two

surfaces (Systemes).

• The surface should be continuum.

• Deformable elements can not be mixed with rigid body elements as part of the

same surface.

In this model, the surface contact has been defined through a “contact pair” in

Abaqus, and it implies the pairs of surfaces or node sets with surfaces that can

interact between them through the analysis.

The “contact pair” in Abaqus/Standard (Systemes) has the following characteris-

tics:

• Can be used to define interactions between bodies in mechanical, coupled

temperature-displacement, coupled pore pressure-displacement, coupled thermal-

electrical, and heat transfer simulations.

• Should be part of the model definition.

• Can be formed using a pair of rigid or deformable surfaces or a single deformable

surface.

• Do not have to use surfaces with matching meshes.
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Figure 6.10: Node release technique. Evolution of shear stress along one of the contact

surfaces (CSHEAR in Abaqus). For the sake of clarity, the surface does not intersect any la-

cunae. (a) Stress state before microcrack initiation; (b) microcrack initiation; (c) microcrack

propagation.

• Cannot be formed with one two-dimensional surface and one three-dimensional

surface.

Contact can be defined in Abaqus/Standard in terms of two surfaces that may interact

with each other as a “contact pair” or in terms of a single surface that may interact

with itself in “self-contact”. Abaqus/Standard enforces contact conditions by forming

equations involving groups of nearby nodes from the respective surfaces or, in the case

of self-contact, from separate regions of the same surface.

In Fig. 6.10, the variation of CSHEAR for an interface surface is represented at three

instants. The solid black lines represent the value of the shear stress along an interface

between a thick and thin lamella. The coloured blue-to-red lines are simply marker

scales that quantify the value of the shear stress, from minimum (blue) to maximum

(red) passing through zero. The three subfigures represent different states of failure

initiation and propagation. The first plot Fig. 6.10(a) represents a continuous distri-

bution of the interface shear before failure initiation (a surface without intersecting

lacunae is represented for simplicity). Once the variable CSHEAR reaches a value
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close to the limit strength ±20 MPa, a node is released at this point. Hence, the

interface shear stress drops locally to 0, as shown in Fig. 6.10(b).

Two incipient cracks along the interface have been formed (each with two crack tips),

one on the left quadrant and the other one on the right quadrant. The shear stress

drops to zero between the crack tips, because the crack faces are free from shear

stresses (it has been assumed that there is no friction between crack faces).

A further increase of the load causes the interface cracks to propagate, as in Fig.

6.10(c), where CSHEAR is 0 inside the cracks. Both cracks have grown along the

interface surface. The region where the shear stresses are zero has increased, i.e. the

crack faces have become longer. Fig. 6.11 shows the contour maps for the Brewer and

Lagacé where the red colour has 1.0 as an upper limit value. Values exceeding 1.0 are

plotted in grey and represent the regions in which failure is initiated and propagated

as the load is increased.

From left to right and top to bottom, the plot (a) in Fig. 6.10 corresponds to the

initiation location, in a state similar to the represented in Fig. 6.11, p ≈ 14.0 MPa.

Next plot (b) shows an advancing crack on the left quadrant and a new crack just

initiated on the right quadrant when the load has been increased to p ≈ 16.6 MPa. In

successive plots, both cracks grow and other microcracks are initiated and eventually

grow up to a generalized state of failure with several propagated microcracks. For the

last plot (f), p ≈ 20.1 MPa, the innermost thin lamella also starts failing due to high

circumferential stresses. It has been verified that the intralaminar criterion (Eq. 5.7)

is not achieved at earlier stages. From 6.11, it can be observed that the numerical

analysis here presented is in good agreement with the experimental behavior observed

by Ascenzi et al. [1973] (See Fig. 4.3).

Fig. 6.12 plots the applied pressure p versus the displacement of the load application

point located on the vertical radius. The expected loss of stiffness under a compressive

load is evidenced by the progressive reduction of the slope in the diagram. It can

be observed that once the microdamage starts due essentially to the interlaminar

shear stresses, the load bearing capacity of the system is notably reduced. Fig. 6.12

shows the results of a sensitivity analysis for three characteristic distances d, showing

that qualitative differences are not large within a reasonable distance d compared to

geometric dimensions.
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Figure 6.11: Node release technique. Evolution of the Brewer and Lagacé criterion for six

instants of the microcracks initiation and propagation sequence. The instants correspond to

the following applied pressures: (a) p ≈ 14.0 MPa, (b) p ≈ 6.6 MPa, (c) p ≈ 18.0 MPa, (d)

p ≈ 18.1 MPa, (e) p ≈ 19.1 MPa, (f) p ≈ 20.1 MPa.
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Figure 6.12: Node release technique. Sensitivity analysis to the characteristic length d used

in the application of the procedure.

6.6 Progressive damage model

6.6.1 Failure propagation using the progressive damage ap-

proach

The previous analysis using NRT leads to the propagation of explicit microcracks.

Despite this is similar to the real behaviour as shown in Fig. 4.3, this approach is

computationally expensive and difficult to generalize to a representative volume with

several osteons or to 3D models. As an alternative, the failure propagation after initi-

ation has also been simulated through a progressive damage approach. This approach

is based on a nonlinear FE analysis in which the stiffness properties are reduced at

the element level as its stress state reaches a failure condition (Tay et al. [2008]).

This approach has been successfully applied in structural composite materials, such

as fiber reinforced laminates (Tay et al. [2008]; Chang and Chang [1987]; Hou et al.

[2000]; Lapczyk and Hurtado [2007]).
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In the progressive damage approach, there is the elastic-brittle assumption for mate-

rial behavior, in the sense that there is no significative plastic deformation (Lapczyk

and Hurtado [2007]). One important advantage is its relatively simple extension to

3D models, in contrast to the numerical modelling of explicit cracks using fracture

mechanics, even using the extended finite element method XFEM. Obviously, the lo-

cal solution in the vicinity of the damaged zone will not be as accurate as in a fracture

mechanics approach, but the technique captures the global loss of stiffness and has

proven to be very efficient for diffuse damage and for models with a large number of

microcracks, provided the discretization is sufficiently refined (Hambli [2013]).

The simplest approach to carry out the reduction of the elastic properties is the direct

material property degradation MPD (Tay et al. [2008]; Chang and Chang [1987]; Hou

et al. [2000]). This method will be used in this work and consists in reducing the

elastic properties by a fixed factor that can depend on the mode failure. Although its

implementation is simple, it needs an a priori specification of the reduction factors. It

is customary to assume that the stiffness in certain directions is reduced to 0 (Chang

and Chang [1987]; Hou et al. [2000]), although the analysis can lead to excessively

conservative results and numerical difficulties. Tay et al. suggest that a constant re-

duction factor of 0.1 is common practice in the literature due to its simplicity and

convergence advantages (Tay et al. [2008]). Other approaches are based on continuum

damage mechanics (CDM), with a less arbitrary formulation, often based on thermo-

dynamic principles. In CDM, the damage variable can take a value in the continuous

range [0, 1], and therefore the softening introduced is not abrupt.

The MPD procedure used in this work to model the progressive damage of an osteon

has been implemented in Abaqus and it is similar to the implementation by Chang

and Chang [1987] for structural composites. Two field variables (FV1 and FV2) have

been defined by means of the user subroutine USDFLD (User Defined Field). The

field variables are solution-dependent variables that enable the assignment of different

material properties according to their values. Thus, FV1=0 and FV2=0 indicate no

failure, FV1=1 and FV2=0 indicate interlaminar failure and FV1=0 and FV2=1

indicate intralaminar failure, see Table 6.1.

For the no failure state the elastic moduli are not reduced and for the failed state all

the elastic moduli are reduced to 5% of their original values. The field variables are

solution-dependent variables in the sense that they are functions of the FE solution

at the integration points (in our case, function of the stresses). In the user subroutine
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Table 6.1: Field variables assigned according to failure criteria

Material state Stiffness (%) FV1 FV2

No failure 100% 0 0

Interlaminar failure (due to σrr , σrθ) 5 1 0

Intralaminar failure (due to σθθ) 5 0 1

USDFLD, the interlaminar and intralaminar failure criteria previously explained in

Chapter 5, are evaluated at each load increment considering the strength limits defined

in Chapter 4 as input parameters.

The values on the left hand side of the criteria are stored at each increment as state

variables (STATEV in Abaqus). On the other hand, the field variables FV are ini-

tialized to 0 when the analysis starts and only when any state variable STATEV is

equal or greater than 1.0, the corresponding field variable FV is changed to 1 (dam-

aged state). The field variable FV will remain as 1, even when the local stresses are

reduced significantly, indicating the irreversibility of the damage process. Fig. 6.13

shows the sequence of damaged elements according to the Brewer and Lagacé crite-

rion (Eq. 5.6). As explained above, the damage initiation is governed by interlaminar

shear stresses in a thick lamella at about p ≈ 14 MPa. The damage is mainly located

near the stress concentration region next to a lacuna on the left quadrant. When the

load is increased to p ≈ 20.1 MPa, propagation of damage follows the elements in

thick lamellae in a very similar pattern to the one predicted with the NRT of Section

6.5, Fig. 6.11.

The progressive damage approach easily allows for computing advanced states of

damage. Fig. 6.14 shows a generalized state of damage for applied pressures that are

higher than the loads considered in Fig. 6.13. It can be observed that damage due

to interlaminar stresses tends to concentrate in the thick lamellae. It is worth noting

that damaged zones approximately match the observed experimental regions, located

at about 20◦ and 50◦ with respect the vertical radius. Eventually, for the highest

load, damage is generalized and extends also across thin lamellae.

As far as the intralaminar criterion of Eq. 5.7 is concerned, damaged elements are

shown in Fig. 6.15. Tensile circumferential stresses cause damage in the innermost
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Figure 6.13: Progressive damage approach. Evolution of damaged elements (shown in yellow)

by application of the interlaminar failure criterion of Brewer and Lagacé for six instants of the

damage propagation sequence. The instants correspond to the following applied pressures:(a)

p ≈ 14.0 MPa, (b) p ≈ 16.6 MPa, (c) p ≈ 18.0 MPa, (d) p ≈ 18.1 MPa, (e) p ≈ 19.1 MPa,

(f) p ≈ 20.1 MPa.
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Figure 6.14: Progressive damage approach for very advanced stages of damage propagation.

The instants correspond to the applied pressures (a) p ≈ 27.0 MPa and (b) p ≈ 48 MPa.

Figure 6.15: Progressive damage approach. Evolution of damaged elements (shown in yellow)

by application of the intralaminar failure criterion for two very advanced load states of the

damage propagation sequence. The instants correspond to the applied pressures (a) p ≈ 24.0

MPa and (b) p ≈ 32 MPa.
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thin lamellae. The load for the initiation of this damage is relatively high (about

24 MPa), and therefore this type of damage is expected to occur only when the

interlaminar failure shown in Fig. 6.13 is well developed. As a consequence, we can

conclude that interlaminar shear stresses are the main cause of failure for this type

of osteon under compressive diametral load, causing a separation of thin and thick

lamellae, in good agreement with the experimental evidence founded by Ascenzi and

Bonucci in their tests.
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Chapter 7

Three point bending

simulation of an ovine bone

sample

In this chapter the damage degradation subroutine is applied in order to correlate

experimental tests on ovine bone with a FE model aiming at inferring some elastic and

strength properties that are relevant at microstructural level. Further, the initiation

and growth of microcracks in the tested samples is simulated by using a damage model

based on the maximum principal strain. Simulations show good correlation with the

experimental results.

Three point bending tests have been carried out with cortical bone of ovine tibia,

after preparing samples 20 mm long with thickness of 1 mm. Four samples have been

stained for the micrograph observation in order to recognize the particular morphology

at microstructural level (osteon distribution, Haversian canals, spacing and location

of microcracks, etc.).

This geometry has been reproduced in a finite element model for calibration of the

elastic and strength properties in such a way that the model response can be in
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Figure 7.1: A micrograph by Taylor et al. [2007] where a microcrack C encounters an osteon

O, and begins to grow around its cement line (dashed line). The microcrack is approximately

100 µm long.

agreement with the load-displacement behavior experimentally registered. Therefore

it is possible to estimate these properties scarcely documented in bibliography through

inverse analysis.

The reference models in the literature showing the distribution of damage or crack

growth in cortical bone do not provide good estimations of crack propagation. As

discussed in Chapter 5 the models with random distribution of osteons obtained by

Budyn and Hoc [2007]; Budyn et al. [2008] (see Fig. 5.5) show that cracks grow in

directions that cross osteons and the effect of cement lines for such propagation is not

perceived, which is not in line with evidence in the literature (Taylor et al. [2007];

O’Brien et al. [2003, 2005]; Nalla et al. [2005]; Nicolella et al. [2011]), see Fig. 7.1.

In Li et al. [2013] three microstructural models with random distribution of osteons

were analyzed (see Figs. 7.2, 7.3) using the extended finite element method (X-FEM)

with an energy-based cohesive-segment scheme. In the results of these models (see

Fig. 7.4) we can see how cracks propagate through osteons or Haversian canals where,

as well as in Budyn and Hoc [2007], the mechanical work of cement lines appear to

have no effects contrary to what is commonly accepted in several experimental works

(O’Brien et al. [2003, 2005]; Nalla et al. [2005]; Nicolella et al. [2011]) and in our

own experimentation. In these works we can see the crack following and initiating at

the surroundings of the osteons and cement lines and propagating mostly through the

interstitial tissue. Those cases where cracks penetrate osteons agree with experimental

findings according to other authors but this case does not seem to be the dominant.
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Figure 7.2: Schematic illustration of model configuration for the three-point-bending setup

using global model and microstructured sub-model by Li et al. [2013].

Figure 7.3: Numerical simulation of crack growth in cortical bone by Li et al. [2013].
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Figure 7.4: Crack propagation trajectories for various elastic moduli of cement line for three

microstructured models: 25% lower than that of osteon; equal to that of osteon and 25%

higher than that of osteon, by Li et al. [2013].
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Figure 7.5: Artistic impressions of the structural characteristics of the micromechanical

models developed by Nobakhti et al. [2014]: (a) single osteon; (b) half longitudinally-cut bone

sample featuring 3 osteons; (c) half perpendicularly-cut bone sample featuring 5 osteons.
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This makes sense from the point of view of protecting the osteon as the structural

unity that contains the osteocytes and surrounds the blood vessels.

In the work by Nobakhti et al. [2014] the FE model of cortical bone of Fig. 7.5 is used

to analyse local and global effects of interface structures, i.e. cement lines. Based on

the results of their work, it is shown that interfaces are areas of accumulated strain

in bone and are likely to act as potential paths for crack propagation. The strain

amplification capability of interface structures of the order of 10 predicted by the

models suggests an explanation for the levels of strain required in bone homoeostasis

for maintenance and adaptation.

7.1 Mechanical tests

The mechanical tests where done at the Biomechanics Institute of Valencia (IBV) as

part of the national project correspondent to this Thesis. The samples are taken from

cross-section cuts made in the diaphysis of an ovine tibia with the aim of obtaining

cortical sections of 1 mm of thickness as the one shown on the left hand of Fig. 7.6.

Subsequently, after removing the associated tissues of periosteum and endosteum,

four samples were obtained in the zone of less curvature of the total tibia transversal

section.

Each one of the samples has a notch of approximately 0.5 mm (see Figs. 7.6 and 7.7).

The samples were stored frozen until tests.

The microsamples were subjected to a three point bending test in an electromechan-

ical universal machine. Fig. 7.6 shows the testing rig used for support and load

application. The load application was accomplished with a velocity of 1 µm/seg and

hence, the tests can be considered as quasi-static. For each sample the applied force

was recorded as a function of the displacement at the application point. The results

are reported in Fig. 7.8 and show an acceptable repeatability. It is evident the lin-

earity observed until an application load of around 4-5 N. Therefore upto this range,

the behavior is considered linear elastic. This will be the starting point for the gen-

eralized damage in the most stressed zones (notch vecinity) where microcracks grow

fast producing the stiffness loss appreciated in the different curves of Fig. 7.8.
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Figure 7.6: Left: Transversal section of a ovine tibia (before and after staining). Right:

Three point bending of the ovine sample.

Figure 7.7: Notched test sample and detail of ovine bone stained after test No. 2.
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Figure 7.8: Load-Displacement response registered for four tests.

The tests were done avoiding the breakage into two parts of samples with the aim of

observing the followed microcrack path a posteriori. The next step was to prepare

the staining for contrast of the micrographs following a procedure proposed by Bain

et al. [1990] that implies to dehydrate the samples (being this the reason of staining

after the tests). The colorant staining for the cement lines consists in toluidine blue

(1 gr.) in formic acid at 0.1% (100 ml), with 2.6 of pH during 20 minutes followed

by tert-butyl alcohol (2-methyl-2-propanol) dehydration for 30 sec. It is important

to avoid the presence of artifacts due to the staining and this is achieved rising the

dehydration time in alcohol. Finally a quick xylene cleaning was made.

In Fig. 7.7 the osteon distribution by optical microscopy for test No. 2 is shown.

The colorant concentration can be observed in the interstitial matrix, revealing the

osteons and Haversian canals in a lighter color. The medium diameter of osteons is

about 100 µm, although in the section some osteons present more elliptic shapes with

major axis around 150-200 µm.

The existence of a growing microcrack can be observed mainly along the osteon sur-

roundings i.e the cement lines. The origin of the microcrack is at the most stressed

zone (tip of the notch).
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Figure 7.9: Geometrical model with osteons, cement lines and Haversian canals around the

sample notch.

7.2 Finite element model

For the geometrical model generation of Fig 7.9, the sample contours and osteon

shapes were processed with the software Plot Digitizer. The borderline delimitation

corresponding to the cement lines is complicated and requires a thorough interven-

tion of the analyst. Therefore this segmentation process was limited to the osteons

surrounding the notch (see Fig. 7.7) that belong to the initiation and growth of the

microcrack zone. The other regions sufficiently far from this zone are modeled with-

out osteon details and instead equivalent homogenized properties are assigned. Each

geometrical contour was generated from the points obtained with Plot Digitizer by a

Python script in Abaqus from the osteon and Haversian canals shapes in micrographs.

The thickness assigned to this model is of 1 µm.

The numerical model was solved with Abaqus v. 6.13. The obtained mesh of Fig.

7.10 has 486499 linear square elements (CPS4 in Abaqus) and 487058 nodes. A plane

stress case was assumed and the region of interest is highly discretized with elements

of 1 µm of side approximately in such a way that is possible to mesh the interior

of cement lines. The elements of some CL are red marked in Fig. 7.10 where also

boundary conditions and the applied load p are shown.
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Figure 7.10: Model mesh with boundary conditions and load applied. The detailed view

shows the discretization at osteons contours with the cement line elements in red.
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Table 7.1: Strength properties for cement line calculated using Eq. 4.6.

E (GPa) ν ǫci test 1 (%) ǫci test 2 (%)

Osteon 11.18 0.30 17.0 17.0

Interstitial tissue 12.29 GPa 0.30 8.45 5.90

Cement line 3.3 0.30 17.40 17.75

The elastic values obtained in Chapter 3 and calculated strength properties of os-

teons, cement lines and interstitial tissue for two tests are summarized in Table 7.1.

Regarding the damage implementation, the maximum principal strain criterion of Eq.

7.1 is implemented:

f =
ǫp,max

ǫci
(7.1)

where ǫp,max is maximum principal strain and ǫci are critical values. Stiffness is

degraded to 1% once the criterion is reached.

The first objective of the model is to verify the load-displacement response at the

load application point in the linear range. A preliminary finite element analysis with

the elastic values proposed in Table 7.1 shows that the numerical model has a much

stiffer behaviour with respect to experimental results (13 times stiffer). Having into

account the simplicity of boundary conditions and that geometrical dimensions have

been modeled with precision, the stiffness of the elastic properties have to be adjusted.

After adjusting the elastic properties with a proportionality constant, the new cali-

brated elastic modulus for each of the regions are listed in Table 7.2.

In addition to calculated properties after calibration, in Table 7.2 some recent values

of the work by Nobakhti et al. [2014] are listed for the same materials. The results

of the test made in humid conditions results in a notably higher stiffness than in the

literature data for bone tissue. Nevertheless the values reported by Nobakhti et al.

[2014] for osteons and cement lines are even lower than the values obtained in this
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Table 7.2: Calibrated Young’s modulus from experimental bending test

E model (GPa) E from Nobakhti et al. [2014] (GPa)

Osteon 0.85 0.15

Interstitial tissue 0.93 13.7

Cement line 0.25 0.088

present model although this is not the case for interstitial tissue. Hence the adjusted

properties can be considered in an admissible range.

7.2.1 Failure initiation strains

Figs. 7.11 and 7.12 show the strain state reached after an incremental load of 5 N,

evaluated with the in-plane maximum principal strain.

In agreement with experimental tests, we can see that the maximum strain value

corresponds to the cement line that is closer to the notch at the zone most prone to

damage. On both figures, the same field is shown yielding strains over 16%, so we

can conclude that the critical strain values for damage initiation are in that order of

magnitude.

In order to determine the critical strain values, after the initial results from the

behaviour at the maximum applied load, an iterative process has been done, analyzing

the damage pattern evolution with respect to the critical parameters chosen until the

model is in agreement with the experimental results. In this way the critical strength

values are calculated with an inverse analysis. For both tests, the critical parameters

are very similar even though microstructural geometries are different.
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(Avg: 75%)
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Figure 7.11: Maximum principal strain near the notch of microsample 2.

(Avg: 75%)
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 0.178

Figure 7.12: Maximum principal strain near the notch of microsample 4.

7.3 Damage model

The same damage procedure of Section 6.6 has been applied with a user subroutine

USFLD in Abaqus. The damage modeling method implemented is mesh and step-

dependent, so a sensitivity analysis has been carried out regarding these two variables.
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Chapter 7. Three point bending simulation of an ovine bone sample

Concerning time increment dependence, the substeps have to be small enough so as

not to change the solution, while mesh dependence implies enough mesh-refinement.

The final damage patterns are compared with the experimental results (see Figs. 7.13

and 7.14) with good agreement.
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7.3. Damage model

Figure 7.13: Numerical and experimental damage pattern observed at microsample 2 under

a three point bending test. Damaged elements are shown in yellow.
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Figure 7.14: Numerical and experimental damage pattern observed at microsample 4 under

a three point bending test. Damaged elements are shown in yellow.
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Chapter 8

Numerical 3D model

In the last two chapters, 2D models of cortical bone with good agreement with respect

to experimental evidence where developed. The aim of this Chapter is to apply the

same methodology and validate damage 3D models with realistic geometries based

on experimental tests from bibliography (Ebacher et al. [2012, 2007]; Ebacher and

Wang [2009]). Three-dimensional modeling of bone microstructure is a useful tool

for predicting the anisotropic mechanical behavior and its study can lead to inter-

esting applications in multi-scale models for the improvement of fracture prevention

and treatment. The damage implementation at small hierarchical levels is also an

interesting research field for numerical methods looking for less computational cost

in complicated geometry cases such as predicting failure from µCT scans (Verhulp et

al. [2008]) or reproducing X-Ray synchrotron tests Gupta et al. [2013].

8.1 Realistic geometry based on micrographs

In previous chapters we have seen relevant models from bibliography (Ascenzi et al.

[2013]; Li et al. [2013]; Nobakhti et al. [2014]; Aoubiza et al. [1996] among others)

that have approached to cortical bone modeling at cortical microstructural level where
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Chapter 8. Numerical 3D model

Figure 8.1: Micrographs used as references to be modeled by FE. Cross section of cortical

bone showing osteons with their lacunae, canaliculi and Haversian canals by Royce et al.

(Cowin [2001]). The bottom image corresponds to a polarized light micrograph of the same

region.
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model simplifications as geometry and constitutive properties are evident. Therefore,

from validated damage models of previous chapters and publications (Vercher et al.

[2014]; Vercher-Mart́ınez et al. [2015]; Giner et al. [2014]), we proceed to the imple-

mentation of a three-dimensional model where damage propagation can be analyzed,

something that can be practically unapproachable with other methods such as the

X-FEM or node-release technique due to the unaffordable computational cost and

time required in setting up the model Giner et al. [2009].

In the procedure to obtain realistic geometry models of cortical bone it is essential to

have experimental results to validate and compare with, although the complexity of

the heterogeneous tissues, details at such small scales and variability of parameters

even in the sample treatment makes characterization a complicated procedure typical

of biologic materials. In a first approach of this Thesis, we have started with a

reference from the micrographs of Fig. 8.1 reported by Cowin [2001]; Steinmann et

al. [2002] from a cortical bone sample where the distinction of different lamellae is

clear under polarized light.

The procedure for obtaining the geometry of the model shown in Fig. 8.1 is similar to

the one explained in Section 7.2 for the three point bending test of the ovine sample,

although with different size and details of thin and thick lamellae. The topology of

meshes for osteons and cement lines is structured with solid linear elements with 8

nodes. These were generated in Matlab following the osteon contours. The mesh for

the interstitial part is non-structured and composed of linear square and triangular-

based prismatic elements with 8 and 6 nodes respectively (C3D8 and C3D6 in Abaqus)

and it is also extruded in Matlab with material and element type assignation.

Here we analyze two compression cases in both radial and longitudinal direction of

the osteon (Fig. 8.2). For both cases, the distributed pressure is p=100 MPa with

the aim of having a very advanced state of damage.

8.1.1 Radial compression

This type of load-case was experimentally analyzed by Ascenzi et al. in order to see

the influence of alternate orientations of lamellae in the mechanical behavior of the

osteon.
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Figure 8.2: FE meshes composed of osteons, interstitial tissue and cement lines. Top: radial

compression test. Bottom: axial compression test.
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In Giner et al. [2014] it was observed that interlaminar stresses govern the damage

phenomenon in an isolated osteon and that thick lamellae were the most affected for

that load-case. The zones of concentrated damage are between 20◦ and 50◦ from the

line of application of load. It is expected in this work that a more complex model with

more entities than a single osteon will lead to a different damage pattern influenced

by the composition, mechanical properties and the consideration of interstitial tissue

and cement lines.

In Cowin [2001] some works related with experimental damage are discussed, and as

a result we can see that the magnitude of crack density is variable in bibliography.

Approximately a half of the studies indicate that cracks in vivo are observed at in-

terstitial tissue and only a small portion correspond to those that penetrate osteons.

That is attributed to the increase of mineral content at interstitial tissue that is sup-

posed to contribute to a more fragile behavior. In Fig. 7.1 there is a micrograph

of a microcrack located in interstitial bone but part of it is found on the perimeter

of a cement line surrounding a Haversian system (Taylor et al. [2007]; O’Brien et al.

[2003]).

8.1.2 Axial compression

The axial direction of the osteons in the model corresponds with the longitudinal axis

of bone (see Fig. 8.2). There are some experimental works for the analysis of this

type of load (Cowin [2001]; Ascenzi et al. [1973]; Ebacher et al. [2012]) and there is

evidence of a damage pattern where the initiation is located between 30◦ and 35◦

from longitudinal axis.

8.1.3 Damage model

The procedure for damage implementation with elastic properties degradation is the

same as the followed in the previous models from sections 6.6.1 and 7.3 only with the

addition of out of plane stresses to failure criteria evaluation. The relatively simplicity

of implementing this damage technique in a three-dimensional model is a very good

advantage of this tool.
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Figure 8.3: Shear stress distribution at the beginning of damage in the radial compression

test.

By including in the model the interstitial tissue and cement line in addition to the

realistic geometry of osteons, is interesting to notice that even though the stress

distribution inside osteons is the same that the isolated case of Section 6.4, damage

starts before. This is due to the contribution to the failure criteria of shear stresses

in the cement line and it propagates initially through interstitial tissue (see Figs. 8.3

and 6.7).

At the bottom-right side of Fig. 8.5 we can see the distribution of shear σ23 stresses

that can lead to a pullout of the osteons (Hiller et al. [2003]) under strength properties

that were analyzed by Ascenzi and Bonucci [1972].

In Figs. 8.3 and 8.5 we can see the stress distribution at the onset of damage initiation

for both load cases of Fig. 8.2. Stresses are referred to the coordinate system of Fig.

8.2. The patterns agree with bibliography (Cowin [2001]) but differ and provide new

stress distributions in osteons due to the anisotropy of the material that is considered

in this work and not in previous ones. It is important to remark that in both cases,

the highest stresses and therefore damage initiation are located at cement lines and

propagation is mostly through the interstitial tissue. The osteon is only affected in
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Figure 8.4: Damage sequence for radial compression loading. Damaged elements are in light

color. Note damage starting at cement line.
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Figure 8.5: Stress distribution at the beginning of damage in the axial compression test.

From left to right: top: σzz, σyy. Bottom: σxy, σyz.

some thick lamellae for the radial compression load case. Figs. 8.4 and 8.6 show

a sequence of damage patterns for both, axial and radial compression cases. Fig.

8.7 shows perspective views of the advanced damage stage of both three-dimensional

models. Again the damage at cement line and the surrounding tissue is observed.

8.1.4 Detailed geometry

In order to model the interstitial tissue in a more realistic way (as lamellar structure)

and to compare it with the growth of cracks in experimental tests, micrographs from

Ebacher et al. [2012, 2007]; Ebacher and Wang [2009] have been used as reference

to evaluate the damage propagation under a compression test in a three-dimensional

model where elastic properties and damage parameters have been adjusted in previous

sections.

The realistic geometry meshes have been generated firstly from node coordinates

through the software Plot Digitizer and generated in Abaqus with scripts in Python for
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Figure 8.6: Damage sequence for axial compression loading. Damaged elements are in yellow.

Note damage starting at cement line.
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Figure 8.7: Damage patterns for an advanced state of loading. Left: radial compression.

Right: axial compression. Damaged elements are in yellow.

model creation. In this 3D model we can predict the failure propagation in interstitial

zone. To get these results is extremely relevant the influence of tissue orientation and

the anisotropic behaviour of the material.

In Fig. 8.10 the resulting damage pattern with the realistic geometry model of Fig.

8.8 is shown. A good agreement with the experimental damage patterns is found

with the numerical model. Since this model is much more realistic, we can observe

the damage propagation in the interstitial tissue that has been defined as a lamellar

structure with anisotropic properties.

Continuing with the simulations based on V. Ebacher et al. micrographs, in Ebacher

et al. [2007] a study of strain redistribution and cracking behaviour of human bone

during bending is performed. Epi-fluorescence images of the microdamage patterns

after tests are shown. In order to model a sample with a different orientation of osteons

from previous analysis, we have reproduced specifically the compression surface of

a longitudinal section of cortical bone showing cross-hatching microdamage in the

region of the sample subjected to the maximum bending moment of the standard

beam specimens (Fig. 8.11).

From Fig. 8.11 we can notice diffuse microcracks developed in interstitial bone. They

do not extend to the lamellae of neighboring osteons. The resulting cross-hatching

pattern of the model is again in good agreement with the epi-fluorescence micrograph

in the principal orientations of damage letting us to conclude that the damage in
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Figure 8.8: Realistic FE mesh in Abaqus (bottom) of the cortical bone micrograph with two

osteons by Ebacher and Wang [2009] (top). The clear and dark colors show thick and thin

lamellae.
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Figure 8.9: 3D FE mesh of the cortical bone micrograph with two osteons by Ebacher and

Wang [2009]. The clear and dark colors show thick and thin lamellae.
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Figure 8.10: FE resulting pattern with damaged elements in light color (left) and epi-

fluorescence (rigth) damage patterns of two osteons and interstitial tissue after a compression

test by Ebacher and Wang [2009].
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Figure 8.11: Top and middle: Microdamage morphologies under bright field (top) and epi-

fluorescence (middle) modes in a compression surface showing cross-hatching microdamage

by Ebacher et al. [2007], followed (bottom) by the damage pattern (in yellow) obtained in

this Thesis by a FE model.
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cortical bone at different load cases is mainly governed by shearing stresses under

compression, which eventually leads to the delamination of osteons mainly starting

at cement lines.
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Chapter 9

Conclusions

• In this work a monoclinic homogenized stiffness tensor of mineralized collagen

fibril is numerically obtained, where a staggered arrangement of crystals is

supposed in fibril axial direction and parallel layers of crystals are considered

in transverse fibril direction. This model at sub-micro scale is based on the

observation of previous investigators.

• Homogenized stiffness tensor of lamellar bone is calculated using the same

scheme that for mineralized collagen fibril. With the numerical model pro-

posed in this work it is very easy to calculate the stiffness tensor when layer

thickness and orientations change in different sublamellae of the same osteon.

This procedure can also been used for other composite materials.

• From the elastic properties calculation models of Chapter 3 we can conclude

that careful attention must be paid if Halpin–Tsai equations are used to esti-

mate the elastic constants of the mineralized collagen fibril. This is because not

all possible dimensions of the crystal included in the ranges reported by Rubin

et al. [2003] lead to a positive definite stiffness matrix when using Halpin–Tsai

equations with typical constituent properties, as those provided by Akiva et al.

[1998].

• In this work, the 5–layer lamellar structure proposed by Weiner et al. [1999]

has been also considered because it is in good agreement with the experimental
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results, following Reisinger et al. [2011]. Since fibrils rotate in adjacent layers,

the stiffness matrix exhibits an anisotropic behavior whose constants have been

calculated. The elastic constants of lamellar bone calculated in this work can be

compared with values reported in the literature. Elastic constants for cortical

bone of Cowin are cited in Franzoso and Zysset [2009] and are summarized in

Vercher et al. [2014].

In this work, a high influence of rotation angles ψ1 and ψ2 on the elastic con-

stants estimation of lamellar bone has also been shown. This study makes it

possible to calculate the 3D stiffness matrix of the lamellar bone using the pro-

posed numerical model, considering different rotation angles of the crystals in

successive layers and different layer thicknesses.

• In this work, unknown strength properties for cement lines and interstitial tissue

are obtained from suggested relationships of fracture mechanics with reported

data of specific fracture energies for osteons.

• Several finite element models with application of progressive damage through

degradation of material properties have been proposed for cortical bone, having

into account realistic geometries that have been modeled accurately. The dam-

age patterns have been compared with experimental results of epi-fluorescence

micrographs available in bibliography. The obtained damage patterns have been

validated with the reference tests from other authors and we can conclude that

shear stress states are the most relevant for microdamage triggering and crack

propagation in lamellar structures. The applied methodology of progressive

damage through FE user subroutines enables us to obtain satisfactory results

of damage pattern prediction in anisotropic materials with a low computa-

tional cost compared with explicit crack models as XFEM. This makes feasible

its application to three-dimensional models without increasing the complexity

of subroutines.

• The damage method based on degradation of material properties implemented

in this work using finite elements has proved to be a useful approach for mi-

crostructural models with realistic geometries. It makes it possible to analyze

damage patterns in numerical models with less complexity than explicit crack

methods. This method is useful for analyzing the mechanical behavior of the

cortical bone microstructure and can be used as a practical tool for studying

the failure patterns under different stress states.

• For the quasi-static models of radial compression of osteons analyzed in this

work, the damage initiates at cement lines and tends to propagate through the

interstitial tissue, being the osteon the last region in cortical bone that shows
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concentrated damage zones. This is in agreement with literature evidencing

that damage propagation in interstitial tissue is a mechanism of protection

of the osteon (the basic structural unit containing the osteocytes). In these

analyses is also relevant that thin lamellae inside osteons (with most fibrils

aligned in the circumferential direction of the osteon) are the least affected and

reach the failure when thick lamellae are in a very advanced stage of damage.

• For compression load zones in cortical bone, failure is mostly dominated by

shear stresses. This is evidenced in diametral transversal sections of osteons

(Figs. 8.7, 8.10) and for longitudinal sections with several osteons as well (Fig.

8.11). The finite element results presented in this work show the characteristic

cross-hatched patterns that are in good agreement with epi-fluorescence images

reported in the literature (Ebacher et al. [2007]; Ebacher and Wang [2009]).
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mineral content on the elastic constants of cortical bone: a multiscale approach.

Biomechanics and Modeling in Mechanobiology, 10(3):309–322, jul 2010.

J.S. Mayes and A.C. Hansen. A comparison of multicontinuum theory based failure

simulation with experimental results. Composites Science and Technology, 64(3-

4):517–527, mar 2004.

R.K. Nalla, J.H. Kinney, and R.O. Ritchie. Mechanistic fracture criteria for the failure

of human cortical bone. Nature Materials, 2(3):164–168, mar 2003.

R.K. Nalla, J.J. Kruzic, J.H. Kinney, and R.O. Ritchie. Mechanistic aspects of fracture

and R-curve behavior in human cortical bone. Biomaterials, 26(2):217–231, jan

2005.

D.P. Nicolella, D.E. Moravits, A.M. Gale, L.F. Bonewald, and J. Lankford. Osteocyte

lacunae tissue strain in cortical bone. Journal of Biomechanics, 39(9):1735–1743,

jan 2006.

D.P. Nicolella, Q. Ni, and K.S. Chan. Non-destructive characterization of micro-

damage in cortical bone using low field pulsed NMR. Journal of the Mechanical

Behavior of Biomedical Materials, 4(3):383–391, apr 2011.

S. Nobakhti, G. Limbert, and P.J. Thurner. Cement lines and interlamellar areas

in compact bone as strain amplifiers - Contributors to elasticity, fracture tough-

ness and mechanotransduction. Journal of the Mechanical Behavior of Biomedical

Materials, 29:235–251, jan 2014.

F.J. O’Brien, D. Taylor, and T.C. Lee. Microcrack accumulation at different intervals

during fatigue testing of compact bone. Journal of Biomechanics, 36(7):973–980,

jul 2003.

150 C. Arango Villegas



Bibliography

F.J. O’Brien, D. Taylor, and T.C. Lee. The effect of bone microstructure on the

initiation and growth of microcracks. Journal of Orthopaedic Research, 23(2):475–

480, mar 2005.

J.P.R.O. Orgel, A. Miller, T.C. Irving, R.F. Fischetti, A.P. Hammersley, and T.J.

Wess. The In Situ Supermolecular Structure of Type I Collagen. Structure,

9(11):1061–1069, nov 2001.

G.E. Padawer and N. Beecher. On the strength and stiffness of planar reinforced

plastic resins. Polymer Engineering and Science, 10(3):185–192, may 1970.

D.H. Pahr and P.K. Zysset. Influence of boundary conditions on computed apparent

elastic properties of cancellous bone. Biomechanics and Modeling in Mechanobiol-

ogy, 7(6):463–476, oct 2007.

H.C. Park and R.S. Lakes. Cosserat micromechanics of human bone: Strain redistribu-

tion by a hydration sensitive constituent. Journal of Biomechanics, 19(5):385–397,

jan 1986.

P.J. Prendergast and R. Huiskes. Microdamage and osteocyte-lacuna strain in bone:

a microstructural finite element analysis. Journal of biomechanical engineering,

118(2):240–6, may 1996.

A. Puck. Failure analysis of FRP laminates by means of physically based phenomeno-

logical models. Composites Science and Technology, 58(7):1045–1067, jul 1998.

A.G. Reisinger, D.H. Pahr, and P.K. Zysset. Sensitivity analysis and parametric study

of elastic properties of an unidirectional mineralized bone fibril-array using mean

field methods. Biomechanics and Modeling in Mechanobiology, 9(5):499–510, oct

2010.

A.G. Reisinger, D.H. Pahr, and P.K. Zysset. Elastic anisotropy of bone lamellae as a

function of fibril orientation pattern. Biomechanics and Modeling in Mechanobiol-

ogy, 10(1):67–77, feb 2011.

J.Y. Rho, T.Y. Tsui, and G.M. Pharr. Elastic properties of human cortical and

trabecular lamellar bone measured by nanoindentation. Biomaterials, 18(20):1325–

30, oct 1997.

J.Y. Rho, L. Kuhn-Spearing, and P. Zioupos. Mechanical properties and the hierar-

chical structure of bone. Medical engineering & physics, 20(2):92–102, mar 1998.

C. Arango Villegas 151



Bibliography

J.Y. Rho, J.D. Currey, P. Zioupos, and G.M. Pharr. The anisotropic Young’s modulus

of equine secondary osteones and interstitial bone determined by nanoindentation.

Journal of Experimental Biology, 204(10):1775–1781, may 2001.

R.O. Ritchie, J.H. Kinney, J.J. Kruzic, and R.K. Nalla. A fracture mechanics and

mechanistic approach to the failure of cortical bone. Fatigue Fracture of Engineering

Materials and Structures, 28(4):345–371, apr 2005.

C. Rubin, A.S. Turner, R. Müller, E. Mittra, K. McLeod, W. Lin, and Y-X. Qin.

Quantity and Quality of Trabecular Bone in the Femur Are Enhanced by a Strongly

Anabolic, Noninvasive Mechanical Intervention. Journal of Bone and Mineral Re-

search, 17(2):349–357, feb 2002.

M.A Rubin, I. Jasiuk, J. Taylor, J. Rubin, T. Ganey, and R.P. Apkarian. TEM

analysis of the nanostructure of normal and osteoporotic human trabecular bone.

Bone, 33(3):270–282, sep 2003.

M.B. Schaffler, K. Choi, and C. Milgrom. Aging and matrix microdamage accumula-

tion in human compact bone. Bone, 17(6):521–525, dec 1995.

J.G. Skedros, J.L. Holmes, E.G. Vajda, and R.D. Bloebaum. Cement lines of sec-

ondary osteons in human bone are not mineral-deficient: New data in a historical

perspective. The Anatomical Record Part A: Discoveries in Molecular, Cellular,

and Evolutionary Biology, 286A(1):781–803, sep 2005.

B. Steinmann, P.M. Royce, and A. Superti-Furge. Connective Tissue and Its Heritable

Disorders. John Wiley & Sons, Inc., Hoboken, NJ, USA, may 2002.

P.M. Suquet. Introduction. In Homogenization Techniques for Composite Media,

pages 193–198. Springer Berlin Heidelberg, Berlin, Heidelberg, 1987.

Dassault Systemes. ABAQUS/Standard User’s Manual, V. 6.12.

S.C. Tan and R.J. Nuismer. A Theory for Progressive Matrix Cracking in Composite

Laminates. Journal of Composite Materials, 23(10):1029–1047, oct 1989.

S.C. Tan and J. Perez. Progressive Failure of Laminated Composites with a Hole under

Compressive Loading. Journal of Reinforced Plastics and Composites, 12(10):1043–

1057, oct 1993.

S.C. Tan. A Progressive Failure Model for Composite Laminates Containing Open-

ings. Journal of Composite Materials, 25(5):556–577, may 1991.

152 C. Arango Villegas



Bibliography

T.E. Tay, V.B.C. Tan, and M. Deng. Element-failure concepts for dynamic fracture

and delamination in low-velocity impact of composites. International Journal of

Solids and Structures, 40(3):555–571, feb 2003.

T.E. Tay, G. Liu, V.B.C. Tan, X.S. Sun, and D.C. Pham. Progressive Failure Analysis

of Composites. Journal of Composite Materials, 42(18):1921–1966, jul 2008.

T.E. Tay, M. Ridha, G. Liu, and V.B.C. Tan. Progressive Failure of Notched and

Repaired Composites. ICCM International Conferences on Composite Materials,

(Conference Paper), 2009.

D. Taylor, J.G. Hazenberg, and T.C. Lee. Living with cracks: Damage and repair in

human bone. Nature Materials, 6(4):263–268, apr 2007.

V. Tomar. Insights into the effects of tensile and compressive loadings on microstruc-

ture dependent fracture of trabecular bone. Engineering Fracture Mechanics,

76(7):884–897, may 2009.

S.W. Tsai and E.M. Wu. A General Theory of Strength for Anisotropic Materials.

Journal of Composite Materials, 5(1):58–80, jan 1971.

A. Turon, C.G. Dávila, P.P. Camanho, and J. Costa. An engineering solution for

mesh size effects in the simulation of delamination using cohesive zone models.

Engineering Fracture Mechanics, 74(10):1665–1682, jul 2007.

A. Ural and D. Vashishth. Cohesive finite element modeling of age-related toughness

loss in human cortical bone. Journal of Biomechanics, 39(16):2974–2982, jan 2006.

A. Ural. Prediction of Colles fracture load in human radius using cohesive finite

element modeling. Journal of Biomechanics, 42(1):22–28, jan 2009.

D. Vashishth. Hierarchy of bone microdamage at multiple length scales. International

Journal of Fatigue, 29(6):1024–1033, jun 2007.

A. Vercher, E. Giner, C. Arango, J.E. Tarancón, and F.J. Fuenmayor. Homogenized

stiffness matrices for mineralized collagen fibrils and lamellar bone using unit cell

finite element models. Biomechanics and Modeling in Mechanobiology, 13(2):437–

449, apr 2014.

A. Vercher-Mart́ınez, E. Giner, C. Arango, and F.J. Fuenmayor. Influence of the

mineral staggering on the elastic properties of the mineralized collagen fibril in

lamellar bone. Journal of the Mechanical Behavior of Biomedical Materials, 42:243–

256, feb 2015.

C. Arango Villegas 153



Bibliography

E. Verhulp, B. van Rietbergen, R. Müller, and R. Huiskes. Indirect determination of

trabecular bone effective tissue failure properties using micro-finite element simu-

lations. Journal of Biomechanics, 41(7):1479–1485, jan 2008.

W. Wagermaier, H.S. Gupta, A. Gourrier, M. Burghammer, P. Roschger, and

P. Fratzl. Spiral twisting of fiber orientation inside bone lamellae. Biointerphases,

1(1):1, 2006.

H.D. Wagner and S. Weiner. On the relationship between the microstructure of bone

and its mechanical stiffness. Journal of Biomechanics, 25(11):1311–1320, nov 1992.

S. Weiner and H.D. Wagner. THE MATERIAL BONE: Structure-Mechanical Func-

tion Relations. Annual Review of Materials Science, 28(1):271–298, aug 1998.

S. Weiner, T. Arad, and W. Traub. Crystal organization in rat bone lamellae. FEBS

Letters, 285(1):49–54, jul 1991.

S. Weiner, W. Traub, and H.D. Wagner. Lamellar Bone: Structure-Function Rela-

tions. Journal of Structural Biology, 126(3):241–255, jun 1999.

Q.D. Yang, B.N. Cox, R.K. Nalla, and R.O. Ritchie. Fracture length scales in human

cortical bone: The necessity of nonlinear fracture models. Biomaterials, 27(9):2095–

2113, mar 2006.

H. Yao, L. Ouyang, and W-Y. Ching. Ab Initio Calculation of Elastic Constants of

Ceramic Crystals. Journal of the American Ceramic Society, 90(10):3194–3204,

oct 2007.

Y.J. Yoon and S.C. Cowin. The estimated elastic constants for a single bone osteonal

lamella. Biomechanics and modeling in mechanobiology, 7(1):1–11, feb 2008.

F. Yuan, S.R. Stock, D.R. Haeffner, J.D. Almer, D.C. Dunand, and L.C Brinson. A

new model to simulate the elastic properties of mineralized collagen fibril. Biome-

chanics and Modeling in Mechanobiology, 10(2):147–160, apr 2011.

P.K. Zysset, X. Edward Guo, C. Edward Hoffler, K.E. Moore, and S.A. Goldstein.

Elastic modulus and hardness of cortical and trabecular bone lamellae measured by

nanoindentation in the human femur. Journal of Biomechanics, 32(10):1005–1012,

oct 1999.

154 C. Arango Villegas


	Abstract
	Resumen
	Resum
	Acknowledgments
	Index
	Introduction
	Introduction and aim
	Organization of the Thesis

	Introduction to hierarchical levels of bone
	Macrostructural level
	Microstructural level (10-500 m)
	Sub-microstructural level (1-10 m)
	Nanostructural and sub-nanostructural levels (less than 1m)

	Elastic properties of cortical bone
	Introduction
	Lekhnitskii transformation
	Unitary cell of a composite material

	Elastic properties at nanostructural and sub-nanostructural levels
	Unitary cell of a mineralized collagen fibril
	Numerical homogenization model of a mineralized collagen fibril
	Effect of longitudinal and lateral overlap

	Elastic properties at lamellar level
	Elastic properties of secondary osteons
	Homogenized properties for thick and thin lamellae
	Elastic properties of interstitial tissue
	Elastic properties of cement line

	Fulfilment of thermodynamic restrictions

	Strength properties of cortical bone
	Introduction
	Strength properties of an osteon
	Strength properties of thick and thin lamellae

	Strength properties of cement line and interstitial tissue

	Introduction to FEM in bone analysis
	Bone failure and damage background
	Stiffness degradation method (MPDM)
	Element failure method (EFM)

	Failure criteria

	2D cortical bone models
	Single osteon model
	Including lacunae to the model

	Material model
	Coordinate systems
	Failure initiation
	Interlaminar failure propagation using the node release technique
	Progressive damage model
	Failure propagation using the progressive damage approach


	Three point bending simulation of an ovine bone sample
	Mechanical tests
	Finite element model
	Failure initiation strains

	Damage model

	Numerical 3D model
	Realistic geometry based on micrographs
	Radial compression
	Axial compression
	Damage model
	Detailed geometry


	Conclusions
	Bibliography

