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SUMMARY 

Antioxidant properties of commercial sugar cane derived products were analyzed to 

study their suitability for being used as functional ingredients. Cane honey, several 

jaggeries and several brown sugars were selected from the market and analyzed in terms 

of physicochemical characteristics and antioxidant properties, and compared with white 

refined sugar (12 products in total). Moisture, water activity, total soluble solids, pH, 

color and sugar profile are reported. As for antioxidant properties, total phenols and 

flavonoid content, as well as antiradical ability (DPPH• and the TEAC-ABTS methods) 

are given. All sugarcane products contained phenols and flavonoids and exhibited in 

vitro antioxidant activity, determined by degree of refining. Among the alternatives 

analyzed, jaggeries and cane honey showed the best antioxidant properties. Thermal 

treatment did not significantly affect the antioxidant capacity of sugarcane products, 

especially jaggeries. Since sugar-rich products are widely consumed worldwide, the use 

of non-refined sugarcane derivatives in food formulation is encouraged. 

 

 

1. INTRODUCTION 

Table sugar, also known as white or refined sugar, is a white refined product extracted 

from sugar cane (70%) or sugar beet (30%), made of up to 99.9% of sucrose. Due to its 

high purity, its nutritional value is very poor and it is said to provide a high amount of 

“empty calories”; in addition, its consumption has also been related to a higher 
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incidence of dental caries in occidental societies. Both aspects have contributed to the 

search of non-caloric and non-cariogenic alternatives such as sweeteners (Varzakas and 

Chryssanthopoulos, 2012). Nevertheless, despite the increase in sweeteners 

consumption and their use in food formulation, sugar continues to be an essential part of 

our diet, not only appreciated for its flavor and its particular sweetening characteristics, 

but also for its contribution to food preservation (Harish Nayaka et al., 2005). Refined 

sugar is the sugar most widely consumed in Europe and North America. However, apart 

from refined sugar, non-refined sugarcane alternatives are nowadays available in the 

market. According to Galloway (2000), non-centrifugal sugar used to be the dominant 

form of sugarcane consumption before the large-scale production of refined sugar after 

1700. At present, these sugars are still commonly consumed in South-America, Asia 

and Africa, and they have experienced a significant increase in the European market. In 

fact, non-refined sugars have increased in quantity, diversity and availability, this being 

a consequence of both the increasing interest for natural food and ingredients, as well as 

of globalization, multiculturalism and immigration mainly from Asian and South 

American countries.  

In Europe and North America sugar is mostly appreciated for its sweetening properties, 

whereas sugarcane has been part of traditional medicine in the tropics and subtropics 

where it is produced. As an example, it is used in Ayurvedic medicine to treat different 

heath problems such as infections, bronchitis, cough, anemia, constipation, jaundice, 

general debility and heart or blood conditions (Kadam et al., 2008). During the last 

years, sugarcane has raised interest regarding its nutraceutic properties. Several studies 

have shown beneficial effects of sugarcane extracts on models in vivo in the stimulation 

of the immune response, protection against liver damage, intestinal function recovery, 

protection against some infections, anti-trombotic and anti-stress effects or growth 

stimulation (Koge et al. 2001; Noa et al., 2002; El-Abasy et al., 2003, 2004; Amer et al., 

2004; Lo et al., 2005; Motobu et al., 2006; Yamauchi et al., 2006). On searching the 

origin of these beneficial effects, it has been found that sugarcane has a powerful 

antioxidant activity (Feng et al., 2014; Abbas et al., 2014), and it is known that 

oxidative damage is involved in many human diseases such as cancer, cardiovascular 

diseases or other degenerative disorders. According to Kadam et al. (2008), the 

antioxidant properties of sugarcane juice could partially explain its therapeutic effects.  

Antioxidant properties of sugarcane have been basically attributed to phenolic 

compounds, mainly flavonoids, phenolic acids and poliphenols. Food phenolic 



compounds, particularly flavonoids, are thought to play important roles in human health 

(Yao et al., 2004). However, these compounds are non-desired components in the sugar 

manufacturing process, and are eliminated from the juice during refining. Other 

sugarcane processed products, such as molasses, may contain other antioxidants 

components as a result of Maillard reactions developing during processing. Some 

studies have proved the antioxidant properties of raw sugarcane, residual molasses or 

their extracts. Among other beneficial effects,  antiradical capacity, inhibition of lipid 

peroxidation, protection against oxidative and radiation induced DNA damage, and in 

vitro antiproliferative activity against cancer cell lines have been reported (Duarte-

Almeida et al., 2007; 2006; Guimaraes et al., 2007; Kadam et al., 2008). Nevertheless, 

most studies have focused on identifying antioxidant components in sugarcane extracts 

and their potential health benefits, whereas less attention has been paid to the 

characterization of non-refined commercially available sugars. Yet, it seems plausible 

that non-refined sugarcane products may preserve some of the raw material properties, 

and these are likely to depend on the refining degree of each product. In recent years, 

some authors have reported the antioxidant activity of cane brown sugars and molasses 

(Payet et al., 2005; Phillips et al., 2009); Harish Nayaka et al. (2009) also included a 

jaggery sugar in their study. 

At present, many non-refined sugarcane products are available in markets and 

supermarkets. In particular, we identified different kinds of brown sugars (coated, 

boiled, light to dark), several jaggeries (light to dark, granulated or in block) and 

sugarcane honey; each of which has undergone different processing, and may have been 

refined to a different extent. Despite available in many stores and supermarkets, 

consumption of these non-refined sugars is still marginal as compared with white sugar. 

Although sugarcane extracts have been suggested as therapeutic agents, the potential 

impact of non-refined cane sugars as a substitute for white sugar on formulated foods 

has not been evaluated yet. 

In the present work, physicochemical and antioxidant properties of commercial 

sugarcane derived products are analyzed to study their suitability for being used as 

functional ingredients. As a healthier sweetener, non-refined cane sugars could be used 

as a substitute to white sugar in traditionally sugar-rich foods such as jams, syrups, 

pastries or desserts, but they could also be used to formulate new antioxidant-enriched 

products by using matrix engineering techniques such as osmotic dehydration or 

vacuum impregnation. 



 

2. MATERIALS AND METHODS 

 

2.1. Non-refined sugarcane products 

Supermarkets and specialized stores in Valencia (Spain) were visited so as to get a 

representative sample of the different non-refined cane sugars commercially available. 

Twelve products, including cane honey, several brown sugars, different jaggeries and 

white refined sugar, were selected for the study. Products were stored in dry conditions 

and at room temperature. The twelve selected products were: white sugar (W), used as 

reference material, coated brown sugar (CB), light brown sugar (LB), raw brown sugar 

(RB), dark brown sugar (DB), wet brown sugar (WB), raw brown sugar with molasses 

(MB), light jaggery block (LJ), regular jaggery block (RJ), granulated jaggery (GJ), 

dark jaggery block (DJ) and sugarcane honey (CH). 

 

2.2. Physiochemical characterization 

Sugarcane products were analyzed in terms of moisture (xw), water activity (aw), total 

soluble solids (TSS), pH, colour and sugar profile (fructose, glucose, sucrose). Moisture 

was determined with an infrared scale (AD-4714A, Afora SA) and water activity was 

measured with a hygrometer (Aqualab 4TE). Total soluble solids and pH were 

measured on 1:10 and 1:4 (w/w) solutions of the non-refined sugars, respectively. Total 

soluble solids were determined by refractometry (Brix degrees). The ICUMSA method 

(De Whalley, 1964) was used for colour analysis. This method measures the purity of 

the sugar by determining yellowness and it is considered the international official 

method for measuring crystallized white and brown sugars. It consists of measuring the 

absorbance at 420 nm of a solution of the sugar, after filtering the samples through 

nylon mesh (0.45 m). ICUMSA colour index (IC) is then calculated by the following 

equation, where Abs is the absorbance of the sample at 420 nm, b the light path length, 

and c the total solids content, obtained by refractometry (Brix degrees) and expressed in 

g/cm3 by using density at 20 ºC.  
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Fructose, glucose and sucrose content was determined by Ion Cromatography (High-

Performance Anion-Exchange Cromatography with Pulsed Amperometric Detector 

(HPAEC-PAD) (Cataldi et al., 2000). A 716 Compact IC Metrohm system and a 



Metrosep Carb 1 250/4.6 column (250 mmL x 4.6 mmID) were used; sodium hydroxide 

0.1 M being the mobile phase (1 mL/min). Chromatograms were interpreted with the 

ICnet 2.0 software. Measurements were performed on filtered solutions (0.45 m) 

prepared at different concentrations (from 1.5:1,000 to 1:10,000 v/v) in deionized water. 

Fructose, glucose and sucrose standards (>99.5% purity) were purchased from Sigma-

Aldrich.  

 

2.3. Determination of total phenols 

The total phenolic content of the non-refined sugar samples was measured using a 

modified colorimetric Folin-Ciocalteu method (Singleton et al., 1999; Wolfe et al., 

2003). 0.125 mL of a 1:4 (w/w) dilution of the samples were mixed with 0.5 mL of 

deionized water. Folin-Ciocalteu reagent (0.125 mL) was added to the solution and 

allowed to react for 6 min. Then, 1.25 mL of a 7% sodium carbonate solution was 

added. Finally, the mixture was diluted to 3 mL with deionized water and colour was 

allowed to develop. After 90 min, the absorbance of the mixture was read at 760 nm 

using a Helios Zeta UV/Vis (Thermo Scientific) spectrophotometer. Absorbance 

measurements were compared to a standard curve of gallic acid (purity ≥ 98%, Sigma-

Aldrich) and expressed as mg of gallic acid equivalents (GAE) per gram of product.  

Sugars, mainly the reducing sugars glucose and fructose, may interfere in the Folin-

Ciocalteu method by overestimating the amount of total phenolic compounds present in 

the sample (Slinkard & Singleton, 1977; Singleton et al., 1999). In order to evaluate and 

eliminate this interference, several standard gallic acid curves were also prepared with 

different proportions of sugars (sucrose, glucose and fructose). The total amount of 

sugars in these calibrating curves was 25 g/100 mL: curve A) 25% sucrose, 0% 

reducing sugars; curve B) 21% sucrose, 4% reducing sugars; curve C) 19% sucrose, 6% 

reducing sugars; curve D) 17% sucrose, 8% reducing sugars. When reducing sugars 

were added, similar amounts of glucose and fructose were used. Finally, five different 

calibration curves (A to D plus the original gallic acid curve) were obtained and were 

further used as appropriate to calculate the overestimation due to sugar presence in the 

samples.  

 

2.4. Determination of flavonoid content 

The flavonoid content of the non-refined sugars samples was measured using the 

colorimetric method of aluminum chloride (Luximon-Ramma et al., 2002). 1.5 mL of a 



diluted sample (1:25 w/w) were mixed with 1.5 mL of aluminum chloride solution (2% 

w/v in methanol), the mixture was vigorously shaken and allowed to react for 10 min. 

The absorbance at 368 nm of the mixture was then measured and compared to a 

standard curve of quercetin (purity ≥ 95%, Sigma-Aldrich). The flavonoid content was 

expressed in mg of quercetin equivalents (QE) per gram of product.  

 

2.5. Quantification of antioxidant activity 

Antioxidant activity (AO) was assessed by determining the radical scavenging abilities 

of non-refined cane sugars using 1,1-diphenyl-2-picryl hydrazyl (DPPH•) and 2,20-

azobis-3-ethyl benzthiazoline-6-sulfonic acid (ABTS) methods.  

The DPPH• method was based on the proposed by Brand-William et al. (1995) and 

consisted of diluting 30 L of the sample (i.e. different sugar solutions at concentrations 

from 1:4 to 1:30 w/v) in 970 L of methanol, and adding the mixture to 2 mL of a 

DPPH•-methanol solution (0.1 mM). Scavenging capacity was read 

spectrophotometrically by monitoring the decrease in absorbance at 517 nm. Percent 

radical scavenging activity or percentage of inhibition was determined using the 

following equation where I represents the inhibition of DPPH•, in percentage, and A the 

absorbance at 517 nm of the blank and sample. 
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The ABTS or TEAC (Trolox Equivalent Antioxidant capacity) was determined 

according to Re et al. (1999). This method is based on the ability of an antioxidant to 

scavenge the preformed radical cation ABTS+ relative to that of the standard 

antioxidant Trolox. ABTS (7 mM) was made to react with potassium persulfate (2.45 

mM) during 16 hours at room temperature, so as to obtain the ABTS+ radical. Then, the 

solution was diluted in phosphate buffer (pH 7) to an absorbance of 0.700 ± 0.020 at 

734 nm. 90 L of the sample or control were then added to 2910 L of the ABTS+ in 

phosphate buffer solution and absorbance at 734 nm was then read at 1, 2, 3 and 6 min 

of reaction. In controls, deionized water was used. TEAC values were expressed in 

mol Trolox/g of sample. All reagents used in AO determinations, DPPH, ABTS 

(purity ≥ 98%) and Trolox (purity ≥ 97%), were purchased from Sigma-Aldrich.  

 

2.6. Thermal treatments. 



The products having higher antioxidant capacity underwent thermal treatment in order 

to evaluate the effect of thermal processing of the food on AO capacity. Solutions of the 

sugars were prepared and treated at 60, 80 and 100 ºC during 10, 30 and 60 min in a 

thermostatic bath (P.Selecta, Precisdig). After that, AO properties were evaluated by the 

DPPH• and TEAC methods. 

 

2.7. Statistical analysis   

All analytical determinations were performed at least in triplicate. Results were 

statistically analyzed using Statgraphics Centurion XVI.  

 

3. RESULTS 

3.1. Physicochemical characteristics of sugarcane products 

Physicochemical attributes of white and non-refined sugarcane sugars are given in table 

1. Although water activity was relatively similar for all samples, water content was 

significantly higher for cane honey than for jaggeries and crystal sugars. Jaggeries water 

content was in the range of the reported by other authors (Mujica et al., 2008). TSS 

content was close to 1 for all sugars except for CH, which lower TSS content suggests a 

significant amount of other compounds different from sugars. Crystal sugars have 

higher pH than jaggeries and cane honey. Carbonatation takes place in the sugar 

manufacturing process which facilitates the precipitation of undesired impurities and 

increases the pH of the syrup. Other compounds such as organic acids and the presence 

of citric acid as a preservative in the case of CH, can also be responsible for a difference 

in pH.  

Concerning colour, a correlation between the purity and the IU. is observed. As 

expected, white sugar presented very low IU., whereas crystallized brown sugar had 

higher indexes. Brown sugar containing molasses had a colour similar to jaggeries and 

cane honey had the highest IU. The values obtained in the present work for brown 

sugars (CB, DB, LB and RB) were in the range of the reported by Wojtczak et al. 

(2013) who analyzed brown and raw cane sugars. Other authors (Saska et al, 2010) have 

reported values for sugarcane juice between 10,000 and 20,000 IU. and higher than 

38,000 for molasses (Saska & Chou, 2002).  

Three were the sugars identified by ion exchange chromatography: sucrose, glucose and 

fructose. In white sugar, only sucrose was identified and reducing sugars were not 

detected, whereas a rather negligible amount of glucose and fructose was identified in 



coated and dark brown sugars. Other brown sugars had less sucrose, its presence being 

even lower for jaggeries and, particularly, for cane honey. Although fructose and 

glucose are present in the raw material, reducing sugars may also come from sucrose 

inversion during post-harvesting and processing. 

 

3.2. Total phenolic content. 

According to Slinkard & Singleton (1977) and Singleton et al. (1999) reducing sugars 

may react with the Folin-Ciocalteau reagent apparently increasing the total phenol 

content of the samples. In order to eliminate this interference, sucrose, fructose and 

glucose standards were added to standard gallic acid curves. Results confirmed that 

there was an interference of the three sugars, and that this interference was more 

significant when reducing sugars were added  

Apparent and corrected phenol contents of the non-refined cane sugars are shown in 

table 2. Phenols were not found in white sugar, whereas all non-refined alternatives 

presented certain phenolic content. Cane honey, regular jaggery and light jaggery have 

the highest phenol content, closely followed by granulated jaggery; whereas phenolic 

content in brown sugars is significantly lower. Harish-Nayaka et al. (2009) reported a 

similar phenolic content in brown sugar (0.37), whereas Payet et al. reported a wider 

interval (0.1-0.41). In the case of jaggery, Harish-Nayaka et al. (2009) obtained a higher 

value (3.83). Differences in processing, as well as in the origin and sugarcane cultivar 

could be responsible for these discrepancies (Kadam et al., 2008). In addition, most of 

the values available in the literature do not consider the interference of sugars in the 

analysis for which some data might be slightly overestimated. Nevertheless, the 

presence of sugars in the samples had only a significant impact on the results in the case 

of sugarcane honey, which contains around 65% of inverted sugar, moderately modifies 

the real value in light and regular jaggeries (15-20% of inverted sugars), and has very 

small impact in the rest of cases, it being totally negligible in brown sugars which 

inverted sugar content is below 3%. 

 

3.3. Total flavonoid content. 

In table 2, total flavonoids in the sugarcane products are given in mg of Quercetin 

Equivalents (QE) per gram of product and per gram of sugar. Flavonoids were present 

in all the non-refined sugarcane products analyzed, these being significantly abundant in 

sugarcane honey, as well as in jaggeries, especially light and regular jaggery blocks. 



The presence of sugars may also have interfered in this analysis, as some flavonoid 

content was obtained for white sugar; however, taking into account the previous assay, 

it was considered that this influence could only have significantly affected the cane 

honey value. Comparison with similar values reported by other authors was not possible 

since similar data were not found in the literature.  

The aluminium chloride colorimetric method using quercetin as a standard has been 

widely used to determine the total flavonoid content (Dowd, 1959; Chang et al., 2002; 

Luximon-Ramma et al., 2002; Kumazawa et al., 2004; Bahorun et al., 2004; Lin & 

Tang, 2007); however, the generalized use of this method to determine total flavonoid 

content has been recently questioned (Denni & Mammen, 2012). According to these 

authors, different flavonoids have picks of absorbance at different wave lengths and, 

when reacted with AlCl3 flavonols have absorption maxima around 440 nm, whereas 

most flavones exhibit their maxima below 400 nm. In our particular case, it was noticed 

that values for total flavonoids were higher than values for total phenols. Since 

quercetin exhibits absorption maxima at 445 nm, whereas some of the flavones 

abundant in sugarcane (tricin and apigenin) have absorption maxima below 400 nm 

when reacted with AlCl3, measuring the absorbance of the reaction at 368 nm using 

quercetin as a standard may overestimate the total flavonoid content. On the contrary 

measuring the absorbance above 400 nm, as it has also been suggested, may 

underestimate the flavonoid content. However, this colorimetric method is commonly 

used in the literature to estimate the total flavonoid content without taking these 

considerations into account. The present results indicate that, as an average, jaggeries 

have 5 times more flavonoids than coated brown sugar. 

 

3.4. Antioxidant properties of sugarcane products. 

In Figure 1 the evolution of DPPH• inhibition during two hours of reaction is shown for 

the twelve products studied at one concentration (1:5 w/v), and at different 

concentrations for a single product (RJ). In all cases, kinetics of the DPPH• reaction 

corresponded to a hyperbolic curve, which is characteristic of components that react 

slowly with DPPH• (Brand-Williams, 1995). In fact, for some products, the steady state 

value was not reached in the two hours registered at the highest concentrations assayed. 

According to these results, the components present in the sugarcane derived products 

have a slow-kinetics response to the DPPH• assay; nevertheless, a combination of fast + 

slow response was also identified in jaggeries and cane honey. According to Sendra et 



al. (2006), the antioxidants that are capable of both fast and slow hydrogen atom 

transfer are components which normally have a free or mono-substituted catechol 

group; whereas the slow-kinetics group would consist of components having 

exclusively slow-acting antiradical groups, such as those which lack the catechol group 

in the B-ring. Considering the phenolic compounds identified by other authors in 

sugarcane juice and sugarcane derivatives (Duarte-Almeida et al., 2006; Harish-Nayaka 

et al., 2009) components such as luteolin and some phenolic acids would contribute to 

the fast + slow response, whereas tricin and apigenin (most abundant flavones in 

sugarcane) would be responsible for the slow response observed in the non-refined 

sugars.  

Significant differences were found between white sugar and the non-refined ones, 

indicating that all the non-refined alternatives analyzed exhibit in vitro antiradical 

activity (Fig. 1a). Among non-refined sugars, brown sugars together with wet brown 

sugar and sugar with molasses presented the lowest antiradical activity, raw brown 

sugar and molassed sugar being classified in a different group with slightly higher 

antiradical activity. On the opposite side, jaggeries and cane honey presented the highest 

capacity to inhibit DPPH• radical, cane honey showing the highest percentage of 

inhibition and dark jaggery the lowest. However, it must be taken into account that cane 

honey contains citric acid as a preservative, which could have affected the DPPH• 

scavenging measurement (Dawidowicz et al., 2012). Results evidence that degree of 

refining or the process undergone highly determines the amount of antioxidant 

components present in the sugarcane products. It also may be observed that although all 

the non-refined alternatives to white sugar have certain antiradical activity, jaggeries 

and cane honey have, as an average, six times more antiradical activity than brown 

sugars.  

For those products which showed the highest antiradical activity (CH, RJ, LJ and GJ), 

the concentration providing 50% inhibition (IC50) was calculated by plotting the sample 

concentration (final concentration in cuvette) against the corresponding scavenging 

effect. Results indicated that cane honey has an IC50 equal to 1.31 gproduct/mL (0.92 

gsugar/mL), RJ and LJ have an IC50 of 2.00 gproduct/mL (1.45 and 1.57 gsugar/mL, 

respectively), and  granulated jaggery 2.5 gproduct/mL (2.02 gsugar/mL). 

It is recommended the use of more than one single method to estimate the antioxidant 

activity of complex samples (Ozgen et al., 2006). In this case, the ABTS free radical 

method, which has been reported to be more sensitive to hydrophilic antiradicals (Del 



Caro et al., 2004), was used in addition to DPPH• radical scavenging capacity. TEAC 

values were obtained by the ABTS method at 1, 3 and 6 min of reaction (Fig. 2). 

Reaction continued for the 6 minutes analyzed in all cases, although differences were 

more significant in samples that showed higher AO capacity. TEAC values at 6 min of 

reaction were taken as definitive. Except for the white sugar, which showed a negligible 

AO activity, all the non-refined sugars exhibited certain capacity to scavenge the 

ABTS+ free radical. In general, results were similar to the obtained with the DPPH• 

analysis, since brown sugars presented the lowest AO capacity and light jaggeries and 

cane honey had the highest ones. However, these two groups were more differentiated 

than before, dark jaggery belonging to the same group than all brown sugars, and 

granulated jaggery being closer to the other light jaggeries and cane honey. Differences 

between the DPPH• and TEAC-ABTS methods were probably due to their different 

sensitivity to the antiradical compounds that may be present in the sugarcane products. 

Time of reactions could also have produced some differences; nevertheless, ABTS 

reaction is usually faster than DPPH• inhibition reaction (Ozgen et al., 2006).  

Although values reported in the literature are not easily comparable since, apart from 

the method used, extract type, sample concentration or reaction times originate 

differences in the results, it is interesting to compare the AO capacity of sugarcane 

products with the AO properties of other foods. TEAC values obtained for jaggeries and 

cane honey were in the range of fruits with a considerable AO capacity such as 

blackberry, raspberry, strawberry, pineapple or orange (9-21 mol TE/g as reported by 

Ozgen et al., 2006 and Pellegrini et al., 2003), significantly higher to other fruits such as 

apple, banana, mango, apricot, pear or plum (1.3-5 mol TE/g as reported by Pellegrini 

et al., 2003 and Vijaya et al., 2010) and also higher to vegetables such as onion, 

broccoli, tomato, carrot, pepper or spinach (0.4-8 mol TE/g as reported by Baourun et 

al., 2004 and Pellegrini et al., 2003). Brown sugars and dark jaggery also presented 

values in the range of fruits such as apple, orange or mango and higher to most 

vegetables. However, it is important to point out that sugarcane products are the result 

of sugarcane juice concentration and have very small amounts of water, whereas values 

provided for fruits and vegetables are usually expressed per gram of fresh weight.  

In any case, in order to estimate the real contribution of a food to the AO intake through 

the diet, the frequency of consumption must be considered. Direct intake of sugar in 

Spain, i.e. direct consumption of sugar at home, is around 340 g/month. Taking into 



account this value, replacement of white refined sugar for a non-refined alternative 

would have an impact on the diet from 1.4 to 9.1 mmol TE/month, depending on the 

non-refined sugar used as a substitutive. This is of considerable importance since, for 

example, the TE intake due to apple consumption is 4.9 mmol TE/month (assuming 

Spanish consumption per capita) and that the TE intake due to fruits known for having 

a high AO capacity such as blackberry is almost negligible for being rarely consumed 

(assuming Spanish consumption per capita). If going further and considering non-

refined sugarcane products as functional ingredients for the food industry, replacing 

refined sugar in some sugar-rich products may substantially increase this AO intake.  

 

3.5. Correlation between phenolic and flavonoid content and free radical 

scavenging assays. 

The correlation coefficients (Pearson’s) between the total phenolic content (apparent 

and corrected) measured by the Folin-Ciocalteu assay, the flavonoid content measured 

by the aluminum chloride colorimetric method, and the antioxidant properties of the 

samples as indicated by the DPPH and ABTS methods were calculated. All the 

combinations calculated were significantly correlated (0.01 significance level), which 

would indicate that the antioxidant properties of the sugarcane derived products are due 

to their phenolic content. Although all correlation coefficients were significant, certain 

differences were observed when comparing total apparent or corrected phenol content. 

Flavonoid content and DPPH assay correlated better with total apparent content (0.942 

and 0.996, respectively) which could indicate that both flavonoid and DPPH methods 

are also influenced by the reducing sugars present in the samples; on the contrary, 

ABTS correlation coefficient was higher when the corrected values were used (0.990), 

which could suggest sugars are not significantly interfering in this assay.  

In sugar-derived samples Maillard reaction compounds, which are involved in the 

colour and flavour of the sugar products, may also exhibit antioxidant activity (Payet et 

al., 2005, Dittrich et al., 2003). Considering that these products also react with the 

Folin-Cicolteau reagent (Harish-Nayaka et al., 2009), other authors have attributed low 

correlation coefficients between total phenol content and AO activity to Maillard 

reaction products (Payet et al., 2005). In the present work, however, AO activity and 

phenolic content do correlate significantly.  

 

3.6. Effect of thermal treatment on the AO capacity of sugarcane products. 



The results corresponding to the AO activity of sugar samples after thermal treatments 

is summarized in table 3. The effect of thermal treatment was heterogeneous and results 

were dependent not only on the particular sugarcane product being analyzed, but also on 

the assay method used. Depending on the combination of time and temperature used, 

antioxidant activity of samples decreased, did not change or even increased. In line with 

this, cooking and other thermal treatments have been reported to increase the AO 

capacity of some vegetables or, in other cases, decrease it (Yamaguchi et al., 2001). 

According to the results obtained, short times and low to medium temperatures would 

be promoting the destruction of antioxidants naturally present in the samples, whereas 

an intensification of the treatment would originate the creation of other compounds or 

more active ones. In the case of sugarcane products, Maillard reactions products could 

have appeared and, therefore, produced an increase in the AO capacity. An increase in 

antioxidants bioavailability or an improved activity of naturally occurring antioxidants 

may also occur due to treatments involving heating (Chan et al., 2009; Yamaguchi et 

al., 2001). On the other hand, differences due to the assay method used could be 

explained by their different sensitivity to the different antioxidant compounds present in 

the sample.  

Although statistically significant differences were observed for some products such as 

brown sugar and cane honey, the thermal treatment did not produce a severe change in 

the AO capacity. AO properties of jaggeries were particularly not affected. As said, 

food processing can improve the properties of naturally occurring antioxidants or induce 

the formation of new compounds with antioxidant capacity, so that the overall 

antioxidant activity may increase or remain unchanged (Chan et al., 2009). Therefore, in 

the particular case of non-refined sugarcane products, it may be deduced that processing 

involving temperatures lower than 100 ºC and times shorter than 60 min, would not 

significantly affect their antioxidant activity.  

 

4. CONCLUSIONS 

Results of the present work confirm that the non-refined sugarcane products studied 

exhibit in vitro antioxidant activity and that degree of refining determines the phenolic 

content and AO capacity of the products. Therefore, these sugarcane derivatives, which 

are available in supermarkets for direct consumption, are a promising source of natural 

antioxidants. Contribution of AO to the diet as a result of replacing white refined sugar 

for these alternatives has been discussed, and results indicate that the potential AO 



intake due to the sugarcane products can be considerable, especially if jaggeries or cane 

honey are used as a substitute. Full replacement of white sugar for the non refined 

alternatives may not be realistic since, among other reasons, significant changes in the 

food characteristics such as colour or flavour may be expected. In relation to this, and 

according to the physicochemical characteristics of the products studied, changes 

expected in the formulated product would be indirectly related to the AO properties of 

the sugar. In any case, acceptance by a consumer panel should finally confirm or reject 

the new formulated products which, on the other hand, would have the added value of 

providing health benefits. Taking into account that sugar and sugar-rich products are 

widely consumed all over the world, the results of the present work should encourage 

the use of non-refined sugars in reformulation of traditional foods or in the design of 

new sugar-rich products with increased nutritional properties.  
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Table 1. Physicochemical characteristics of sugarcane products. Means ± standard deviations from triplicates.  

 
Water content  

(%)  

Water activity  

 (aw) 

TSS  

(xs) 
pH (1:4) 

ICUMSA COLOUR  

(IU. 420) 

Glucose 

(g/gproduct) 

Fructose  

(g/gproduct) 

Sucrose  

(g/gproduct) 

W 1.3±0.1a 0.68±0.07e 1.00±0.05e 6.3±0.2h 31±33a nd nd 0.97±0.09f 

CB 1.6±0.3a 0.63±0.011b,c,d,e 1.00±0.05e 6.34±0.02h 2,740±41b 0.09±0.0009a 0.001±0.0011a 0.94±0.08f 

DB 1.2±0.1a 0.62±0.05a,b,c,d 1.00±0.06d,e 5.72±0.09e,f 4,783±384c 0.0004±0.0008a 0.000±0.0000a 0.9±0.2e,f 

LB 1.2±0.1a 0.61±0.04a,b,c 0.99±0.08c,d,e 6.25±0.12g,h 3,692±172b,c 0.002±0.0012a 0.0016±0.0008a 0.882±0.006d,e,f 

RB 1.4±0.1 a 0.59±0.02a,b 1.0±0.06d,e 6.1±0.2g 4,598±138c 0.0010±0.0005a 0.0015±0.0002a 0.86±0.09d,e,f 

WB 1.2±0.2 a 0.57±0.02a 1.0±0.06 d,e 5.21±0.14b 9,504±578d 0.010±0.005a,b 0.01±0.011a 0.9±0.10d,e,f 

MB 1.3±0.2 a 0.572±0.008a 1.0±0.12c,d,e 5.6±0.12d,e 17,002±156h 0.008±0.005a,b 0.006±0.002a 0.83±0.06c,d,e,f 

GJ 3.6±0.1b 0.608±0.003a,b,c 1.0±0.13c,d 5.26±0.02b 16,606±306g,h 0.030±0.010b 0.021±0.002a 0.75±0.06a 

LJ 4.5±0.3c 0.62±0.02a,b,c,d 0.94±0.16b 5.460±0.013c,d 15,142±1,421 f 0.1±0.13c 0.053±0.007b 0.7±0.10b 

RJ 7.0±0.7d 0.67±0.010d,e 0.9±0.2b 5.35±0.03b,c 15,546±1,270f,g 0.08±0.02d 0.07±0.010b 0.6±0.12b 

DJ 3.1±0.5b 0.60±0.03a,b,c 1.0±0.3c 5.9±0.02f 11,552±1,543e 0.019±0.002a,b 0.019±0.006a 0.80±0.05c,d,e 

CH 25.9±0.6e 0.656±0.003c,d,e 0.8±0.3a 4.55±0.04a 18,715±201i 0.23±0.03e 0.23±0.06c 0.25±0.06c 

a,b,c…Values with different superscript letters within the same column are significantly different (p < 0.05). 

W, white sugar; CB, coated brown sugar; LB, light brown sugar; RB, raw brown sugar; DB, dark brown sugar; WB, wet brown sugar; MB, raw brown sugar with molasses; 

LJ, light jaggery block; RJ, regular jaggery block; GJ, granulated jaggery; DJ, dark jaggery block (DJ); CH, sugarcane honey. 

 

 



Table 2. Total phenol (App.: apparent and Corr.: corrected) and flavonoid content of the 12 sugarcane 

products studied. Phenol content is given in mg Gallic Acid Equivalents (GAE) and total flavonoids in 

mg Quercetin Equivalents (QE), per gram of product. Means ± standard deviations from triplicates. 

 App. PHENOL CONTENT 

mg GAE/gproduct 

Corr. PHENOL CONTENT 

mg GAE/gproduct 

FLAVONOID CONTENT 

mg QE/gproduct 

W 0.004±0.001a 0.0±0.0a 0.022±0.016a 

CB 0.372±0.009b 0.371±0.009b 0.69±0.09b 

DB 0.42±0.02b 0.42±0.02b 1.225±0.015c 

LB 0.38±0.02b 0.38±0.02b 0.85±0.03b 

RB 0.58±0.06c 0.58±0.06c 1.25±0.11c 

WB 0.560±0.016c 0.546±0.015c 1.893±0.008d 

MB 0.81±0.03d 0.80±0.03d 2.15±0.03d 

GJ 1.76±0.11f 1.71±0.10f 2.72±0.10e 

LJ 2.29±0.13g 2.18±0.12g 3.78±0.08f 

RJ 2.50±0.12h 2.33±0.11h 3.75±0.10f 

DJ 1.02±0.04e 1.00±0.04e 1.59±0.13d 

CH 3.26±0.16i 2.62±0.13i 6.15±0.14g 
a,b,c…Values with different superscript letters within the same column are significantly different (p < 0.05). 

W, white sugar; CB, coated brown sugar; LB, light brown sugar; RB, raw brown sugar; DB, dark brown 

sugar; WB, wet brown sugar; MB, raw brown sugar with molasses; LJ, light jaggery block; RJ, regular 

jaggery block; GJ, granulated jaggery; DJ, dark jaggery block (DJ); CH, sugarcane honey. 

  



Table 3. DPPH and ABTS-TEAC results of samples subjected to thermal treatments. Values ± standard 

deviation are given for the six products that exhibited higher AO capacity. 

 

DPPH - % inhibition (1:5 w/v) 

Temperature 

(ºC) 

Time 

(min) 

MB GJ LJ RJ DJ CH 

- - 15.8±1.2a 38±7b 51±6a 50±4a 22.9±0.7ab 75.0±1.7a 

60 10 13.8±0.3abc 44±3a 49.7±1.9ab 46.0±1.1a 17.9±0.4b 62.6±1.1ab 

60 30 13.9±0.5abc 35.9±1.5b 48.8±1.7ab 47.1±1.2a 17.3±0.6b 62.9±1.5ab 

60 60 14.7±0.6ab 35.25±1.5b 48.5±1.7ab 44±3a 18.9±0.6ab 65.1±1.6ab 

80 10 13.1±0.5bc 36.1±1.1b 48.4±1.0ab 46±0.9a 23.4±0.4ab 64.3±1.1ab 

80 30 13.5±0.4abc 36.1±1.0b 49.4±1.1ab 46.1±1.0a 21.7±0.3ab 54.5±0.7b 

80 60 14.0±0.3abc 36±2b 48.2±0.6ab 45.2±0.7a 25.9±0.2a 63.3±1.6ab 

100 10 10.0±0.2d 25.1±0.7c 43.4±0.7c 44.0±0.5a 18.7±0.3ab 62.0±0.5ab 

100 30 12.0±0.3cd 33.9±0.9b 49.2±0.8ab 45.5±0.8a 20.9±0.3ab 68.1±0.3ab 

100 60 12.5±0.3bcd 39.0±1.0ab 47.0±1.0b 48.6±0.2a 22.2±0.3ab 55.3±0.7b 

ABTS – mol TEAC 

Temperature 

(ºC) 

Time 

(min) 

MB GJ LJ RJ DJ CH 

- - 7.71±1.2a 21±7a 22±6a 24.8±3.6ab 7.6±0.7bcd 26.9±1.7ab 

60 10 6.2±0.3c 18±3a 21.0±1.9a 21.8±1.1c 7.2±0.4cd 20.6±1.0d 

60 30 6.6±0.5bc 18.2±1.5a 21.7±1.7a 24.2±1.2bc 7.2±0.6d 24.7±1.5c 

60 60 6.9±0.6abc 19.1±1.5a 22.2±1.7a 27±3ab 8.0±0.6b 26.6±1.6abc 

80 10 5.2±0.5d 18.0±1.1a 20.3±1.0a 24.2±0.9bc 8.0±0.4b 25.3±1.1bc 

80 30 6.5±0.4bc 18.8±1.0a 21.5±1.1a 24.9±1.0ab 8.0±0.3b 24.7±0.7c 

80 60 7.1±0.3ab 21±2a 22.5±0.6a 25.8±0.7ab 7.9±0.2bc 25.9±1.6bc 

100 10 6.5±0.2bc 17.6±0.7a 21.2±0.7a 24.6±0.5ab 8.0±0.3b 25.6±0.5bc 

100 30 6.8±0.3bc 18.5±0.9a 21.9±0.8a 24.9±0.8ab 8.3±0.3ab 26.3±0.3bc 

100 60 7.2±0.3ab 20.0±1.0a 23.9±1.0a 27.1±0.2a 8.9±0.3a 28.5±0.7a 

MB, raw brown sugar with molasses; GJ, granulated jaggery; LJ, light jaggery block; RJ, regular jaggery block; DJ, 

dark jaggery block; CH, sugarcane honey. 
a,b,c,Values with different superscript letters within the same column are significantly different (p < 0.05). 

 

 

 

 

 


