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Abbreviations:

AP, action potential

APD, action potential duration

EAD, early afterdepolarization

ICsy, half inhibition concentration

Ix., rapidly activating rectifying K* current (hERG)

Ix,, slowly activating rectifying K* current

IyaL, late sodinm current

Ix;, inward rectifying K current

Liet, net membrane current

LQT3, long QT 3

PICsp, -logyiICsg

QTins, QT interval

RRD, reverse rate-dependence

SF, safety factor for conduction

TDR, transmural dispersion of repolarization

GS967,

a]pyridine)

(6-(4-(trifluoromethoxy)
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ABSTRACT

Drug-induced action potential (AP) prolongation leading to Torsade de Pointes is a
major concern for the development of anti-arthythmic drugs. Nevertheless the
development of improved anti-arthythmic agents, some of which may block different
channels, remaing an important opportunity. Partial block of the late sodium current
(Ivar) has emerged as a novel anti-arrhythmic mechanism. It can be effective in the
settings of free radical challenge or hypoxia. In addition, this approach can attenuate
pro-arthythmic effects of blocking the rapid delayed rectifying K* current (Ix,). The
main goal of our computational work was to develop an in-silico tool for preclinical
anti-arthythmic drug safety assessment, by illustrating the impact of Tg/Iyy ratio of
steady-state block of drug candidates on “torsadogenic” biomarkers. The O'Hara et al.
AP model for human ventricular myocytes was used. Biomarkers for arrhythmic risk,
ie. AP duration, triangulation, reverse rate-dependence, transmural dispersion of
repolarization, and electrocardiogram QT intervals were calculated using single
myocyte and one-dimensional strand simulations. Predetermined amounts of block of
IyaL and I, were evaluated. ““Safety plots” were developed to illustrate the value of the
specific biomarker for selected combinations of ICsys for Ik, and Iy, of potential drugs.
The reference biomarkers at baseline changed depending on the “dmg” specificity for
these two ion channel targets. Ranolazine and GS967 (a novel potent inhibitor of Ty,y),
yielded a biomarker data set that is considered safe by standard regulatory criteria. This
novel in-silico approach, is useful for evaluating pro-arthythmic potential of drugs and

drug candidates in the human ventricle.
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INTRODUCTION

The emerging importance of the role of an enhanced late sodium current (I, ) in
mammalian ventricle as a contributor to the pathogenesis of acquired and hereditary
disease has resulted in this current being a target for anti-arrhythmic drug development.
Under relatively common pathological conditions, Iy, density is enhanced significantly
(2 to 5-fold) in ventricle. These conditions include: heart failure, oxidative stress,
hypoxia, ventricular hypertrophy and LQT-related mutations. When Iy, is increased,
the action potential duration (APD) of human ventricular myocytes lengthens.'” This
may lead to initiation and/or maintenance of arrhythmias such as Torsade de Pointes
(TdP).*’ In all such cases the repolarization reserve is reduced.

Several experimental and clinical studies have demonstrated significant anti-
arthythmic effects of Iy, blockers, such as ranolazine .’ ® However, ranolazine and other
compounds in development, which are relatively selective for Iyy,., may also block other
ion channels such as delayed rectifier potassium channels (Ty,). This effect can result in
action potential (AP) prolongation.” Recently, a potent and selective inhibitor of cardiac
Ija, GS967, has been reported to suppress experimental arrhythmias in female
rabbits.'” It is a requirement of the process of drug development to evaluate the ratio for
Iyiar/Tx, blockade for this drug candidate.

For this purpose, detailed understanding of the role of the ionic currents involved
in the different phases of AP repolarization (early, intermediate and late phases) is
essential. The delicate balance of the small ionic currents which underlie the AP plateau
determines the impact of these drugs on APD prolongation, and other biomarkers for
arthythmic risk (e.g. AP triangulation). Although several experimental and theoretical

11-21

studies of this have yielded substantial information, further investigation based on
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data and principles from human ventricle is required to fully understand ionic
mechanisms underlying drug-induced changes in APD.

It is noteworthy that APD prolongation alone appears to be insufficient to define
“torsadogenic” risk.” Additional biomarkers for arrhythmic risk must be identified and
evaluated when defining anti-arrhythmic drug safety. Indeed, changes in QT interval
(QT;y), reverse rate-dependence (RRD) of APD prolongation, and transmural dispersion
of repolarization (TDR) have been also proposed as “torsadogenic” indicators.***

Within the past three years, computer simulations have been employed in drug
development programs with the goal of assessing in silico rigk for drug-induced cardiac
arthythmia.” % However, only Mirams et al.”> and Sarkar et al.” utilized human AP
models, in addition to models of the rabbit and dog ventricular APs.

The main goals of this project were to identify the relative role of ionic currents at
defined phases of repolarization in human ventricle, and to use this information to
reveal and to illustrate the impact of Iy, and Iy, block on selected biomarkers which
define arrhythmic risk. Our analysis reveals the biophysical basis for reverse rate-

dependence in human ventricle. In addition, a new simulation tool denoted the “safety

plot” is developed and utilized to assess drug safety for Iy, blockers.
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RESULTS
Effects of Iy, and Iy, Block on Repolarization of Diseased Human Venitricular AP
Single isolated myocyte simulations were conducted to reveal the effetcs of
ranolazine and GS967 on AP waveform, and to study the changes of several “plateau”
ionic currents at defined stages during repolarization. Figure 1(A) shows the APs for
baseline (left), together with the effects of ranolazine (centre) and GS967 (right).
Control AP is also shown (see dashed lines) in the three cases for reference. Ranolazine
had no significant effects, apparently, changing APDs, to 100.9%, APDg, to 103%6 and
APDy; to 105% of baseline values. In contrast, GS967 decreased APD-; to 86.9%,
APDyq to 87.2%, and APDg;to 91.1% of baseline. The higher selectivity of GS967 for
Ijar (ICsp of 0.13 pM and =10 pM for Iy, and Iy, 1"especti\f'e1y)ID compared with
ranolazine, can account for its effect on APD compared to ranolazine. The differences
in the changes of APD at the selected phases of repolarization can be explained by the
different sizes and functional roles of the repolarization currents. For example, Figure
1(B) shows the small role of Iy, at 90% of repolarization, but also illustrates the more
important role of the current at 30% and 60%. A similar pattern also holds for I, and
Ix: (panel C) at 90% of repolarization. However, the waveform of repolarization also
depends on the delicate balance of many other ionic currents (e.g. Iy, Izap). Thus, the
Lt (Figure 1E) is a key variable to “track”. In general, in human ventricle a relatively
specific drug for I, has greater effects on the early phase of repolarization. This effect

on early as opposed to late repolarization has been termed an increase in triangulation.**

Rate-dependent Effects of Iy and Iz Block on Repolarization
To begin to explore the effects of Iya and Ik blockers on rate-dependent APD
changes, APs at two different steady-state stimulation frequencies were simulated. Test

compounds with different degrees of specificity for the selected ion channels were
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“applied” by varying the ICs; for Iy, and Ig,. In all the cases the amount of block was
calculated for a drug at a concentration of 5 uM. Figure 2 shows APs and several
underlying ionic currents for a basic cycle length (BCL) 500 ms (continuous trace) and
2000 ms (discontinuous trace). The superimposed data depict (i) baseline (column 1),
(ii) in the presence of a drug specific for Iy, (ICs; of 10 and 107 M for Ig, and Ly,
respectively) in column 2, (iii) a drug specific for Iy, (ICsq of 10 and 107 M for I,
and Iy, respectively) in column 3, and (iv) a drug with the same specificity for these
two ion channels (ICs; of 10 M for I, and Ty, ) in column 4. As expected, these results
demonstrate that a drug more specific for Iy, (column 2) prolongs APDs, and this effect
is larger at low frequencies (discontinuous trace) than at high frequencies (continuous
trace), 124% and 118% of baseline at 0.5 Hz and 2 Hz, respectively. The so-called
reverse rate-dependence effect exerted by I blockers, i.e. a greater APD prolongation
at low frequencies (see Figure 2 panel C), can be in part explained by Ix, accumulation
at the higher frequency (residual activation), as experimentally observed by others.”
We note how in the O’Hara et al.*! (ORd) model the contribution of Iy, does not change
significantly with frequency. Iy, is larger at the higher frequency due to residual
activation.

Note that if the drug is more selective for Iy (column 3), APDgg is further
shortened at low frequencies (69% and 78% of baseline value at 0.5 Hz and 2 Hz,
respectively). This is because the contribution of Iy to net current is relatively large at
low frequencies.

When the drug has the same specificity for Iy, and Ig, (column 4), the changes in
APDy; are similar for both cycle lengths (113% and 112% of baseline value at 0.5 Hz
and 2 Hz, respectively). Note that the reverse rate-dependence effect due to Ik block is

neutralized by Ia block, as has been observed in rabbit ventricular myocytes.” This
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pattern of changes holds for APDs; and APDyg,. Our results show that the Iy /T, ratio
of blockade of potential drugs has an important effect on reverse rate-dependence,
which is an indicator to evaluate drug safety.

To further investigate the ionic mechanisms of reverse rate-dependence observed
in the presence of Iy, and Iy, blockers, we calculated the net current. Indeed, as
postulated by Banyasz et al.*”, RRD is an intrinsic property of these human ventricular
cells; stimulus frequency modulates APD, so that at low frequencies APD is longer. In
all cases, when APD is long, the net current is very small. As a consequence, any
change in the very small net current (e.g. due to drug effect) causes prominent changes
in APD. The opposite effects take place at high frequencies when APD is shorter and
the net outward current is larger. We computed the net current at the instant of time
corresponding to APDy, for the four cases considered in Figure 2 (baseline, drug 1, 2,
and 3), always assuming 5 pM of the drugs with variable specificities for Iy, and Iy,.
These changes were evaluated at different steady-state cycle lengths (from BCL 500 ms
to 2000 ms). The relationship between the net current and the APDyg; is illustrated in
Figure 3. These results are in accordance with experimental observations of Banyasz et
al.”*: that is, longer APDs tend to correspond to lower net currents regardless of the drug

used.

APD  and Rate Dependence Safety Plots

As described above, our results show the Iy /Iy, ratio of blockade of potential
drugs has an important effect on rate-dependent changes in APD. To illustrate this,
multiple sets of ventricular myocyte simulations were carried out at different but
constant stimulation frequencies for selected combinations of Iya. and Ik, blockade.
Potential drugs having ICs; for Iy, in the range 10° to 107 M, and ICsg for Iy in the

range 107 to 10~ M were tested at a fixed 5 pM concentration. The effects of different
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concentrations (3, 5, and 8§ pM) at a stimulation frequency of 1 Hz can be observed in
supplemental Figure S2.

Figure 4 illustrates these findings in the form of a safety plot, using a color scale
for APDg; values. Relatively large values for the biomarker (APDq,) are represented in
red, and relatively small APD wvalues are shown in blue. The circle represented in
bottom right corner corresponds to the baseline condition (T, is enhanced two-fold).
Here, essentially no current block takes place (a pICs; results in 0.995 of Iy, and Ix,).
APDy is 353.3 ms in this case. Consideration of data in the right edge of the safety plot,
shows that when Ty, is progressively blocked (ICsq for Iy, decreases, and thus pICs,
increases) the biomarker decreases (APDgq is 252.1 ms in the top right corner). Data to
the left in the bottom edge, corresponding to a progressive block of I, (ICsq for Iy,
decreases, and pICs; increases), lead to an increase of the the biomarker (APDg; is
74 1.2 ms with the induction of an early-after depolarization (EAD) in the left bottom
COTTIET).

But what happens for other combinations of block? Where is the safety barrier?
Black lines join the ICs; combinations for which the biomarker is 120%, 110%, 100%,
and 90% of baseline value, represented in the bottom right corner. The 90% barrier,
would depict beneficial effects of the drug, as the biomarker is reduced. In contrast,
biomarker values which fall to the left side of the 110% barrier implies dangerous
effects of the diug increasing the biomarker.

Figure 5 represents safety plots using APDg;, APDgy, APD4;, and triangulation as
biomarkers, and the safety plots in Figure 6 illustrate the rate-dependence, i.e. the effect
of a BCL change on APDg. Ranolazine, represented by the black circle, can be
positioned in the matrix, based on its approximately ICsp of 6 and 12 pM for Iy and

Iy, Tespectively. Note that this drug is located in the “safe” part of the matrix. Also the
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test compound GS967 (ICs; of 0.13 and >10 pM for Iy, and Ik, respectively),
represented by a black triangle, is apparently safer than ranolazine. At high frequencies
(first column) shorter APDs and triangulation (blue and green colors) are observed. In
contrast, the results at low frequencies (2** column) show longer APDs (red and yellow
colors). As expected, the decrease in APD exerted by GS967 is more pronounced at low
frequencies and especially APDs,, whereas the slight increase of APD exerted by
ranolazine does not result in any significant changes (approximately 110% of the
baseline value).

AP triangulation data (panel D of Figure 5) reveal that both ranolazine and GS967
slightly increase this parameter with respect to the baseline wvalue. Specifically,
ranolazine further increases APDq; more than APD;;, whereas GS967 decreases APD-;
more than APDqg, at each stimulus rate.

Finally, Figure 6 highlights that drugs very specific for Iy (such as GS967)
decrease APDqg), APDg, and APDs; rate-dependence, calculated as the difference
between APD at minimum frequency and APD at maximum frequency. In the case of
ranolazine, the rate dependence (RD) is unchanged (100% of baseline), due to the fact
that the block of Ix, would provoke large reverse rate-dependence, which is neutralized

by the concomitant block of Ty, by the drug.

Effects of Ing and Iy blockers on QT interval and Transmural Dispersion of
Repolarization

Simulations were carried out at tissue level based on an in silico fiber of 165 cells
composed of a fixed number of endocardial, M, and epicardial cells as described in
O’Hara et al.”' Pseudo-ECGs were computed and the corresponding QT intervals were
measured. In addition, repolarization times of selected myocytes within the fiber were

calculated, and transmural dispersion of repolarization was defined as the difference

10
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between the maximum and the minimum repolarization times in the fiber. Figure 7
panel A shows APs measured in the central cells of each part of the tissue (endo-,
midmyo-, and epicardial tissues) under baseline conditions (left), in the presence of 5
UM ranolazine (centre) or GS967 (right). Panel B shows the pseudo-ECG for these
conditions. Note that QT interval was increased slightly by ranolazine (107% of the
baseline value) but was decreased by GS967 (91.4% of the baseline value). Finally,
repolarization times at selected myocytes within the fiber are depicted in Figure 7 panel
C and TDR is indicated in the curves. Note that ranolazine and GS967 decreased TDR

to 81.5% and 54.2% of the baseline value, respectively.

Safety Plots Based on QT Interval and Transmutral Dispersion of Repolarization data

Figure 8 summarizes the values of QT and TDR for different combinations of
Ixr and Iy, blockade in different safety plots for 3 pM (left), 5 pM (centre), and 8 uM
(right) of potential drugs. The reference QT and TDR correspond to the baseline
conditions (right bottom corner). The results obtained in our simulations indicate that
GS967 is safer than ranolazine, as it reduces the QT,,; down to 90% of its baseline value
for the lower concentration.

With regard to the TDR simulations shown in Figure 8 panel B, the two drugs that
were assessed reduced TDR quite significantly. This is of interest as TDR is being
seriously considered an important biomarker for arrhythmic risk, and very few studies
have tested the effects of drugs on this biomarker. The reduction of the TDR exerted by

these drugs i8 notable, highlighting their beneficial effects.
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DISCUSSION
Major Findings

Our computational work, based on a current and very comprehensive
mathematical model of the human ventricular AP, provides novel insights into the roles
of Iy and Ig, block in the modulation of well accepted biomarkers for pro-arthythmic
risk. Our approach further illustrates and documents the utility of computational
methods as one potential assessment tool in Safety Pharmacology. The principal
findings and insights from our work are: (i) demonstration that it is essential to study
the role of selected drug targeted currents (Iya, Ik Ix:) at defined time points of AP
repolarization, (ii) novel insight into the ionic mechanisms responsible for reverse rate-
dependence of anti-arrhythmic agents: delayed rectifier K* currents exhibit a relatively
large effect on the net current which governs the initiation of repolarization and
modulates the repolarization waveform, (iii) demonstration of importance of drug-
induced APD prolongation assessed at steady-state, (iv) an explanation of how selective
partial block of Iy, confers significant anti-arthythmic effects in terms of reduction of
APD, RRD of APD prolongation, QT interval or TDR, (v) integration of experimental
data sets in terms of safety plots to illustrate that the ratios of block of Ina/Ti
(measured as ICs; values) for a drug is a novel mechanism-based tool, that can be used

to advantage during the initial phases of drug development.

Mechanisms for Reverse-Rate Dependence of Drug-induced APD Prolongation

The repolarization of AP is determined by the very delicate balance of ionic
currents.”* A very small change in this balance (net current) caused by a drug may have
important consequences on AP morphology and thus on myocyte electrophysiological
properties. This concept was first recognized by classical cardiac electrophysiologists™

and originally was termed all-or-none repolarization. Many subsequent studies have

12
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provided basis for understanding the ionic mechanisms for repolarization, and the
concept of repolarization reserve, through mathematical modeling.'*** The main goal of
the present study (oriented to Iy,; and Ix, block) was to reveal the effects of established
or in development anti-arthythmic drugs on repolarization in human ventricle using
computational methods. Our results show that a new and very selective blocker for I,
(GS967) has a relatively large effect on the early phase of repolarization (significant
decrease of APDs;) in comparison with its effects on the late phase of repolarization
(APDg) whereas other currents, e.g. Ixj, strongly modulate APDg,. Similar pattern of
results has been 1"ept::arl:ed,ID where GS967 reduced APD;; more than APD.; in isolated
rabbit myocytes. Previously, somewhat similar results were obtained by Goineau et al.*
in rabbit Purkinje fibers. Lidocaine increased AP triangulation, by reducing APD;; more
than APDg;. These findings show that the net impact on AP morphology must be
evaluated as a net balance of multiple ion channel conductances. In our simulations, as
demonstrated in the safety plots of Figure 5, the changes in triangulation due to Ty,
block also depend on the amount of I, block, i.e. on the drug specificity. If we consider
a pure Iy, blocker (moving upwards in the right edge of the safety plots of Figure 5
panel D) AP triangulation tends to diminish as specificity for Iy, increases. Figure 2
illustrates a plausible ionic mechanism for this. The observed decrease in AP
triangulation in response to selective blockers of Iyg is in accordance with the
experimental observation that agents that enhance Iy, have the opposite effect: an

increase in triangulation.””

Our results also provide insight into a previous paper that
reported an increase in AP triangulation following selective Iy, block.”

Another new mechanistic ingight from our simulations is that the ratio Iya/Txr of
block by drug candidates can strongly influence the drug-induced RRD of the APD

even under steady-state conditions. Most contemporary drug discovery or Safety
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Pharmacology initiatives consider RRD as an important biomarker for pro-arthythmic
actions.”***" 1t is well known that class III antiarrhythmic agents, such as dofetilide
and other selective blockers of Iy, include RRD effects.’®*! RRD in human ventricle
was reproduced by our simulations (see Figure 6). Specifically, our results showed that
selective block of Iy led to APD shortening in a RRD manner, in accordance with
experimental studies.’”® These counteracting actions lead to a neutralization of the
reverse rate-dependence of APD prolongation when a drug blocks both Iy, and IKr.5’32
Similar effects have been reported in the setting of simultaneous block of Iy, and ICaL.42
In summary, the delicate and dynamic balance between Iy, and Ty block as a
consequence of any relative affinity (ICsp) differences for ion channel targets can
explain RRD of APD in human ventricle.

Several hypotheses have been developed to explain the underlying ionic
mechanisms for reverse RRD modulation of APD. It was first postulated that Iy,
accumulation (that is, residual activation) observed at relative high frequencies in
guinea-pig myocytes was responsible due to the slow deactivation kinetics of this
current.”™** A somewhat similar phenomenon and species-dependent (see O’Hara et
al.*) can be observed in our results (Figure 2), showing a steeper Iy, increase at fast
rates. Here, the kinetics of I, could be a significant factor for the RRD of APD
prolongation exerted by I, blockers. However, Iy, cannot be the only cause of RRD.
Thus, even in the setting of Ix, block by HMR1556, RRD APD prolongation was also
observed in canine ventricular myocytes.*

Quite recently, Banyasz et al. have suggested that RRD was an intrinsic property
of human ventricular cells.” Indeed, at low frequencies, when APD is relatively long,
the net repolarizing current is very small. Under these conditions any change in the

plateau currents can lead to significant changes in APD. Our results provide insight into
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this. Note that the calculated curvi-linear relationship of the net current correlates
strongly with APDg, (Figure 3). We conclude that in human ventricle intrinsic
biophysical propertties of Iy, and I, and their combined contribution to I, result in the

basis for reverse rate-dependence of APD.

Safety of Iy, Blockers

Drug-induced APD prolongation, the associated dispersion in transmural
repolarization in the human ventricle, and TdP inducibility have emerged as significant
concerns in drug safety evaluations. Incresases in these parameters can be a major
obstacle for drug approval.’ In this context, Iyy is emerging as a promising
pharmacological target. Inhibition of this component of Na“ current markedly reduces
the TdP inducing capability of agents that prolong the QT interval.’ Furthermore, Iy..
block is likely to have an additional anti-arthythmic effect, especially in conditions
which are characterized by enhanced Iy, due to genetic or acquired causes. These
include: LQT3, heart failure, hypoxia, and free radical challen,ge.6’47’48'51

Our simulations demonstrate that selective block of Iy, (GS967) can decrease
well-accepted biomarkers for arthythmic risk. These include: APD, reverse rate-
dependence, triangulation, QTi,, and transmural dispersion of repolarization. This
insight is in accordance with experimental findings."* Indeed, Belardinelli et al.'"” have
reported that in rabbit ventricular myocytes, GS967 almost completely restored the
normal APD after it had been markedly increased with ATXII. In control conditions,
(G8967 had a slight tendency to decrease APD, with the effect being larger for APD:;
than for APDs.'" There is also ample experimental and theoretical evidence that Iy,
enhancement can have opposite pro-arthtyhmic effects, including an increase of
triangulation,”” reverse rate-dependence of APD prolongation measured in transgenic

mice with LQT3* or the peak to end interval of the T-wave, which closely
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approximates TDR, in rabbit ventricular wedges.” Perhaps more importantly, many
experimental studies have shown that inhibition of Iy, can markedly reduce the risk of
drug-induced TdP, e.g. by I, blockers. Thus, the combined application of Iy, blockers
with Iy, blockers can improve the safety profile.”**>***® This concept was firstly
illustrated by the simulation work of Noble et al’’ and is confirmed by our
computational results. Note that ranolazine suppressed early afterdepolarizations
(EADs) and reduced the increase in TDR induced by the selective I, blocker d-sotalol
in canice cardiac wedges.” However, the net effect and clinical consequence of multiple
channel blockade (mainly Ty, and Iy..) by ranolazine is a modest increase in the mean
QT interval by 26 ms.’**® This important experimental observation was also
reproduced by our results (see Figure 8), whereas more selective blockers of Iy, (such

as GS8967) reduced QT interval.

Safety Plots as a Tool for Anti-arriiythmic Drug Development
At present, the preclinical assessment of drug-induced ventricular arrhythmia, a
major concern for the international cardiac safety pharmacology community, is based
mainly on experimental studies. Recently, however, advanced computational
technology for in-silico assessment of the efficacy and safety of specific drugs has
emerged as a complementary and potentially valuable tool.*****
Notable research efforts have been made to link molecular dynamics to
biophysical models.” Other detailed models of drug/ion-channel interaction take into
account the rate of binding and unbinding’' and can be reproduced in either Hodgkin-

Huxley or Markov models formulations 2%5%63

For example a recent study on the atrial-
selectivity of ranolazine is based on a markovian model of its inhibiting effects on the

. 64,65
sodium channels.™ ™
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In the present study we have used a classical measure of the dmg action, by
employing ICs, data, that is the fraction of block of the targeted channel conductance. A
recent computational study by Mirams et al.”> provided interesting insights into TdP
prediction following simultaneous applications of many different ion channel blockers.
Other computational studies have assessed the effects of Iy, and/or Iy, blockers on
several biomarkers for arrhythmic risk as a proof of concept in the preclinical phase of
development of drugs.”*"*® Our work complements and extends these approaches. We
have evaluated for the first time the safety of drugs with different ratios of Iy, /Ix, block,
using a recent and very detailed human AP model. Safety was estimated by accepted
torsadogenic indicators: APD prolongation, triangulation, reverse rate-dependence,
QT and TDR.?%?* The sizes and shapes of the safety zones vary from one biomarker
to the other, but a general pattern of behavior can be observed: as the affinity for Iy,
block increases, safety (blue and green colors) increases. We note that the safety plot
corresponding to the biomarker AP triangulation has the most extense unsafe zone,
whereas TDR safety plots have the smallest unsafe zones. In our simulated safety plots
a two-fold enhancement of Iy, was considered. Based on our analyses we predict that a
pathological situation in which Iy, is further enhanced would increase the size of the
safety zone. Indeed, if the enhanced Iy, has a major role in generating the biomarker
parameter, then a specific blocker of this current would tend to restore normal
conditions.

Limitations of this study

We acknowledge several limitations of our approach at this stage of its
development. Caution should be exercised when placing a data set in the safety plots if
the simulations have been conducted at different stimulation frequencies. The efficacy

of a dg can change significantly with heart rate.”’ In the case of ranolazine, the
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observed I, block is independent of stimulus fref_luency,68 whereas its ICs; for Iy
decreases with increased frequency.” This property was not evaluated in our approach
because the required data for GS967 block at different frequencies are not awvailable.
After the ICs; changes as a function of stimulation frequency of a specific drug have
been specified, this drug can be correctly positioned in the safety plot and the effects on
the different biomarkers can be evaluated.

We also acknowledge that, as pointed out by consensus from the Cardiac
Physiome Initiative,™"" development of complex models can include propagation of
errors or uncertaincy in (i) data selection (ii) interpolation or (iii) interpretation. It was
principally for these reasons that we selected the ORd model as the fundamental
computation platform. The experimental data used to build the model are from the
human heart and are very extense. Nonetheless, the ORd model was developed to model
normal physiological AP waveforms, and considers the controversial presence of a large
number of M cells in a ventricular strand.”* Our application extends this data set to a
substrate that is a target for clinical anti-arrhythmic agents or drug candidates new in
development.

We conclude that safety plots can provide a very valuable tool in the initial phases
of drug development, specifically in the preclinical assessment of the arrthythmogenic
risk of compounds that block a number of different ion channels. This tool not only
overcomes many limitations of experimentation, but also its predictive capacity allows a

better selection of experiments, reducing the cost of drug screening.

METHODS

Human Ventricitlar Myocyte Model

18
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Simulations of the electrical activity of an endocardial human ventricular niyocyte were
carried out using the human ventricular AP model developed by O’Hara et al.*! (ORd). This
model is based on experimental data taken from 140 healthy human hearts; it encompasses the
formulation of 18 ionic currents and carrier-mediated fluxes and a detailed formulation of
steady-state and transient ion concentrations, including intracellular Ca®™ transients. This model
reproduces the electrophysiological behavior of all three types of human ventricular myocytes,
with a high degree of fidelity, including alterations due to drug effects.

We have modified the formulation of I;,; in ORd model to closely match experimental
data from Maltsev et al.” In their experiments on human ventricular myocytes, Lig:/Tir (Tyar
denotes peak Iy, ratioc was approximately 0.1% . In our model, the maximum conductance
{(gw.r) was fitted accordingly using voltage clamp simulations, yielding 0.018 mS/pF. The new
APD;; remains within experimental values.”*"*” Details are given in the supplemental material
(Figure S1).

This Iy formulation was modified to simulate the effects of pathological conditions.
Specifically, gy, was enhanced 2-fold, as a surrogate for a genetic modification of the human
Iyva, which results in enhanced Iy, and has been denoted LQT3 syndrome,” or to simulate part
of the effects of free radical challenge,**” heart failure,”"’® or hypoxia.**”' We refer to this
single modification of the ORd model as “baseline conditions™ throughout the paper.

All model equations and code were taken from O’Hara et al.,*! which can be
downloaded from http://rudylab.wustl.edu. Rapid integration methods are provided in
the Supplemental Materials from O’Hara et al.’' For simulation of the basic human
model, we used C++ code tun on an array of Dell cluster nodes with 64-bit AMD

Opteron processors, running Linux and Sun Microsystems Grid Engine.

Human Ventricular Strand Model
1-dimensional simulations of AP initiation and conduction were performed using

a heterogeneous multicellular strand, which resembles some functional features of a
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ventricular transmural wedge preparation, as described in O’Hara et al. *' This strand

was composed by 60 endocardial, 45 M, and 65 epicardial cells.

Drugs

The two drugs that have been evaluated in this study are ranolazine and GS967 (6-
(4-(trifluoromethoxy)  phenyl)-3-(trifluoromethyl)-[1,2,4]triazolo[4,3-a]pyridine), a
potent and selective inhibitor of INaL.ID Ranolazine has a potency of inhibition (ICs;) of
6 and 12 pM for the block of Ty, and Iy, 1"espective1y,56 and ICs; values for GS967 are
0.13 and =10 uM for the block of Iya. and Ik, respectively. These values were obtained
in rabbit ventricular myocytes, as detailed in Belardinelli et al."”

In this study a large number of inter-related sets of simulations were carried out.
In each, the hypothetical potential drugs were “applied” in selected combinations
arranged according to ICsy for Iy, and Ix,. The ranges of 107 to 10~ M (pICsg from 7 to
3) and 10%t0 10° M (pICsq from 6 to 3), were assessed respectively for Iy, and I
The pharmaceutical description pICs; (standing for -log ICsq) was used. To simulate the
steady-state effects of these drugs, Iy, and I, conductances were reduced with a

multiplicative factor (1-b), related to the ICs; as follows:

b=—c (1)
where [D] stands for the concentration of the potential drug. This value is 5 uM in our

simulations, which is within the therapeutic concentration for ranolazine (1 to 10 pM).”

Parameter Definitions
All APs or other output parameters were measured after achieving steady-state

conditions. Steady-state was then defined with an error of 1.9% in APDy, after 100
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stimulation pulses. Each applied stimulus was 1.5 the threshold and 2 ms in duration. In
the strand simulations, the stimuli were applied at the endocardial end of the fiber.
Stimulation rate was varied in some of the single myocyte simulations, and was 1 Hz in
1D-fiber simulations.

Several accepted biomarkers for arthythmic risk were calculated in our set of
simulations: APD, triangulation, APD rate-dependence (RD), QT;y, and transmural
dispersion of repolarization. APD values were determined at 90%, 60%, and 30% of
repolarization and are referred as APDg, APDg;, and APDsp, respectively. By
convention®* triangulation was defined as the difference between APDg; and APD;;.
APD rate-dependence was calculated as the maximum APDsg, (corresponding to the
minimum frequency of stimulation of 0.5 Hz) minus the minimum APD;g
(corresponding to the maximum frequency of stimulation of 2 Hz). In the multicellular
simulations pseudo-ECGs were computed as described in O°Hara et al’' and the
corresponding QT intervals were measured. Finally, repolarization time (RT) in the
selected myocytes of the fiber was computed as the sum of the activation time and the
APDg; of this cell. Based on this, transmural dispersion of repolarization was defined as
the difference between the maximum and the minimum repolarization times along the
heterogeneous fiber.

Ionic currents Iyg, I, the slow component of the delayed rectifier potassinm
current (Ix;), and the inward rectifier K' current (I ) were also measured. Importantly,
net current (I,.;) Was determined as the sum of all ionic currents in the ORd model. This
current was continuously measured during the AP (Figure 1 panel E). I, was also
calculated at a specific instant of time within the AP repolarization phase, i.e. 60% of

repolarization (see Figure 3).

Safety Plot Constricction
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We have developed an approach to summarize and illustrate the results of the required
complete set of simulations. The effects of potential drugs, having different specificities
for Iy and Ig,, on a specific biomarker (APD, triangulation, rate-dependence, QT or
transmural dispersion of repolarization) can be illustrated on the plot. This has been
achieved by constructing a color coded map denoted “safety plot” (see Figures 4, 5, 6,
8, and S2). Each safety plot illustrates the values of the chosen biomarker (e.g. APDq)
in a color coded scale as a function of the pICs, values for I, (horizontal axis) and Iy,
(vertical axis). The simulations were carried out for a fixed concentration of the
potential drugs (5 pM). Thus, the block amount of both currents could be calculated
from the correspondent pICs; The resulting sets of biomarker values relate molecular
pharmacology actions at steady-state to accepted experimental and/or clinical measures
of electrophysiological effect on APDgy or QTjy. This information is coupled with
knowledge of regulatory agency standards for drug-induced changes (denoted by black
lines). All simulations were performed under pathological conditions (with enhanced
TygaL)-
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FIGURE LEGENDS

Figure 1. Ilustrations of the three main sets of conditions that are analyzed in these
simulations of the ventricular action potential (AP). The top row (A) shows APs
computed at 1 Hz in response to baseline conditions (left); baseline plus ranolazine
(centre), and a novel ranolazine derivative, GS967 (right). Note that in all calculations
the baseline condition is intended to mimic the enhanced Iy, which is a hallmark
feature of LQT3 syndrome.80 Thus, Iy, was increased 2-fold over the value in the
control conditions. The dashed line shows control AP. Panel B shows baseline Iy, (left)
and reductions in the current following steady-state effects of ranolazine or GS967.
Panel C shows the relative sizes and approximate time course of the two time and
voltage-dependent K* currents in human ventricle. Note the difference in current scales
for Iy, versus Ig.. Panel D illustrates the inwardly rectifying backgroud K' current Tg;.
In panel E the net outward current during the plateau and repolarization phases of the
AP are shown. The negative peak was truncated to better observe the shape of this
current in a bigger scale. The dotted vertical lines provide reference points dennoting

30%, 60% and 90% of complete AP repolarization.

Figure 2. Effect of change in steady-state heart rate on drug-induced block of Ty and
Ixr. Action potentials (APs) (panel A), Iya (panel B), Iy, (panel C), and I (panel D) at
BCLs of 2000 and 500 ms (dashed and continuous traces, respectively) under selected
conditions: (i) column 1 baseline conditions, (ii) drug 1 (more specific for Ix,) in
column 2, (iii) drug 2 (more specific for Iy..) in column 3, and (iv) drug 3 (same

gpecificity for Iy, and Ig,) in column 4.
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Figure 3. Instantaneous net current measured at APDg; as a function of APDg, for
different combinations of Ix/Iyy ICs; ratios (different symbols). For each curve,
corresponding to a specific combination of Ig/Iyy ICs ratio, simulations were
performed at increaging BCLs from 500 ms to 2000 ms in each curve. Baseline

corresponds to conditions where only Iy is enhanced two-fold and no drug, is applied.

Figure 4. Olustration of combined effects of drugs (at 5 pM) which inhibit I, Iy or
both on APDg,. This “Safety Plot” is constructed using selected values of 1Cs; for Iy,
blockers on the y-axis, and ICsqvalues of Iy, block on the x-axis. The reference action
potentials (APs) shown are (1) baseline waveform at 1 Hz, (2) AP waveform after
complete block of only Iiy., (3) AP waveform after complete block of only Ig,, (4) AP
waveform resulting from an equal degree of block of I, and Iy,;, and (5) AP waveform
after complete block of Iy, and Ix,. Black lines join ICs; combinations for which APD
is either increased or decreased by 10% or 20% with respect to the baseline APD shown
at the right bottom edge of this matrix. Baseline corresponds to conditions where only

I11a1 18 enhanced two-fold.

Figure 5. 2D APDyq (panel A), APDgq (panel B), APDsq (panel C), and triangulation
(panel D) safety plots as a function of pICs; for Iy, (horizontal axis) and Iy, (vertical
axis), for a drug concentration of 5 pM. Here the effects at steady-state of two
stimulation frequencies (BCL of 500 ms in the left and BCL of 1000 ms in the right) are
illustrated. Ranolazine is represented by the circle and GS967 by the triangle. Black
lines join ICsy combinations for which APD or triangulation is either increased or

decreased by 10% or 20% with respect to baseline APD or triangulation. As in Figure 4,
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the baseline data are shown in the right bottom edge of the matrix, that is under

conditions where only Iy is enhanced two-fold.

Figure 6. 2D maps of the effects of steady-state changes in cycle length. APD rate-
dependence (RD) was measured as APD(s wp-APDg; ng. APDgp (panel A), APDyg;
(panel B), and APD, (panel C) maps are shown. Black lines join ICs; combinations for
which the effects of changes in the cycle length is increased or decreased by 10% or
20% with respect to the baseline data (again represented in the right bottom edge of the

matrix, where only Ty, is two-fold enhanced).

Figure 7. Panel A: action potentials (APs) in endocardial (continuous line),
Midmyocardial (dashed line) and epicardial (dotted-dashed line) cells at baseline and
after ranolazine (5 pM) and GS967 (5 pM). Panel B: pseudo-ECGs computed and
measured as described in Methods. Panel C: Repolarization time (RT) profile along the
transmural fiber under baseline conditions, and during steady-state effects of ranolazine
(5 pM) and GS967 (5 nM). Repolarization times are shown at 90% of repolarization in
these three tyopes of ventricular myocytes at baseline, and in the presence of 5 pM of
Ranolazine and GS8967. Transmural dispersion of repolarization (TDR) in ms is

indicated for each case. Simulations were conducted at a BCL of 1000 ms.

Figure 8. Safety Plot analysis based on computed QT interval (QT;;) (panel A) or
transmural dispersion of repolarization (TDR) (panel B), as a function of pICsy for I,
(horizontal axig) and Iwa. (vertical axis). Drug concentrations of 3, 5 and 8 pM are
considered. Ranolazine is represented by the circle and GS967 by the triangle. Black

lines join ICs; combinations for which Qtin; or TDR increase or decrease by 10% or
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20% with respect to baseline values, represented in the right bottom edge of the matrix,

i.e. where only I, is enhanced two-fold. Simulations were conducted at a BCL of 1000

Ims.
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