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Abstract 

Particle Swarm Optimization (PSO) is a new paradigm of Swarm Intelligence which is 

inspired by concepts from ‘Social Psychology’ and ‘Artificial Life’. Essentially, PSO 

proposes that the co-operation of individuals promotes the evolution of the swarm. In terms 

of optimization, the hope would be to enhance the swarm’s ability to search on a global 

scale so as to determine the global optimum in a fitness landscape. It has been empirically 

shown to perform well with regard to many different kinds of optimization problems. PSO 

is particularly a preferable candidate to solve highly nonlinear, non-convex and even 

discontinuous problems. In this paper, one enhanced version of PSO: Modified Lbest based 

PSO (LPSO) is proposed and applied to one of the most challenging fields of optimization —  truss topological optimization. Through a benchmark test and a spatial structural 

example, LPSO exhibited competitive performance due to improved global searching 

ability. 

Keywords: particle swarm optimization, spatial structure, nonlinear programming 

1. Introduction 

Many scientific, engineering and economic problems involve optimization. In reaction to 

that, numerous optimization algorithms have been proposed. So far, the most commonly 

used optimization technique is called gradient algorithm which is based on gradient 

information. The latter, in turn, is derived from fitness functions and corresponding 

constraints. However, the acquisition of gradient information can be costly or even 

altogether impossible to obtain. Moreover, this kind of algorithm is only guaranteed to 

converge to a local minimal. But another kind of optimization algorithm - known as 

evolutionary computation (EC) - is not restricted in the aforementioned manner. Broadly 

speaking, EC constitutes a generic population-based metaheuristic optimization algorithm. 

EC tends to perform well with regard to most optimization problems. This is the case 

because they refrain from simplifying or making assumptions about the original form. 
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Testament to this truth is its successful application to a great variety of fields, such as 

engineering, art, biology, economics, marketing, genetics, operations research, robotics, 

social sciences, physics, politics and chemistry. As a newly developed subset of EC, the 

Particle Swarm Optimization has demonstrated its many advantages and robust nature in 

recent decades. It is derived from social psychology and the simulation of the social 

behaviour of bird flocks in particular. Inspired by the swarm intelligence theory, Kennedy 

created a model which Eberhart then extended to formulate the practical optimization 

method known as particle swarm optimization (PSO) [1]. The algorithm behind PSO is 

based on the idea that individuals are able to evolve by exchanging information with their 

neighbours through social interaction. This is known as cognitive ability. It assures that 

every particle has the equal talent to find the global optimum during the optimization 

process, even though its current position is the worst one among all of the particles in some 

iteration. Generally, the PSO algorithm has the following advantages compared with other 

optimization algorithms: 

� First of all, it is a simple algorithm with only a few parameters to be adjusted during 

the optimization process, rendering it compatible with any modern computer language.  

� Second of all, it is also a very powerful algorithm because its application is virtually 

unlimited. Consequently, almost all kinds of optimization problems can be solved by 

PSO, normally in the original form. 

� Last but not least, PSO is more efficient than other evolutionary algorithms due to its 

superior convergence speed. 

These advantages result in its increasing popularity in the field of optimization since its 

proposal in 1995. Like other evolutionary algorithms, it can be applied to areas such as 

image and video analysis, signal processing, electromagnetic, reactive power and voltage 

control, end milling, ingredient mix optimization, antenna design, decision making, 

simulation and identification, robust design as well as structural optimization.  

The main work of this paper is to propose a modified PSO in order to increase the global 

search ability of the PSO and apply it to truss topological optimization problems. The paper 

is structured as follows: 

Section 2 introduces the basic PSO; section 3 describes the modified PSO proposed by the 

authors; section 4 presents benchmark test and a spatial structural example to evaluate the 

performance of the proposed PSO variant; section 5 is the part of conclusion and outlook. 

2 The standard form of PSO 

In mathematical terms, optimization is the minimization or maximization of a function 

(called objective function or fitness function) subject to constraints on its variables. For 

simplicity’s sake, hereafter all the optimization problems are assumed to find minima, a 

maximal problem could be transformed to minimal form by conveniently multiplying the 

objective function by -1. So that the optimization could be written as： 
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  (1) 

where  is the vector of variables, also known as unknowns or parameters;  is the 

objective function with variables  to be optimized;  and  are vectors of functions 

representing  equality constraints and inequality constraints respectively, and  and  are 

their relevant sets of indices.  

The PSO is derived from a simplified version of the flock simulation. It also has features 

that are based upon human social behaviour (their cognitive ability). The PSO is initialized 

with a population of random solutions and the size of the population is fixed at this stage 

and is denoted as s. Normally, a search space should first be defined, e.g. like a cube of the 

form  for a D dimensional case. Each particle is distributed randomly in the 

search region according to a uniform distribution which it shares in common with other 

algorithms of stochastic optimization. The position (  in case of particle  on time step ) 

of any given particle in the search space is a vector representing a design variable for the 

optimization problem, which is also called a potential solution. In addition, each particle 

has a velocity (  in case of particle  on time step ). This constitutes a major difference 

to other stochastic algorithms (e.g. GA). Here, the velocity is a vector that functions much 

like an operator that guides the particle to move from its current position to another 

potential improved place. Additionally, each particle  has its best personal position  

so far discovered and so far discovered best position  of particle  after exchanging 

information with its neighbors. All the particles’ velocities are updated in every iteration. 

Thus, the standard form of PSO could be denoted as: 

  

where  is called inertia weighting factor and used to better control the scope of the 

search,  and  are two independent random numbers selected in each step according to 

a uniform distribution in a given interval  and  and  are two constants which are 

equal to 2 in this standard version. The random number was multiplied by 2 to give it a 

mean of 1, so that particles would “overshoot” the target about half the time. Formula (2) 

clearly shows that the particle’s velocity can be updated in three situations: The first one is 

known as the “momentum” part, meaning that the velocity cannot change abruptly from the 

velocity of the last step. The second one is called “memory” part and describes the idea that 

the individual learns from its flying experience. The last one is known as the “cognitive” 

part which denotes the concept that particles learn from their group flying experience 

because of collaboration. Formula (2) shows that the velocity of any given particle is a 

stochastic variable and that it is prone to create an uncontrolled trajectory, allowing the 

particle to follow wider cycles in the design space, as well as letting even more escape it. In 

order to limit the impact of this phenomena  particle’s velocity should be clamped into a 

reasonable interval. Therefore, a new constant  is defined: 
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A large value of  increases the convergence speed, as well as the probability of 

convergence to a local minimum. In contrast, a small value decreases the efficiency of the 

algorithm whilst increasing its ability to search.  

Historically, particles have been studied in two types of neighbourhood - the Gbest and the 

Lbest. In the Gbest model, all members of the population are connected to one another, so 

that each individual is attracted to the best solution  found by a member of the swarm, i.e. 

all of the particles are pushed towards this position, if  can not be updated regularly, the 

swarm may converge prematurely. In the Lbest model each individual is influenced by the 

best performances of its neighbours. Note that once the neighborhood topology is created, it 

will not be changed during optimization procedure. The Lbest model tried to prevent 

premature convergence by maintaining diversity of potential problem solutions. Whilst it 

can search the design space sufficiently, its convergence speed is relatively slow compared 

to the Gbest model. The topology of information link for Gbest is shown in figure 1 (a) and 

a common topology of information link for Lbest is shown in figure 1 (b). 

 

3 A modified Particle Swarm Optimizer 

As a member of stochastic search algorithms, PSO has two major drawbacks [85]. The first 

drawback of PSO is its premature character, i.e. it could converge to local minimum. 

According to Angeline [8], although PSO converge to an optimum much faster than other 

evolutionary algorithms, it usually cannot improve the quality of the solutions as the 

number of iterations is increased. PSO usually suffers from premature convergence when 

high multi-modal problems are being optimized.  

The second drawback is that the PSO has a problem-dependent performance. This 

dependency is usually caused by the way parameters are set, i.e. assigning different 

parameter settings to PSO will result in high performance variance. In general, based on the 

no free lunch theorem [4], no single parameter setting exists which can be applied to all 

  

(a) Gbest topology (b) Ring topology of Lbest 

Figure 1 Common topologies of PSO 
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problems and performs dominantly better than other parameter settings. There are modified 

PSOs to deal with this problem. Such as, using Self-adapted PSOs by Clerc [5], Shi and 

Eberhart [6], Hu and Eberhart [7], Ratnaweera et al. [8] and so on. Another common way is 

to use PSO hybridized with another kind of optimization algorithm, so that the PSO can 

benefit from the advantages of another approach. Hybridization has been successfully 

applied to PSO by Angeline [9], Løvberg [10], Zhang and Xie [11]. All improvements to 

PSO have diminished the impact of the two aforementioned disadvantages. It is noted that 

all those approaches are based on Gbest PSO. It is already mentioned in section 2 that 

Gbest seems faster but that it is more vulnerable to local optima whereas Lbest 

appears much slower but more robust in the face of an increased number of 

iterations. Thus, in this paper a modified Lbest based PSO is proposed by adding 

two new rules to the position updating procedure, which is inspired by the 

Guaranteed Global Convergence Particle Swarm Optimizer (SPSO)[12]. 

Note that in formula (2), if for particle  on time step , , its new 

updated velocity will be , it means that particle  will move following its 

previous track, especially during the later evolution iterations. Most of the particles cluster 

around this global best position and their velocities are relatively small compared with their 

initial ones so that eventually all the particles will converge to this point, even though it 

may be not an optimum which would reduce the particle's searching ability. This 

disadvantage is the main reason for the problem of prematurity that attaches to PSO. For 

Lbest PSO, each particle has its own local best position , in order to set a convenient 

stopping criterion, a variable  is defined, called current global best position, which is 

defined as: 

   

Now, the stopping criterion can be expressed as: if  are not being updated in  

consecutive iterations, the program will stop running. 

In this new approach, in order to improve the searching ability of Lbest based PSO, 

two new mechanisms are added to a particle’s evolution procedure: 

(1) In case that the condition  is satisfied in continuous  

iterations, where  is a predetermined small value to determine if  is much 

closed to  and  is an integer to determine if a particle could find a better 

solution in a very small region around , the particle 's position for next 

iteration  will be randomly generated. 

(2) Further more, if  and ,  is updated to 

 and the particle 's best individual position ( ) is not replaced by . 

For other particles which do not match these conditions are manipulated according to 

formula (2). It is noted that these two mechanisms are used to maintain the diversity of the 

swarm and improve the particle's searching abilities. The purpose of the first one is to avoid 

the particle’s accumulating phenomenon in later phases of the evolution procedure. The 

second one can avoid  and  colliding each other, thus directions of the “memory” part 

and the “cognitive” part in particle's velocity update formula (2) keep different, which can 

1048



Proceedings of the International Association for Shell and Spatial Structures (IASS) Symposium 2009, Valencia 
Evolution and Trends in Design, Analysis and Construction of Shell and Spatial Structures 

 

assure that the particles’ trajectories are always affected by three different directional 

vectors if their positions are updated via formula (2). 

The ring topology is used for the proposed variant due to its superior performance 

compared with other Lbest topologies [13]. In ring topology, each individual interacts with 

their  nearest neighbors (  can be selected from , where  is the total amount 

of particles. If , Lbest topology is automatically transformed into Gbest topology). In 

this work, ring topology with  is studied for this new variant of PSO and is shown in 

figure 2. 

 

The whole work flow of the LPSO is seen below: 

  

  

 

Figure 2 Ring topology with  
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In this paper, a mixed internal-external quadratic penalty approach is used, thus 

optimization problem (1) can be rewritten as: 

  

It is noted that in formula (6), internal quadratic penalty approach is used to handle 

equalities constraints, while external penalty approach is used to handle inequality 

constraints.  

4 &umerical experiments of LPSO 

4.1 Parameter Selection 

The parameters of LPSO used for the numerical experiments are the following: 
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Additionally, the penalty parameter is updated by  

consequentially. In order to study the algorithm’s performance, each example is solved 

using all the possible  consequentially. Each example is tested twenty times independently 

in order to obtain the best result.  

5.2 Benchmark test 

In this work, the simplest possible optimal design problem (P1), namely the minimization 

of compliance (maximization of stiffness) for a given total mass of the structure, is 

considered. Several classic problems of this kind can be seen as a standard benchmark test 

for optimization algorithms due to its high-dimensional and non-convex features. The well-

known formulation of problem P1 is expressed as: 

   

where  is the volume of the th bar and  is the element stiffness matrix for the th bar 

written in global coordinates. Problem (P1) can efficiently be solved by employing various 

equivalent formulations. However, these equivalences are all based on the optimality 

criterion which is derived from the necessary condition. As soon as a new objective 

function arises and/or new constraints are added, the original equivalence looses its 

validity. The acquisition of a new equivalence requires a strong mathematical background 

(most researchers who work on truss topology optimization and equivalences in particular 

come from institutes of mathematics). In this paper, LPSO is tested with this kind of 

problem in its original form. Also, ground structure approach is used to constitute the 

design domain. In ground structure approach, the nodal locations are fixed and the ground 

structure is created by connecting any two nodes. During the optimization procedure, 

unnecessary members are removed. 
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The next two examples are selected from [14], and optimal solutions are presented and 

compared with those from [14] which prove to be the best results found so far. The Young's 

modulus of elasticity  for all benchmark problems is scaled to unity for all bars as well as 

the external loads. Each example is tested with two kinds of design variables: 

Member volume  is real and stays in the interval , marked as . 

Member volume  is real and stays in the interval , marked as . 

5.2.1 A single-load wheel 

The design domain, the load, as well as the boundary conditions are shown in figure 3 (a). 

A vertical load is applied at the center of the lower side of the design domain. The ground 

structure is shown in figure 3 (b). In addition, in order to achieve a stable solution, minute 

horizontal loads are applied to each design node. The optimal design obtained by LPSO 

with continuous design variables , as well as that from [14] are shown in figures 

3 (c) and 3 (d) and respectively. The solution from LPSO is better than that from [14], 

however, the advantage is not obvious. The optimal topologies of the continuous minimal 

compliance problem with  from different algorithms are shown in figures 3 (e) 

and 3 (f). Similarly, the LPSO finds better solution without obvious ascendancy. It must be 

noted that the solution in this instance from [14] is only stable in the vertical direction but a 

mechanism in other directions, so that, considering additional bars are used to guarantee 

structural stability which do not promote the objective function, the solutions from LPSO 

are more competitive.  

 
  

   

(d) A solution with 

 and  

from [14];  

(e) A solution with 

 and  

solved by LPSO; 
 

(f) A solution with 

 and  

from [14];  

Figure 3: Summary of results from the single-load wheel example 

(a) The design domain (c) A solution with 

 and  

solved by LPSO; 
 

(b) The ground structure 

with 200 non-overlapping 
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The convergence curves for this problem are shown in figure 5 (a). The horizontal axis 

represents the generation of the penalty factor and the vertical axis shows the value of the 

corresponding  penalized objective function, as below.  

5.2.2 A single-load cantilever 

The design domain, external load and the boundary conditions for this cantilever example 

are shown in figure 4 (a). In this instance, a unit vertical load is applied at the lower right 

corner of the design domain. Its ground structure is shown in figure 4 (b). Similar to the 

first example, minute horizontal loads are applied to each design node in order to acquire a 

stable solution. The optimal design with  obtained by LPSO, as well as that from 

[14] are shown in figures 4 (c) and 5 (d) respectively. The solution from the LPSO is stable 

both vertically and horizontally. Solution from LPSO is not good as that from [14] where 

the bar suppressing the external load is a mechanism. Similar occurrences appear for 

problems with continuous design variables  which is shown in figures 4 (f) and 

4 (d) respectively. The convergence curves for this example are shown in figure 5 (b).  

5.3 Spatial truss example 

In subsection 5.2, the performance of LPSO is tested and competitive results are obtained. 

In order to expand its application field, one supplementary example is further tested which 

are truss topology optimization with minimal weight. In this example, a truss is designed as 

a pedestrian bridge. The design domain is shown in figure 6 (a), distributed area load 

 is applied on the upper surface, both ends of the design domain are restricted to 

joint-fixed bounds. Since this is a symmetric design problem, only half of the design is 

considered and the corresponding ground structure is shown in figure 6 (b). In order to 

avoid an unstable solution which is kinematic in the X direction, small external X-

directional loads are applied to each design node. This is a 3-D example but only the 

possible connecting bars on the front and the upper surfaces from ground structure are 

illustrated. Area loads are transformed into central loads which are applied to design nodes 

of the ground structure. The aim is to find a minimal volume structure that can withstand all 

structural constraints, including maximal deformation, allowed stresses, as well as local 

buckling. Only cross-section areas are used as design variables, while stresses and 

displacements are implicitly defined constraints that use the equilibrium equation. Local 

buckling is taken into account, meaning that if the th bar is under compression then 

member stress must not exceed the Euler buckling stress which is given by 

  

where  is the Young's modulus for bars and  is the bar's length. The 

maximal permissible deformation is set as . In order to make this example 

more practical, cross-section areas  are restricted to . Finally, 

this optimization problem can be expressed as:  
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The solutions obtained are shown in figures 6 (c) and 6 (d), the volume of which is 

. It must be noted that this constitutes a reasonable structure. All of the 

vertical external loads are transformed to the boundary through diagonal bars on the front 

and the back surfaces. The diagonal bars inside the design body ensure that the structure is 

not a mechanism on the plane vertical to externals loads. Figures 6 (c) and 6 (e) show that 

all compressed bars are short and that their cross-section areas are larger than most bars in 

tension. This avoids local buckling and thus contributes to the stability of the structure. 

Although the connections on the upper surface are not continuous, maybe the absent bars 

can not promote structural stiffness, i.e. distributing them to another place contribute more 

to structural stiffness.  

 
  

   

(a ) The design domain (c) A solution with 

 and  

solved by LPSO; 
 

(b) The ground structure 
with 200 non-overlapping 

(d) A solution with 

 and  from 

[14];  

(e) A solution with 

 and  

solved by LPSO; 
 

(f) A solution with 

 and  

from [14];  

Figure 4: Summary of results from the single-load wheel example 
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(c) Solution in isometric view (d) Solution projected onto 
y-z plane 

(e) Member stress 

 

(a) Design domain (b) Ground structure of half 
design domain 

Figure 6 Summary of results from the spatial structure example 

 
(a) Converge curve of the single-load wheel 

example 

(b) Converge curve of the single-load 

cantilever example 

Figure 5 Converge curves from benchmark test 
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6 Conclusion and Outlook 

Finally, it is concluded: 

1. LPSO exhibits fairly good global searching ability and obtain competitive results 

compared with those from [4]. This constitutes the best solution for the benchmark test 

so far. 

2. It proves that applying small external loads that are vertical to existing external loads is 

an effective way for obtaining a realistic structure. 

3. The quadratic penalty function is proved effective, so long as it is combined with 

LPSO. 

Despite having obtained successful results from all of the numerical tests, the room for 

further research is vast, including, amongst others, the following points of interest: 

1. Make a convergence proof for LPSO so that it is able to maximise its potential by 

changing algorithm parameters or using adaptable parameters. 

2. Expand LPSO to problems of truss topological optimization that feature more 

structural constraints (such as frequency, global stability and so on), problems of 

continuum material distribution, as well as those of material reinforcement. This is of 

interest because PSO still constitutes a considerably novel addition to the field 

topology optimization. 

3. Develop a parallel pattern for LPSO so that it can solve optimization problem 

efficiently. 
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