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IMPROVED BALANCED INCOMPLETE FACTORIZATION ∗

RAFAEL BRU, JOSÉ MARÍN, JOSÉ MAS † AND MIROSLAV TŮMA‡

Abstract. In this paper we improve the BIF algorithm which computes simultaneously the LU
factors (direct factors) of a given matrix, and their inverses (inverse factors). This algorithm was
introduced in [R. Bru, J. Maŕın, J. Mas and M. Tůma, SIAM J. Sci. Comput., 30 (2008), pp. 2302–
2318]. The improvements are based on a deeper understanding of the Inverse Sherman-Morrison
(ISM) decomposition and they provide a new insight into the BIF decomposition. In particular,
it is shown that a slight algorithmic reformulation of the basic algorithm implies that the direct
and inverse factors influence numerically each other even without any dropping for incompleteness.
Algorithmically, the nonsymmetric version of the improved BIF algorithm is formulated. Numerical
experiments show very high robustness of the incomplete implementation of the algorithm used for
preconditioning nonsymmetric linear systems.

Key words. Preconditioned iterative methods, sparse matrices, incomplete decompositions,
approximate inverses, Sherman-Morrison formula, nonsymmetric matrices.

1. Introduction. Consider the system of linear algebraic equations written in
the form

Ax = b, (1.1)

where A ∈ R
n×n is a large, sparse and regular nonsymmetric matrix. We are interested

in a specific factorization strategy introduced in [12], which is called BIF. While
its theoretical basis was originally described in [12] for general nonsymmetric case,
algorithmically the paper [12] concentrated to the symmetric and positive definite
matrix A. Here we study further properties of this factorization in order to understand
more deeply the BIF algorithm and its connections to standard direct incomplete
decompositions. In addition, we apply the factorization procedure incompletely as a
preconditioner of a nonsymmetric Krylov space method and show that this method
may be a useful tool for solving systems of linear algebraic equations.

The so-called BIF algorithm combines the simultaneous computation of both the
LU factors and their inverses of a given matrix. In other words, the algorithm per-
forms both the direct and the inverse decomposition. The fact, that in general, both
decompositions are closely connected is well-known, and it was clearly demonstrated
in some early papers. Hestenes and Stiefel described such connection in the SPD case
in Section 12 of their seminal paper [26]. In particular, they demonstrated the connec-
tion of the Gaussian elimination and a specific form of construction of the mutually
conjugate vectors. The contemporary form of the former process which was described
in that paper is the LU decomposition, and the latter process is called biconjugation,
cf. [4, 22], see also the nice survey [14]. A convenient equivalent form of biconjugation
is the inverse decomposition, in which we get the inverse factors Z and W such that
A = W−T DZ−1, directly from A. Let us comment on the biconjugation approaches
more in detail, since, as we will see, they are very close to the subject of this paper.
Biconjugation algorithms can be classified by the following two features: First, by
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the organization of the outermost loop of the biconjugation process (left-looking or
right-looking, analogously to the organization of the outer loop of the LU decomposi-
tion). Second, by the way of computation of the diagonal entries in the biconjugation
(one-sided or stabilized, see, e.g., [1]). One-sided computation of the diagonal entries
means that each such entry is computed as a dot product of two vectors, whereas the
stabilized computation means that the full bilinear form with the system matrix is
used. Note that the algorithms can still differ by some other features. For example,
the factors Z and W can be evaluated either successively one after another or their
computation can be interleaved. In the latter case the interleaved processes to get Z
and W may share some intermediate quantities, but the computed factors are still
the same in exact arithmetic.

The biconjugation scheme described in the paper by Hestenes and Stiefel is left-
looking and stabilized as well as the algorithm given by Fox, Huskey and Wilkin-
son [22]. The escalator method by Morris [31] is the left-looking biconjugation process
with one-sided computation of diagonal entries, Purcell [33] came with the one-sided
and right-looking algorithm. A specific feature of many of the early descriptions is
that they did not consider the computational aspects which are very important from
a contemporary point of view. To make biconjugation algorithms useful for solv-
ing large problems, e.g. in the form of preconditioners, the implementations which
fully exploit the matrix sparsity are absolutely crucial. Just the recent progress in
exploiting sparsity inspired reconsideration of some classical algorithms including bi-
conjugation. Consequently, these new efforts shed a new light on standard direct
decompositions.

The fact that biconjugation can be a practical tool to get an incomplete direct
factorization was shown in [5] for symmetric and positive definite matrices. Since
then, several nonsymmetric generalizations were proposed, but as far as we know,
none of them was shown to solve efficiently difficult large problems. Nevertheless,
from the theoretical point of view, there is a nice collection of ideas related to gener-
alizations of direct and inverse decompositions in [9]. The authors in [11] introduced
the (s−1I − A−1)−1 biconjugation process which can be also described in a factor-
ized form. To derive the underlying algorithm, the Sherman-Morrison formula [35] is
used repeteadly, and the factorized form is obtained using a similar process to that
described in [14]. It was shown in [12] that the resulting BIF factorization contains
both a direct and inverse factor of the system matrix. A slight generalization of the
new biconjugation is given in [37].

One particular purpose of this paper is to show that the BIF factorization can
be modified in such a way that the resulting direct and inverse factors influence
numerically each other even when the computation is exact. This result is obtained
by a careful analysis of the new biconjugation process, and we hope that it leads to
a better understanding of the algorithm. The numerical experiments show that the
incomplete computation of the factors leads to a useful preconditioner for solving the
nonsymmetric systems that will be called here NBIF. Nevertheless, our goal is much
broader. We believe that development of new algorithms, like this, will lead to a
better understanding of matrix decompositions in general, and not necessarily only
for preconditioning purposes.

The paper is organized as follows. In Section 2 we present the main theoretical
results which provide a better understanding of the BIF algorithm. The resulting
improved nonsymmetric algorithm is described in Section 3. In Section 4 we give
some theoretical results related to scaling of the corresponding biconjugation model.
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Implementation details and results of numerical experiments are discussed in Section
5. Our experiments suggest that good rates of convergence can be achieved with the
NBIF preconditioner, comparable to those insured by the ILU preconditioner with
the inverse-based dropping. At the same time, the new preconditioner seems to be
significantly more robust with respect to changes of its size (i.e., in the number of its
nonzero entries). Conclusions are given in Section 6.

2. Improving the BIF algorithm. Consider the exact ISM decomposition
from [12] for columns zi and vi of Z, V , respectively, and for the matrix Ds =
diag(r1, . . . , rn) and scalar s > 0. It is given by formulas

zk = ek −

k−1
∑

i=1

vT
i ek

sri

zi and vk = yk −

k−1
∑

i=1

yT
k zi

sri

vi, (2.1)

for k = 1, 2, . . . , n, where rk = 1 + yT
k zk/s = 1 + vT

k ek/s, and where ek and yk are the
columns of I and Y = AT − sI, respectively. The matrices Zs, Vs and Ds represent
the inverse Sherman-Morrison (ISM) decomposition

s−1I − A−1 = s−2ZsD
−1
s V T

s (2.2)

which can be seen, as mentioned above, as a specific biconjugation. It was shown
in [11] that Zs does not depend on the parameter s, so we will denote it by Z. In
addition it was proved that sDs = tDt, for every two different values of the parameter,
as well as an explicit relation between the matrices Vs and Vt for different parameters
which is not used in this paper. The matrices Z, Ds and Vs are the factors of the
ISM decomposition for a given s.

The relation between the LDU factorization of A, A = LDU , and the ISM de-
composition

D = s−1Ds, U = Z−1, Vs = UT D − sL−T , (2.3)

is proved in [12].
The last relation becomes Vs = LT D − sL−T in the symmetric and positive

definite case. The ISM decomposition then uses both the direct and the inverse
factors which are equivalent in exact arithmetic to the Choleski factors and their
inverses. Moreover, dropping strategies proposed in [7, 8, 9] can be used to compute
the incomplete decomposition, see [12], where the BIF preconditioner based on the
direct factors is introduced.

Here we give an alternative proof for the last two relations of (2.3) based on the
entries of the matrix. This “entrywise” proof reveals both theoretical and practical
consequences that will be used later in the paper. We denote the matrix rows by
superscripts. For example ak, k = 1, . . . , n, are rows of A. For simplicity, entries of
Vs are denoted by vik without stating their dependency on s.

Theorem 2.1. Let A = LDU be the LDU decomposition of A, and let s−1I −

A−1 = s−2ZD−1
s V T

s be the ISM decomposition (2.2). Then

U = Z−1, and Vs = UT D − sL−T .

Proof. First, from (2.1) and the definition of vectors yk observe that

yT
k zi = akzi for k > i, (2.4)
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since Z is upper triangular.
Further, it is well-known that the identity matrix can be obtained by multiplying

the matrix

U =

















1 u12 u13 · · · u1n

1 u23 · · · u2n

. . .
...

. . .
...
1

















by the matrices G2, . . . , Gn successively from the right, where

G2 =











1 −u12 · · · 0
1 · · · 0

. . .
...
1











, . . . , Gn =











1 0 · · · −u1n

1 · · · −u2n

. . .
...
1











are the Gauss transformations [24] with reversed ordering n, . . . , 1 of their columns
and rows. The same sequence of operations, applied to the identity matrix, gives U−1.
If bk denotes, for simplicity, the k-th column of U−1, we have

bk = ek − u1kb1 − · · · − uk−1,kbk−1. (2.5)

In the following we are going to prove that the relation

vk = (ak
− sek)T

−

k−1
∑

i=1

lkivi (2.6)

is valid for all k = 1, . . . , n, using a straightforward notation for the entries of L.
Simultaneously we will show that the vectors zk can be expressed as bk in (2.5), and
that

vT
i ek ≡ vki = uikdi for all i < k. (2.7)

We will proceed by induction on k.
The factorization A = LDU implies AU−1 = LD, from which we deduce

akbi = lkidi, k > i. (2.8)

Consider first k = 1. Clearly z1 = e1 = b1. On the other hand, from the equation (2.1)
we have v1 = (a1 − se1)T ; observe also that a1 is the first row of DU , and that
e1 = (L−T )1. Also note that the first column of Vs coincides with the first column of
UD − sL−T .

For k = 2, we have z2 = e2 −
vT
1 e2

d1

z1 = e2 − u12b1, since vT
1 e2 ≡ v21 = a1e2 =

a12 = l1Du2 = u12d1, which is (2.7) for i = 1. Further, from (2.1) and (2.4)

v2 = (a2
− se2)T

−
a2z1

d1

v1 = (a2
− se2)T

−
a2b1

d1

v1 = (a2
− se2)T

− l21v1

since a2b1 = l21d1 by (2.8).
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Assume now that the induction hypothesis expressed above is valid for all i < k.
Since in particular, (2.7) is valid for all i < k, we obtain

zk = ek −

k−1
∑

i=1

vT
i ek

di

zi = ek −

k−1
∑

i=1

uikzi

which coincides with the expression (2.5) from the induction hypothesis. Further,
from (2.1), (2.4) and (2.8) we have

vk = (ak
− sek)T

−

k−1
∑

i=1

yT
k zi

di

vi = (ak
− sek)T

−

k−1
∑

i=1

akbi

di

vi

= (ak
− sek)T

−

k−1
∑

i=1

lkivi.

Then, for m > k we have

vT
k em = (ak

− sek)em −

k−1
∑

i=1

lkiv
T
i em = akm −

k−1
∑

i=1

lkidiuim.

Substituting akm =
∑k

i=1
lkidiuim that comes from the LDU factorization of A, we

obtain the relation (2.7). Summarizing the obtained results in matrix form, we get

V T
s = L−1(A − sI) = L−1(LDU − sI) = DU − sL−1,

which, in addition to U = Z−1, completes the proof.

Note that (2.8) is a variant of the relation L = AZD−1 which was used, e.g.
in [26] to show an interconnection of the conjugate direction methods and Gaussian
elimination, and recently exploited, for example in [5], to compute the RIF decompo-
sition. Also recall that Theorem 2.1 implies that the structure of Vs from [12] can be
written in terms of the entries of the LDU factorization A = LDU and of its inverse
as

vij =











−sℓji i < j

di − s i = j

ujidj i > j,

(2.9)

where ℓij is the (i, j)-entry of the matrix L−1 .
A careful look at the expression (2.6) leads to the simplification in evaluations of

some entries vpk of Vs for p < k which is described in Theorem 2.2.
Theorem 2.2. With the assumptions and notations of Theorem 2.1, one can

simplify the computations of the vectors vk. In particular, for a row index p, p < k
we have,

vpk = slkp −

k−1
∑

i=p+1

lkivpi. (2.10)
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Vs

k

p

Fig. 2.1. Dependency of the entry vpk on other entries of the factor Vs after skipping some
updates as described in Remark 2.1.

Proof. Consider vpk for some p < k. We have from (2.6) and (2.9)

vpk = akp − lk1vp1 − · · · − lk,p−1vp,p−1 − lkpvpp

− lk,p+1vp,p+1 − · · · − lk,k−1vp,k−1

= akp − lk1(d1u1p) − · · · − lk,p−1(dp−1up−1,p) − lkp(dp − s)

− lk,p+1vp,p+1 − · · · − lk,k−1vp,k−1. (2.11)

In addition, from definition of the LDU decomposition we have

akp =

p−1
∑

i=1

lki(diuip) + lkpdp. (2.12)

Substituting the last identity into (2.11) we obtain (2.10) and the proof is complete.

Theorem 2.2 implies the following remark which emphasizes that computation of
some entries of Vs can be simplified. In Section 3 we will observe that their dependence
on other entries of the factor can be significantly changed after another computational
reformulation.

Remark 2.1. In order to get Vs using (2.1), it is possible to skip some evaluations
which update vpk for p < k, namely those which cancel each other out due to the
relation (2.10). In particular, in order to compute vpk we can skip all contributions
from columns 1, . . . , p. Consequently, the entries of the strict upper triangular part
of Vs do not directly depend on entries of the factor U . Note that the entries of the
strict upper triangular part of Vs belong to the scaled factor L−T .

Figure 2.1 depicts the dependencies during the construction of Vs which were
mentioned in Remark 2.1. Namely, only the matrix entries in the filled part of the
p-th row of Vs are involved in the computation of the entry vpk.

The issue of actual dependency of the factor entries is not only of theoretical in-
terest. For example, it may be important if an incomplete decomposition is computed.
For simplicity, let us recall the BIF algorithm in [12] for a symmetric and positive
definite matrix A. There, the factors L and L−1 embedded in Vs mutually influence
each other during the incomplete computation since their computation is coupled by
dropping rules. That is, actual dropping to compute the incomplete factor L depend
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on the entries of L−1 and vice versa. If we give a closer look at the mechanism of
the updates after skipping the unnecessary operations as explained in Remark 2.1,
we can see that the entries of the scaled matrix L−1 are evaluated in the symmetric
and positive definite case with the explicit use of the computed entries of L but not
vice versa. The latter statement is caused by the fact that the entries of the lower
triangular part of Vs which belong to L are not used to update the upper triangular
part of Vs since they cancel each other out. Generalization of this discussion to the
nonsymmetric case is straightforward.

3. The Nonsymmetric Balanced Incomplete Factorization (NBIF) Al-
gorithm. In this section we introduce the nonsymmetric version of BIF, that we call
Nonsymmetric Balanced Incomplete Factorization (NBIF).

Theorem 2.1 (see also Corollary 2.4 in [12]) shows that the factors U and D
of the LDU factorization of A as well as the inverse factor L−1 can be recovered
from the ISM decomposition of A. To obtain the remaining direct factor L it is
necessary to compute the ISM decomposition of AT . This observation is the key to
generalize the BIF strategy for nonsymmetric matrices. Let us denote by Z̃, Ṽs and
D̃s = diag(r̃1, . . . , r̃n) the factors of the ISM decomposition of AT , that is

s−1I − A−T = s−2Z̃D̃s

−1
Ṽs

T
. (3.1)

The subsequent lemma gives a basis for a substantial modification of the compu-
tation of Vs and Ṽs that changes the dependence of factor entries which we discussed
in the previous section after Remark 2.1.

Lemma 3.1. Consider the computation of vpk for some p < k. The multiplier
lki used in the equation (2.10) for p + 1 ≤ i ≤ k − 1, can be alternatively replaced by
ṽki/di. That is

vpk = s
ṽkp

dk

−

k−1
∑

i=p+1

ṽki

di

vpi.

Proof. The result follows directly from the relation (2.7) applied to the decompo-
sition (3.1).

As a consequence of Lemma 3.1 and equation (2.8) the entries vpk with p < k can
be computed via

vpk = s
akzp

dp

−

k−1
∑

j=p+1

ṽkj

dj

vpj , for p < k, (3.2)

instead of the direct use of (2.1), possibly modified as pointed out by Theorem 2.2.
Note that the modification given in the above lemma significantly changes evalua-

tion of the strict upper triangular part of Vs (and Ṽs). We can see that the computed
factors L and L−1 then do influence each other numerically. That is, entries of L
are directly used to compute L−1 and vice versa. Similarly, the factors U and U−1

influence each other numerically as well in the decomposition (3.1). Let us emphasize
that the entries of the factors and their inverses influence each other in the NBIF
algorithm independently of a chosen dropping strategy. This numerical influence can
be seen graphically in Figure 3.1 that depicts the construction of the column vk. The
fully filled part of Vs and Ṽs are used and not changed in the computation of the first
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Fig. 3.1. Dependency of the entries in the column vk on the other entries of the factors Vs and
Ṽs, which were computed so far as described in the text.

p− 1 components of vk and the grey parts in Vs and Ṽs are used to compute the last
n − p entries. Note that here we do not discuss computation of the diagonal entries.

The improvement given in (3.2) is used in Algorithm 3.1, which computes the
incomplete LDU factorization of a nonsingular matrix via the ISM decomposition,
and gives rise to the Nonsymmetric Balanced Incomplete Factorization (NBIF). The
algorithm is written in MATLAB and includes a generalization of the basic algorithm
considering a diagonal matrix S instead of a single scalar s as a parameter. This
generalization is further discussed in Section 4.

The names of all variables used to compute the ISM factorization of AT end with
a t in the algorithm, in particular, matrix Ṽs is denoted by Vt in Algorithm 3.1.
To compute the upper triangular part of Vs equation (3.2) is used. The first term
of (3.2) is computed in line 40 and the sum term in line 39. The lower triangular part
is computed from the second equation of (2.1) (see line 41). Matrix Ṽs is computed
analogously.

Algorithm 3.1. The nonsymmetric BIF algorithm (NBIF)
function [L, D, U, V, Vt] = nbif(A, S, dropv, withZ, dropz)1

%2

% Input parameters3

% A % input matrix, S % matrix of scaling factors4

% dropv, dropz % drop tolerances for V and Z, respectively5

% withZ 1 if Z is used, 0 otherwise6

%7

% Output parameters8

% L, D, U % LDU factors of A9

10

% Initializations11

n = size(A, 1);12
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if withZ13

Z = eye(n);14

Zt = eye(n);15

end16

V = tril(A’) - diag(S); % Matrix V17

Vt = tril(A) - diag(S); % Matrix Vt18

nrm L = zeros(n,1); % Norms of rows of L19

nrm invL = zeros(n,1); % Norms of rows of inv(L)20

nrm U = zeros(n,1); % Norms of rows of L of A’21

nrm invU = zeros(n,1); % Norms of rows of inv(L) of A’22

D = zeros(n,1); % Matrix D23

Dt = zeros(n,1); % Matrix D of A’24

% Main loop25

for k=1:n26

for i=1:k-1 % Update the k-th column of V and Vt27

if withZ28

mult invU=(A(k,:)*Z(:,i))/(D(i)*S(i));29

mult invL = (A(:,k)’*Zt(:,i))/(Dt(i)*S(i));30

else31

mult invU = (A(k,:)*[-Vt(1:i-1,i)./S(1:i-1); ...32

1.0; zeros(n-i,1)])/(D(i)*S(i));33

mult invL=(A(:,k)’*[-V(1:i-1,i)./S(1:i-1);...34

1.0; zeros(n-i,1)])/(Dt(i)*S(i));35

end36

mult L = Vt(k,i)/(Dt(i)*S(i));37

mult U = V(k,i)/(D(i)*S(i));38

V(1:i-1,k) = V(1:i-1,k) - mult L*V(1:i-1,i); % (3.2)39

V(i,k) = V(i,k) + S(i)*mult invU; % (3.2)40

V(k:n,k)=V(k:n,k) - mult invU*V(k:n,i); % (2.1)41

Vt(1:i-1,k) = Vt(1:i-1,k) - mult U*Vt(1:i-1,i);42

Vt(i,k) = Vt(i,k) + S(i)*mult invL;43

Vt(k:n,k)=Vt(k:n,k) - mult invL*Vt(k:n,i);44

if withZ45

Z(:,k)=Z(:,k)-(V(k,i)/(D(i)*S(i)))*Z(:,i);46

Zt(:,k)=Zt(:,k)-(Vt(k,i)/(Dt(i)*S(i)))*Zt(:,i);47

end48

end49

D(k) = V(k,k)/S(k) + 1.0;50

Dt(k) = Vt(k,k)/S(k) + 1.0;51

nrm invL(k) = sqrt(1.0+norm(V(1:k-1,k)+S(k)*S(k)))/S(k);52

nrm invU(k) = sqrt(1.0+norm(Vt(1:k-1,k)+S(k)*S(k)))/S(k);53

temp = 1.0/(D(k)*D(k)*S(k)*S(k));54

tempt = 1.0/(Dt(k)*Dt(k)*S(k)*S(k));55

nrm L(k+1:n) = nrm L(k+1:n)+temp*V(k+1:n,k).*V(k+1:n,k);56

nrm U(k+1:n) = nrm U(k+1:n)+tempt*Vt(k+1:n,k).*Vt(k+1:n,k);57

nrm L(k) = sqrt(nrm L(k) +1.0);58

nrm U(k) = sqrt(nrm U(k) +1.0);59

% Standard dropping in Z and Zt60

if withZ61
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Z(1:k-1,k) = Z(1:k-1,k).* (abs(Z(1:k-1,k)) > dropz);62

Zt(1:k-1,k) = Zt(1:k-1,k).* (abs(Zt(1:k-1,k)) > dropz);63

end64

% Bollhöfer dropping in V and Vt65

V(1:k-1,k) = V(1:k-1,k) .*((abs(V(1:k-1,k))...66

> dropv./nrm U(1:k-1))); % L --> L^-167

V(k+1:n,k) = V(k+1:n,k) .*((abs(V(k+1:n,k))...68

> dropv*D(k)/nrm invU(k))); % U^-1 --> U69

Vt(1:k-1,k) = Vt(1:k-1,k).*((abs(Vt(1:k-1,k))...70

> dropv./nrm L(1:k-1))); % U --> U^-171

Vt(k+1:n,k) = Vt(k+1:n,k).*((abs(Vt(k+1:n,k))...72

> dropv*D(k)/nrm invL(k))); % L^-1 --> L73

end74

% Results75

D = diag(V)+S;76

Dt = diag(Vt)+S;77

U = (tril(V)+diag(S))/diag(D);78

U = U’;79

L = (tril(Vt)+diag(S))/diag(Dt);80

Observe that Algorithm 3.1 interleaves two processes. One process computes Vs

(lines 39–41), and the other computes Ṽs (lines 42–44). The need to interleave the
processes instead of running them successively is implied by adopting the changes
introduced in Lemma 3.1 and by using the dropping rules in lines 67–73 (see [7, 8, 9]).
Note that this generalization of the BIF algorithm to the nonsymmetric case is similar
to generalizations of other biconjugation-based algorithms to get LDU factorization
or its inverse. For instance while AINV ([3, 4]) runs the processes to compute its
factors successively, straightforward nonsymmetric generalizations of SAINV [1] and
RIF [5] and similar algorithms [10], [28] do interleave the computation.

The dropping which we propose is relative to the norms of the inverses of rows of
the direct factor L and the norms of the inverses of columns of the direct factor U .
This strategy was developed by Bollhöfer and Saad and it is presented in their papers
which we quote here. In particular, it was shown both theoretically (by perturbation
arguments) and experimentally that the preconditioners based on this dropping are
very reliable. A strategy for using these rules in the ISM decomposition was shown
in [12].

Since the ISM factor Z is in exact arithmetic equal to the inverse U−1 of the
LDU factor U , and this factor is embedded in Ṽs it does not seem to be necessary
to compute explicitly the ISM factor Z that can be retrieved from Ṽs (as is done in
lines 32–34 of Algorithm 3.1). The same applies to the factor Z̃. Nevertheless, in
some cases, especially in incomplete decompositions, the rowwise information stored
in Vs can be quite different of that stored in Z due to data structures we use (see [12]
and Section 5). Then it is advisable to compute Z and Z̃ as well. Let us recall that
rowwise storage of Vs contains only a fixed preset number of largest nonzero entries
for each row.

The relation between Z and Vs which was explained above, allows some further
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changes in the computation of Z, as can be seen in the next lemma.
Lemma 3.2. Using the same assumptions and notations of Theorem 2.1, we have

zk = ek −

k−1
∑

i=1

eT
k vi

sri

zi = ek −

k−1
∑

i=1

ỹT
k z̃i

zT
i Azi

zi, (3.3)

Proof. Note first that ỹT
k z̃i = aT

k z̃i for k > i, so for i ≤ k. Connecting (2.7) and

the relation AT Z̃ = UT D, one has vT
i ek = ỹT

k z̃i. If i = k, the last relation follows

directly from (2.1) if we take into account the fact that Vs and Ṽs have the same
diagonal entries, that is, vT

k ek ≡ ṽT
k ek.

Further di = eT
i Azi ≡ zT

i Azi follows from the fact that zk can be expressed
using (2.7) as a sum of eT

k Azk and a linear combination of terms zT
i Azk for i < k.

Since Z is upper triangular and AU is lower triangular, we are done. Then, from (2.1),
relation (3.3) follows.

Formula (3.3) uses entries of Z and Z̃ instead of entries of Vs and Ṽs, and it
reminds the AINV decomposition with diagonal entries modified as in SAINV ([1]).
Even when we do not use the equivalence from this lemma in our codes, we intended
to show that links of NBIF to standard biconjugation techniques are very tight and
future computer implementations may exploit this fact.

Last, but not least, simultaneous computation of both direct and inverse factors
in the presented algorithm can be used in other techniques of computational linear
algebra. Let us mention, for example, its direct use in condition estimators which may
combine estimates based on incrementing the direct factor by a row and the inverse
factor by a column, see [6], [18]. Choosing the best of the two estimates which can be
easily enabled via the BIF or NBIF algorithm is a surprisingly good practical strategy
[19].

4. Choice of the scaling factors. In this section we will discuss the role of
the parameter s that can play a scaling role in the biconjugation. The general ISM
factorization framework is given in [11] as:

A−1
0 − A−1 = A−1

0 ZD−1V T A−1
0 . (4.1)

Instead of A0 = sI as in equation (2.2), we will consider a more general case,
A0 = S, where S is a diagonal matrix, i.e.,

A0 = S = diag(s1, s2, . . . , sn).

Note that in this section we do not use the subscript s in the notation of ISM factors.
First we will relate the ISM factorization (4.1) of A with A0 = S and that of

AS−1 with A0 = I. As can be seen in equations (4.2) and (4.3) some factors remain
unchanged while the factor V is scaled by the matrix S−1. This result can be obtained
by formal multiplication of (4.2) by S from the left and embedding the scaling factor
just in V . However, having no other result related to the uniqueness of the ISM
factorization we give a direct proof.

Theorem 4.1. Let

S−1
− A−1 = S−1ZD−1V T S−1, (4.2)

be the ISM decomposition of A from (4.1) with A0 = S, a nonsingular diagonal matrix,
and yk = (ak−skek)T . Then the ISM decomposition of the matrix AS−1 with A0 = I,
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and yk = (ak − ek)T is

I − (AS−1)−1 = ZD−1(V T S−1). (4.3)

Proof. Let us write

A = S +

n
∑

k=1

ekyT
k , (4.4)

where S = diag(s1, . . . , sn) and yk = (ak−skek)T , then the ISM factors of A from (4.4)
are obtained from the expressions (cf. (2.1))

zk = ek −

k−1
∑

i=1

vT
i S−1ek

ri

zi, vk = yk −

k−1
∑

i=1

yT
k S−1zi

ri

vi, rk = 1 + yT
k S−1zk,

which are the columns of the matrices Z, V and entries of D, respectively. Now
multiplying (4.4) from the right by S−1 we obtain

AS−1 = I +

n
∑

k=1

ek(yT
k S−1)

= I +

n
∑

k=1

ekzT
k , (4.5)

where zT
k = yT

k S−1. Note that

zT
k = yT

k S−1 = (ak
− skek)S−1 = akS−1

− skekS−1 = akS−1
− ek,

since ekS−1 = s−1

k ek. Then from the equation (4.5) we obtain the ISM factorization
of AS−1 with A0 = I using (2.1). Then the columns of the factors and diagonal
entries of the last factorization are computed by

žk = ek −

k−1
∑

i=1

v̌T
i ek

ři

ži, v̌k = zk −

k−1
∑

i=1

zT
k ži

ři

v̌i, řk = 1 + zT
k žk.

To finish the proof we need to verify that Z = Ž, D = Ď and V = SV̌ . We proceed
by induction.

It is clear for k = 1 that z1 = ž1 = e1, and hence that r1 = ř1. On the other
hand v1 = y1 = Sz1 = Sv̌1.

Assume now that for i = 1, 2, . . . , k−1, the relations zi = ži, ri = ři, and vi = Sv̌i,
hold. It is clear that, with these assumptions, the expressions for computing zk and
žk, and to compute rk and řk are equivalent. Moreover

vk = yk −

k−1
∑

i=1

yT
k S−1zi

ri

vi = Szk −

k−1
∑

i=1

zT
k SS−1zi

ri

Sv̌i = S

(

zk −

k−1
∑

i=1

zT
k ži

ři

v̌i

)

= Sv̌k,

and the proof is complete.
The relation between both ISM factorizations of Theorem 4.1 allows the use of

scaling strategies of the matrix A by simple embedding the scaling on the already
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computed entries of factor V . In addition, the entries of the scaling matrix S can
be computed on the fly, according to a particular strategy based on the previous
computed vectors zi and vi and the scalars ri. The scaling may be embedded by adding
a convenient code to compute S(k) immediately after the i loop in Algorithm 3.1.

Further, let us study the relation among factors obtained from two different ISM
decompositions of the same matrix A with different parameters, that is, A0 = I and
A0 = S. One of the relations we are going to prove generalizes equation (3.8) of [11],
(see also the Proposition 3.1 of [12]).

Theorem 4.2. Assume that there exists the ISM factorization of A with A0 = I,
xk = ek and yk = (ak − ek)T . Then there exists the ISM factorization of A with
A0 = S = diag(s1, s2, . . . , sn), xk = ek and yk = (ak − skek)T .

Moreover, if Z, V , D and Ž, V̌ and Ď are the factors of the former and the latter
ISM factorization of A, respectively, then

žij = zijsi/sj (4.6)

v̌ij = vijsi, i < j (4.7)

v̌ij = vij , i > j (4.8)

v̌jj = vjj − sj + 1 (4.9)

řj = rj/sj (4.10)

for i, j = 1, 2, . . . , n.
Proof. We proceed by induction on k, that is, on columns of the matrices. For

k = 1, it is clear that z1 = ž1 = e1, then the equality (4.6) holds for j = 1 and
i = 1, 2, . . . , n. Further, since v1 = (a1 − e1)T , and v̌1 = (a1 − s1e

1)T , then the
equalities (4.8) and (4.9) hold for j = 1. Observe that (4.7) does not apply. Finally,
ř1 = 1 + v̌T

1 S−1e1 = 1 + v̌T
1 e1/s1 = 1 + v̌11/s1 = 1 + (a11 − s1)/s1 = a11/s1, since

v11 = a11 − 1, ř1 = (v11 + 1)/s1 = r1/s1, which proves (4.10) for j = 1.
Let us assume that the relations (4.6)–(4.10) are valid for j = 1, 2, . . . , k − 1,

and the corresponding indices i.
Then, applying the inductive assumption to (4.6), we obtain

žk = ek −

k−1
∑

j=1

v̌T
j S−1ek

řj

žj = ek −

k−1
∑

j=1

v̌T
j ek

skřj

žj

= ek −
1

sk

k−1
∑

j=1

v̌kj

řj

žj = ek −
1

sk

k−1
∑

j=1

vkj

rj/sj

žj ,

where (4.8) was used in the sums since k > j. Now, for l < k using the relation (4.6),
we have

žlk = −
1

sk

k−1
∑

j=1

vkjsj

rj

žlj = −
1

sk

k−1
∑

j=1

vkjsj

rj

sl

sj

zlj = −
sl

sk

k−1
∑

j=1

vkj

rj

zlj =
sl

sk

zlk.

Obviously žkk = 1 = zkk = skzkk/sk, and for l > k one has žlk = zlk = 0 = slzlk/sk.
Consequently, the relation (4.6) holds for j = 1, . . . , k and i = 1, . . . , n.

Now from the equation (4.6) we have that the l-th component of S−1žj is žlj/sl =
zljsl/(sjsl) = zlj/sj , and we have

S−1žj = s−1
j zj.
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Taking into account that y̌k = ak − skek = yk − (1− sk)ek, the expression for the
vectors v̌k becomes

v̌k = y̌k −

k−1
∑

j=1

y̌T
k S−1žj

řj

v̌j = yk + (1 − sk)ek −

k−1
∑

j=1

y̌T
k zj

sj řj

v̌j

= yk + (1 − sk)ek −

k−1
∑

j=1

yT
k zj

rj

v̌j −

k−1
∑

j=1

(1 − sk)eT
k zj

rj

v̌j

= yk + (1 − sk)ek −

k−1
∑

j=1

yT
k zj

rj

v̌j ,

(4.11)

where the latest equality is implied by the relation eT
k zj = 0 for k > j. Consider now

l < k, then, by (4.11) and (2.6)

v̌lk = ylk −

k−1
∑

j=1

yT
k zj

rj

v̌lj = ylk −

k−1
∑

j=1

lkj v̌lj = akl −

l−1
∑

j=1

lkj v̌lj − lklv̌ll −

k−1
∑

j=l+1

lkj v̌lj .

Now from (4.8), (4.9) and (4.7), we have

v̌lk = akl −

l−1
∑

j=1

lkjvlj − lkl(vll − sl + 1) −

k−1
∑

j=l+1

lkjvljsl,

now, applying (2.9) and recalling that s = 1, (2.12) and (2.10) we obtain

v̌lk = akl−

l−1
∑

j=1

lkjvlj−lkl(dl−1−sl+1)−sl

k−1
∑

j=l+1

lkjvlj = lklsl−sl

k−1
∑

j=l+1

lkjvlj = slvlk,

which proves (4.7) for j = 1, . . . , k. Observe that here we have used in the assumption
that (4.7) is clearly true for k = 2. For the k-th diagonal entry, it is clear from (4.11)
that

v̌kk = ykk + (1 − sk) −

k−1
∑

i=1

yT
k zi

ri

v̌ki = (1 − sk) + ykk −

k−1
∑

i=1

yT
k zi

ri

vki = vkk − sk + 1

which proves the relation (4.9) for j = 1, . . . , k. When l > k, from (4.11) it is
straightforward that

v̌lk = ylk −

k−1
∑

i=1

yT
k zi

ri

v̌li = ylk −

k−1
∑

i=1

yT
k zi

ri

vli = vlk.

which proves the relation (4.8) for j = 1, . . . , k. Finally it is clear that

rk = 1 + vkk = 1 + v̌kk + sk − 1 = v̌kk + sk = sk řk.

which proves the relation (4.10) for j = 1, . . . , k, completing the induction.
The latest relation assures the existence of the ISM decomposition of A for A0 =

S, and we are done.
Corollary 4.3. Let Z, V and D the ISM factors of A for A0 = I, and let Ž,

V̌ and Ď the ISM factors of A for A0 = S = diag(s1, s2, . . . , sn), and let A = LDU
the LDU factorization of A. Then

Ž = SZS−1 = (SUS−1)−1, V̌ = UT D − SL−T (4.12)
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Let us emphasize that the second part of (4.12) generalizes that of Theorem 2.1.
This proves that the LDU factorization of A can be retrieved from the ISM factoriza-
tion of A with any nonsingular diagonal S.

Figure 4.1 shows the behavior of the matrix OLM100, an ill-conditioned non-
symmetric matrix from the University of Florida Sparse Matrix Collection [15] for
different values of the scaling parameter s. It illustrates also that in some cases the
behavior of the NBIF algorithm, even without dropping, can be very different when
Z is computed (withZ=1 in Algorithm 3.1, denoted ‘with Z’ in Figure 4.1), and when
Z is not computed (withZ=0 in Algorithm 3.1, denoted ‘without Z’). If differences
between the two options are not negligeable then the computation using Z explicitly
is more accurate than without it. In addition one can see in the figure that the ir-
regularities caused by changes of s are more significant when Z is not computed. For
example, results for s = 103 and s = 10−3 are considerably better than others. Bigger
values of s give poor results in both cases. More research is needed to understand the
role of the parameter s (or in general of S) in the stability of the process.
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Fig. 4.1. Relative error, measured in Frobenius norm, of the LDU factorization of the matrix
OLM100 in function of s, computed with and without Z.

We end this section with a comment on the reliability of the (incomplete) ISM
decomposition with general scaling matrix S.

Theorem 4.4. The (incomplete) ISM process for any diagonal matrix S is
breakdown-free for M and H-matrices.

Proof. The result was stated for the choice A0 = sI in Theorem 3.3 of [13]. The
equation (4.10) shows that it is also true in the more general case A0 = S.

As a consequence, we have that the breakdown-free condition for ISM decompo-
sition with general scaling matrix S is strong non-singularity of the system matrix.
However, note that the factors of the ISM factorization correspond to the shifted ma-
trix A−1

0 −A−1 (see (4.1)), which may be singular. It happens, for instance if A0 = sI,
where s is an eigenvalue of A. Since the matrices Z and D, and A0 are nonsingular,
the ISM factor V must be singular in this case. In fact, its rank is equal to the rank
of A−1

0 − A−1. But, even in this case we can still recover the nonsingular factors of
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the LDU factorization from Vs because of the specific structure of its diagonal.

5. Numerical experiments. In this section we study the numerical perfor-
mance of the enhanced BIF algorithm used as the preconditioner of an iterative
method. We concentrate on solving large nonsymmetric problems using the NBIF
algorithm. Our main goal is to show that the new algorithm is not only of theoret-
ical interest, but it has a potential to be investigated and applied to solve practical
problems. In particular, our numerical experiments point out that the new algorithm
is very robust.

The incomplete NBIF method from Algorithm 3.1 is compared to the ILU decom-
position with inverse-based dropping which we denote here by ILU-ID. In particular,
dropping in ILU with an a priori given dropping parameter is based on the norm
estimation strategy described in [8]. Our implementation of this strategy was made
efficient after a couple of straightforward changes and it uses only two additional vec-
tors for the estimated norms. The factor L is computed by columns and the factor U
by rows. The row and column updates are controlled via the mechanism developed
in [20, 21], see also [23] and [30]. In this way, both NBIF and ILU algorithms ex-
ploit dropping with variable drop tolerances and the comparison then transparently
expresses actual power of algorithms combined with an iterative method without any
additional feature that could bias the comparison. Later, in order to show very high
robustness of the NBIF algorithm also with respect to other ILU techniques, we use
in three tested problems also the ILU(τ) preconditioner with an a priori given drop
tolerance to drop matrix entries and other intermediate quantities with magnitudes
smaller than τ . It is well-known that this algorithm may suffer from strong instabili-
ties and our experiments confirm this. At the same, if ILU(τ) works, it is one of the
best algorithms. Note that, in practice, because of its memory demands, it is often
replaced by the dual threshold ILU decomposition called ILUT [34] with predictable
memory demands and simpler implementation. Both ILU algorithms use memory
reallocation inside the codes.

Initially, we intended to use as other possible competitors the nonsymmetric ver-
sion of the RIF method [5] and the nonsymmetric FSAI method [36]. In contrast to
the SPD case, we found both of these preconditioners very unreliable or costly for
our test problems, and we do not present their results here. Note that while for the
nonsymmetric RIF method we have a fully sparse implementation as explained in
[5], our nonsymmetric FSAI implementation uses dense row subproblems as proposed
in [29].

The implementation of Algorithm 3.1 shares its basic features with the imple-
mentation of BIF described in [12]. Data structures are based on the same principles
and they are used to store the incomplete factors Z and V of the ISM factorization
of A and the corresponding factors Z̃ and Ṽ of AT , at the same time. From them,
the incomplete factors L, D and U used in the preconditioned iterative method are
obtained, as can be seen in the last part of the Algorithm 3.1. Note that the nonzero
entries in these factors are stored by columns. An additional space of size 10 ∗ n is
used to store the factors by rows as well, keeping there only their entries with the
largest magnitudes. Let us emphasize here that we also store the factors Z and Z̃
explicitly since they seem to provide better information on the rows of V and Ṽ used
in the dot products. This fact may be caused by the chosen incomplete representation
in the data structures, but a future floating-point analysis of the complete algorithm
may reveal other important reasons. In practice, overall memory consumption of our
implementation of NBIF is approximately two to three-times of that of the ILU-ID
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Table 1

Test problems

Matrix n nz Application

CHEM MASTER1 40,401 201,201 chemical engineering 2D problem

EPB3 84,617 463,625 thermal problem

POISSON3DB 85,623 2,374,949 computational fluid dynamics

RAJAT20 86,916 604,299 circuit simulation problem

HCIRCUIT 105,676 513,072 circuit simulation problem

TRANS4 116,835 749,800 circuit simulation

CAGE12 130,228 2,032,536 directed weighted graph

FEM 3D THERMAL2 147,900 3,489,300 thermal problem

XENON2 157,464 3,866,668 materials problem

CRASHBASIS 160,000 1,750,416 optimization problem

MAJORBASIS 160,000 1,750,416 optimization problem

STOMACH 213,360 3,021,648 3D model of a duodenum

TORSO3 256,156 4,429,042 3D model of human torso

ASIC 320KS 321,671 1,316,085 circuit simulation problem

LANGUAGE 399,130 1,216,334 directed weighted graph

CAGE13 445,315 7,479,343 directed weighted graph

RAJAT30 643,994 6,175,244 circuit simulation problem

ASIC 680K 682,862 2,638,997 circuit simulation problem

CAGE14 1,505,785 27,130,439 directed weighted graph

algorithm for generating similarly-sized incomplete decompositions. In particular, we
additionally store the factors Z and Z̃ and use the additional space of restricted size to
store V and Ṽ by rows, which is partially compensated by additional vectors needed
for the inverse-based dropping and for keeping track of the columnwise decomposition
of L and rowwise decomposition of U . We are persuaded that this memory consump-
tion is more than compensated for by the results of NBIF presented in this section,
noting that rather sparse preconditioners can be reasonably powerful. In general,
finding a possible combination of data structures for the four involved factors which
would further decrease the memory consumption seems to be an open problem. Note
that in [12] we rarely found differences in the complete factorizations of a large set of
small problems if the appropriate parts of V and Ṽ were used to replace Z and Z̃,
but see also Figure 4.1 which may represent an infrequent case.

The test matrices are shown in Table 1. All of them were taken from the University
of Florida Sparse Matrix Collection [15]. For each matrix we provide its dimension n,
the number of its nonzero entries nz, and its application field as reported in [15].

Each problem was solved by the preconditioned BiCGStab method for a relative
decrease 10−8 of the system backward error, allowing a maximum of 2000 iterations.
This strong criterion was changed to keep some uniformity in the presentation of the
experiments in some cases: the allowed relative decrease was set for the matrices
STOMACH and TORSO3 to 10−3 and to 2 · 10−3 respectively. Note that a specific
feature of comparisons of preconditioned iterative methods for solving large test cases
is that each problem may have completely different final attainable accuracy of the
method, see, e.g., [25].

For the experiments we used an artificial right-hand side b computed as b = Ae,
where e is the vector of all ones. The initial approximation to the solution x was the
vector of all zeros. All the codes developed for the tests were written in Fortran 90,
and have been compiled with Compaq Visual Fortran 6.6c. The computations have
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Table 2

A comparison of the NBIF and ILU-ID preconditioners.

Matrix NBIF ILU-ID
rlsize t p its t it rlsize t p its t it

CHEM MASTER1 0.53 0.22 169 0.73 0.70 0.05 168 0.83
EPB3 0.99 0.72 83 1.20 1.06 0.08 120 1.50
POISSON3DB 0.11 0.69 126 3.48 0.09 0.39 199 5.20
RAJAT20 0.17 0.14 8 0.09 0.15 0.13 9 0.09
HCIRCUIT 0.40 0.14 182 2.56 0.21 0.11 203 2.31
TRANS4 0.45 0.23 3 0.06 0.48 1.13 5 0.09
CAGE12 0.31 0.55 5 0.14 0.35 0.38 9 0.22
FEM 3D THERMAL2 0.06 0.52 20 0.61 0.06 0.43 26 0.80
XENON2 0.05 0.60 539 19.5 0.05 0.44 690 27.1
CRASHBASIS 0.18 0.39 29 0.71 0.20 0.28 14 0.34
MAJORBASIS 0.36 0.73 15 0.42 0.33 0.27 15 0.41
STOMACH 0.07 0.53 20 0.66 0.12 0.42 21 0.67
TORSO3 0.06 0.78 6 0.28 0.07 0.55 6 0.30
ASIC 320KS 0.26 0.47 20 0.94 0.18 0.28 20 0.88
LANGUAGE 0.53 0.70 9 0.55 0.33 0.36 20 1.06
CAGE13 0.06 1.41 6 0.55 0.06 1.05 7 0.61
RAJAT30 0.11 1.56 3 0.34 0.11 1.17 3 0.34
ASIC 680KS 0.36 0.97 5 0.22 0.43 0.59 5 0.55
CAGE14 0.07 12.2 6 2.02 0.07 4.30 8 2.81

been performed using one processor Intel Core2 Q6700 (2.67GHz, 3.24GB RAM).

The problems were initially reordered and scaled by the MC64 code of the HSL
library [27]. We used the option which implements the maximum product transversal
with row and column scalings. This code represents a sparse implementation of the
ideas from [32], see [16], [17] and [2].

Table 2 presents the results obtained with the NBIF and the ILU-ID precondi-
tioners. For each preconditioner we report the ratio between the number of nonzero
entries of the incomplete decomposition and the number of nonzero entries in the sys-
tem matrix. The ratio is denoted by rlsize. Further we show the time to construct
the preconditioner (t p), the number of BiCGStab iterations (its) and the time for the
iterations (t it). The parameters to apply the dropping rules in both preconditioners
were chosen so that the preconditioners have similar size. In this way we can easily
check their relative efficiency, but in general algebraic preconditioning it is not guar-
anteed that if we increase its size by changing its input parameters a more efficient
preconditioner is obtained. It often happens that the dependence of the number of
iterations on the size of the preconditioner is rather erratic, as we also show below,
and such behavior is more likely to be observed when solving nonsymmetric problems.
We are also interested in sparse preconditioners since we believe that only the result-
ing preconditioned iterative methods have most of its potential to be routinely used
for solving large problems. We tend to believe that their future role will be in their
coupling with an appropriate outer, possibly hierarchical, framework and, maybe,
with an additional pivoting. This fact also motivates our interest in robustness of the
algebraic preconditioners.

The results in Table 2 show that the NBIF algorithm is able to produce sparse
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Fig. 5.1. The sizes of NBIF, ILU-ID and ILU(τ) preconditioners (in numbers of their nonzeros)
versus iteration counts of the preconditioned BiCGStab method for the matrix CHEM MASTER1.

preconditioners which are similarly efficient as the ILU-ID preconditioners of similar
size. The time to compute the new preconditioner is larger, but it scales well with
matrix size and it does not seem to be prohibitive, see the comparison of timings in
the SPD case with the timings for the RIF preconditioner in [12]. The NBIF timings
just reflects the fact that we approximate both direct and inverse factors of the system
matrix. At this moment we would like to avoid any strong judgements based on Table
2 but, as we will see later, this standard form of presentation does not tell the whole
story.

The four figures 5.1, 5.2, 5.3 and 5.4 reveal an actual potential of the new ap-
proach. They show a detailed comparison of the NBIF and the two ILU methods by
generating preconditioners of various sizes. In particular, the figures show dependence
of the number of iterations of the preconditioned BiCGStab method on the size of
the preconditioner for the matrices used in our experiments. Note that for denser
decompositions, the behavior of the iterative method preconditioned by ILU(τ) of
CHEM MASTER1 is rather erratic. The solver no longer converges for the sizes be-
tween 220,000 and 470,000, again converges with the number of nonzeros between
470,000 and 755,000 (typically around 200 iterations), and, it finally converges, for
very dense decompositions with the number of nonzeros larger than approximately
5,000,000. For the sizes in between the BiCGStab with ILU(τ) does not converge. The
ILU-ID decomposition is for this matrix very stable and its iteration count further
decreases with the decomposition size. Our implementation of the NBIF method was
not able to generate incomplete decomposition denser than those depicted in Figure
5.1. This is probably caused by the restricted size of data structures for rows of V and
Ṽ and it also restricts its memory demands. In addition, the NBIF method seems to
be perfectly robust over a wide spectrum of decomposition sizes and it is very good
even when it is very sparse.

For the matrix POISSON3DB (see Figure 5.2, ILU-ID decompositions with more
than approximately 250000 nonzero entries are unstable and the preconditioned iter-
ative method does not converge. The iterative method then converges again for very
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Fig. 5.2. The sizes of NBIF, ILU-ID and ILU(τ) preconditioners (in numbers of their nonzeros)
versus iteration counts of the preconditioned BiCGStab method for the matrix POISSON3DB.
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Fig. 5.3. The sizes of NBIF, ILU-ID and ILU(τ) preconditioners (in numbers of their nonzeros)
versus iteration counts of the preconditioned BiCGStab method for the matrix MAJORBASIS.

dense preconditioners with approximately ten-times or more nonzeros having also pro-
hibitive timings. Both ILU methods contrast with the behavior of the new approach
which is very robust. High quality of the NBIF preconditioner is also clear from the
Figure 5.3 where both ILU methods are unstable for decompositions which are denser
than those depicted for the matrix MAJORBASIS. As for the matrix EPB3 on Fig-
ure 5.4, our implementation does not allow to generate the NBIF preconditioner of
larger size, as we discussed above. Its ILU competitors are not unstable, but they are
surpassed for most of the NBIF preconditioner sizes.
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Fig. 5.4. The sizes of NBIF, ILU-ID and ILU(τ) preconditioners (in numbers of their nonzeros)
versus iteration counts of the preconditioned BiCGStab method for the matrix EPB3.

6. Conclusions and future work. In this paper we give a new insight into
the mutual dependence of the direct and inverse factors in the decomposition derived
from the (s−1I − A−1)−1 biconjugation. Based on this dependence, we proposed
improvements in the basic algorithmic scheme of the BIF algorithm, and a nonsym-
metric version called NBIF. The last algorithm uses the entries of the direct factors
to construct their inverses and vice versa even without an explicit connection to a
chosen dropping scheme. In the experimental section, the resulting decomposition is
used as a preconditioner for the BiCGStab iterative method. In spite of the specific
choice of data structures, the new algorithm seems to be very robust and it has the
potential to become a useful tool for the solution of large and sparse linear systems.

Some problems can be considered for a future work. One of the crucial tasks in the
preconditioning is to explore more possibilities for the data structures and dropping.
One way would be to abandon storing Z and Vs by rows completely, and storing them
only by columns. Then fast evaluation of the involved dot products should be solved.
Further, a floating-point analysis of more possible approaches, especially for small
drop tolerances, but also for complete decompositions would be strongly desirable. In
addition the role of the parameter s (or its generalization S) in the stability deserves
a detailed study as well as possible strategies to compute these parameters on the fly.
We believe that the new procedure may be useful also in further applications. For
example, as mentioned above, joint computation of both direct and inverse factors
may be useful for condition estimators. The straightforward columnwise approach
of the BIF and NBIF algorithms may imply sufficiently efficient high-performance
implementations. Our future work will be also concerned with enhancing the basic
scheme by a block, and finally both block and multilevel implementations.
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[18] I. S. Duff and C. Vömel. Incremental norm estimation for dense and sparse matrices. BIT,
42:300–322, 2002.

[19] J. Duintjer Tebbens, 2008. Personal communication.
[20] S. C. Eisenstat, M. C. Gursky, M. H. Schultz, and A. H. Sherman. The Yale Sparse Matrix

Package (YSMP) – II : The non-symmetric codes. Technical Report No. 114, Department
of Computer Science, Yale University, 1977.

[21] S. C. Eisenstat, M. C. Gursky, M. H. Schultz, and A. H. Sherman. Yale Sparse Matrix Package
(YSMP) – I : The symmetric codes. Int. J. Numer. Meth. in Eng., 18:1145–1151, 1982.

[22] L. Fox, H. D. Huskey, and J. H. Wilkinson. Notes on the solution of algebraic linear simultaneous
equations. Quart. J. Mech. and Appl. Math., 1:149–173, 1948.

[23] A. George and J. W. H. Liu. Computer Solution of Large Sparse Positive Definite Systems.
Prentice-Hall, Englewood Cliffs, NJ., 1981.

[24] G. H. Golub and C. F. Van Loan. Matrix Computations. 3rd ed. The Johns Hopkins University
Press, Baltimore and London, 1996.

[25] A. Greenbaum. Estimating the attainable accuracy of recursively computed residual methods.
SIAM J. Matrix Anal. Appl., 18:535–551, 1997.

[26] M. R. Hestenes and E. Stiefel. Methods of conjugate gradients for solving linear systems. J.
Res. Nat. Bur. Standards, 49:409–435, 1952.

[27] HSL, a Collection of Fortran codes for large-scale scientific computation, 2007.
http://www.hsl.rl.ac.uk.

[28] S. A. Kharchenko, L. Yu. Kolotilina, A. A. Nikishin, and A. Yu. Yeremin. A robust AINV-
type method for constructing sparse approximate inverse preconditioners in factored form.
Numer. Linear Algebra Appl., 8(3):165–179, 2001.

[29] L. Yu. Kolotilina and A. Yu. Yeremin. Factorized sparse approximate inverse preconditionings.
I. Theory. SIAM J. Matrix Anal. Appl., 14(1):45–58, 1993.

[30] N. Li, Y. Saad, and E. Chow. Crout versions of ILU for general sparse matrices. SIAM J. Sci.



IMPROVED BALANCED INCOMPLETE FACTORIZATION 23

Comput., 25(2):716–728, 2003.
[31] J. Morris. An escalator process for the solution of linear simultaneous equations. Philos. Mag.,

37:106–120, 1946.
[32] A. Neumaier and M. Olschowka. A new pivoting strategy for Gaussian elimination. Lin. Algebra

Appl., 240:131–151, 1996.
[33] E. W. Purcell. The vector method of solving simultaneous linear equations. J. Math. Phys.,

32:150–153, 1953.
[34] Y. Saad. ILUT: a dual threshold incomplete LU factorization. Numer. Linear Algebra Appl.,

1(4):387–402, 1994.
[35] J. Sherman and W. J. Morrison. Adjustment of an inverse matrix corresponding to a change

in one element of a given matrix. Ann. Math. Stat., 21:124–127, 1950.
[36] A. Yu. Yeremin and A. A. Nikishin. Factorized sparse approximate inverse preconditioning of

linear systems with nonsymmetric matrices. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat.
Inst. Steklov. (POMI), 284(Chisl. Metody i Vopr. Organ. Vychisl. 15):18–35, 269, 2002.

[37] J. F. Yin. A class of preconditioners based on splitting for nonsymmetric system of linear
equations, preprint, 2008.


