
ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA INFORMÁTICA

DEPARTAMENTO DE SISTEMAS INFORMÁTICOS Y COMPUTACIÓN

Optimization Techniques
for Algorithmic Debugging

David Insa Cabrera
Supervised by:

Josep Silva Galiana

A Thesis presented for the degree of

Doctor of Philosophy at the Technical University of Valencia

June 2016

Optimization Techniques
for Algorithmic Debugging

David Insa Cabrera

Supervisor
Josep Silva Galiana Universidad Politécnica de Valencia

Reviewers
Olaf Chitil University of Kent

Narciso Marti Oliet Universidad Complutense de Madrid
Andreas Zeller University of Saarland

Examiners
Maŕıa Alpuente Frasnedo Universidad Politécnica de Valencia
Rafael Caballero Roldán Universidad Complutense de Madrid

Olaf Chitil University of Kent

To mum and dad, because they always
went out of their way to protect and guide us.

Agradecimientos

Cuando terminé la carrera tomé una decisión que cambiaŕıa el rumbo de mi vida, decid́ı convertirme en
doctor. Mucho tiempo ha pasado desde entonces, y no han sido pocas las piedras que me he encontrado
por el camino: algunas noches sin dormir, laberintos de los que no pod́ıa salir, trabajos que no sab́ıa
cómo completar, y montañas y montañas de tareas que nunca se acababan. En definitiva, no sab́ıa
dónde me estaba metiendo. A pesar de todo ello, esta ha sido una gran etapa de mi vida que si volviera
atrás volveŕıa a emprender, donde he aprendido mucho y he madurado como persona. No puedo decir
que lo haya conseguido solo, todo esto se lo debo en gran medida a mucha gente que ha ayudado a que
ahora pueda decir con orgullo soy doctor.

A las primeras personas a las que quiero agradecérselo es a aquellas que siempre han estado ah́ı,
a mis hermanos Javier y Natalia. Con quienes siempre he podido contar, y quienes me han ayudado
cuando he tenido algún problema. Quienes me han sabido dar los mejores consejos y han créıdo en que
pod́ıa llegar a lo más alto. Habéis sido un pilar fundamental en mi vida y os agradezco mucho todo el
apoyo incondicional que me habéis dado.

Una especial mención a quienes me dieron la vida e hicieron que pudiera vivir en este mundo, a
mis padres. Disteis lo mejor de vosotros para aguantarme y soportarme, pero también para enseñarme,
protegerme y guiarme a lo largo de toda mi vida. Siempre habéis procurado lo mejor para nosotros tres,
nos habéis dado buenos consejos, pusisteis vuestro cuerpo y alma en que no nos faltara de nada y en
que nos fuera lo mejor posible. Por eso y mucho más, este libro va dedicado a vosotros.

Gracias también a todas aquellas personas que no han tenido un impacto directo en esta etapa de
mi vida, pero que aún aśı han estado ah́ı durante todo este tiempo. Me refiero a mi familia y amigos.
Siempre me habéis apoyado, os habéis preocupado por cómo iban transcurriendo estos años y no habéis
dudado en echarme una mano cuando ha sido necesario.

Si he realizado este doctorado ha sido gracias a quien me ha aceptado en su grupo de investigación.
Alguien que ha sabido escuchar mis inquietudes y necesidades. Quien ha sabido gestionar los recursos
de los que dispońıamos para que nunca nos faltase nada. Gracias Germán por hacer todo lo posible
para que todos nos sintiéramos parte de esta pequeña familia.

Queŕıa hacer especial mención a una gran persona. Alguien que siempre hizo lo que estuviera en su
mano para enseñarme y guiarme en el mundo de la investigación. Sin su ayuda, hoy en d́ıa no seŕıa el
mismo. Una persona que, por mucho que me duela reconocerlo, es una fuente de inspiración y sabiduŕıa,
a la vez que un gran jefe y amigo. Josep (iusep, iuseppe, iussepe, etc.), queŕıa darte las gracias por
todos estos años que me has dedicado. Me has enseñado a trabajar en equipo, a esforzarme siempre un
poco más y a no rendirme. Durante estos últimos años no solo me has formado como investigador, sino
también como persona. Por cierto, nunca nadie antes me hab́ıa despedido tantas veces, ni tampoco me
hab́ıa intentado asesinar a sangre fŕıa . . .

Durante los primeros años de mi doctorado compart́ı laboratorio con dos compañeros y amigos.
Salvador Tamarit (Tama) y César fuisteis las primeras personas con las que trabajé mano a mano, y con
vosotros descubŕı que un trabajo no tiene por qué ser ni estresante ni aburrido. Gracias por todas las
risas que nos hemos echado durante esos años, pero sobre todo aquellas que nos echamos en reuniones
y conferencias (muchas de ellas a costa de Josep). Ha sido un placer haber compartido con vosotros los

4

5

primeros años de esta dif́ıcil etapa.
A mediados de mi doctorado alguien se infiltró en mi laboratorio, y ni estaba invitada ni se le ped́ıa

que volviese. Sin embargo, d́ıa tras d́ıa ah́ı estaba y, a pesar de ello, tengo algo que decirte. Laura
Titolo (la italiana) gracias por haberme hecho compañ́ıa durante tantos meses. Gracias por amenizar
las jornadas de trabajo con nuestras charlas interminables. Desde que te fuiste siento como si algo faltase
en el laboratorio. Es una pena que nuestros caminos se hayan separado, te deseo lo mejor alĺı donde
vayas.

Adrián y Sergio, fuisteis los últimos en llegar pero no por ello sois menos importantes. Durante las
vacas flacas mucha gente se fue yendo del DSIC y poco a poco fui viendo cómo me quedaba solo en
el laboratorio. Un d́ıa por suerte llegasteis vosotros y le disteis vida de nuevo a estas cuatro paredes.
Gracias por volver a llenar de risas y buen rollo este nuestro laboratorio, y por aquellos descansos (más
bien largos) para ir a tomarnos un café.

Durante mi doctorado hice dos estancias de investigación. La primera de ellas fue en Saarbrücken
(Alemania) donde Andreas Zeller me acogió en el seno de su grupo de investigación. Alĺı trabajé con
Juan Pablo Galeotti (el argentino) que me ayudó mucho durante mi estancia alĺı. No teńıas por qué,
pero ah́ı estuviste cuando lo necesité, muchas gracias.

Mi segunda estancia fue en Londres, en el grupo de Jens Krinke. Tengo que agradecerle el haber
dedicado parte de su tiempo en reunirse y trabajar conmigo, aśı como recomendarme qué hacer en
Londres. También conoćı alĺı a Héctor (el madrileño), quien me ha enseñado y con quien me he pateado
todo Londres. Siempre es de agradecer escuchar una voz amiga tan lejos de tu hogar. Me alegro mucho
de haberte conocido, de haber pasado tres meses charrando y conspirando sobre cómo destruir Londres
desde dentro. Echaré de menos ir a tomarnos cafés d́ıa tras d́ıa. Por cierto, espero que sigas teniendo la
taza que te regalé :). Finalmente dar las gracias a Hanna (pounchus), la mujer más simpática y alegre
que he conocido en mi vida. Me alegraste durante mi estancia y apoyaste durante los tiempos más
dif́ıciles. Gracias por ser como eres y por haber cambiado mi vida a partir de entonces.

También hay doctorandos y nuevas generaciones del grupo ELP de los que no me gustaŕıa olvidarme.
Entre ellos se encuentran Sonia, Marco, Francisco, Fernando Mart́ınez, Fernando Taŕın, Julián, Adolfo,
Antonio, Julia, Ángel, Lidia, Daniel y Santiago. A Santiago lo incluyo porque ha pasado tanto tiempo
entre nosotros que yo lo considero uno más. Chicos, ¡mucho ánimo! sobre todo a los que aún estáis
luchando para terminar el doctorado. Por último, quiero acordarme del resto de profesores del MiST y
ELP, grandes investigadores (cada uno en su campo) que siempre que lo he necesitado me han ayudado
en lo que me hiciera falta.

Abstract

Nowadays, undetected programming bugs produce a waste of billions of dollars per year to private
and public companies and institutions. In spite of this, no significant advances in the debugging area
that help developers along the software development process have been achieved yet. In fact, the same
debugging techniques that were used 20 years ago are still being used now. Along the time, some
alternatives have appeared, but there still is a long way for them to be useful enough to get into the
software development process. One of them is algorithmic debugging, which abstracts the information
the user has to investigate to debug the program, allowing them to focus on what is happening instead
of how it is happening. This abstraction comes at a price: the granularity level of the bugs that can
be detected allows for isolating wrongly implemented functions, but which part of them contains the
bug cannot be found out yet. This thesis focusses on improving algorithmic debugging in many aspects.
Concretely, the main aims of this thesis are to reduce the time the user needs to detect a programming
bug as well as to provide the user with more detailed information about where the bug is located. To
achieve these goals, some techniques have been developed to start the debugging sessions as soon as
possible, to reduce the number of questions the user is going to be asked, and to augment the granularity
level of those bugs that algorithmic debugging can detect, allowing the debugger in this way to keep
looking for bugs even inside functions. As a result of this thesis, three completely new techniques have
been defined, an already existent technique has been improved, and two new algorithmic debugging
search strategies have been defined that improve the already existent ones. Besides these theoretical
results, a fully functional algorithmic debugger has been implemented that contains and supports all
these techniques and strategies. This debugger is written in Java, and it debugs Java code. The election
of this language is justified because it is currently one of the most widely extended and used languages.
Also because it contains an interesting combination of unsolved challenges for algorithmic debugging.
To further increase its usability, the debugger has been later adapted as an Eclipse plugin, so it could be
used by a wider number of users. These two debuggers are publicly available, so any interested person
can access them and continue with the research if they wish so.

6

Resumen

Hoy en d́ıa, los errores no detectados de programación suponen un gasto de miles de millones al año para
las empresas e instituciones públicas y privadas. A pesar de esto, no ha habido ningún avance significativo
en el área de la depuración que ayude a los desarrolladores durante la fase de desarrollo de software. De
hecho, las mismas técnicas de depuración que se utilizaban hace 20 años se siguen utilizando ahora. A lo
largo del tiempo, han surgido algunas alternativas, pero todav́ıa queda un largo camino para que estas
sean lo suficientemente útiles como para abrirse camino en el proceso de desarrollo de software. Una
de ellas es la depuración algoŕıtmica, la cual abstrae la información que el programador debe investigar
para depurar el programa, permitiéndole de este modo centrarse en el qué está ocurriendo en vez de en el
cómo. Esta abstracción tiene un coste: el nivel de granularidad de los errores que pueden detectarse nos
permite como máximo aislar funciones mal implementadas, pero no averiguar qué parte de estas contiene
el error. Esta tesis se centra en mejorar la depuración algoŕıtmica en muchos aspectos. Concretamente,
los principales objetivos de esta tesis son reducir el tiempo que el usuario necesita para detectar un
error de programación aśı como proporcionar información más detallada de dónde se encuentra el error.
Para conseguir estos objetivos, se han desarrollado técnicas para iniciar las sesiones de depuración lo
antes posible, reducir el número de preguntas que se le van a realizar al usuario, y aumentar el nivel
de granularidad de los errores que la depuración algoŕıtmica puede detectar, permitiendo aśı seguir
buscando el error incluso dentro de las funciones. Como resultado de esta tesis, se han definido tres
técnicas completamente nuevas, se ha mejorado una técnica ya existente, y se han definido dos nuevas
estrategias de depuración algoŕıtmica que mejoran las previamente existentes. Además de los resultados
teóricos, también se ha desarrollado un depurador algoŕıtmico completamente funcional que contiene y
respalda todas estas técnicas y estrategias. Este depurador está escrito en Java y depura código Java. La
elección de este lenguaje se justifica debido a que es uno de los lenguajes más ampliamente extendidos
y usados actualmente. También debido a que contiene una combinación interesante de retos todav́ıa
sin resolver para la depuración algoŕıtmica. Para aumentar todav́ıa más su usabilidad, el depurador
ha sido posteriormente adaptado como un plugin de Eclipse, de tal manera que pudiese ser usado por
un número más amplio de usuarios. Estos dos depuradores están públicamente disponibles para que
cualquier persona interesada pueda acceder a ellos y continuar con la investigación si aśı lo deseara.

7

Resum

Hui en dia, els errors no detectats de programació suposen una despesa de milers de milions a l’any per a
les empreses i institucions públiques i privades. Tot i això, no hi ha hagut cap avanç significatiu en l’àrea
de la depuració que ajude als desenvolupadors durant la fase de desenvolupament del programari. De
fet, les mateixes tècniques de depuració que s’utilitzaven fa 20 anys es continuen utilitzant ara. Al llarg
del temps, han sorgit algunes alternatives, però encara queda un llarg camı́ perquè estes siguen prou
útils com per a obrir-se camı́ en el procés de desenvolupament de programari. Una d’elles és la depuració
algoŕıtmica, la qual abstrau la informació que el programador ha d’investigar per a depurar el programa,
permetent-li d’esta manera centrar-se en el què està ocorrent en compte de en el com. Esta abstracció té
un cost: el nivell de granularitat dels errors que poden detectar-se ens permet com a màxim äıllar funcions
mal implementades, però no esbrinar quina part d’estes conté l’error. Esta tesi es centra a millorar la
depuració algoŕıtmica en molts aspectes. Concretament, els principals objectius d’esta tesi són reduir el
temps que l’usuari necessita per a detectar un error de programació aix́ı com proporcionar informació
més detallada d’on es troba l’error. Per a aconseguir estos objectius, s’han desenvolupat tècniques per
a iniciar les sessions de depuració com més prompte millor, reduir el nombre de preguntes que se li
formularan a l’usuari, i augmentar el nivell de granularitat dels errors que la depuració algoŕıtmica pot
detectar, permetent aix́ı continuar buscant l’error inclús dins de les funcions. Com resultat d’esta tesi,
s’han definit tres tècniques completament noves, s’ha millorat una tècnica ja existent, i s’han definit dos
noves estratègies de depuració algoŕıtmica que milloren les prèviament existents. A més dels resultats
teòrics, també s’ha desenvolupat un depurador algoŕıtmic completament funcional que conté i protegix
totes estes tècniques i estratègies. Este depurador està escrit en Java i depura codi Java. L’elecció d’este
llenguatge es justifica pel fet que és un dels llenguatges més àmpliament estesos i usats actualment.
També pel fet que conté una combinació interessant de reptes encara sense resoldre per a la depuració
algoŕıtmica. Per a augmentar encara més la seua usabilitat, el depurador ha sigut posteriorment adaptat
com un plugin d’Eclipse, de tal manera que poguera ser usat per un nombre més ampli d’usuaris. Estos
dos depuradors estan públicament disponibles perquè qualsevol persona interessada puga accedir a ells
i continuar amb la investigació si aix́ı ho desitjara.

8

Contents

Table of Contents 9

List of Figures 12

List of Tables 14

I Introduction 15

1 Preamble 16
1.1 Motivation . 16
1.2 Contributions of the thesis . 18
1.3 Structure of the thesis . 19

2 Debugging Techniques 20
2.1 Trace Debugging . 20
2.2 Omniscient Debugging . 21
2.3 Abstract Diagnosis . 21
2.4 Abstract Debugging . 22
2.5 Delta Debugging . 22

II Foundations 25

3 Algorithmic Debugging from the User’s Perpective 26

4 Preliminary Definitions and Notation 30
4.1 Execution Tree Nodes . 31
4.2 Execution Tree, Marked Execution Tree . 31
4.3 Algorithmic Debugging search strategies . 34

4.3.1 Top-Down strategies . 34
4.3.2 Divide & Query strategies . 34

III Algorithmic Debugging 35

5 Algorithmic Debugging Techniques 36
5.1 Virtual Execution Trees . 36

5.1.1 Introduction . 36
5.1.2 A new architecture for Algorithmic Debugging . 37

9

10 Contents

5.1.3 Implementation . 42
5.2 Balancing Execution Trees . 44

5.2.1 Introduction . 44
5.2.2 Preliminary definitions . 45
5.2.3 Collapsing and projecting nodes . 46
5.2.4 Correctness . 52
5.2.5 Implementation . 54
5.2.6 Related work . 55
5.2.7 Proofs of technical results . 55
5.2.8 Case of study: Mergesort . 58

5.3 Loops to recursion . 62
5.3.1 Introduction . 62
5.3.2 Transforming loops into recursive methods . 65
5.3.3 Treatment of break and continue statements . 73
5.3.4 Handling exceptions . 76
5.3.5 Treatment of recursion and the return and goto statements 78
5.3.6 Implementation as a Java library, optimizations and empirical evaluation 79
5.3.7 Related work . 84
5.3.8 Proofs of technical results . 86

5.4 Loop Expansion . 92
5.4.1 Introduction . 92
5.4.2 Preliminaries . 93
5.4.3 Loop Expansion optimization . 93
5.4.4 Correctness . 94
5.4.5 Related Work . 96

5.5 Tree Compression . 98
5.5.1 Introduction . 98
5.5.2 Preliminaries . 99
5.5.3 Tree Compression Optimization . 99

5.6 Combining Loop Expansion and Tree Compression . 103

6 Algorithmic Debugging Search Strategies 105
6.1 Divide & Query . 105

6.1.1 Shapiro vs Hirunkitty . 105
6.1.2 Limitations of Divide & Query . 106
6.1.3 Divide & Query is not an optimal search strategy 107

6.2 Optimal Divide & Query . 111
6.2.1 Introduction . 111
6.2.2 Preliminary definitions . 112
6.2.3 Debugging METs where all nodes have the same individual weight 112
6.2.4 Debugging METs where nodes can have different individual weights (including zero)116
6.2.5 Debugging METs where nodes can have different individual weights (excluding zero)116
6.2.6 Proofs of technical results . 118

6.3 Implementation of Optimal Divide & Query . 129
6.3.1 Introduction . 129
6.3.2 Optimal Divide & Query . 129
6.3.3 Implementation of Optimal Divide & Query . 130
6.3.4 Standard architecture . 133
6.3.5 Static MET architecture . 133

Contents 11

6.3.6 Dynamic MET architecture . 135
6.4 Divide by Queries . 137

6.4.1 Introduction . 137
6.4.2 Decidability . 137
6.4.3 Valid sequence of questions . 138
6.4.4 Optimal sequence of questions . 139

7 Implementations 142
7.1 Declarative Debugger for Java (DDJ) . 142

7.1.1 Introduction . 142
7.1.2 Tool description . 143
7.1.3 Usage scenario . 146
7.1.4 Tool information . 149

7.2 Hybrid Debugger for Java (HDJ) . 150
7.2.1 Introduction . 150
7.2.2 Debugging techniques . 150
7.2.3 Hybrid Debugging . 151
7.2.4 Implementation and empirical evaluation . 155
7.2.5 Related work . 157

8 Reformulation of Algorithmic Debugging 158
8.1 Some problems identified in current algorithmic debuggers 158
8.2 Paradigm-independent redefinition of Algorithmic Debugging 159

8.2.1 The Execution Tree . 160
8.2.2 The Routine Tree . 163
8.2.3 Search strategies for Algorithmic Debugging . 164
8.2.4 Algorithmic Debugging transformations . 164
8.2.5 An Algorithmic Debugging scheme . 166

8.3 Related work . 167
8.3.1 A little bit of history . 167
8.3.2 Modern implementations . 167

IV Conclusions and Future Work 168

9 Conclusions 169

10 Open Lines of Research 172

Bibliography 174

A Glossary of Acronyms 182

List of Figures

2.1 Timestamps-based scheme to store traces in OD . 21

3.1 Tic-Tac-Toe Java program . 27
3.2 ET associated with the play(game, file) call of the program in Figure 3.1 28
3.3 ET associated with the play(game, file) call of the partially corrected version of the

program in Figure 3.1 . 29

5.1 Architecture of a scalable algorithmic debugger . 38
5.2 Chess Java program . 44
5.3 ET associated with the chess.castling(king, rook) call of the program in Figure 5.2 45
5.4 Balanced ET associated with the chess.castling(king, rook) call in Figure 5.2 45
5.5 Balancing transformations of ETs . 48
5.6 New buggy nodes revealed by the Tree Balancing technique 53
5.7 AD session of Mergesort with DDJ . 59
5.8 EF associated with Mergesort . 60
5.9 Balanced EF associated with Mergesort . 60
5.10 Transformation from a while-loop template to recursion 67
5.11 Transformation from the while-loop to recursion . 69
5.12 Transformation from the do-loop to recursion . 70
5.13 Transformation from the for-loop to recursion . 71
5.14 Transformation from the foreach-loop to recursion (Array version) 72
5.15 Transformation from the foreach-loop to recursion (Iterable version) 73
5.16 Run-time charts that compare loops with recursion . 84
5.17 Matrix Java program . 92
5.18 ETs of the examples in Figure 5.17 (left) and 5.19 (right) 92
5.19 Recursive version of the program in Figure 5.17 . 95
5.20 ET transformation from a loop into a recursive method 95
5.21 Example of Tree Compression . 98
5.22 Negative and positive effects of Tree Compression . 99
5.23 Recursion branch in an ET . 100
5.24 Tree Compression applied to a recursive method . 101

6.1 Behaviour of Divide and Query . 106
6.2 Incompleteness of Divide and Query . 107
6.3 MET with decimal individual weights . 107
6.4 Divide & Query counterexample . 108
6.5 Divide & Query second counterexample . 109
6.6 Divide & Query third counterexample . 110
6.7 Performance of AD search strategies . 111

12

List of Figures 13

6.8 Functions Up and Down of Optimal Divide & Query . 113
6.9 Defining a path in a MET to find the optimal node . 114
6.10 Determining the best node in a MET (four possible cases) 115
6.11 Path to the best node in a MET . 130
6.12 Divide by Queries base cases . 139

7.1 Architecture of DDJ . 144
7.2 Assistant to load a Java program with DDJ . 147
7.3 Question produced by DDJ . 147
7.4 Buggy source code highlighted by DDJ . 148
7.5 Bug located with DDJ . 149
7.6 Hybrid debugging with HDJ . 152
7.7 Integration of HDJ into Eclipse . 153
7.8 Snapshot of HDJ (DDJ perspective) . 154
7.9 Architecture of HDJ . 155
7.10 Information stored in the database by the omniscient debugger 155

8.1 UML model representing the structure of the ET . 160
8.2 AD transformation hierarchy . 165

List of Tables

5.1 Benchmark execution results . 37
5.2 Benchmark results for the Tree Balancing technique . 54
5.3 Taxonomy of the transformations from loops to recursion 66
5.4 Steps for the transformation of the while-loop to recursion 67
5.5 Schema showing the transformation of break and continue statements to recursion 75
5.6 Transformation of exceptions to recursion . 77
5.7 Transformation of recursive methods to recursion . 78
5.8 Transformation of return statements to recursion . 79
5.9 Results comparing iterative and recursive benchmark versions 82
5.10 Experiments applying Loop Expansion and Tree Compression 103

7.1 Benchmark run-time results evaluating JDD and DDJ . 143
7.2 Usage scenario with DDJ . 146
7.3 Comparison of debugging techniques . 150
7.4 Benchmark scalability results . 151
7.5 Benchmark results for OD . 156

14

Part I

Introduction

15

Chapter 1

Preamble

1.1 Motivation

Debugging is one of the most important tasks in the software development process. It is necessary in
all paradigms and programming languages both during the development and during the maintenance of
software systems. In Shapiro’s words [92]:

“It is evident that a computer can neither construct nor debug a program without being told
(...) what problem the program is supposed to solve (...) No matter what language we use
to convey this information, we are bound to make mistakes. Not because we are sloppy and
undisciplined, as advocates of some program development methodologies may say, but because
of a much more fundamental reason: we cannot know, at any finite point in time, all the
consequences of our current assumptions.”

These words describe how arduous programming can become and that no matter how good program-
mers we are, most probably we will have bugs in our programs. In fact, the debugging process is still one
of the most difficult and less automated tasks of software engineering. This is due to the fact that bugs
are usually hidden under complex conditions that only happen after particular interactions of software
components. Programmers cannot consider all possible computations of their pieces of software, and
those unconsidered computations usually produce a bug. In words of Brian Kernighan, the difficulty of
debugging is explained as follows:

“Everyone knows that debugging is twice as hard as writing a program in the first place. So
if you’re as clever as you can be when you write it, how will you ever debug it?”

The Elements of Programming Style, 2nd edition

The problems caused by bugs are highly expensive. Sometimes more than the product development
price. For instance, the NIST report [101] calculated that undetected software bugs produce a cost to the
USA economy of $59 billion per year. Even so, the automatization of debugging is still far from being a
reality. In fact, during many years, Print Debugging (also known as Echo Debugging) has been the most
common method for debugging. Print Debugging allows for easily knowing whether the computation
traverses one specific point. Many bugs can be corrected with this information, and the user (maybe
optimistically) prefers to use this method before starting a real debugger. Nevertheless, some bugs are

16

1.1. Motivation 17

almost impossible to detect with Print Debugging, especially in presence of random values, input, and
concurrency.

Fortunately, all modern programming environments, e.g., Borland JBuilder [6], NetBeans [76],
Eclipse [25], SICStus Prolog SPIDER IDE [93] or ActiveState Komodo [1] include a trace debugger,
which allows users to trace computations step by step starting from a point of the execution specified by
a breakpoint. In a trace debugger, the user must decide where to place the breakpoints and use them to
inspect the values of strategic variables. This process is more difficult in object-oriented programming
because the execution of the code is continuously switching between different objects of the system,
and thus, it is not obvious for the user where the breakpoints should be placed in the code. Between
the point where the effect of a bug is observed, and the point where the bug is located, there can be
hundreds or thousands of lines of code, thus, the user must navigate the computation in order to find
the bug. Ideally, breakpoints should be placed in a way that the inspected amount of code is reduced as
much as possible. Moreover, Trace Debugging is a completely manual task, and the user is in charge of
inspecting the computations of the program at a low abstraction level requiring a deep understanding
of the source code to find the bug. For this reason, other debugging techniques have been proposed to
solve some of these problems, one of them is Algorithmic Debugging.

Algorithmic debugging (AD) [97] is a semi-automatic debugging technique that tries to automate the
problem of inspecting a computation in order to find a bug. The idea behind AD is that the own debugger
selects automatically the places that should be inspected and asks an oracle (normally the user) about
them. The advantage is that the debugger knows a priori the length of the computation, and thus it can
perform a dichotomic search by inspecting the subcomputation located in the middle of the remaining
suspicious area. This allows the debugger to efficiently explore the computation. Moreover, traditionally,
the inspected places are execution of methods and thus, it is easy for the user to decide whether the
result produced by an execution with given arguments is actually correct or not. With the user’s answers
the debugger is able to precisely identify the bug in the source code. Roughly speaking, the debugger
discards those parts of the source code associated with correct computations until it isolates a small
part of the code (usually a function or procedure) that contains the bug. One interesting property of
this technique is that users do not need to see the source code during the debugging sessions, they only
need to know the intended and actual results produced by a computation with given inputs. Therefore,
if we have available a formal specification of the pieces of software that is able to answer the questions,
then the technique is fully automatic.

The most important advantages of AD are its high level of abstraction and its semi-automatic nature
thanks to the use of a data structure called Execution Tree (ET). The ET represents the execution of
the program where each node represents a concrete execution of a method. The main drawbacks of this
technique are:

AD Problem 1: Low scalability. Each ET node needs to record a part of the computation state
(the context before and after the execution of the method). Storing the ET of the whole execution
may be unpractical.

AD Problem 2: Unnecessary work. The search strategy that traverses the ET may ask unnecessary
questions until it reaches the part of the computation that contains the bug.

AD Problem 3: Low granularity. This technique reports a method as buggy, instead of an expres-
sion.

AD Problem 4: Concurrency. Algorithmic Debugging has just met concurrency and an implemen-
tation and a formal definition is currently being developed to support that feature [15].

18 Chapter 1. Preamble

1.2 Contributions of the thesis

In this thesis we have solved some of the previously described drawbacks and made a step forward to
mitigate the other ones. The techniques developed along this thesis, each of which is useful to solve one
of the problems, are the following:

Virtual Execution Trees (Section 5.1) increases the scalability (AD Problem 1) by allowing for stor-
ing the ET into a database and starting the debugging session only within a few seconds. This is
possible because the debugger can start the debugging session before the ET has been constructed.

Tree Balancing (Section 5.2) improves the ET by introducing new nodes into it that reduce the time
needed to debug the program by minimizing the number of questions (AD Problem 2).

Loop Expansion (Section 5.4) uses the loops2recursion library (Section 5.3) to expand the nodes of
the ET that represent loops, thus allowing for increasing the granularity of the technique, being
able to find a bug inside loops (AD Problem 3).

Tree Compression (Section 5.5) removes from the ET the redundant nodes that increase the number
of questions needed to find a bug (AD Problem 2).

Optimal Divide & Query (Section 6.2) improves the original version of Divide & Query by selecting
the optimal node (w.r.t. D&Q strategies) of the ET, and thus reducing the number of questions
the user is asked (AD Problem 2).

Divide by Queries (Section 6.4) defines a new search strategy that selects the optimal node (w.r.t.
the number of questions the user is asked) for any possible ET (AD Problem 2). We describe the
requirements of this strategy, and we provide a naive algorithm that shows that such strategy is
possible.

All the proposed theoretical developments are supported by an implementation that was integrated
into an algorithmic debugger called Declarative Debugger for Java (DDJ). This debugger was later
upgraded to Hybrid Debugger for Java (HDJ). Both of them are open source and publicly available.

DDJ: Declarative Debugger for Java (Section 7.1) An algorithmic debugger that implements all
the techniques exposed before: The Virtual Execution Trees technique, the Tree Balancing tech-
nique, the Loop Expansion technique, the Tree Compression technique, and the Optimal Divide &
Query strategy.

HDJ: Hybrid Debugger for Java (Section 7.2) A hybrid debugger that is composed of three debug-
ging techniques combined in an Eclipse plugin, one of which is DDJ. The three techniques work
together to exploit their strong points while reducing their weakness. The combination of these
debugging techniques increases the scalability of DDJ thanks to the use of the standard debugging
technique of Eclipse (i.e., its Trace Debugger), and the granularity of the errors that are found by
the debugger are reduced to expressions thanks to Omniscient Debugging.

Both implementations are written in the Java imperative language. Nevertheless, all of the techniques
focus on modifying (or generating an improved version of) the ET, thus none of them depends on the
language the ET is constructed from. Therefore, despite the examples used along this thesis are written
in Java, most of our definitions and algorithms are language- and paradigm-independent.

1.3. Structure of the thesis 19

1.3 Structure of the thesis

The thesis is divided in four main parts: Introduction, Foundations, Algorithmic Debugging, and Con-
clusions and future work.

1. The Introduction part explains in Section 1.1 the motivations of this thesis, its contributions in
Section 1.2, and the explanation of other debugging techniques related with Algorithmic Debugging
in Chapter 2.

2. In the Foundations part we explain what Algorithmic Debugging is with explanatory examples,
and we show in Chapter 3 a debugging session from the user’s perspective. Moreover, all sections
of the thesis share the same definitions and notation, which are presented in Chapter 4, to offer
a common vocabulary along the whole thesis. However, the thesis has been organized in such a
way that each section is self-contained, hence any section can be read without following a concrete
order. The explanation of the technique presented in a section may reference some previously
developed techniques, but they are briefly explained at that point, if need be. This allows for
easily consulting a concrete technique because it is not needed to read and understand other
techniques if the reader is interested in only one of them.

3. The Algorithmic Debugging part is divided into four main chapters: techniques, search strategies,
implementations, and reformulation.

• In the techniques chapter (Chapter 5) the five techniques developed during this thesis are
explained: Virtual Execution Trees in Section 5.1, Tree Balancing in Section 5.2, Loops to
recursion in Section 5.3, Loop Expansion in Section 5.4, and Tree Compression in Section 5.5.
In addition, we also provide a study combining Loop Expansion and Tree Compression in
Section 5.6. At the end of each section, we provide the proofs of the technical results associated
with each technique.

• The search strategies chapter recalls the Divide & Query strategy in Section 6.1 and describes
the two new search strategies developed during this thesis: Optimal Divide & Query in
Sections 6.2 and 6.3, and Divide by Queries in Section 6.4. Here again, we provide the proofs
of the technical results associated with the strategies at the end of the sections.

• In the implementations chapter we show the two developed debuggers: DDJ in Section 7.1
and HDJ in Section 7.2.

• Finally, Chapter 8 shows a reformulation of the whole AD technique that, contrarily to the
original formulation, is able to represent all the properties and features that the previous
techniques need. This reformulation can be also used by other AD researchers to define their
own AD, as well as the components that form it (e.g., the ET, the ET nodes, the strategies,
the oracle, etc.).

4. With respect to the Conclusions and future work part, it exposes the conclusions of the thesis in
Chapter 9, and the open lines of work that can be further explored in Chapter 10.

Finally, in Appendix A we provide a glossary of acronyms that helps the reader to easily and quickly
consult and understand a concept when they need it.

Chapter 2

Debugging Techniques

In this chapter we introduce some other debugging techniques related to Algorithmic Debugging. Some
of them have been used in some techniques of this thesis, such as Trace Debugging or Omniscient
Debugging, whereas other are included due to their close relation to Algorithmic Debugging, such as
Abstract Diagnosis, Abstract Debugging, or Delta Debugging.

2.1 Trace Debugging

The most used method for debugging is Trace Debugging (TrD). It allows the user to traverse the trace
of a computation step by step. The user places a breakpoint in a line of the source code and the debugger
stops the computation when this line is reached. Then, the user proceeds line by line and, at each step,
the user can inspect the state of the computation (i.e., value of variables, exceptions, etc.). During the
traversal of the trace, when a call to a method is reached, the user can decide either to enter into the
method (step into) or to skip it (step over). Modern breakpoints are conditional, i.e., the breakpoint
includes conditions about the values of some variables, or about the performed action where they are
defined. For instance, it is possible to define a breakpoint that only stops the computation when an
exception happens, or when a specific class is loaded.

Trace Debugging has one important advantage over other debugging techniques: scalability. The
debugger only needs to take control over the interpreter to normally execute the program. Hence, its
scalability is the same as the one of the interpreter. On the other hand, Trace Debugging has four main
drawbacks:

TrD Problem 1. The whole debugging process is done at a very low abstraction level. The users just
follow the steps of the interpreter, and they need to understand how the value of variables change
to identify an error.

TrD Problem 2. The debugger can generate an overwhelming amount of information.

TrD Problem 3. The debugging process is completely manual. The users use their intuition to place
the breakpoints. If the breakpoint is after the bug, they have to place it before, and restart the
program. If the breakpoint is placed long before the bug, then they have to manually inspect a
big part of the computation.

TrD Problem 4. The inspection of the computation is made forwards, while the natural way of dis-
covering the bug is backwards from the bug symptom.

20

2.2. Omniscient Debugging 21

2.2 Omniscient Debugging

Omniscient debugging [60] (OD) solves the fourth problem of Trace Debugging (TrD Problem 4) with
the cost of sacrificing scalability. Basically, both techniques rely on the use of breakpoints and they
both do exactly the same from a functional point of view. The difference is that Omniscient Debugging
allows the user to trace the computation forwards and backwards (chronologically). This is very useful
because it allows the user to perform steps backwards from the bug symptom. To do this, the debugger
needs a mechanism to reconstruct every state of the computation. One of the most scalable schemas
to do this is depicted in Figure 2.1. In this figure, we have an horizontal line representing an execution
as a sequence of events. Some of these events are method invocations (represented with a white circle),
and method exits (represented with a black circle). Each event is identified with a timestamp. From
the execution, the omniscient debugger stores a variable history record that contains the values of all
variables together with the exact timestamp where each value was updated. The omniscient debugger
also stores information about the scope of variables that we omit here for clarity. With this information
the debugger can reconstruct any state of the computation. For instance, in state 42, value M.N.y did
not exist, and the last value of variables O.x and O.v[3] were 23 and 3, respectively.

Figure 2.1: Timestamps-based scheme to store traces in OD

Being able to reconstruct the complete trace also allows the user to start the execution at any point.
Nevertheless, storing all values that each variable in an execution has taken is usually impossible for
realistic industrial (large) programs, and even for medium sized programs. Thus scalability is very
limited in this technique.

2.3 Abstract Diagnosis

Abstract Diagnosis [21] is a debugging technique that automatically searches and finds bugs in a pro-
gram. First of all the programmer has to write the program as well as an intended semantics (a.k.a.
specification) that defines how the program should work. Then, the code written by the programmer
is given to the technique and, by selecting which part of the code the programmer is interested in, it
automatically uses the abstract interpretation [22] technique to obtain the properties that this part of
the code holds. Finally, these properties are compared against the intended semantics to check whether
the properties violate it. If it does, an error is found in this part of the code.

This technique is very similar to Algorithmic Debugging. The main difference is that in Algorithmic
Debugging the oracle (normally the user) is in charge of comparing the results of a computation with
what they expected. On the contrary, Abstract Diagnosis needs a specification (normally written by

22 Chapter 2. Debugging Techniques

the user) and the own tool is in charge of obtaining the properties the program has and checking them
against the specification.

2.4 Abstract Debugging

Abstract Debugging [7] is a debugging technique based on the Abstract Interpretation technique [22].
Abstract Interpretation infers the possible values that the variables of a program can obtain at any
point of an execution. Abstract Debugging uses this information to automatically debug a program.
First of all a set of assertions has to be inserted into the source code. These assertions are normally
introduced by the user and are considered to be conditions that some variables have to fulfil at the point
where the assertion is introduced, otherwise the program does not work as expected by the programmer
and an error is manifested. Two possible types of assertions exist depending on how many times the
conditions have to be fulfilled: invariant assertion, which are conditions that have to be always held;
and intermittent assertions, which are conditions that have to be eventually held. Hence, the debugging
technique only has to use abstract interpretation to determine whether these conditions are fulfilled in
all possible executions of the program. Let us see how the debugging technique works in the following
example:

Example 2.4.1 Consider the following Java code:

(1) in t [] numbers = { 1 , 2 , 3 , 4 , 5 } ;
(2) for (in t i = 0 ; i < 5 ; i++)
(3) {

∗ // a s s e r t (0 <= i < numbers . l e n g t h)
(4) in t number = numbers [i] ;
(5) System . out . p r i n t l n (number) ;
(6) }

Here the user has introduced an assertion (showed in the code with *) indicating that 0 ≤ i <
numbers.length to ensure that the program cannot throw an IndexOutOfBoundException exception at
run-time. Imagine that some time in the future a developer decides to replace line (1) with:

in t [] numbers = { 1 , 2 , 3 , 4 }

At that point, the debugger would automatically detect that the invariant is violated due to the possibility
that the i variable contains the value 4, which would violate the assertion 0 ≤ i < numbers.length
because numbers.length would value 4.

2.5 Delta Debugging

Delta Debugging [105] is a debugging technique used to detect the part of the program that makes it
crash. This is done by inspecting the differences (the deltas) from one correct program against its new
release that does not work properly. If these deltas can be automatically detected, then this technique
automatically finds which is the single or combination of deltas that produce the bug. The idea behind
this theory is that if we have a code with an error and a set of deltas added after the last correct code,
we can use delta debugging to incrementally remove those deltas from the buggy code until the code
works again properly, thus detecting which deltas produce the bug. These deltas are not removed by the
technique one by one, but using combinations of deltas that are called configurations. The algorithm
of the technique assumes an initial working configuration composed of all the deltas, and this working
configuration is modified as soon as a subconfiguration of the working configuration is proved to not
produce the bug. The algorithm finishes when no subconfiguration can be removed. Let us show the
technique in the following example:

2.5. Delta Debugging 23

Example 2.5.1 Consider the next HTML code in which each delta (a new line in the code) is associated
with an identifier on the left. Note that we have used lines as deltas, another option would be to use
elements or even characters.

<html>

<head>

d1) <title>David Insa Cabrera</title>

d2) <base href="http://www.dsic.upv.es/~dinsa/">

</head>

<body>

<div id="global">

<div id="header">

d3)

d4) <div id="author">David Insa Cabrera</div>

</div>

<div id="navigation">

d5) <div id="icon"><ing src="resources/icons/menu/home.png" alt=""></div>

<li class="home selected">Home

<li class="research">Research

<li class="publications">Publications

<li class="visited_places">Visited places

d6) <li class="contact">Contact

</div>

<div id="footer">Last update: November 04, 2015</div>

</div>

</body>

</html>

The following table would correspond to a delta debugging session where each dx is associated with
the delta of the same identifier in the HTML code. Each dx in a cell of the delta columns means that the
associated line is kept in the HTML code whereas − means that this delta has been discarded of having
the blame. Finally, a × in the result column means that the bug still happens using this configuration
whereas Xmeans that this configuration does not produce the bug. Note that the configuration is marked
with × when the same bug is found, in fact when a different bug is found this configuration is also
marked with X.1

Test
Configuration

Result
d1 d2 d3 d4 d5 d6

Test 1 d1 d2 d3 d4 d5 d6 ×
Test 2 d1 d2 d3 X
Test 3 d4 d5 d6 ×
Test 4 − − − d4 d5 ×
Test 5 − − − d4 − X
Test 6 − − − d5 − ×
Bug − − − − d5 −

In the table we can see that after checking there exists a bug using the initial configuration (Test 1),
delta debugging uses a subconfiguration to try to check whether the bug is produced by one of the deltas
of that subconfiguration. These subconfigurations are initially composed of the first half of the working
configuration (Test 2) and then, after checking that the bug does not happen, by the second half (Test 3).
Note that each time the configuration of the test has produced a × result, the deltas that do not belong
to that configuration are discarded, so they cannot have the blame of producing the bug. Hence, after
checking that Test 3 produces the bug, only all its deltas are considered again in the rest of the process.
Here again, the first half of the working configuration is checked (Test 4) and, because it produces the

1When the current configuration produces a code that cannot be used to check whether the bug still happens (e.g., the
code cannot be compiled) the result of the test is ? and it is treated as X.

24 Chapter 2. Debugging Techniques

bug, d6 is discarded from having the blame. The same process is repeated in Test 5, but in this case
the test passed. Hence the second half of the working configuration is checked (Test 6). Finally, delta
debugging finds the bug in the deltas of the configuration of Test 6 (i.e., the bug is produced when d5 is
in the HTML code). Note that the bug is produced because the img element has been wrongly typed as
ing.

Part II

Foundations

25

Chapter 3

Algorithmic Debugging from the User’s Perpective

Algorithmic debugging (AD) [92] is a semi-automatic debugging technique that has been extended to
practically all paradigms [95, 97]. The technique is based on the external oracle’s answers (typically
the user) to a series of questions automatically generated by the algorithmic debugger. The questions
are always whether the result of the execution of a method with given input values is actually correct.
Therefore, the user only needs to know what a function is supposed to do (instead of how) in order
to debug it. The user’s answers provide the debugger with information about the correctness of some
(sub)computations of a given program; and the debugger uses them to guide the search for the bug until
a buggy portion of code is isolated.

Example 3.0.1 Consider the Java program in Figure 3.1 that simulates Tic-Tac-Toe games. The
Replay class reads from a file a new game and it reproduces the game using a TicTacToe object. This
program is buggy (it contains two bugs), and thus it does not produce the expected marks on the board.

Each AD session can identify one single bug, therefore we need to perform two sessions to find both
bugs. A first AD session for this program is shown below, where boards are represented with a picture
for clarity (e.g., considering that the null character in Java is ‘\u0000’ and that we represent it with

‘’, then {{O,‘’,‘’}{X,‘’,‘’}{‘’,‘’,‘’}} is represented with). For the time being ignore the Node

column:

Starting Debugging Session...

Node Initial context Method call Final context Answer

(2) [turn=‘X’,board=] game.mark(‘X’,0,0) [turn=‘O’,board=] ? YES

(7) [turn=‘O’,board=] game.mark(‘O’,0,1) [turn=‘’, board=] ? NO

(8) [turn=‘X’,board=] game.win(0,1)=true [turn=‘X’,board=] ? NO

(9) equals(‘X’,‘’,‘’)=false ? YES

(10) equals(‘’,‘’,‘’)=true ? YES

Bug located in method: win(int row, int col) of the TicTacToe class

Note that the debugger generates questions, and the user only has to answer the questions with YES or
NO. It is not even necessary to see the source code. Each question is about an execution of a particular
method, and the user answers YES if the execution is correct (i.e., the output and the final context are
correct) and NO otherwise.

26

27

public class Replay {
public stat ic void main (St r ing [] a rgs) throws IOException {

TicTacToe game = new TicTacToe () ;
Fi leReader f i l e = new Fi leReader (” . / game . r ec ”) ;
play (game , f i l e) ;

}
private stat ic void play (TicTacToe game , Fi leReader f i l e) throws IOException {

BufferedReader br = new BufferedReader (f i l e) ;
S t r ing l i n e = br . readLine () ;
while ((l i n e = br . readLine ()) != null) {

char p laye r = l i n e a . charAt (0) ;
int row = In t eg e r . pa r s e In t (l i n e . charAt (2) + ””) ;
int c o l = In t eg e r . pa r s e In t (l i n e . charAt (4) + ””) ;
game . mark (player , row , c o l) ;

}
}

}

public class TicTacToe {
private stat ic boolean equa l s (char c1 , char c2 , char c3) {

return c1 == c2 && c2 == c3 ;
}

private char turn = ’X ’ ;
private char [] [] board = new char [3] [3] ;

public void mark(char player , int row , int c o l) {
i f (turn == ’ \u0000 ’ | | turn != p laye r

| | row < 0 | | row > 2 | | c o l < 0 | | row > 2
| | board [row] [c o l] != ’ \u0000 ’)
return ;

board [c o l] [row] = p layer ; // Bug ! ! Wrong po s i t i o n
// Correct : board [row] [c o l] = p laye r ;
turn = turn == ’X ’ ? ’O’ : ’X ’ ;
i f (win (row , c o l))

turn = ’ \u0000 ’ ;
}
private boolean win (int row , int c o l) {

// Bug ! ! Didn ’ t check whether the input po s i t i o n i s empty
// Correct : i f (board [row] [c o l] == ’\ u0000 ’) r e turn f a l s e ;
i f (equa l s (board [row] [0] , board [row] [1] , board [row] [2]))

return true ;
i f (equa l s (board [0] [c o l] , board [1] [c o l] , board [2] [c o l]))

return true ;
i f (c o l == row && equa l s (board [0] [0] , board [1] [1] , board [2] [2]))

return true ;
i f (c o l + row == 2 && equa l s (board [0] [2] , board [1] [1] , board [2] [0]))

return true ;
return fa l se ;

}
}

Figure 3.1: Tic-Tac-Toe Java program

At the end, the debugger points out the part of the code that contains the bug. In this case, the TicTac-
Toe.win method is wrong. This method checks whether three adjacent positions of the board are equal
and if so, it returns true. This is correct if the three positions contain either ‘X’ or ‘O’; but it is wrong
if the three positions are empty. This error can be easily corrected by checking that the value of the input
position is not null (i.e., adding at the beginning of the TicTacToe.win method the following sentence:
if (board[row][col] == ‘\u0000’) return false;).

Traditionally, AD is a two-phase process: (1) The construction of a data structure —the so-called
Execution Tree (ET) [78]— representing the execution of the program including all subcomputations;
and (2) the exploration of the ET with a given search strategy to ask questions and process the user’s
answers to locate the bug.

In the object-oriented paradigm the ET is constructed as follows: The root node is (usually) the

28 Chapter 3. Algorithmic Debugging from the User’s Perpective

main function of the program; for each node n with associated method m, and for each execution of a
method triggered from the definition of m, a new node is recursively added to the ET as a child of n.
Each node of the ET contains an equation that consists of an execution of a method with completely
evaluated arguments and results. The node also contains additional information about the context of
the method before and after its execution (values of attributes and global variables in the scope of the
method).

Example 3.0.2 Consider again the Java program in Figure 3.1. Figure 3.2 depicts the portion of the
ET associated with the execution of the play(game, file) method using game.rec as the input file.
Each node contains:

• A string representing the method call (including input and output) depicted at the top of each node.

• The variables (and their values) in the scope at the beginning and at the end of the execution of
the method. When the value of a variable is modified during the execution of the method, the node
contains both values on the left and on the right of the node, respectively. When the variable is not
modified, it is shown only once in the middle of the node.

Figure 3.2: ET associated with the play(game, file) call of the program in Figure 3.1

Once the ET is built, in the second phase, the technique produces a dialogue between the debugger
and the user to find bugs. This dialogue corresponds to questions about the information stored inside the
nodes that the user has to answer with either YES or NO. For instance, each question in the debugging
session of Example 3.0.1 corresponds to a node (see the Node column) of the ET in Figure 3.2. These
nodes have been selected using the Divide & Query strategy [92]. Essentially, the answers rely on the
programmer having an intended interpretation of the program. In other words, some computations of

29

the program are correct and others are wrong with respect to the programmer’s intended semantics.
Therefore, algorithmic debuggers compare the results of subcomputations with what the programmer
intended. After every answer, the algorithmic debugger uses this comparison to mark some nodes of the
ET as correct or wrong. When all the children (if any) of a wrong node are correct, the node becomes
buggy and the debugger locates the bug in the part of the program associated with this node [64].
Hence, by asking the user questions or using a formal specification, the system can precisely identify the
location of a bug.

Figure 3.3: ET associated with the play(game, file) call of the partially corrected version of the
program in Figure 3.1

Example 3.0.3 After correcting the bug located in Example 3.0.1, the program still produces an incor-
rect result. In Figure 3.3 we see the produced ET obtained by executing the partially corrected code. The
AD session using the partially corrected program is the following:

Starting Debugging Session...

Node Initial context Method call Final context Answer

(2) [turn=‘X’,board=] game.mark(‘X’,0,0) [turn=‘O’,board=] ? YES

(7) [turn=‘O’,board=] game.mark(‘O’,0,1) [turn=‘X’,board=] ? NO

(8) [turn=‘X’,board=] game.win(0,1)=false [turn=‘X’,board=] ? YES

Bug located in method: mark(char player, int row, int col) of the TicTacToe class

The debugger points out the part of the code that contains the bug. In this case, board[col][row] =

player should be board[row][col] = player.

Chapter 4

Preliminary Definitions and Notation

Along this thesis, the term debugging is used to refer to the phase in the software development process
in charge of finding and correcting bugs. However, Algorithmic Debugging (AD), despite what its name
implies, does not actually debug bugs, but it just detects them. In particular, AD defines how to find
bugs, but the action of correcting them corresponds ultimately to the users. Hence, we classify AD
as a debugging technique whose goal is to detect bugs. We also need to clearly state what a bug is,
and thus, in the rest of the thesis, a bug is considered as any portion of code that does not produce the
programmer’s expected behaviour. This definition includes:

1. Those codes whose execution produces a wrong result. In AD, this means that the right-hand-side
of the generated question is wrong.

2. Those codes whose execution produces an incomplete result. In AD, this means that some answers
or results are missing on the right-hand-side of the generated question.

3. Those codes whose execution is inefficient (compared with what the programmer intended). AD
cannot detect this kind of bugs.

Note that, according to the definition, a code that is fundamentally slow does not necessarily contain
a bug, because there exist algorithms that cannot be executed in an efficient way or in a practical time.
This is the case for instance of the algorithms that calculate the π number. It does not matter how
the algorithm is implemented, the time that is needed to obtain the π number is beyond the current
state of the art (mainly because it is supposed to be a number with infinite decimals). Hence, those
algorithms that calculate the π number cannot be classified as buggy just because they do not obtain it
in a practical time. Only those algorithms that do not perform what it is expected from them should
be considered as buggy.

Because bugs of type 3 are not detectable by AD, they are not considered in the techniques proposed
in this thesis, which only try to detect bugs of types 1 and 2. For further information about bugs of
type 2 (missing results), which are more related with logic programming and non-deterministic systems,
we refer the interested reader to specific works such as [89, 11, 87]), which will provide more detailed
explanations and examples about how to treat them.

In the rest of this chapter we provide the definitions and notations of AD used along the whole thesis.
Specifically, we provide a general and complete definition of Nodes and Execution Trees (ET), and we
show and explain the most used search strategies of AD in the literature. More concrete definitions
of each component may be provided at the beginning of each technique proposed along the thesis, if

30

4.1. Execution Tree Nodes 31

need be. For the sake of concreteness, we use along the whole thesis the Java language as the basis of
the definition of ETs and to show examples of AD. AD was introduced in the logic paradigm and later
extended to the functional and imperative paradigm via a sightly adaptation of the ET, but, once the
ET is constructed, the technique behaves in the same way for all paradigms.

4.1 Execution Tree Nodes

In this section we show how the information of the execution of the program is stored in the nodes of a
tree that represents that computation. To do this, we previously need to formally define the notion of
context.

Definition 4.1.1 (Context) Let P be a program, and X the execution of a method in P. The context
of X at a particular instant t is {(a, v) | a is a variable in the scope of X at instant t and v is the value
of a}.

Roughly, the context of a method at a particular instant of its execution is composed of all the
variables of the program that are visible at this point. Clearly, a variable of a context can be an object
that in turn contains other variables. In a realistic program, each node contains several data structures
that could change during the execution. The context at the beginning and at the end of the execution
of the method should be visualized together with the call to the method, so that the user can decide
whether the execution of the method computes the expected result.

Definition 4.1.2 (Method Execution) Let P be a program and X an execution of P. Then, we call
to each execution of a method performed along X as method execution and it is represented with a triple
E = (b,m, e) where m represents the call to the method with its arguments and the returned value, b is
the context of the method in m at the beginning of its execution, and e is the context of the method in
m at the end of its execution.

Note that both contexts, b and e, include those variables in the scope of the method but not used
along its execution; because the bug could be produced by not updating a variable that should be
updated. Method executions are the questions asked by the debugger. For instance, a method execution
E = (b,m, e) can correspond to a question along the lines of: Should the execution of m within the b
context produce the e context?, or m produced e from b, is that correct?. The user’s answer can be either
YES (to denote that this computation is correct) or NO (to denote that the computation is wrong).1

4.2 Execution Tree, Marked Execution Tree

Thanks to the declarative properties of AD, we can ignore the operational details of an execution. From
the point of view of the debugger, an execution is a finite tree where each node represents a method
execution. This can be modeled with the following grammar:

T = (b,m[L], e) L = ε L = TL

where the terminal m is a method of the program and b and e represent the context at the beginning
and at the end of the execution of the method.

Roughly speaking, an ET is a tree whose nodes represent method executions and the parent-child
relation is defined by the tree produced by the grammar. Formally,

1For the sake of concreteness, we ignore other possible answers such as “I don’t know” or “I trust this function”. They
are accepted in our implementation, but we refer the interested reader to [95] for theoretical implications of their use.

32 Chapter 4. Preliminary Definitions and Notation

Definition 4.2.1 (Execution Tree) Given a program P and a method execution E, the execution tree
(ET) of P with respect to E is a tree T = (N,E) where ∀n ∈ N, n is a method execution, and

• The root of the ET is E.

• For each pair of method executions E1, E2 ∈ N , we have that (E1 → E2) ∈ E iff

1. from the instant when E1 starts until the instant it ends, E2 starts, and

2. from the instant when E1 starts until the instant when E2 starts, there does not exist a method
execution E3 such that E3 has started but not ended.

Note that we use (n → n′) to denote a directed edge from n to n′. In the following we use E+ to
refer to the transitive closure of E, and E∗ for the reflexive and transitive closure. Moreover, we say
that the weight of a node is the number of nodes contained in the tree rooted at this node. We refer to
the weight of a node n as wn.

Because the ET is modified along the debugging session due to the user’s answers, we also define
what a marked execution tree is. Basically, it is an ET where some nodes have been marked as correct
(i.e., answered YES), some nodes have been marked as wrong (i.e., answered NO), and the correctness
of the other nodes is undefined.

Definition 4.2.2 (Marked Execution Tree) A marked execution tree (MET) is a tree T = (N,E,M)
where N are the nodes, E ⊆ N × N are the edges, and M : N → V is a marking total function that
assigns to each node in N a value in the domain V = {Correct ,Wrong ,Undefined}.

Along the thesis we will use either ETs or METs depending on whether or not the marking of the
tree is relevant for the proposed technique.

On the practical side, some AD implementations do not keep the whole tree, but they remove from
the tree those nodes than cannot contain the bug. In these implementations, all nodes in the MET are
initially marked as Undefined . But with every user’s answer, a new MET is produced. Concretely, given
a MET T = (N,E,M) and a node n ∈ N , the user’s answer to the question in n produces a new MET
similar to the previous one where:

• if the answer is YES, then this node and its subtree are removed from the new MET.

• If the answer is NO, then all the nodes in the new MET are removed except this node and its
descendants.

Note that, in the new recalculated MET the root is the only node that can be marked as Wrong .
Moreover, the rest of nodes can only be marked as Undefined because when the answer is YES, the
associated subtree is deleted from the MET.

Despite algorithmic debuggers normally implement the recalculated MET version, both of them
represent and provide the same information, so any of them can be used without loss of precision. In
fact, in our implementation we use the MET of Definition 4.2.2 allowing for undoing modifications
made in the tree, but along this thesis we use the recalculated MET version due to its intuitiveness and
simplicity while proving theorems. From here on, when we refer to the MET, we are actually referring
to the recalculated version.

Note that the size of the MET is gradually reduced with each answer. If we delete all nodes in the
MET, then the debugger concludes that no bug has been found. If, contrarily, we finish with a MET
composed of a single node marked as wrong, this node is called the buggy node and it is identified as the
one responsible for a bug in the program. All this process is defined in Algorithm 1 where the selectNode
function selects a node in the MET the user will be asked about using the askNode function.

4.2. Execution Tree, Marked Execution Tree 33

Algorithm 1 General algorithm for AD

Input: A MET T = (N,E,M)
Output: A buggy node or ⊥ if no buggy node is detected
Preconditions: ∀n ∈ N,M(n) = Undefined
Initialization: buggyNode = ⊥

begin
1) while (∃n ∈ N,M(n) = Undefined)
2) node = selectNode(T)
3) answer = askNode(node)
4) if (answer = Wrong) then
5) M(node) = Wrong
6) buggyNode = node
7) N = {n ∈ N | (node → n) ∈ E∗}
8) else
9) N = N\{n ∈ N | (node → n) ∈ E∗}

10) end if
11) E = {(n→ n′) ∈ E | n, n′ ∈ N}
12) end while
13) return buggyNode
end

Algorithm 1 keeps asking the user questions until a buggy node is found. This node is easily detected
because Algorithm 1 only has to find in the initial ET a node that computes a wrong result whereas its
children (if any) do not.

Definition 4.2.3 (Buggy node) Given a MET T = (N,E,M), a buggy node of T is a node n ∈ N
such that:

• M(n) = Wrong, and

• ∀n′ ∈ N , (n→ n′) ∈ E, M(n′) = Correct.

Note that Definition 4.2.3 stands for both MET versions we have provided. In the version of Def-
inition 4.2.2 the children of a buggy node are kept in the MET and are marked as Correct , whereas
in the recalculated MET these children have been removed from the MET (so the second condition of
Definition 4.2.3 is also satisfied).

According to Definition 4.2.3, when all the children of a node with a wrong computation (if any) are
correct, the node becomes buggy and the debugger locates a bug in the part of the program associated
with this node [64]. A buggy node detects a buggy method, which informally stands for methods that
may compute an incorrect context even though all the method executions performed by them are correct.

This finally takes us to the main properties of AD: its correctness and completeness. These properties
show that, when a bug symptom is detected, AD is useful to find a bug.

Theorem 4.2.4 (Correctness of AD [64]) Given an ET with a buggy node n, the method associated
with n contains a bug.

Theorem 4.2.5 (Completeness of AD [92]) Given an ET with a bug symptom (i.e., the root is
associated with a method with a wrong final context), provided that all the questions generated by the
debugger are correctly answered, then, a bug will eventually be found.

34 Chapter 4. Preliminary Definitions and Notation

4.3 Algorithmic Debugging search strategies

AD search strategies are functions that select from a MET which is the next node the user will be asked
about. There exist a lot of AD search strategies in the literature, but almost all of them can be classified
into two main groups: Top-Down and Divide & Query. In this section we show the four most used search
strategies nowadays and we refer the interested reader to [97] to see more variants of Top-Down search
[69, 24], variants of Divide & Query search [44], some others [68, 97], and a comparison of all search
strategies defined so far.

4.3.1 Top-Down strategies

Due to the fact that questions are asked in a logical order (i.e., consecutive questions refer to related
parts of the computation), Top-Down is the search strategy that has been traditionally used (see, e.g.,
[10, 12, 58]) to measure the performance of different debugging tools and methods. The first version of
Top-Down was created by Shapiro [92] and it is called Top-Down Left-to-right. It basically consists of
a top-down (assuming that the root is at the top) left-to-right traversal of the ET. When the answer to
the question of a node is NO, then the next question is associated with the leftmost non-marked node
of its children. When the answer is YES, the next question is associated with the leftmost non-marked
node of its siblings. Therefore, the asked node is always a child or a sibling of the previously asked node.
Hence, the idea is to follow the path of wrong computations from the root of the tree to the buggy node.

However, selecting always the leftmost child does not take into account the size of the subtrees that
can be explored. Binks proposed in [5] a new Top-Down search in order to consider this information
when selecting a node. This variant is called Heaviest First because it always selects the child or sibling
(depending on the answer) with the biggest subtree. The objective is to avoid selecting small subtrees
that have a lower probability of containing a bug.

4.3.2 Divide & Query strategies

Another important search strategy is Divide & Query (D&Q) [92], which always selects the node whose
size of its subtree is the closest to half the size of the whole tree. If the answer is YES, this node (and
its subtree) is pruned. If the answer is NO, the search continues only in the subtree rooted at this node.
This search strategy asks, in general, fewer questions than Top-Down searches because it prunes near
the half of the tree with every question. Therefore, D&Q has a O(n ∗ log n) cost with respect to the
number of questions being n the number of nodes of the ET. However, it has the drawback that the
selected questions depend on the size of the tree instead of depending on the previous questions, and
thus the questions may not be highly related to the previous ones causing the user to lose the general
view of the computation being debugged.

The main objective of D&Q is to simulate a dichotomic search by selecting the node that better
divides the MET into two subMETs with a weight as similar as possible. Therefore, given a MET with
n remaining nodes, D&Q searches for the node whose weight is closer to n

2
. The original algorithm by

Shapiro [92] always selects:

• the heaviest node n′ whose weight is as close as possible to n
2

with wn′ ≤ n
2

Hirunkitti and Hogger noted that this is not enough to divide the MET in half and their improved
version [44] always selects the node whose weight is closer to n

2
between:

• the heaviest node n′ whose weight is as close as possible to n
2

with wn′ ≤ n
2
, or

• the lightest node n′ whose weight is as close as possible to n
2

with wn′ ≥ n
2

Part III

Algorithmic Debugging

35

Chapter 5

Algorithmic Debugging Techniques

In this chapter we introduce the four techniques developed along this thesis, namely: Virtual Execution
Trees, Balancing Trees, Loop Expansion, and Tree Compression. The Loop Expansion technique requires
the loops2recursion library that has also been implemented from scratch and explained in Section 5.3.
In addition, Loop Expansion and Tree Compression are two independent techniques that can be easily
combined to obtain better results. Therefore, in Section 5.6 we evaluate the improvement obtained by
using both techniques at the same time.

5.1 Virtual Execution Trees

5.1.1 Introduction

Algorithmic Debugging (AD) is based on a data structure called Execution Tree (ET) (see Chapter 4
for the conventional definition and explanation of ETs, and see Chapter 8 for a redefinition and gen-
eralization of ETs). Unfortunately, with realistic programs, the ET may be huge (indeed in gigabytes)
and this is the main drawback of this debugging technique, because the lack of scalability has not been
solved yet: If ETs are stored in main memory, the debugger is out of memory with big ETs that do
not fit in. If, on the other hand, they are stored in a database, debugging becomes a slow task because
some questions need to explore a big part of the ET; and also because storing the ET in the database is
a time-consuming task. Some advances have been done to improve the scalability of the technique. For
instance, in [28] the authors improved the technique by using HOOD to obtain the ET, which avoids
them from instrumenting the whole source code. But it does not matter how much the creation of the
ET is improved, it still has to be stored somewhere.

In some languages, the scalability problem is inherent to the current technology that supports the
language and cannot be avoided with more accurate implementations. For instance, in Java, current
algorithmic debuggers (e.g., JavaDD [36] and DDJ [12]) are based on the Java Platform Debugger
Architecture (JPDA) [72] to generate the ET. This architecture uses the Java Virtual Machine Tools
Interface, a native interface that helps to inspect the state and to control the execution of applications
running in the Java Virtual Machine (JVM). Unfortunately, the time scalability problem described
before is also present in this architecture, and hence, any algorithmic debugger implemented using the
JPDA will suffer from scalability problems. For instance, we conducted some experiments to measure
the time needed by JPDA to produce the ET1 of a collection of medium/large benchmarks (e.g., an

1These times correspond to the execution of the program, the production of the ET and its storage in a database.

36

5.1. Virtual Execution Trees 37

interpreter, a parser, a debugger, etc). Results are shown in the ET time column of Table 5.1 (the rest
of the columns can be ignored for the time being).

Benchmark var. num. ET size ET time node time cache lim. ET depth

argparser 8.812 2 MB 22 s. 407 ms. 7 7
cglib 216.931 200 MB 230 s. 719 ms. 14 18
kxml2 194.879 85 MB 1318 s. 1844 ms. 6 9
javassist 650.314 459 MB 556 s. 844 ms. 7 16
jtstcase 1.859.043 893 MB 1913 s. 1531 ms. 26 57
HTMLcleaner 3.575.513 2909 MB 4828 s. 609 ms. 4 17

Table 5.1: Benchmark execution results

Note that, in order to generate the ET, the JVM in combination with JPDA needs some minutes,
thus the debugging session would not be able to start until this process finishes.

In this section we propose a new implementation model [47] that solves the two scalability problems,
namely, memory and time. Because it is not always possible (e.g., in Java) to quickly generate the ET,
the process of generating the ET may cause a bottleneck in AD. Therefore, our model is based on the
following question: Is it possible to start the debugging session before having computed the whole ET?
The answer is yes.

We propose a framework in which the debugger uses the (incomplete) ET while it is being dynamically
generated. Roughly speaking, two processes run in parallel. The first process generates the ET and
stores it into both a database (the whole ET) and main memory (a part of the ET). The other process
starts the debugging session only using the already generated part of the ET. Moreover, we use a three-
cache memory system to speed up the debugging session and to guarantee that the debugger is never
out of memory.

The rest of the section has been structured as follows: In Section 5.1.2 we introduce a new imple-
mentation architecture for algorithmic debuggers and discuss how it solves the two scalability problems
shown before. In Section 5.1.3 we give some details about the implementation and show the results
obtained with a collection of benchmarks.

5.1.2 A new architecture for Algorithmic Debugging

This section presents a new architecture in which AD is not done in two sequential phases, but in two
concurrent phases; that is, while the ET is being generated, the debugger is able to produce questions.
This new architecture solves the scalability problems of AD. In particular, we use a database to store
the whole ET, and only a part of it is loaded into main memory.

Moreover, in order to make the algorithms that traverse the ET independent of the database caching
problems, we use a three-tier architecture where all the components have access to a Virtual Execution
Tree (VET). The VET is a data structure which is identical to the ET except that some nodes are
missing (not generated yet) or incomplete (they only store a part of the method execution). Hence,
standard search strategies can traverse the VET because the structure of the ET is kept.

The VET is produced while running the program. For each invocation of a method, a new node is
added to it with the method parameters and the context before the call. The result and the context
after the call are only added to the node when the execution of the method finishes.

Let us explain the components of the architecture with the diagram in Figure 5.1. Observe that each
tier contains a cache that can be seen as a view of the VET. Each cache is used for a different task:

Persistence cache. It is used to store the nodes of the VET in a database. Therefore, when the
whole VET is in the database, the persistence cache is not used anymore. Basically, it specifies

38 Chapter 5. Algorithmic Debugging Techniques

Figure 5.1: Architecture of a scalable algorithmic debugger

the maximum number of completed nodes that can be stored in the VET. This bound is called
persistence bound and it ensures that the main memory is never overflowed.

Logic cache. It defines a subset of the VET. This subset contains a limited number of nodes (in the
following, logic bound), and these nodes are those with the highest probability of being asked about,
therefore, they should be retrieved from the database. This allows us to load in a single database
transaction those nodes that are going to be probably asked and thus reducing the number of
accesses to the database.

Presentation cache. It contains the part of the VET that is shown to the user in the GUI. The pre-
sentation cache defines a subtree inside the logic cache. Therefore, all the nodes in the presentation
cache are also nodes of the logic cache. Here, the subtree is defined by selecting one root node and
a depth (in the following, presentation bound).

The whole VET does not usually fit in main memory. Therefore, a mechanism to remove nodes from
it and store them in a database is needed. When the number of complete nodes in the VET is close to
the persistence bound, some of them are moved to the database, and only their identifiers remain in the
VET. This allows the debugger to keep the whole ET structure in main memory and use identifiers to
retrieve nodes from the database when needed.

Example 5.1.1 Consider the following trees:

The tree on the left is the VET of a debugging session where the grey nodes are those already completed
(their associated method execution already finished); the black nodes are completed nodes that are only

5.1. Virtual Execution Trees 39

stored in the database (only their identifiers are kept in the VET), and white nodes are nodes that have
not been completed yet (they represent a method execution that has not finished yet). It may be possible
that some of the white nodes have children not generated yet. Note that this VET is associated with an
instant of the execution; and new nodes may be generated or completed later. The tree in the middle is
the part of the VET referenced by the logic cache. In this case it is a tree, being n the root node and a
depth of four, but in general it could contain unconnected nodes. Similarly, the tree on the right is the
part of the VET referenced by the presentation cache (i.e., shown in the GUI), with m the root node and
a depth of three. Note that the presentation cache is a subset of the logic cache.

The behaviour of the debugger is controlled by four threads that run in parallel, one for the presen-
tation tier (thread 3), two for the logic tier (threads 1 and 4) and one for the persistence tier (thread 2).
Threads 1 and 2 control the generation of the VET and its storage in the database. They collaborate via
synchronizations and message passing. Threads 3 and 4 communicate with the user and generate the
questions. They also collaborate and are independent of threads 1 and 2. A description of the threads
and their behaviour specified with pseudo-code follows:

Thread 1 (Construction of the VET) This thread is in charge of constructing the VET. It is the
only one that communicates with the JPDA and JVM. Therefore, we could easily construct an
algorithmic debugger for another language (e.g., C++) by only replacing this thread. Basically,
this thread executes the program and for every performed method execution, it constructs and
stores a new node in the VET. When the number of completed nodes (given by a function called
completedNodes) is close to the persistence bound, this thread sends the wake up signal to thread
2. Then, thread 2 stores some nodes into the database.2 If the persistence bound is reached,
thread 1 sleeps until enough nodes have been removed from the VET and then it can continue
generating new nodes.

Algorithm 2 Construction of the VET (Thread 1)

Input: A source program P , and the persistence bound persistenceBound
Output: A VET V
Initialization: V = (∅, ∅)

repeat
1) run P inspecting the execution using JPDA and catch event e
2) case e of
3) new invocation of a method I:
4) create a new node N from I
5) add N to V
6) the execution of the method related to I ended:
7) complete node N associated with I
8) if (completedNodes(V) == persistenceBound/2) then
9) send thread 2 the wake up signal

10) if (completedNodes(V) == persistenceBound) then
11) sleep
until the execution of P finishes or a bug is found

Thread 2 (Controlling the size of the VET) This thread ensures that the VET always fits in main
memory. It controls which nodes of the VET should be stored in main memory, and which nodes
should be stored in the database.

2In our implementation, it moves half of the nodes. Our experiments reveal that this is a good choice because it keeps
threads 1 and 2 continuously running in a producer-consumer manner.

40 Chapter 5. Algorithmic Debugging Techniques

When the number of completed nodes in the VET is close to the persistence bound, thread 1
wakes thread 2 up, which removes some nodes from the VET and copies them into the database.
It uses the logic cache to decide which nodes to store in the database. Concretely, it tries to store
in the database as many nodes as possible that are not in the logic cache. When it finishes, it
sends the wake up signal to thread 1 and sleeps.

Algorithm 3 Controlling the size of the VET (Thread 2)

Input: A VET V
Output: An ET stored in a database

repeat
1) sleep until wake up signal is received
2) repeat
3) look into the persistence cache for the next completed node N of the VET
4) if N is not found then
5) wake thread 1 up
6) else
7) store N in the database
8) if N is not found or N is the root node then
9) break

until the whole VET is stored in the database or until a bug is found

Thread 3 (Interface communication) This thread is the only one that communicates with the user.
It controls the information shown in the GUI with the presentation cache. According to the user’s
answers, the selected strategy, and the presentation bound, this thread selects which will be the
root node of the presentation cache. This task is done after each question according to the
user’s answers, ensuring that (i) the node that contains the next question (using a function called
AskQuestion), (ii) its parent, and (iii) as many descendants as the presentation bound requires,
are shown in the GUI.

Algorithm 4 Interface communication (Thread 3)

Input: User’s answers
Output: A buggy node

repeat
1) ask thread 4 to select a node
2) update presentation cache and GUI visualization
3) answer = AskQuestion(node)
4) send answer to thread 4

until a buggy node is found

Thread 4 (Selecting questions) This thread chooses the next node according to a given search strat-
egy using a function called SelectNextNode. If the selected node is not loaded in the logic cache
(not(InLogicCache(node))) the logic cache is updated. This is done by using the UpdateLogicCache
function, which uses the selected node and the logic bound to compute the new logic cache (i.e,
those nodes of the VET that should be loaded from the database). All the nodes that belong
to the new logic cache and that do not belong to the previous logic cache are loaded from the
database using the FromDatabaseToET function.

5.1. Virtual Execution Trees 41

Algorithm 5 Selecting questions (Thread 4)

Input: A search strategy S, a VET V and the logic bound logicBound
Output: A buggy node

repeat
1) node = SelectNextNode(V ,S)
2) if not(InLogicCache(node)) then
3) missingNodes = UpdateLogicCache(node, logicBound)
4) V = FromDatabaseToET (V ,missingNodes)
5) send node to thread 3
6) get answer from thread 3 and change the state of the affected nodes

until a buggy node is found

An interesting task of this thread is carried out by the UpdateLogicCache function that determines
what nodes should remain in the VET when a new node is selected by the search strategy. This task
is not critical for the performance of the debugger. The bottleneck is the construction of the VET;
contrarily, the exploration of the VET is a quick task that can be done step by step after each user’s
answer. However, the caching policy should be efficient to optimize the resources of the debugger, and
to minimize the number of accesses to the database. In particular, those nodes that are already cached
in the VET and that could be needed in future questions should remain in the VET. Contrarily, those
nodes that are definitely discarded by the user’s answers should be replaced by other nodes that can be
useful.

Although each search strategy uses a different caching policy, all of them share four invariants:

1. When a node is marked as wrong, then all the nodes that are not descendants of this node are
useless, and they can be unloaded from the VET.

2. When a node is marked as right, then all the descendants of this node are useless, and they can
be unloaded from the VET.

3. When a node is marked as wrong, then all the descendants of this node that have not been
discarded yet, could be needed in the future, and they remain in the VET.

4. When a node is marked as right, then all the nodes that are not descendants of this node (and
that have not been discarded yet) could be needed in the future, and they remain in the VET.

As an example, with the Top-Down strategy, initially, we load in the VET the root node and those
nodes that are close to the root. Every time a node is marked as correct, all the nodes in the subtree
rooted at this node are marked as useless and they can be unloaded from the VET when it is needed. All
the nodes that have been already answered, except the last node marked as wrong can be also unloaded.
When the search strategy is going to select a node that is not loaded in the VET, then all the useless
nodes are unloaded from the VET, and those nodes that are descendant of the selected node and that
are closer to it are loaded. In this way, the number of accesses to the database are minimized, because
every load of nodes to the VET provides enough nodes to answer several questions before a new load is
needed.

Redefining the search strategies for Algorithmic Debugging

In Algorithm 5, a search strategy is used to generate the sequence of questions by selecting nodes from
the VET. Nevertheless, all AD search strategies in the literature have been defined for ETs and not

42 Chapter 5. Algorithmic Debugging Techniques

for VETs where incomplete nodes may exist. All of them assume that the information of all ET nodes
is available. Clearly, this is not true in our context and thus, the search strategies would fail. For
instance, the first node asked by the Top-Down strategy and its variants is always the root node of the
ET. However, this node is the last node completed by Algorithm 2. Hence, these search strategies could
not even start until the whole ET is completed, and this is exactly the problem that we want to solve.

Therefore, in this section we propose a redefinition of the search strategies of AD so that they can
work with VETs.

A first solution could be to define a transformation from a VET with incomplete nodes to a VET
where all nodes are completed. This can be done by inserting a new root node with the equation 1 = 0.
Then, the children of this node would be those completed nodes whose parent is incomplete. In this
way, (i) all nodes of the produced ET would be completed and could be asked; (ii) the parent-child
relation is kept in all the subtrees of the ET; and (iii) it is guaranteed that at least one bug (the root
node) exists. If the debugging session finishes with the root node as buggy, it means that the node with
the “real” bug (if any) has not been completed yet.

Example 5.1.2 Consider the following VETs:

In the VET on the left, the grey nodes have been completed, and the white nodes are incomplete. This
VET can be transformed into the VET on the right where all nodes are completed. The new artificial
root is the black node which ensures that at least one buggy node exists.

From an implementation point of view, this transformation is inefficient and costly because the VET
is continuously being generated by thread 1, and hence, this transformation should be done repeatedly
question after question. In contrast, a more efficient solution is to redefine the search strategies so that
they ignore incomplete nodes. For instance, Top-Down [2] would only ask first about those nodes that
are completed and that do not have a completed ancestor. Similarly, Binks’ top-down [5] would ask first
about the heaviest nodes of these nodes. D&Q [92] would ask about the completed node that divides
the VET into two subtrees with the same number of nodes, and so on. We refer the interested reader
to the source code of our implementation that is publicly available and where all search strategies have
been reimplemented to deal with VETs.

Even though the architecture presented has been discussed in the context of Java, it can work in other
languages with very few changes. Observe that the part of an algorithmic debugger that is language-
dependent is the front-end, and our technique relies on the back-end. Once the VET is generated, the
back-end can handle the VET mostly independent of the language. We provide a discussion of the
changes needed to adapt the architecture to other languages in the next section.

5.1.3 Implementation

We have implemented the proposed technique and integrated it into DDJ 2.4. The implementation has
been tested with a collection of real applications. Table 5.1 summarizes the results of the experiments.
These experiments have been done in an Intel Core2 Quad 2.67 GHz with 2GB RAM. The first column
contains the names of the benchmarks. For each benchmark, the second and third columns give an

5.1. Virtual Execution Trees 43

idea of the size of the execution. Fourth and fifth columns are time measures. Finally, sixth and
seventh columns show memory bounds. Concretely, the variables number column shows the number
of variables participating (possibly repeated) in the considered execution. It is the sum of all variables in
all the nodes of the ET. The ET size column shows the total size in MB of the ET when it is completed,
this measure has been taken from the size of the ET in the database. The ET time column is the time
needed to completely generate the whole ET. The node time column is the time needed to complete the
first node of the ET. The cache limit column shows the depth of the logic cache of these benchmarks.
After these bounds, the computer was out of memory. Finally, the ET depth column shows the depth
of the ET after it was constructed.

Observe that a standard algorithmic debugger is hardly scalable to these real programs. With the
standard technique, even if the ET fits in main memory or we use a database, the user must wait for a
long time until the ET is finally completed and the first question can be asked. In the worst case, this
time is more than one hour. Contrarily, with the new technique, the debugger can start to ask questions
before the ET is completed. Note that the time needed to complete the first node is always less than
two seconds. Therefore, the debugging session can start almost instantaneously.

All the information related to the experiments, the source code of the benchmarks, the bugs, the
source code of the tool and other material can be found at:

http://www.dsic.upv.es/~jsilva/DDJ/

Adapting the architecture for other languages

Even though the presented technique is based on the Java language, it is mostly independent of the
language that is being debugged. Note that all algorithmic debuggers are based on the ET and the
main difference between debuggers from different languages is the information stored in each node (e.g.,
functions in the functional paradigm, methods in the object-oriented paradigm, functions and procedures
in the imperative paradigm, predicates in the logic paradigm, etc.). But once the ET is constructed,
the search strategies that traverse the ET are independent of the language that the ET represents.

Therefore, because our technique is based on the structure of the ET, but not on the information
of its nodes, all the components of the architecture presented in Figure 5.1 could be used for other
languages with small changes. In the case of other object-oriented languages such as C++ or C#, the
only component that needs to be changed is thread 1. In other languages, the required changes would
involve the redefinition of the components to change the kind of information (e.g., clauses, predicates,
procedures, etc.) stored (in the database and in the virtual ET) and shown (in the GUI). However, the
behaviour of all the components and of all the threads would be exactly the same. The only part of
the architecture that should be completely changed is the part in charge of the construction of the ET.
JPDA is exclusive for Java, hence, thread 1 should be updated to communicate with another component
similar to the JPDA but for a different language. All the interrelations among the components would
remain unchanged. Finally, another small modification would be done in the GUI. Our implementation
shows objects, methods and attributes. Showing procedures, global variables or functions would be very
similar, but small changes would still be needed.

44 Chapter 5. Algorithmic Debugging Techniques

5.2 Balancing Execution Trees

5.2.1 Introduction

Balancing Execution Trees [55] (also referred to as Tree Balancing) is a technique of Algorithmic De-
bugging (AD) that changes the structure of the Execution Tree (ET) in such a way that the search
strategies present an almost optimal behaviour. The objective of the technique is to balance3 the ET
in such a way that search strategies prune half of the ET at every step, because they can always find a
node that divides the search area in half. Our experiments with real programs show that the technique
reduces (as an average) the number of questions to the user by around 30 %. Without loss of generality,
along this section we base our examples on programs implemented using the Java language, although
our ET transformations and the balancing technique are conceptually applicable to any ET, regardless
of the language the source code that generates the ET is written in.

Initial position Final position Expected position

public class Chess {
public stat ic void main (St r ing [] a rgs) {

Chess ches s = new Chess () ;
Po s i t i on king = new Pos i t i on () ;
Po s i t i on rook = new Pos i t i on () ;

k ing . l o c a t e (5 , 1) ;
rook . l o c a t e (8 , 1) ;
ches s . c a s t l i n g (king , rook) ;

}

void c a s t l i n g (Pos i t i on k , Pos i t i on r) {
i f (r . x != 8) { // Bug ! !
// Correct : i f (r . x == 8) {

for (int i = 1 ; i <= 2 ; i++) { k . r i g h t () ; }
for (int i = 1 ; i <= 2 ; i++) { r . l e f t () ; }

} else {
for (int i = 1 ; i <= 2 ; i++) { k . l e f t () ; }
for (int i = 1 ; i <= 3 ; i++) { r . r i g h t () ; }

}
}

}

public class Pos i t i on {
int x , y ;
void l o c a t e (int a , int b) { x = a ; y = b ; }
void up () { y = y + 1 ; }
void down () { y = y − 1 ; }
void r i g h t () { x = x + 1 ; }
void l e f t () { x = x − 1 ; }

}

Figure 5.2: Chess Java program

3Note that throughout this section we use balanced to indicate that the tree becomes binomial.

5.2. Balancing Execution Trees 45

Example 5.2.1 Consider the Java program in Figure 5.2. This program has a bug, and thus it wrongly
simulates a movement on a chessboard. The chess.castling(king, rook) call produces the (wrong)
movement shown in the chessboards of the figure. Figure 5.3 depicts the portion of the ET associated
with the chess.castling(king, rook) call. With this ET, all current search strategies need to ask
about the six nodes. In contrast, if we balance this ET with our transformation, the bug is found with
three questions at the most.

chess.castling(king,/rook)/

king.x=5
king.y=1
rook.x=8
rook.y=1

king.x=3
king.y=1
rook.x=11
rook.y=1

1"

r.right()/
r.x=8
r.y=1

r.x=9
r.y=1

4"

r.right()/
r.x=9
r.y=1

r.x=10
r.y=1

5"

r.right()/
r.x=10
r.y=1

r.x=11
r.y=1

6"

k.le3()/
k.x=5
k.y=1

k.x=4
k.y=1

2"

k.le3()/
k.x=4
k.y=1

k.x=3
k.y=1

3"

Figure 5.3: ET associated with the chess.castling(king, rook) call of the program in Figure 5.2

chess.castling(king,/rook)/

king.x=5
king.y=1
rook.x=8
rook.y=1

king.x=3
king.y=1
rook.x=11
rook.y=1

1"

r.right()//
r.right()/
r.right()/

r.x=8
r.y=1

r.x=11
r.y=1

3"

r.right()/
r.x=8
r.y=1

r.x=9
r.y=1

6"

r.right()/
r.x=9
r.y=1

r.x=10
r.y=1

7"

r.right()/
r.x=10
r.y=1

r.x=11
r.y=1

8"

k.le3()/
k.x=5
k.y=1

k.x=4
k.y=1

4"

k.le3()/
k.x=4
k.y=1

k.x=3
k.y=1

5"

k.le3()//
k.le3()/

k.x=5
k.y=1

k.x=3
k.y=1

2"

Figure 5.4: Balanced ET associated with the chess.castling(king, rook) call in Figure 5.2

Tree Balancing presents three important advantages that make it useful for AD. First, it can be
easily adapted to other programming languages. We have implemented it for Java and it can be directly
used in other object-oriented languages, but it could be easily adapted to other languages such as C
or Haskell using the analogy between methods and functions. Second, the technique is quite simple to
implement and can be integrated into any existing algorithmic debugger with small changes. And third,
the technique is conservative. If the questions created by the new nodes are difficult to answer, the user
can answer “I don’t know” and continue the debugging session as in the standard ET. Moreover, the
user can naturally get back to the original ET, if need be.

The rest of this section has been organized as follows. In Section 5.2.2 we introduce some preliminary
definitions that will be used in the rest of the section. In Section 5.2.3 we explain in detail tree balancing
and its main applications, and we introduce the algorithms used to balance ETs. The correctness of the
technique is described in Section 5.2.4. Then, in Section 5.2.5, we present our implementation and some
experiments carried out with real Java programs. Section 5.2.6, discusses the related work. The proofs
of correctness are shown in Section 5.2.7. Finally, Section 5.2.8 describes a case of study.

5.2.2 Preliminary definitions

In this section we introduce the new ET nodes created by Tree Balancing as well as the intended
semantics that is used to answer the questions of these nodes. We start with the definition of Composite
Method Execution:

46 Chapter 5. Algorithmic Debugging Techniques

Definition 5.2.2 (Composite Method Execution) A composite method execution is a non-empty
sequence of method executions 〈(b1,m1, e1), (b2,m2, e2), . . . , (bn,mn, en)〉 that we represent using the no-
tation (b1;m1;m2; . . . ;mn, en).

From now on, we will assume that there exists an intended semantics I of the program being
debugged. It corresponds to the model the programmer had in mind while writing the program, and it
contains, for each method m and each context b of m at the beginning of its execution, the expected
context e at the end of its execution, that is, (b,m, e) ∈ I. Moreover, given this atomic information, we
are able to deduce judgments of the form (b,m1; . . . ;mn, e) with the inference rule Tr, that defines the
transitivity of the composition of methods

(b,m1, e
′) (e′,m2; . . . ;mn, e)

(b,m1; . . . ;mn, e)
Tr if n > 1

and we say that I |= (b,m1; . . . ;mn, e). Using this intended semantics we can formally define the
correctness of method executions.

Definition 5.2.3 (Method Execution correctness) Given a method execution E and the intended
semantics of the program I, we say that E is correct if E ∈ I or I |= E and wrong otherwise.

Example 5.2.4 An AD session for the ET in Figure 5.3 using D&Q follows (YES and NO answers are
provided by the user):

Starting Debugging Session...

(2) k.x = 5, k.y = 1 >>> k.left() >>> k.x = 4, k.y = 1 ? YES

(3) k.x = 4, k.y = 1 >>> k.left() >>> k.x = 3, k.y = 1 ? YES

(4) r.x = 8, r.y = 1 >>> r.right() >>> r.x = 9, r.y = 1 ? YES

(5) r.x = 9, r.y = 1 >>> r.right() >>> r.x = 10, r.y = 1 ? YES

(6) r.x = 10, r.y = 1 >>> r.right() >>> r.x = 11, r.y = 1 ? YES

(1) king.x = 5, king.x = 3,

king.y = 1, >>> chess.castling(king, rook) >>> king.y = 1, ? NO

rook.x = 8, rook.x = 11,

rook.y = 1 rook.y = 1

Bug located in method: castling(Position t, Position k) of the Chess class.

The debugger points out the buggy method, which contains the bug. In this case, r.x != 8 should be
r.x == 8.

5.2.3 Collapsing and projecting nodes

Even though the Heaviest First strategy significantly improves the Top-Down search, its performance
strongly depends on the structure of the ET. The more balanced the ET is, the better. Clearly, when
the ET is balanced, Heaviest First is much more efficient because it prunes more nodes after every
question. If the ET is completely balanced, Heaviest First is equivalent to Divide and Query and both
are query-optimal.

Advantages of collapsing and projecting nodes

Tree Balancing is based on a series of transformations that allows for collapsing/projecting some nodes
of the ET. A collapse node is a new node that replaces some nodes that are then removed from the ET.
In contrast, a projection node is a new node that is placed as the parent of a set of nodes that remain
in the ET. This section describes the main advantages of collapsing/projecting nodes:

Balancing execution trees. If we augment an ET with projection nodes, we can strategically place
them in such a way that the ET becomes balanced. In this way, the debugger speeds up the debugging
session by reducing the number of asked questions.

5.2. Balancing Execution Trees 47

Example 5.2.5 Consider again the program in Figure 5.2. The portion of the ET associated with
chess.castling(king, rook) is shown in Figure 5.3. We can add projection nodes to this ET as
depicted in Figure 5.4. Note that now the ET becomes balanced, and hence, many search strategies ask
fewer questions. For instance, in the worst case, using the ET of Figure 5.3 the debugger would ask
about all the nodes before the bug is found. This is due to the broad nature of this ET that prevents
search strategies from pruning any nodes. In contrast, using the ET of Figure 5.4 the debugger prunes
almost half of the tree with every answer. In this example, with the standard ET of Figure 5.3, D&Q
produces the following debugging session (numbers refer to the identifiers of the nodes in the figure):

Starting Debugging Session...

(2) YES (3) YES (4) YES (5) YES (6) YES (1) NO

Bug located in method: castling(Position k, Position r) of the Chess class.

In contrast, with the ET in Figure 5.4, D&Q produces this session:

Starting Debugging Session...

(2) YES (3) YES (1) NO

Bug located in method: castling(Position k, Position r) of the Chess class.

Skipping repetitive questions. Algorithmic debuggers tend to repeat the same (or very similar)
question several times when it is associated with a method execution performed inside a loop. In our
example, this happens in for (int i = 1; i <= 3; i++) { r.right(); }, which is used to move
the rook three positions to the right. Here, the nodes

{ r.x = 8, r.y = 1 } r.right() { r.x = 9, r.y = 1 }
{ r.x = 9, r.y = 1 } r.right() { r.x = 10, r.y = 1 }
{ r.x = 10, r.y = 1 } r.right() { r.x = 11, r.y = 1 }

could be projected to the node

{ r.x = 8, r.y = 1 } r.right(); r.right(); r.right() { r.x = 11, r.y = 1 }

This kind of projection, where all the projected nodes refer to the same method, has an interesting
property: If the projected nodes are leaves, then they can be deleted from the ET. The reason is that
the new projection node (node 2 in Figure 5.4) and the projected nodes (nodes 4 and 5 in Figure 5.4)
refer to the same method. Therefore, it does not matter which one is the buggy node, because the bug
will necessarily be in this method. Hence, if the projection node is wrong, then the bug is in the method
pointed to by this node. When the children of the projection node are removed, we call it collapse node.

Note that, in this case, the idea is not to add nodes to the ET as in the previous case, but to delete
them. Because the input and output of all the questions relate to the same attributes (i.e., x and y),
then the user can answer them all together, since they are, in fact, a sequence of operations whose
output is the input of the next question (i.e., they are chained). Therefore, this technique allows for
treating a set of questions as a whole. This is particularly interesting because it approximates the real
behaviour intended by the programmer. For instance, in this example, the intended meaning of the loop
was to move the rook three positions to the right. The intermediate positions are not interesting; only
the initial and final ones are meaningful for the intended meaning.

Example 5.2.6 Consider the ET of Figure 5.4. Observe that, if the projected nodes are wrong, then
the bug must be in the unique method appearing in the projection node. Thus, we could collapse the
node instead of projecting it. Hence, nodes 4, 5, 6, 7, and 8 could be removed; and thus, with only three
questions we could discover any bug wherever it is in the code.

Enhancing the search of algorithmic debugging. One important problem of AD search strategies
is that they must use a given ET without any possibility of changing it. This often prevents search
strategies from selecting nodes that prune a big part of the ET, or from selecting nodes that are in the

48 Chapter 5. Algorithmic Debugging Techniques

regions with a higher probability of containing the bug. Encapsulating some subtrees into a single node
can help to solve these drawbacks.

The initial idea of this section was to use projection nodes to balance the ET. This idea is very
interesting in combination with D&Q, because it can cause the debugging session to be optimal in the
worst case (its query complexity is O(b · log n), where b is the branching factor and n is the number of
nodes in the ET). However, this idea could be further extended in order to force the search strategies
to ask questions related to parts of the computations with a higher probability of containing the bug.
Concretely, we can replace parts of the ET with a capsule node in order to avoid questions related
to this part. If the debugging session determines that the capsule node is wrong, we can expand it
again to continue the debugging session inside this node. Therefore, with this idea, the original ET is
transformed into a tree of ETs that can be explored when it is required. Let us illustrate this idea with
an example.

Example 5.2.7 Consider the leftmost ET in Figure 5.5. This ET has a root that started two subcom-
putations. The computation on the left performed ten method executions, while the computation on the
right performed only three. Hence, in this ET, all the existing search strategies would explore first the
left subtree.4 If we balance the left branch by inserting projection nodes we obtain the new ET shown
in the middle. This balanced ET requires (on average) fewer questions than the previous one; but the
search strategies will still explore first the left branch of the root.

Figure 5.5: Balancing transformations of ETs

Now, let us assume that the debugger identified the right branch as more likely to be buggy (e.g.,
because it contains recursive calls, because it is non-deterministic, because it contains calls with more
involved arguments or with complex data structures...). We can change the structure of the ET in order
to make AD search strategies to start exploring the desired branch. In this example, we can encapsulate
the projected subtrees. The new ET is shown on the right of Figure 5.5. With this ET, the tool explores
first the right branch of the root. Note that these nodes are similar to the collapse nodes in terms of
removing their children from the tree, but observe that in this case it is not necessary that the nodes that
were projected refer to the same method. They can be completely different and independent computations.
However, if the debugger determines that they are probably correct, they can be encapsulated to direct
the search to other parts of the ET. Of course, they can be decapsulated again if required by the search
strategy (e.g., if the debugger cannot find the bug in the other nodes).

Disadvantages Given these benefits, we must talk about a potential drawback: the difficulty of the
questions related to the new nodes. The new questions may be more difficult to answer than the previous
ones, but the user can avoid these difficult questions by answering “I don’t know”. In such a case the
algorithmic debugger would behave as if the projection/collapse node did not exist, and hence as if
the technique would have never been applied. However, the nodes that were used to create the new
projection/collapse node are intimately related, as it can be seen in Definitions 5.2.9, 5.2.10, and 5.2.11.
For instance, during the execution of loops many projection nodes are generated by projecting the nodes
that have been produced along different iterations. Thus, in many situations the question generated

4Current search strategies assume that all nodes have the same probability of being buggy, therefore, heavy branches
are explored first.

5.2. Balancing Execution Trees 49

from the projection/collapse node is more related to the behaviour the programmer had in mind when
writing the code than the original questions (i.e., the behaviour of the whole loop vs. the behaviour of
each single call inside the loop).

Algorithms for collapsing and projecting nodes

In this section we define a technique that allows for balancing an ET while keeping the soundness and
completeness of AD. The technique is based on two basic transformations for ETs (namely collapse leaf
chain and project chain, described respectively in Algorithms 6 and 7), and on a new data structure
called Execution Forest (EF) that is a generalization of an ET.

Definition 5.2.8 (Execution Forest) An execution forest is a tree T = (N,E) whose internal nodes
N are method executions and whose leaves are either method executions or execution forests.

Roughly speaking, an EF is an ET where some subtrees have been replaced (i.e., encapsulated) by
a single node. Note that this recursive definition of EF is more general than the one for ET because
an ET is an instance of an EF where no encapsulated nodes exist. We can now define the two basic
transformations of our technique. Both transformations are based on the notion of chain. Informally, a
chain is formed by an ordered set of sibling nodes in which the final context produced by a node of the
chain is the initial context of the next node. Chains often represent a sequence of method executions
performed one after the other during an execution. Formally,

Definition 5.2.9 (Chain) Given an EF T = (N,E) and a set C ⊂ N of k ≥ 2 nodes with associated
method executions E1, E2, . . . , Ek we say that C is a chain iff

• ∃n ∈ N such that ∀c ∈ C.(n→ c) ∈ E,

• ∀i, j, 1 ≤ i < j ≤ k, the method associated with Ei is executed before the method associated with
Ej, and

• ∀j, 1 ≤ j ≤ k − 1, if Ej = (ej,mj, ej+1) then Ej+1 = (ej+1,mj+1, ej+2)

The first condition ensures that all the elements in the chain are siblings. The second condition
ensures that the elements are executed one after the other. The third condition ensures that for all the
nodes in the chain the final context of a node is the initial context of the next chained node. Note that,
by Definition 4.1.1, only those attributes that can be affected by the execution of the methods are taken
into account. It is common to find chains when one or more methods are executed inside a loop.

Now we have defined chains we can provide a definition of projection and collapse nodes.

Definition 5.2.10 (Projection node) Given an EF T = (N,E), and a composite method execution
n = (b,m1;m2; . . . ;mk, e) ∈ N . n is a projection node iff there exists a chain C such that:

• C = {(b,m1, e1), (e1,m2, e2), . . . , (ek−1,mk, e)}

• ∀c ∈ C, (n→ c) ∈ E, and

• ∀n′ ∈ N such that (n→ n′) ∈ E . n′ ∈ C

Definition 5.2.11 (Collapse node) Given an EF T = (N,E), and a composite method execution
n = (b,m1;m2; . . . ;mk, e) ∈ N . n is a collapse node iff there exists a chain C such that:

• C = {(b,m1, e1), (e1,m2, e2), . . . , (ek−1,mk, e)}, and

50 Chapter 5. Algorithmic Debugging Techniques

Algorithm 6 Collapse Leaf Chain.

Input: An EF T = (N,E) and a set of nodes C ⊂ T
Output: An EF T ′ = (N ′, E ′)
Preconditions: C is a chain with nodes (a1,m, a2), (a2,m, a3), . . . , (ak,m, ak+1) and @n ∈ N.(c →
n) ∈ E, with c ∈ C

begin
1) parent = p ∈ N such that ∀c ∈ C, (p→ c) ∈ E
2) colnode = (a1,m

′, ak+1) with m′ = m;m; . . . ;m
3) N ′ = (N\C) ∪ {colnode}
4) E ′ = (E\{(parent → n) ∈ E | n ∈ C}) ∪ {(parent → colnode)}
5) return T ′ = (N ′, E ′)

end

Algorithm 7 Project Chain.

Input: An EF T = (N,E) and a set of nodes C ⊂ N
Output: An EF T ′ = (N ′, E ′)
Preconditions: C is a chain with nodes (a1,m1, a2), (a2,m2, a3), . . . , (ak,mk, ak+1)

begin
1) parent = p ∈ N such that ∀c ∈ C, (p→ c) ∈ E
2) prjnode = (a1,m, ak+1) with m = m1;m2; . . . ;mk

3) N ′ = N ∪ {prjnode}
4) E ′ = (E\{(parent → n) ∈ E | n ∈ C}) ∪ {(parent → prjnode)} ∪ {(prjnode → c) | c ∈ C}
5) return T ′ = (N ′, E ′)

end

• @n′ ∈ N such that (n→ n′) ∈ E

The basic transformations of chains are described in Algorithms 6 and 7. Algorithm 6 is in charge of
collapsing chains, which consists in creating a new node colnode with initial context the initial context
of the first node of the chain, final context the final context of the last node of the chain, and with the
composition of the methods in the chain as associated method. Then, the nodes in the chain (and thus
their edges) are removed from the tree and the new node is added as a child of the parent of the nodes
in C, thus reducing the size of the EF. Algorithm 7 is in charge of projecting chains, and works in a
similar way as Algorithm 6. Given a tree T and a chain C in the tree, it removes from T the edges
between each c ∈ C and its parent parent , and then introduces a new node prjnode built as explained
before, that is linked to each c as their new parent, and to parent as its new child.

Algorithm 8 is in charge of removing the chains of leaves that can be collapsed. It first computes in
the initialization all the maximal chains (i.e., chains that are not subchains of other chains) of nodes that
are leaves and are related to the same methods. Then, for each of these chains, it applies Algorithm 6
to collapse them by removing the chain from the tree and adding the corresponding collapse node.5

Our method for balancing EFs is implemented in Algorithm 9. This algorithm first uses Algorithm 8
to shrink the EF (line 1) by collapsing as many nodes as possible; and then it balances this shrunken
EF by projecting some nodes. The objective is to divide the tree into two parts with the same weight
(i.e., number of nodes). Therefore, we first compute half of the size of the EF (lines 4 and 5). If a

5Note that, since these chains are usually found when a loop or a recursive call is used, our approach generates nodes
whose questions are very close to the intended meaning the programmer had in mind while developing the program and
thus, although the new questions comprise a bigger context, they may be even easier to answer than the “atomic” ones.

5.2. Balancing Execution Trees 51

Algorithm 8 Shrink EF.

Input: An EF T = (N,E)
Output: An EF T ′ = (N ′, E ′)
Preconditions: Given a node n, n.method is the name of the method in n
Initialization: T ′ = T , the S set contains all the maximal chains of T s.t. for each chain s =
{c1, . . . , ck} of S,∀i, 1 ≤ i ≤ k − 1, ci.method == ci+1.method , and @n ∈ N.(c→ n) ∈ E, with c ∈ s

begin
1) while (S 6= ∅)
2) take a chain s ∈ S
3) S = S\{s}
4) T ′ = collapseChain(T ′, s)
5) end while
6) return T ′

end

child of the root is already heavier than half the size of the tree, then, the weight of this node is not
taken into account in the balancing process because the question associated to this node will be the first
question to be asked (lines 9-16). Otherwise, it projects the part of a chain whose weight is as close as
possible to half the weight of the root (lines 17-26). This allows for pruning half of the subtree when
asking a question associated with a projection node. In the case that the heaviest node (lines 13-16) or
the projected chain (lines 23-24) belongs to a bigger chain, it must be cut with the cutChain function
producing new (smaller) chains that are also processed. Of course, the size of the already processed
chains is not taken into account when dividing the successive (sub)chains (because they will be already
pruned during a debugging session).

If a chain is very long, it can be cut in several subchains to be projected and thus better balance the
EF. In order to cut chains we use the cutChain function:

function cutChain(chain {c1, . . . , ck}, int i, int j)
if (i > 2) then sini = {c1, . . . , ci−1} else sini = ∅ end if
if (k − j > 1) then send = {cj+1, . . . , ck} else send = ∅ end if

return (sini , send)

This function removes from a chain a subchain delimited by indices i and j. As a result, depending
on the indices, it can produce two subchains that are located before and after the subchain. Note that
when the initial index i is 2, there is only one node remaining before the subchain, and thus, because it
is not a chain, ∅ is returned. The same happens on the right.

The algorithm finishes when no more chains can be projected. Trivially, because the number of
chains and their length are finite, termination is ensured. In addition, Algorithm 9 is able to balance
the EF while it is being computed. Concretely, the algorithm should be executed for each node of the
EF that is completed (i.e., the final context of the method execution is already calculated, thus all the
children of this node are also completed). Note that this means that the algorithm is applied bottom-up
to the nodes of the EF. Hence, when balancing a node, all the descendants of the node have already been
balanced. This also means that modern debuggers that are able to debug programs with uncompleted
ETs (see Section 5.1) can also use the technique, because the ET can be balanced while it is being
computed.

52 Chapter 5. Algorithmic Debugging Techniques

Algorithm 9 Shrink & Balance EF.

Input: An EF T = (N,E) whose root is root ∈ N
Output: An EF T ′ = (N ′, E ′)
Preconditions: Given a node n, n.weight is the size of the subtree rooted at n

begin
1) T ′ = shrink(T)
2) children = {n ∈ N ′ | (root → n) ∈ E ′}
3) S = {s | s is a maximal chain in children}
4) rootweight = root .weight
5) half = rootweight/2
6) while (S 6= ∅)
7) child = c ∈ children s.t. @c′ ∈ children, c′.weight > c.weight
8) distance = |half − child .weight |
9) if (child .weight ≥ half ∨ @i, j s.t. {c1, . . . , ck} ∈ S ∧ (|half −

∑j
x=i cx.weight | < distance)) then

10) children = children\{child}
11) rootweight = rootweight − child .weight
12) half = rootweight/2
13) if (∃s ∈ S s.t. s = {c1, . . . , ck} and child = ci, 1 ≤ i ≤ k) then
14) (sini , send) = cutChain(s, i, i)
15) S = (S\{s}) ∪ sini ∪ send
16) end if
17) else
18) find an s, i, j s.t. s = {c1, . . . , ck} ∈ S and

∑j
x=i cx.weight is as close as possible to half

19) s′ = {ci, . . . , cj}
20) children = children\s′
21) rootweight = rootweight −

∑
{c.weight | c ∈ s′}

22) half = rootweight/2
23) (sini , send) = cutChain(s, i, j)
24) S = (S\{s}) ∪ sini ∪ send
25) T ′ = projectChain(T ′, s′)
26) end if
27) end while
28) return T ′ = (N ′, E ′)
end

5.2.4 Correctness

Our technique for balancing EFs is based on the transformations presented in the previous section.
We present in this section the theoretical results about soundness and completeness, whose proofs are
available in Section 5.2.7.

Theorem 5.2.12 (Completeness and soundness of EFs) Given an EF with a wrong root, it con-
tains a buggy node, which is associated with a buggy method.

Completeness and soundness are kept after our transformations. In particular, an EF with a wrong
root and a buggy node still has a buggy node after any number of collapses or projections.

Theorem 5.2.13 (Chain Collapse Correctness) Let T = (N,E) and T ′ = (N ′, E ′) be two EFs,
being the root of T wrong, and let C ⊂ N be a chain such that all nodes in the chain are leaves and they
have the same associated method. Given T ′ = collapseChain(T, C),

5.2. Balancing Execution Trees 53

1. T ′ contains a buggy node.

2. Every buggy node in T ′ is associated with a buggy method.

Theorem 5.2.14 (Chain Projection Correctness) Let T = (N,E) and T ′ = (N ′, E ′) be two EFs,
and let C ⊂ N be a chain such that T ′ = projectChain(T, C).

1. All buggy nodes in T are also buggy nodes in T ′.

2. Every buggy node in T ′ is associated with a buggy method.

We also provide in this section an interesting result related to the projection of chains. This result
is related to the incompleteness of the technique when it is used intra-session (i.e., in a single debugging
session trying to find one particular bug). Concretely, the following result does not hold: A buggy node
can be found in an EF if and only if it can be found in its balanced version.

In general, our technique ensures that all the bugs that caused the wrong behaviour of the root node
(i.e., the wrong final context of the whole program) can be found in the balanced EF. This means that
all those buggy nodes that are responsible of the wrong behaviour are present in the balanced EF.

However, AD can find bugs just by chance. Those nodes that are buggy nodes in the EF but did
not cause the wrong behaviour of the root node can be undetectable with some search strategies in the
balanced version of the EF. The opposite is also true: it is possible to find bugs in the balanced EF that
were undetectable in the original EF. Let us explain it with an example.

Example 5.2.15 Consider the EFs in Figure 5.6. The EF on the right is the same as the one on the
left but a new projection node has been added. If we assume the following intended semantics (expressed
with triples of the form: initial context, method, final context) then the grey nodes are wrong and the
white nodes are right:

x = 1 g() x = 4 x = 4 g() x = 4 x = 1 f() x = 2
x = 3 h() x = 3 x = 4 h() x = 4

Figure 5.6: New buggy nodes revealed by the Tree Balancing technique

Note that in the EF on the left, only nodes 2 and 3 are buggy. Therefore, all the search strategies will
report these nodes as buggy, but never node 1. However, node 1 contains a bug but it is undetectable by
the debugger until nodes 2 and 3 have been corrected. Nevertheless, observe that nodes 2 and 3 did not
produce the wrong behaviour of node 1. They simply produced two errors that, in combination, produced
by chance a global correct behaviour.

Now, observe in the EF on the right that node 1 is buggy and thus detectable by the search strategies.
In contrast, nodes 2 and 3 are now undetectable by the Top-Down search (they could be detected by
D&Q). Thanks to the balancing process, it has been made explicit that three different bugs exist in the
EF.

54 Chapter 5. Algorithmic Debugging Techniques

5.2.5 Implementation

We have implemented the presented technique and integrated it into an algorithmic debugger for Java.
The implementation allows the user to activate the transformations of the technique and to parameterize
them in order to adjust the size of the projected/collapsed chains. It has been tested with a collection of
small to large programs including real applications (e.g., an interpreter, a compiler, an XSLT processor,
etc.) producing good results, as summarized in Table 5.2. All the information related to the experiments,
the source code of the tool, the benchmarks, and other materials can be found at:

http://www.dsic.upv.es/~jsilva/DDJ/experiments.html

Benchmark ET nodes Prj./Col. Prj./Col. nodes Bal. time Quest. Quest. bal. %

NumReader 12 nodes 0/0 0/0 nodes 0 msec 6,46 6,46 0,00 %
Orderings 72 nodes 2/14 5/45 nodes 0 msec 11,47 8,89 22,46 %
Factoricer 62 nodes 7/0 17/0 nodes 0 msec 13,89 7,90 43,09 %
Sedgewick 41 nodes 3/8 7/24 nodes 0 msec 18,79 7,52 59,95 %
Clasifier 30 nodes 4/7 10/20 nodes 0 msec 15,52 6,48 58,21 %
LegendGame 93 nodes 12/20 28/40 nodes 0 msec 16,00 9,70 39,36 %
Cues 19 nodes 3/1 8/2 nodes 0 msec 10,40 8,20 21,15 %
Romanic 123 nodes 20/0 40/0 nodes 0 msec 25,06 16,63 33,66 %
FibRecursive 6724 nodes 19/1290 70/2593 nodes 344 msec 38,29 21,47 43,92 %
Risk 70 nodes 7/8 19/43 nodes 0 msec 30,69 10,28 66,50 %
FactTrans 198 nodes 5/0 12/0 nodes 0 msec 18,96 14,25 24,88 %
RndQuicksort 88 nodes 3/3 9/0 nodes 0 msec 12,88 10,40 19,20 %
BinaryArrays 132 nodes 7/0 18/0 nodes 0 msec 15,56 10,58 32,03 %
FibFactAna 380 nodes 3/29 9/58 nodes 0 msec 30,13 29,15 3,27 %
NewtonPol 46 nodes 1/3 2/40 nodes 0 msec 23,09 4,77 79,35 %
RegresionTest 18 nodes 1/0 3/0 nodes 0 msec 6,84 6,26 8,46 %
BoubleFibArrays 214 nodes 0/40 0/83 nodes 0 msec 12,42 12,01 3,33 %
ComplexNumbers 68 nodes 17/9 37/18 nodes 16 msec 20,62 10,20 50,53 %
StatsMeanFib 104 nodes 3/20 6/56 nodes 0 msec 12,33 11,00 10,81 %
Integral 25 nodes 0/2 0/22 nodes 0 msec 8,38 3,38 59,63 %
TestMath 51 nodes 1/2 2/5 nodes 0 msec 12,77 11,65 8,73 %
TestMath2 267 nodes 7/13 16/52 nodes 31 msec 66,47 58,33 12,24 %
Figures 116 nodes 8/3 16/6 nodes 0 msec 13,78 12,17 11,66 %
FactCalc 105 nodes 3/11 8/32 nodes 0 msec 19,81 12,64 36,19 %
SpaceLimits 127 nodes 38/0 76/0 nodes 0 msec 40,85 29,16 28,61 %
Argparser 129 nodes 31/9 70/37 nodes 16 msec 20,78 12,71 38,85 %
Cglib 1216 nodes 67/39 166/84 nodes 620 msec 80,41 65,01 19,15 %
Javassist 1357 nodes 10/8 28/24 nodes 4.745 msec 79,52 77,50 2,54 %
Kxml2 1172 nodes 260/21 695/42 nodes 452 msec 79,61 28,21 64,56 %
HTMLcleaner 6047 nodes 394/90 1001/223 nodes 8.266 msec 169,49 138,85 18,08 %
Jtstcase 4151 nodes 299/27 776/54 nodes 1.328 msec 85,05 80,52 5,32 %

Average 750,23 nodes 179,43/406,16 466,45/828,81 nodes 2.818,25 msec 85,97 68,21 29,86 %

Table 5.2: Benchmark results for the Tree Balancing technique

Each benchmark has been evaluated assuming that the bug could be at any node. This means that
each row of the table is the average of a number of experiments. For instance, cglib was tested 1.216
times (i.e., the experiment was repeated choosing a different node as buggy, and all nodes were tried).
For each benchmark, the ET nodes column shows the size of the evaluated ET; the Prj./Col. column
shows the number of projection/collapse nodes inserted into the EF; the Prj./Col. nodes column
shows the number of nodes that were projected and collapsed by the debugger; the Bal. time column
shows the time needed by the debugger to balance the whole EF; the Quest. column shows the average
number of questions using Top-Down done by the debugger before finding the bug in the original ET; the
Quest. bal. column shows the average number of questions using Top-Down done by the debugger
before finding the bug in the balanced ET; finally, the (%) column shows the improvement achieved with
the balancing technique. Clearly, the balancing technique has an important impact in the reduction of
questions with a mean reduction of 30 % using Top-Down.

In summary, our debugger produces the EF associated with any method execution specified by the
user (by default main) and transforms it by collapsing and projecting nodes using Algorithm 9. Finally,

5.2. Balancing Execution Trees 55

it is explored with standard search strategies to find a bug. If we observe again Algorithms 6, 7, and 8,
a moment of thought should convince the reader that their cost is linear with respect to the branching
factor of the EF. In contrast, the cost of Algorithm 9 is quadratic with respect to the branching factor
of the EF. On the practical side, our experiments reveal that the average cost of a single collapse
(considering the 1.675 collapses) is 0,77 msec, and the average cost of a single projection (considering
the 1.235 projections) is 17,32 msec. Finally, the average cost for balancing an EF is 2.818,25 msec.

Our algorithm is very conservative because it only collapses or projects nodes that belong to a chain.
Our first experiments showed that if we do not apply any restrictions in the use of chains, the technique
produces EFs that are much more balanced. Repeating the experiments in this way (considering all
23.257 experiments) produced a query reduction of 42 %. However, this reduction comes with a cost:
the complexity of the questions may be increased. Therefore, we only apply the transformations when
the question produced is not complicated (i.e., when it is generated by a chain). This has produced
good results. In the case that the question of a collapse/projection node was still hard to answer, our
tool gives the possibility of answering “I don’t know”, thus skipping the current question and continuing
the debugging process with the other questions (e.g., with the children). This means that, if the user
is able to find the bug with the standard ET, they will also be able with the balanced EF. That is, the
introduction of projection nodes is conservative and cannot cause the debugging session to stop.

5.2.6 Related work

We are not aware of other approaches for balancing the structure of the ET. However, besides our
approach, there exist other transformations devoted to reducing the size of the ET, and thus the number
of questions performed. Our implementation allows for balancing an already generated ET, and it also
allows for automatically generating the balanced ET. This can be done by collapsing or projecting chains
during their generation. However, conceptually, our technique is a post-ET generation transformation.

The most similar approach is the Tree Compression technique introduced by Dave and Chitil [24].
This approach is also a conservative approach that transforms an ET into an equivalent (smaller) ET
where the same bugs can be detected. The objective of this technique is essentially different: it tries to
reduce the size of the ET by removing redundant nodes, and it is only applicable to recursive calls. A
similar approach to tree compression is Declarative Source Debugging [17], which, instead of modifying
the tree, it implements an algorithm to prevent the debugger from selecting questions related to nodes
generated by recursive calls.

Another approach which is related to ours was presented in [78], where a transformation for list
comprehensions of functional programs was introduced. In this case, it is a source code (rather than
an ET) transformation to translate list comprehensions into equivalent functions that implement the
iteration. The produced ET can be further transformed to remove the internal nodes of the ET reducing
the size of the final ET as in the tree compression technique. Both techniques are orthogonal to the
balancing of the ET, thus they both can be applied before balancing.

5.2.7 Proofs of technical results

Lemma 5.2.16 (Buggy method) Given an EF T = (N,E), and a buggy node n ∈ N with n =
(b,m, e), then m contains a bug.

Proof. Because n is buggy, then the method execution (b,m, e) is wrong, thus (b,m, e) 6∈ I and
I 6|= (b,m, e). Moreover, by Definition 4.2.1, we have a child of n for each call to a method performed
from the definition of m. But we know by Definition 4.2.3 that for all child n′ of n, n′ ∈ I or I |= n′

Hence, m contains a bug. 2

Proposition 5.2.17 Let T be an EF with a wrong root. Then T contains a buggy node.

56 Chapter 5. Algorithmic Debugging Techniques

Proof. We prove the claim by induction on the size of T .

(Base case) T only contains one node b. Then b is buggy, because it is wrong and it has no children.

(Induction hypothesis) T contains k nodes and at least one of them is buggy.

(Inductive case) T contains k+1 nodes. In this case we have a tree of k nodes that, by the induction
hypothesis, does contain a buggy node b plus one extra node n. If n is not the child of b, then b is
buggy. If n is the child of b, then either n is correct, and thus b is buggy; or n is wrong and hence,
it is buggy because it has no children.

2

Lemma 5.2.18 (Soundness of projections and collapses) Given a collapse or projection node n =
(b,m1; . . . ;mk, e) in an EF. If n is buggy, then it is associated with a buggy method.

Proof. We have two possibilities:

• n is a collapse node: In this case n has not children and m1 = m2 = . . . = mk = m. Because n
is wrong, then (b,m; . . . ;m, e) 6∈ I by Definition 5.2.3; therefore, trivially, m is buggy.

• n is a projection node: This case is impossible because a projection node cannot be buggy.
The reason is that if all the children of n are correct, then n is correct by Definition 5.2.3 using
the inference rule Tr, and hence n is not buggy. Otherwise, at least one child is wrong, but then,
n cannot be buggy by Definition 4.2.3.

2

Theorem 5.2.12 (Completeness and soundness of EFs) Given an EF with a wrong root, it con-
tains a buggy node which is associated with a buggy method.

Proof. The first point is proved by Proposition 5.2.17, while the second one is proved by Lemmas 5.2.16
and 5.2.18. 2

Theorem 5.2.13 (Chain Collapse Correctness) Let T = (N,E) and T ′ = (N ′, E ′) be two EFs,
being the root of T wrong, and let C ⊂ N be a chain such that all nodes in the chain are leaves and they
have the same associated method. Given T ′ = collapseChain(T, C),

1. T ′ contains a buggy node.

2. Every buggy node in T ′ is associated with a buggy method.

Proof. For the first item, only leaf nodes can be collapsed, therefore, the root node could only be
collapsed if it is the only node of T . However, even in this case we have that @n ∈ N such that
(n→ r) ∈ E being r the root of T . Therefore, according to Definition 5.2.9, r is not a chain and thus it
cannot be collapsed. Hence, the root of T ′ is the same as the root of T , and thus T ′ contains a buggy
node by Proposition 5.2.17.

Now, we prove that any buggy node of T ′ is associated with a buggy method. Let p ∈ N be the
parent node of the chain C, and let w ∈ N ′ be the collapse node of C. We consider three cases:

• b ∈ N ′, p 6= b 6= w is buggy: In this case the collapse does not influence the buggy node b and
thus the claim follows by Lemma 5.2.16.

5.2. Balancing Execution Trees 57

• p is buggy in T ′: This case is trivial, because p is wrong and w is correct by Definition 4.2.3.
Therefore, the new node w can be inferred with the rule Tr and thus the method in p is wrong
according to Lemma 5.2.16.

This case is particularly interesting because it reveals a phenomenon: node p is not changed by
the transformation and thus it belongs to both trees T and T ′. However, it could be possible that
p is not buggy in T but it is buggy in T ′. This happens because w has somehow hidden some error
in the chain—some wrong intermediate result that was visible in the chain is now hidden because
only the initial and final contexts are shown—, revealing a new bug located in p.

• w is buggy in T ′: Then, either the result or the final context of w are wrong. Hence, since both
the result and the final context are produced by the nodes in C, we know that at least one node
c ∈ C is also wrong. Because c is a leaf and it is wrong, then it is a buggy node in T and it is
associated with a buggy method m by Lemma 5.2.16. According to Algorithm 6, w is associated
with a method execution (s,m1 . . .m . . .mk, e), and thus it is associated with a buggy method.

2

Theorem 5.2.14 (Chain Projection Correctness) Let T = (N,E) and T ′ = (N ′, E ′) be two EFs,
and let C ⊂ N be a chain such that T ′ = projectChain(T, C).

1. All buggy nodes in T are also buggy nodes in T ′.

2. Every buggy node in T ′ is associated with a buggy method.

Proof. Let p ∈ N be the parent node of the chain C, and let w ∈ N ′ be the projection node of C. We
consider an arbitrary buggy node b ∈ N and show that it is also buggy in T ′. Four cases are possible:

• p 6= b 6= w and b 6= c ∈ C: In this case the projection does not influence either the buggy node b
or its children and thus b is also buggy in T ′.

• b = p: This means that b is the parent of the chain C. If it is buggy, then by Definition 4.2.3 all
nodes in C are correct. Then, as shown in the proof of Lemma 5.2.18, w is correct. Hence, b is
also buggy in T ′.

In the general case, p will be buggy in T , and also in T ′ (∀c ∈ C, c will be correct; and thus w is
also correct). However, it could be possible that p is wrong in T , two nodes c1, c2 ∈ C were wrong,
and their combined (wrong) effects produced a correct result. In that case, both errors would be
hidden in the projection node (but of course they would remain in c1 and c2). As a result, a new
buggy node (p) not present in T would appear in T ′.

• b = w: This case is impossible as shown in the proof of Lemma 5.2.18.

• b = c ∈ C: This means that c is wrong and all its children correct. Since the children of c have
not been modified by projectChain, c was buggy in T and it is also buggy in T ′.

In all cases, the buggy node is associated with a buggy method by Lemmas 5.2.16 and 5.2.18.

2

58 Chapter 5. Algorithmic Debugging Techniques

5.2.8 Case of study: Mergesort

In this section we show a real application of our algorithm using our implementation. In particular, we
show the result of balancing an EF produced from a Mergesort program. The following Mergesort algo-
rithm version was initially extracted from Wikipedia (https://en.wikipedia.org/wiki/Merge_sort)
and then modified to include one bug in the merge function: it does not update positions appropriately.

The main method declares an object of the mergesort class, initializes the x variable with the list
{3,1,2}, and sorts x with OrderMerge. Finally, the result is stored in the y variable, and it is printed:

import java . u t i l .Random ;

public class mergesort {
public stat ic void main (St r ing [] a rgs) {

mergesort m = new mergesort () ;
int [] x = { 3 , 1 , 2 } ;
int [] y = m. OrderMerge (x) ;

for (int i = 0 ; i < y . l ength ; i++)
System . out . p r i n t l n (y [i]) ;

}

The OrderMerge method implements the mergesort algorithm: First, it splits the list given as argu-
ment; then, it sorts each fragment and merges them together to obtain the final result:

public int [] OrderMerge (int [] L) {
int n = L . l ength ;
i f (n > 1) {

int m = (int) (Math . c e i l (n / 2 . 0)) ;
int [] L1 = new int [m] ;
int [] L2 = new int [n − m] ;

for (int i = 0 ; i < m; i++)
L1 [i] = L [i] ;

for (int i = m; i < n ; i++)
L2 [i − m] = L [i] ;

L = merge (OrderMerge (L1) , OrderMerge (L2)) ;
}
return L ;

}

The merge method introduces in a new list the elements of the (sorted) list received as arguments in
an ordered fashion, and the list is returned as the result. However, we have introduced an error: when
the element in the first array is smaller than the one in the second array, it is introduced in the new
array, but the position is not updated. Thus, the next introduced element will overwrite its value:

public int [] merge (int [] L1 , int [] L2) {
int [] L = new int [L1 . l ength + L2 . l ength] ;
int i = 0 ;

while ((L1 . l ength != 0) && (L2 . l ength != 0)) {
i f (L1 [0] < L2 [0]) {

L [i] = L1 [0] ;
// Bug ! ! Didn ’ t update the po s i t i o n
// Correct : L [i++] = L1 [0] ;
L1 = de l e t e (L1) ;
i f (L1 . l ength == 0)

while (L2 . l ength != 0) {
L [i++] = L2 [0] ;
L2 = de l e t e (L2) ;

}
} else {

L [i++] = L2 [0] ;
L2 = de l e t e (L2) ;
i f (L2 . l ength == 0)

while (L1 . l ength != 0) {
L [i++] = L1 [0] ;
L1 = de l e t e (L1) ;

}
}

}

5.2. Balancing Execution Trees 59

return L ;
}

Finally, the delete method removes the first element of the list received as argument:

public int [] d e l e t e (int [] l) {
int [] L = new int [l . l ength − 1] ;

for (int i = 1 ; i < l . l ength ; i++)
L [i − 1] = l [i] ;

return L ;
}

}

If we execute the main method of the class, we would observe that the initial list, {3,1,2}, is sorted
to {2,3,0}. Since the expected result was {1,2,3}, there must be a bug in the code. At this point, we
can use a conventional debugger and place breakpoints at some parts of the code to try to figure out
whether the variables are updated correctly at those points. Then, add new breakpoints, and so on.

Figure 5.7: AD session of Mergesort with DDJ

An alternative is to use our debugger. When we load mergesort.java in the debugger we see the
information shown in Figure 5.7. In the main panel we can observe a part of the EF associated with
Mergesort. The debugger uses colours to distinguish between those nodes that are marked as wrong (in
red), and those nodes that are marked as correct (in green). The validity of the grey nodes is unknown,
and thus they are suspicious of being buggy. Of course, the user can inspect any node at any point, and
they can also direct the debugging session manually as it happens with breakpoints. But in general, the
user allows the debugger to automatically direct the search for the bug, because it always selects the
node that better divides the suspicious area.

In the figure, the debugger has automatically selected a node related with the OrderMerge method,
and it has prompted the question associated with this node:

60 Chapter 5. Algorithmic Debugging Techniques

mergesort.OrderMerge({3,1}) = {1,3}?

Clearly the answer to the question is Valid because the elements of the array have been correctly
ordered. Note also that it is not even necessary to look at the implementation of the method to answer
the question; i.e., to answer we focus on the objective of the method (we only have to know that this
method should order an array), and we do not need to know the operational details (it does not matter
how it was implemented).

Figure 5.8: EF associated with Mergesort

Figure 5.9: Balanced EF associated with Mergesort

The information associated to each node is displayed in the panel on the right (the object inspector).
It is similar to the “variable watch view” used in traditional debuggers: It allows for inspecting all
objects in the scope of this method. Note that the information is classified so that we can separately
see the arguments and the result; and creation, deletion or changes in any object are highlighted with
colours.

The EF associated with Mergesort is displayed in Figure 5.8, where OM abbreviates OrderMerge. A
standard algorithmic debugger would traverse this tree as follows:

Starting Debugging Session...

(1) NO (2) YES (3) YES (4) NO (8) YES (9) YES (10) YES

Bug located in method: merge(int[] L1, int[] L2) of the Mergesort class

Fortunately, using our balancing algorithm, the debugger can transform the EF in Figure 5.8 to
produce the EF of Figure 5.9, where Nodes (5) and (6); (8), (9) and (10); and, (11) and (12), have been
collapsed. The tool automatically detected that they form chains and collapsed them to form a single
question. For instance, the new collapse node (7) in Figure 5.9 contains the following question: “Having
the L1 = { 1, 3 } and L2 = { 2 } lists, if we delete two elements from the L1 list, and one element from
the L2 list; should we obtain the L1 = { } and L2 = { } lists?”

5.2. Balancing Execution Trees 61

Although larger trees would not fit in these pages, we can already see the pattern of collapsing for
this example: merging two lists of sizes n1 and n2, that in general produces n1 + n2 + 1 nodes in the
EF (one node for merge and n1 + n2 for delete), only produces two nodes in the balanced EF.

With the balanced EF, the traversal is:

Starting Debugging Session...

(1) NO (2) YES (3) YES (4) NO (7) YES

Bug located in method: merge(int[] L1, int[] L2) of the Mergesort class

62 Chapter 5. Algorithmic Debugging Techniques

5.3 Loops to recursion

5.3.1 Introduction

Iteration and recursion are two different ways to reach the same objective. In some paradigms, such
as the functional or logic, iteration does not even exist. In other paradigms, e.g., the imperative or
the object-oriented paradigm, the programmer can decide which of them to use. However, they are not
totally equivalent, and sometimes it is desirable to use recursion, while other times iteration is preferable.
In particular, one of the most important differences is the performance achieved by both of them. In
general, compilers have produced more efficient code for iteration, and this is the reason why several
transformations from recursion to iteration exist (see, e.g., [42, 62, 71]). Recursion in contrast is known
to be more intuitive, reusable and debuggable. Another advantage of recursion shows up in presence
of hierarchized memories. In fact, other researchers have obtained both theoretical and experimental
results showing significant performance benefits of recursive algorithms on both uniprocessor hierarchies
and on shared-memory systems [104]. In particular, Gustavson and Elmroth [39, 26] have demonstrated
significant performance benefits from recursive versions of Cholesky and QR factorization, and Gaussian
elimination with pivoting.

Recently, a new technique for algorithmic debugging [56] revealed that transforming all iterative
loops into recursive methods before starting the debugging session can improve the interaction between
the debugger and the user, and it can also reduce the granularity of the located errors. In particular,
algorithmic debuggers only report buggy methods. Thus, a bug inside a loop is reported as a bug in
the whole method that contains the loop, which is sometimes too imprecise. Transforming a loop into
a recursive method allows the debugger to identify the recursive method (and thus the loop) as buggy.
Hence, we wanted to implement this transformation and integrate it in the Declarative Debugger for Java
(DDJ), but, surprisingly, we did not find any available transformation from iterative loops into recursive
methods for Java (or for any other object-oriented language). Therefore, we had to implement it by
ourselves and decided to automatize and generalize the transformation to make it publicly available. To
the best of our knowledge this is the first transformation for all types of iterative loops. Moreover, our
transformation handles exceptions and accepts the use of any number of break and continue statements
(with or without labels).

One important property of our transformation [54] is that it always produces tail recursive methods
[20]. This means that they can be compiled into efficient code because the compiler only needs to keep
two activation records in the stack to execute the whole loop [40, 3]. Another important property is
that each iteration is always represented with one recursive call. This means that a loop that performs
100 iterations is transformed into a recursive method that performs 100 recursive calls. This equivalence
between iterations and recursive calls is very important for some applications such as debugging, and it
produces code that is more maintainable.

The objective of this section is twofold. On the one hand, it is a description of a transformation
explained in such a way that one can study the transformation of a specific construct (e.g., exceptions)
without the need to see how other constructs, such as the return statement, are transformed. This
decomposition of the transformation into independent parts can be very useful for academic purposes.
In particular, this section describes the transformation step by step using different sections to explain
the treatment of advanced features such as exception handling and the use of labels. Because we
are not aware of any other publicly available description, some parts can help students and beginner
programmers to completely understand and exercise the relation between iteration and recursion, while
other more advanced parts can be useful for the implementors of the transformation. On the other hand,
the proposed transformation has been implemented as a publicly available library. To the best of our
knowledge, this is the first automatic transformation for an object-oriented language that is complete
(i.e., it accepts the whole language).

5.3. Loops to recursion 63

Example 5.3.1 Transforming loops into recursion is necessary in many situations (e.g., compilation
to functional or logic languages, algorithmic debugging, program understanding, memory hierarchies
optimization, etc.). However, the transformation of a loop into an equivalent recursive method is not
trivial at all in the general case. For this reason, there exist previous ad-hoc implementations that cannot
accept the whole language, or that are even buggy. For instance, the transformation proposed in [30]
does not accept exceptions and it crashes in situations like the following:

for (int i = 0; i < 10; i++)

for (int j = 0; j < 10; j++)

break;

due to a bug in the implementation.

Consider the Java code in Algorithm 10. It is not particularly complicated, but it shows some of the
difficulties that can appear during a transformation.

Algorithm 10 Iterative loop with exceptions

1: public int example(int x) throws IOException {
2: loop1:
3: while (x < 10) {
4: try {
5: x = 42 / x;
6: } catch (Exception e) { break loop1; }
7: loop2:
8: for (int i = 1; i < x; i++)
9: if (x % i > 0);

10: throw new Exception1();
11: else continue loop1;
12: }
13: return x;
14: }

This algorithm contains two nested loops (while and for). Therefore, it would be normally translated
into recursion using three methods, one for the original method example, one for the outer loop loop1,
and one for the inner loop loop2. However, the use of exceptions and statements such as break and
continue poses restrictions on the implementation of these methods. For instance, observe in line 11
that the control can pass from one loop to the other due to the use of the loop1 label. This forces the
programmer to implement some mechanism to record the values of all variables shared by both loops and
pass the control from one loop to the other when this point is reached. Note also that this change in
the control could affect several levels (e.g., if a break is used in a deeper loop). In addition, the use of
exceptions imposes additional difficulties. Observe for instance that the inner loop throws an exception
Exception1 in line 10. This exception could inherit from IOException and thus it should be captured in
the loop2 method and passed in some way to the loop1 method that in turn should decide if it catches
the exception or passes it to the example method that would throw it. To the best of our knowledge, this
example cannot be translated into recursion by any of the already existing transformations.

In the rest of this section we describe our transformation for all types of loops in Java (i.e., while/-
do/for/foreach). The transformation of each particular type of loop is explained with an example. We
start with an illustrative example that provides the reader with a general view of how the transformation
works.

64 Chapter 5. Algorithmic Debugging Techniques

Algorithm 11 Sqrt (iterative version)

1: public double sqrt(double x) {
2: if (x < 0)
3: return Double.NaN;
4: double b = x;
5: while (Math.abs(b * b - x) > 1e-12)
6: b = ((x / b) + b) / 2;
7: return b;
8: }

Example 5.3.2 Consider the Java code in Algorithm 11. It computes the square root of the input
argument.
This algorithm implements a while-loop where each iteration obtains a more accurate approximation of
the square root of the x variable. The transformed code is depicted in Algorithm 12 that implements the
same functionality but replacing the while-loop with a new recursive method sqrt loop.

Algorithm 12 Sqrt (recursive version)

1: public double sqrt(double x) {
2: if (x < 0)
3: return Double.NaN;
4: double b = x;
5: if (Math.abs(b * b - x) > 1e-12)
6: b = this.sqrt loop(x, b);
7: return b;
8: }
9: private double sqrt loop(double x, double b) {

10: b = ((x / b) + b) / 2;
11: if (Math.abs(b * b - x) > 1e-12)
12: return this.sqrt loop(x, b);
13: return b;
14: }

Essentially, the transformation performs two steps:

1. Substitute a new code for the original loop (lines 5-6 in Algorithm 12).

2. Create a new recursive method (lines 9-14 in Algorithm 12).

In Algorithm 12, the new code in the sqrt method includes a call (line 6) to the recursive method
sqrt loop that implements the loop (lines 9-14). This new recursive method contains the body of the
original loop (line 10). Therefore, each time the method is invoked, an iteration of the loop is performed.
The rest of the code added during the transformation (lines 5, 11-13) is the code needed to simulate
the same effects of a while-loop. Therefore, this is the only code that we should change to adapt the
transformation to the other types of loops (do/for/foreach).

The rest of this section is organized as follows. In Section 5.3.2 we introduce our transformations
for each particular type of loop and provide detailed examples and explanations. In Section 5.3.3 we
extend our algorithms with a special treatment for break and continue statements. Section 5.3.4 presents
the transformation in presence of exceptions and errors (try, catch, throw and the hierarchy of objects

5.3. Loops to recursion 65

that inherit from Throwable). Section 5.3.5 presents the transformation in presence of recursion and
the return and goto statements. Section 5.3.6 presents the implementation of the technique, some
optimizations that can be applied to the general transformation, and an empirical evaluation with a
benchmark suite. Section 5.3.7 discusses some related approaches. Finally, Section 5.3.8 provides a
proof of correctness of the transformation.

5.3.2 Transforming loops into recursive methods

Our program transformations are summarized in Table 5.3. This table has a different row for each type
of loop. For each loop, we have two columns. One for the iterative version of the loop, and one for
the transformed recursive version. Observe that the code is presented in an abstract way, so that it is
formed by a parameterized skeleton of the code that can be instantiated with any particular loop of
each type.

In the recursive version, the code inside the ellipses is code inserted by the programmer (it comes
from the iterative version). The rest of the code is automatically generated by the transformation. Here,
result and loop are fresh names (not present in the iterative version) for a variable and a method,
respectively; type is a data type that corresponds to the data type declared by the user (it is associated
with a variable already declared in the iterative version). The code inside the squares has the following
meaning:

1 contains the sequence formed by all the variables declared in Code1 (and in ini in for -loops) that
are used in Code2 and cond (and in upd in for -loops).

1’ contains the previous sequence but including types (because it is used as the parameters of the
method, and the previous sequence is used as the arguments of the call to the method).

2 contains for each object in the result array (which contains the same variables as 1 and 1’),
a casting of the object to assign the corresponding type. For instance, if the array contains two
variables [x,y] whose types are respectively double and int; then 2 contains:
x = (Double) result[0];

y = (Integer) result[1];

Observe that, even though these steps are based on Java, the same steps (with small modifications)
can be used to transform loops in many other imperative or object-oriented languages. The code
in Table 5.3 is generic. In some specific cases, this code can be optimized. For instance, observe
that the recursive method always returns an array of objects (return new Object[] {...}) with all
variables that changed in the loop. This array is unnecessary and inefficient if the recursive method
only needs to return one variable (or if it does not need to return any variable). Therefore, the creation
of the array should be replaced with a single variable or null (i.e., return null). In the rest of the
section, we always apply optimizations when possible, so that the code does not perform any unnecessary
operations. This allows us to present a generic transformation as the one in Table 5.3, and also to provide
specific efficient transformations for each type of loop. The optimizations are not needed to understand
the transformation, but they should be considered when implementing it. Therefore, we will explain
the optimizations in detail in the implementation section. In the rest of this section we explain the
transformation of all types of loop. The four types of loops (while/do/for/foreach) present in the Java
language behave nearly in the same way. Therefore, the modifications needed to transform each type of
loop into a recursive method are very similar. We start by describing the transformation for while-loops,
and then we describe the variations needed to adapt the transformation for do/for/foreach-loops.

66 Chapter 5. Algorithmic Debugging Techniques

Table 5.3: Taxonomy of the transformations from loops to recursion

Transformation of while-loops

In Table 5.4 we show a general overview of the steps needed to transform a Java iterative while-loop
into an equivalent recursive method. Each step is described in the following.

5.3. Loops to recursion 67

(a) Original method (b) Transformed method

(c) Recursive method

Figure 5.10: Transformation from a while-loop template to recursion

Step Correspondence with Figure 5.10

Figure 5.10(b)
1) Substitute the loop with a call to the recursive method Caller
1.1) If the loop condition is satisfied Loop condition
1.1.1) Perform the first iteration First iteration
1.2) Catch the variables modified during the recursion Modified variables
1.3) Update the modified variables Updated variables

Figure 5.10(c)
2) Create the recursive method Recursive method
2.1) Define the parameters of the method Parameters
2.2) Define the code of the recursive method
2.2.1) Include the code of the original loop Loop code
2.2.2) If the loop condition is satisfied Loop condition
2.2.2.1) Perform the next iteration Next iteration
2.2.3) Otherwise return the modified variables Modified variables

Table 5.4: Steps for the transformation of the while-loop to recursion

Substitute the loop with a call to the recursive method. The first step is to remove the
original loop and substitute it with a call to the new recursive method. We can see this substitution in
Figure 5.10(b). Observe that some parts of the transformation have been labelled to ease later references
to the code. The tasks performed during the substitution are explained in the following:

• Perform the first iteration
In the while-loop, first of all we check whether the loop condition holds. If it does not hold,
then the loop is not executed. Otherwise, the first iteration is performed by calling the recursive
method with the variables used inside the loop as arguments of the method call. Hence, we need
an analysis to know what variables are used inside the loop. The recursive method is in charge of

68 Chapter 5. Algorithmic Debugging Techniques

executing as many iterations of the loop as needed.

• Catch the variables modified during the recursion
The variables modified during the recursion cannot be automatically updated in Java because all
parameters are passed by value. Therefore, if we modify an argument inside a method we are
only modifying a copy of the original variable. This also happens with objects. Hence, in order
to output those modified variables that are needed outside the loop, we use an array of objects.
Because the modified variables can be of any data type6, we use an array of objects of class Object.

In presence of call-by-reference, this step should be omitted.

• Update the modified variables
After the execution of the loop, the modified variables are returned inside an Object array.
Each variable in this array must be cast into its respective type before being assigned to the
corresponding variable declared before the loop.

In presence of call-by-reference, this step should be omitted.

Create the recursive method. Once we have substituted the loop, we create a new method that
implements the loop in a recursive way. This recursive method is shown in Figure 5.10(c).

The code of the recursive method is explained in the following:

• Define the parameters of the method
There are variables declared inside a method but declared outside the loop and used in this loop.
When the loop is transformed into a recursive method, these variables are not accessible from inside
the recursive method. Therefore, they must be passed as arguments in the calls to it. Hence, the
parameters of the recursive method are the intersection between the variables declared before the
loop and the variables used inside it.

• Define the code of the recursive method
Each iteration of the original iterative loop is emulated with a call to the new recursive method.
Therefore, in the code of the recursive method we have to execute the current iteration and control
whether the next iteration must be executed or not.

– Include the code of the original loop
When the recursive method is invoked it means that we want to execute one iteration of
the loop. Therefore, we place the original code of the loop at the beginning of the recursive
method. This code is supposed to update the variables that control the loop condition. Oth-
erwise, the original loop is in fact an infinite loop and the recursive method created will be
invoked infinitely.

– Perform the next iteration
Once the iteration is executed, we check the loop condition again to know whether another
iteration must still be executed. In such a case, we perform the next iteration with the same
arguments. Note that the values of the arguments can be modified during the execution of
the iteration, therefore, each iteration has different argument values, but the names and the
number of arguments remain always the same.

– Otherwise return the modified variables
If the loop condition does not hold, the loop ends and thus we must finish the sequence of

6In the case that the returned values are primitive types, then they are naturally encapsulated by the compiler in their
associated primitive wrapper classes.

5.3. Loops to recursion 69

recursive method calls and return to the original method in order to continue executing the
rest of the code. Because the arguments have been updated in each recursive call, at this
point we have the last values of the variables involved in the loop. Hence, these variables must
be returned in order to update them in the original method. Observe that these variables
are passed from iteration to iteration during the execution of the recursive method until it is
finally returned to the recursive method caller.

In presence of call-by-reference, this step should be omitted.

Figure 5.11 shows an example of a transformation of a while-loop.

(a) Original method (b) Transformed method

(c) Recursive method

Figure 5.11: Transformation from the while-loop to recursion

Transformation of do-loops

do-loops behave exactly in the same way as while-loops except in one detail: The first iteration of the
do-loop is always performed. In Figure 5.12(a) we can see an example of a do-loop. This code obtains
the square root value of the x variable as the code in Algorithm 11. The difference is that, if the x
variable is either 0 or 1, then the method directly returns the x variable, otherwise the loop is performed
in order to calculate the square root. In order to transform the do-loop into a recursive method, we
can follow the same steps used in Table 5.4 with only one change: in step 1.1 the loop condition is not
evaluated; instead, we only need to add a new code block to ensure that those variables created during
the transformation are not available outside the transformed code.

Figure 5.12(b) and 5.12(c) illustrates the only change needed to transform the do-loop into a recursive
method. Observe that in this example there is no need to introduce a new block, because the transformed
code does not create new variables, but in the general case the block could be needed.

• Add a new code block
Observe in Table 5.3, in the Caller column, that, contrarily to while-loops, do-loops need to
introduce a new block (i.e., a new scope). The reason is that there could exist variables with the

70 Chapter 5. Algorithmic Debugging Techniques

(a) Do loop

(b) Recursive method caller (c) Recursive method

Figure 5.12: Transformation from the do-loop to recursion

same name as the variables created during the transformation (e.g., result). Hence, the new block
avoids variable clashes and limits the scope of the variables created by the transformation.

Transformation of for-loops

One of the most frequently used loops in Java is the for -loop. This loop behaves exactly in the same way
as the while-loop except in one detail: for -loops provide the programmer with a mechanism to declare,
initialize and update variables that will be accessible inside the loop.

In Figure 5.13(a) we can see an example of a for -loop. This code obtains the square root value of
the x variable exactly as the code in Algorithm 11, but it also prints the approximation obtained in
every iteration. We can see in Figure 5.13(b) and 5.13(c) the additional changes needed to transform
the for -loop into a recursive method.

As shown in Figure 5.13, in order to transform the for -loop into a recursive method, we can follow
the same steps used in Table 5.4, but we have to make three changes:

• Add a new code block
Exactly in the same way and with the same purpose as in do-loops.

• Add the declarations/initializations at the beginning of the block
In the original method, those variables created during the declaration and initialization of the loop
are only available inside it (and not in the code that follows the loop). We must ensure that these
variables maintain the same scope in the transformed code. This can be easily achieved with the
new block. In the transformed code, these variables are declared and initialized at the beginning
of the new block, and they are passed as arguments to the recursive method in every iteration to
make them accessible inside it.

• Add the updates between the loop code and the loop condition
In for -loops there exists the possibility of executing code between iterations. This code is usually a

5.3. Loops to recursion 71

(a) For loop

(b) Recursive method caller (c) Recursive method

Figure 5.13: Transformation from the for-loop to recursion

collection of updates of the variables declared at the beginning of the loop (e.g., in Figure 5.13(a)
this code is iter++). However, this code could be formed by a series of expressions separated
by commas that could include method invocations, assignments, etc. Because this update code
is always executed before the condition of the loop, it must be placed in the recursive method
between the loop code and the loop condition.

Transformation of foreach-loops

foreach-loops are especially useful to traverse collections of elements. In particular, this type of loops
traverses a given collection and it executes a block of code for each element. The transformation of a
foreach-loop into a recursive method is different depending on the type of collection that is traversed.
In Java we can use foreach-loops either with arrays or iterable objects. We explain each transformation
separately.

foreach-loop used to traverse arrays. An array is a composite data structure where elements have
been sequentialized, and thus, they can be traversed linearly. We can see an example of a foreach-loop
that traverses an array in Algorithm 13.

Algorithm 13 foreach-loop that traverses an array (iterative version)

1: public void foreachArray() {
2: double[] numbers = new double[] { 4.0, 9.0 };
3: for (double number : numbers) {
4: double sqrt = this.sqrt(number);
5: System.out.println(“sqrt(” + number + “) = ” + sqrt);
6: }
7: }

72 Chapter 5. Algorithmic Debugging Techniques

This code computes and prints the square root of all elements in the [4.0, 9.0] array. Each individual
square root is computed with Algorithm 11. The foreach-loop traverses the array sequentially starting
from numbers[0] until the last element in the array. The transformation of this loop into an equivalent
recursive method is very similar to the transformation of a for -loop. However, there are differences. For
instance, foreach-loops lack a counter. This can be observed in Figure 5.14 that implements a recursive
method equivalent to the loop in Algorithm 13.

(a) Recursive method caller

(b) Recursive method

Figure 5.14: Transformation from the foreach-loop to recursion (Array version)

In Figure 5.14 we can see the symmetry with respect to the for -loop transformation. The only
difference is the creation of a fresh variable that is passed as argument in the recursive method calls (in
the example this variable is called index). This variable is used for:

• Controlling whether there are more elements to be treated
A foreach-loop is only executed if the array contains elements. Therefore we need a loop condition
in the recursive method caller and another in the recursive method to know when there are no
more elements in the array and thus finish the traversal. The later is controlled with a variable
(index in the example) acting as a counter.

• Obtaining the next element to be treated
During each iteration of the foreach-loop a variable called number is instantiated with one element
of the array (line 3 of Algorithm 13). In the transformation this behaviour is emulated by declaring
and initializing this variable at the beginning of the recursive method. It is initialized to the
corresponding element of the array by using the index variable.

foreach-loop used to traverse iterable objects. A foreach-loop can be used to traverse objects
that implement the Iterable interface. Algorithm 14 shows an example of a foreach-loop using one of
these objects.

This code behaves exactly in the same way as Algorithm 13 but using an iterable object instead of an
array (numbers is an iterable object because it is an instance of the List class that in turn implements
the Iterable interface). The Iterable interface only has one method, called iterator, that returns an object
that implements the Iterator interface. With regard to the Iterator interface, it forces the programmer
to implement the next, hasNext and remove methods; and these methods allow the programmer to freely

5.3. Loops to recursion 73

Algorithm 14 foreach-loop used to traverse an iterable object (iterative version)

1: public void foreachIterable() {
2: List<Double> numbers = Arrays.asList(4.0, 9.0);
3: for (double number : numbers) {
4: double sqrt = this.sqrt(number);
5: System.out.println(“sqrt(” + number + “) = ” + sqrt);
6: }
7: }

implement how the collection is traversed (e.g., the order, whether repetitions are taken into account or
not, etc.). Therefore, the transformed code should use these methods to traverse the collection. We can
see in Figure 5.15 a recursive method equivalent to Algorithm 14.

(a) Recursive method caller

(b) Recursive method

Figure 5.15: Transformation from the foreach-loop to recursion (Iterable version)

Observe that the transformed code in Figure 5.15 is very similar to the one in Figure 5.14. The only
difference is the use of an iterator variable (instead of an integer variable) that controls the element of
the collection to be treated. Note that the next method of the iterator variable makes it possible to
know what the next element to be treated is, and the hasNext method tells us whether there still exist
more elements to be processed.

5.3.3 Treatment of break and continue statements

The break and continue control statements can change the normal control flow of a loop. These
commands can also be used in combination with a parameter that specifies the specific loop that
should be continued or broken. We can illustrate their use with a Java program extracted from
http://docs.oracle.com/javase/tutorial/java/nutsandbolts/branch.html and shown in Algo-
rithm 15. This program takes two strings and decides whether the second is a substring of the first.

In the example, the continue test statement (line 11) is used to continue the search in the next
substring of the searchMe variable. Since it contains the test label, it affects the for -loop (labelled with
“test”) instead of the while-loop (as it would happen if continue was unlabelled).

74 Chapter 5. Algorithmic Debugging Techniques

Algorithm 15 Use of the statement continue with a label

1: public void substr() {
2: String searchMe = “Look for a substring in me”;
3: String substring = “sub”;
4: int max = searchMe.length() - substring.length();
5: boolean foundIt = false;
6: test:
7: for (int i = 0; i <= max; i++) {
8: int n = substring.length(), j = i, k = 0;
9: while (n-- != 0)

10: if (searchMe.charAt(j++) != substring.charAt(k++))
11: continue test;
12: foundIt = true;
13: break test;
14: }
15: System.out.println(foundIt ? “Found it” : “Didn’t find it”);
16: }

Table 5.5 presents a schema that summarizes the additional treatments that are necessary in presence
of break and continue statements. We have not found any public report for any language that describes
how to transform these statements. This table is general enough as to be able to work with any number
of combined (possibly nested) loops and break/continue statements with or without labels. The table
includes the case where break/continue are included inside a nested loop (loop2). Note however that
there could be other loops in the different codes inside the ellipses. In such a case, the treatment would
be extended exactly in the same way as it is described in the table for the case of two nested loops. Note
also that loop1 and loop2 could be any type of loop (while/do/for/foreach), and thus the transformation
should proceed in each type as stated in Table 5.3. Essentially, the right column in Table 5.5 performs
the following steps:

• In the output of all recursive methods (i.e., in the fresh variable result), we always return in the
first position (result[0]) an array of strings. This array of strings (referred to with the control
fresh variable) contains two flags to indicate to the outer recursive methods (representing the
outer loops) whether a break or continue statement that must be processed has been executed in
the inner recursive methods (representing the inner loops). In the case that none of them was
executed, or if they do not have a label associated, then control is null. The flags of control are
the following:

– statement : indicates whether a break or continue has been executed.

– label : indicates the label associated with statement.

• After a call to a recursive method, the transformed code examines the output and depending on
the values in the flags it behaves differently:

– if control is null, then no break/continue statement has been executed or it has already
been processed by the inner recursive methods. Hence, the execution proceeds normally.
Otherwise, if the statement inside the control variable is break or continue, then

– if the label of the current loop is different from the returned label, this means that a break/-
continue statement has been executed but it affects another outer loop. Therefore, we exit
this method (without further executing anything else) and continue with the outer method.

5.3. Loops to recursion 75

In this case, we have to output control to indicate to the external methods that one of them
should be broken or continued.

– if the label of the current loop is equal to the returned label, and statement is equal to break,
we exit this method and set control to null so that external methods proceed normally.

– if the label of the current loop is equal to the returned label, and statement is equal to
continue, this method ends its current iteration and continues with the next by performing a
recursive call.

Table 5.5: Schema showing the transformation of break and continue statements to recursion

We can see the behaviour of this table in a concrete example. Algorithm 16 implements a recursive
method equivalent to Algorithm 15. This example is especially interesting because it combines the

76 Chapter 5. Algorithmic Debugging Techniques

transformation of two nested loops (a for -loop and a while-loop) together with the use of a break and
a continue statements that use a label of the same loop where they are declared (the break statement)
and a label of an outer loop (the continue statement).

Algorithm 16 Transformation of a continue with label
1: public void substr() {
2: String searchMe = “Look for a substring in me”;
3: String substring = “sub”;
4: int max = searchMe.length() - substring.length();
5: boolean foundIt = false;
6: {
7: int i = 0;
8: if (i <= max)
9: foundIt = substr test(searchMe, substring, max, foundIt, i);

10: }
11: System.out.println(foundIt ? “Found it” : “Didn’t find it”);
12: }
13: private boolean substr test(String searchMe, String substring, int max, boolean foundIt, int i) {
14: int n = substring.length(), j = i, k = 0;
15: if (n-- != 0) {
16: String[] control = substr test loop(searchMe, substring, n, j, k);
17: if (control != null) {
18: i++;
19: if (i <= max)
20: return substr test(searchMe, substring, max, foundIt, i);
21: return foundIt;
22: }
23: }
24: foundIt = true;
25: return foundIt;
26: }
27: private String[] substr test loop(String searchMe, String substring, int n, int j, int k) {
28: if (searchMe.charAt(j++) != substring.charAt(k++))
29: return new String[] { “continue”, “test” };
30: if (n-- != 0)
31: return substr test loop(searchMe, substring, n, j, k);
32: return null;
33: }

In this example, loop1 and loop2 correspond to for - and while-loops respectively. We can observe
the analogy with the treatment described in Table 5.5. In particular, in Algorithm 15, inside the for -
loop, the break statement (line 13) refers to this loop (due to the test label). Hence, in Algorithm 16 we
substitute it with a return statement that just ends the execution of the loop (line 25). Contrarily, inside
the while-loop, the continue statement (line 11) refers to the outer loop (due again to the test label).
Therefore, we substitute it with a return statement where we set the control flags to their corresponding
values (line 29).

5.3.4 Handling exceptions

Exceptions interrupt the normal execution of a program. They can be thrown due to two reasons:
explicitly thrown by the programmer (using the throw command) or implicitly thrown by executing an
instruction (e.g., a division by zero, opening a file that does not exist, etc.). When an exception is
thrown, there must exist a part of the code that catches this exception and handles it by executing some
subroutines. Therefore, all methods in a program (and the methods generated by our transformation in

5.3. Loops to recursion 77

particular) must be labelled with which exceptions are caught by them, and thus the other exceptions
would be thrown to the caller of the method.

Table 5.6 presents a schema that summarizes the additional treatment necessary to handle exceptions.
In the left column we have a method with two nested loops and four different exceptions that are thrown
inside the inner loop. Exception1 is caught inside the inner loop (loop2); Exception2 is caught inside the
outer loop (loop1); Exception3 is caught outside both loops but inside the method; and IOException,
which may be thrown due to the file.read() statement, is thrown out of the method.

Table 5.6: Transformation of exceptions to recursion

The right column shows the transformed code. The transformation uses the same mechanism used
for break and continue. In each method that represents a loop, it uses the result array to output the
exceptions that have occurred inside the method and must be caught by other method (i.e., the caller
or any other previous one). Observe the transformed code for the inner loop (loop2 method). This
method catches all exceptions that were already caught by the original loop (i.e., catch (Exception1
e)). The other exceptions should be caught outside of the method (i.e., Exception2, Exception3 and
IOException). Therefore, the loop2 method includes a try-catch that surrounds all statements. This
try-catch catches any possible throwable exception because it catches a generic Throwable object. This
is necessary to be able to catch all exceptions thrown by the programmer, and also those that can be
thrown by the system. When an exception is caught, it is returned to the caller method inside an array
called control with a “throw” flag to indicate that an exception that must be handled is being returned.

In the outer loop (loop1 method), after the call to loop2, we check whether the control variable is
null. This is the way to know if the method should proceed normally, or it should handle the exception.
Whenever control != null, it checks whether the exception is Exception2. In such a case, the exception is

78 Chapter 5. Algorithmic Debugging Techniques

thrown, caught, and handled by this method. Otherwise, it is thrown again to the caller of this method.
This process is repeated inside each transformed method that represents a loop. Note in the example
that the IOException exception is not handled by any method, and thus, it will be thrown by the initial
method exactly as it happens in the original code.

There is a detail in the transformed method that is important to remark and explain. In Java
there are two types of exceptions, named checked and unchecked. While checked exceptions must be
always explicitly caught or thrown, unchecked exceptions are implicitly handled by the compiler (i.e.,
there is no need to include them in the throws statement). Moreover, all unchecked exceptions inherit
from RuntimeException or Error. Therefore, in the case that (i) an exception reaches the transformed
method (thus, it was not handled inside any loop), (ii) the exception is not handled by this method
(it is not Exception3), and also, (iii) it does not appear in the throws section (it is not IOException),
then this exception is necessarily an unchecked exception and must be thrown as such. To allow the
compiler to catch an unchecked exception (e.g., NullPointerException in file.read() if file is null), the
transformation must use a casting before throwing it (in the figure, throw (RuntimeException) throwable
and throw (Error) throwable). This ensures that all checked and unchecked exceptions are caught.

5.3.5 Treatment of recursion and the return and goto statements

In this section we explain what happens when the loop contains recursive calls, and how to treat return
and goto commands. We start explaining how to transform loops into recursive calls. Roughly, recursion
does not need special treatment. Recursive calls are treated as any other statement in the loop, as it is
shown in the programs in Table 5.7.

Table 5.7: Transformation of recursive methods to recursion

In the iterative version of the loop we have three recursive calls (numbered 1, 2 and 3). Recursive calls
1 and 3 are outside the loop. They both are executed only once before and after the loop respectively
in the original code. Analogously, they are executed before and after the transformed code associated
with the loop. Therefore, trivially, provided that the transformed code behaves as the loop does, then
they do not affect the transformation and should remain unchanged. Contrarily, recursive call 2 is done
inside the loop and, thus, it will be executed in every iteration of the loop. The transformed code places
the recursive call inside the new generated recursive method (loop). Each activation of this method
corresponds to one iteration of the original loop. Note that the recursive call to function is treated as
any other statement. If it produces a change in the state of the loop (like, e.g., an assignment), it will
affect the rest of the code in the same way in both the original and the transformed code.

The transformation of return statements is very similar to the one for break statements. Both
statements force the control to stop the execution, leave the current loop, and continue the execution in
another point of the code. We illustrate the transformation of return with Table 5.8.

The code in Table 5.8 shows a return inside a nested loop. Therefore, it forces the execution to leave
both loops and exit the function method. Observe that the transformed code is completely analogous

5.3. Loops to recursion 79

Table 5.8: Transformation of return statements to recursion

to the one for break statements. The transformation converts the return in rhombus 0 to the return in
rhombus 3. Observe that we use a flag with the "return" string to indicate to the outer loops that
a return statement was executed. Then, all other methods check the flag and propagate the return
statement (rhombus 2) until it reaches the original method (the caller). The caller removes the flag and
returns the same value as in the original loop (rhombus 1).

Our transformation does not consider the use of goto statements. Note that, even though goto is a
reserved word in Java, it is not used as a language construct, and thus, in practice, Java does not have
goto.7 If we had a goto statement inside a transformed loop, three situations would be possible: the goto
statement points to a label inside (1) the same loop; (2) an inner loop; or (3) an outer loop. In the first
case the goto statement can remain unchanged in the transformed code, and the transformation will
perfectly work. Cases 2 and 3 are not handled by our transformation. However, in the third case, there
can exist an equivalence between a goto statement and a labelled break/continue statement. In such
cases the transformation of the goto statement would correspond to the transformation of a labelled
break/continue statement.

5.3.6 Implementation as a Java library, optimizations and empirical eval-
uation

All the transformations described in this section have been implemented as a Java library called
loops2recursion. This library consists of approximately 3,000 lines of Java code, and it is publicly
available at:

http://www.dsic.upv.es/~jsilva/loops2recursion/

The library contains the implementation of all the individual algorithms needed to transform each
type of Java loop, and it also contains generic code able to parse a whole Java file or project. Roughly,
it parses the source code and it automatically detects and transforms all loops in the program.

The transformation can be used, e.g., as follows:

import loops2recursion;

(...)

FileTransformer ft = new FileTransformer(sourceFile, targetFile);

7The goto command was included in the list of Java’s reserved words because, if it were added to the language later on,
existing code that used the word goto as an identifier (variable name, method name, etc.) would break. But because goto
is a keyword, such code will not even compile in the present, and it remains possible to make it actually do something
later on, without breaking existing code.

80 Chapter 5. Algorithmic Debugging Techniques

ft.openFile();

ft.showCode();

ft.loops2recursion();

ft.showCode();

ft.saveFile();

Observe that an object of the FileTransformer class is created to transform a file. Then, we can
invoke several methods provided by the library to manipulate this object. In the example, we first open
the source file (openFile), next we show in the console the code in the source file (showCode), then we
perform the transformation (loops2recursion) and show the transformed code (showCode). Finally,
we save the transformed code in the target file (saveFile).

Optimizations

The code in Table 5.3 is generic. In some specific cases, this code can be optimized. The following
optimizations are not needed to understand the transformation, but they should be considered when
implementing it (all of them are implemented by loops2recursion):

1. Do not update unmodified variables.
If the loop does not modify a variable (e.g., it is only read), then do not return this variable in the
recursive method. We can see an example in Algorithm 12 where the x variable is not modified
during the execution of the sqrt loop method and thus we do not return it (line 13).

2. Variable uniformity.
If all variables returned in the recursive method are of the same type, then the returned array should
be of that type (e.g., int[]). We can see an example in Algorithm 16 where the substr test loop
method returns an array of strings (line 27).

3. Avoid returning an array when possible.
When the transformed method only returns a single variable, then the array is unnecessary and
only the variable should be returned. We can see an example in Algorithm 12 where we only
return the b variable (line 13).

4. Throw the exceptions (do not catch them) if there are no variables that should be
updated.
In the generated code, exceptions are handled to update the variables when returning from the
recursive method. If there are no variables to update, then it is not necessary to catch the
exceptions.

5. Avoid the external block when possible.
The transformation generates an external block to avoid that variables declared inside the gener-
ated code exist after it. If there are no declared variables, then the block is unnecessary. We can
see an example in Algorithm 12 where the result variable is not necessary because we can directly
assign the return value to the b variable (line 6).

6. Remove unreachable code.
The transformation can generare unreachable code when the last statement of the loop is a
break/continue/return/throw statement. In that case, the code generated after this sentence
is unreachable and must be removed. We can see an example in Algorithm 16 where the sqrt test
method is the transformation of a for -loop. In this example the transformation would normally
insert the code to execute the next iteration at the end of the method, but since the last statement
of the loop is a break, then this code would be unreachable and it has been removed (line 25).

5.3. Loops to recursion 81

7. Remove the treatment of exceptions and break/continue/return when it is unneces-
sary.
The code generated to treat exceptions should be generated only in the case that an exception
can occur. The same happens with the code generated for break/continue/return. We can see an
example in Algorithm 16 where the substr test method directly performs the next iteration after
checking that control != null (lines 18-21). The transformation can take this decision by analyzing
the substr test loop method where control != null can only occur when the continue statement has
been executed.

Empirical evaluation

We conducted several experiments to empirically evaluate both the transformation and the transformed
code using the loops2recursion library. These experiments provide a precise and quantitative idea of the
performance of the transformation.

For the evaluation, we selected a set of benchmarks from the Java Grande benchmark suite [9].
A Java Grande application is one that uses large amounts of processing, I/O, network bandwidth, or
memory. They include not only applications in science and engineering but also, for example, corporate
databases and financial simulations. Specific information about the benchmarks including the source
code can be found at:

https://www.epcc.ed.ac.uk/research/computing/performance-characterisation-and-benchmarking/java-grande-benchmark-suite/

We designed the experiment from a set of 14 Java Grande benchmarks. Firstly, we automatically
transformed the loops2recursion library by self-application (i.e., all loops were translated to recursive
methods). Then, we transformed the 14 benchmarks with the two versions of the library (the original,
and the transformed one) and executed all of them several times to compare the results. Effectively, all
transformed benchmarks were equivalent to their original versions.

In a second phase of the experiment, we evaluated the performance. We strictly followed the method-
ology proposed in [32]. Each benchmark was repeatedly executed 1000 times in 100 different Java Virtual
Machine (JVM) invocations (100.000 executions in total). To ensure real independence, the first iter-
ation was always discarded (to avoid influence of dynamically loaded libraries persisting in physical
memory, data persisting in the disk cache, etc.). From the 999 remaining iterations we retained 50
measurements per JVM invocation when steady-state performance was reached, i.e., once the coefficient
of variation (CoV)8 of the 50 iterations falls below a preset threshold of 0,01. Because 0,01 was diffi-
cult to reach for some benchmarks, we took the minimum CoV of 50 iterations in a row somewhere in
between the window of 999 iterations. Then, for each JVM invocation, we computed the sum of the 50
benchmark iterations under steady-state performance. This produced one statistical value. With 100
JVM invocations, we obtained 100 statistical values. Finally, we computed the 0,99 confidence interval
across the computed values from the different 100 JVM invocations.

This process was repeated for the 30 benchmarks (14 iterative versions + 14 recursive versions +
2 versions of loops2recursion). Iterative and recursive versions were executed interlaced, so that the
impact of any possible variability in the overall system performance was minimized. This produced the
set of measures that is shown in Table 5.9. Here, we use the notation [a b c] that represents a symmetric
0,99 confidence interval between a and c with centre in b. Each column in the tables has the following
meaning: Benchmark is the name of the benchmark. Transf. Time is the total amount of milliseconds
needed by loops2recursion to produce the recursive version from the iterative version. Here, Open is
the time needed to open all files of the target project, Process is the time needed to transform all
loops in these files to recursion, and Save is the time needed to save all transformed files. Loops is
the number of different loops in the source code. Executed Loops is the number of executed loops

8CoV is defined as the standard deviation s divided by the mean x.

82 Chapter 5. Algorithmic Debugging Techniques

Benchmark
Transf. Time (ms)

Loops
Executed Executed

Open Process Save Loops Iterations

loops2recursion 954 206 213 117 52580 153729
JGFArithBench 348 26 13 24 144 12590
JGFAssignBench 337 22 21 20 120 10389
JGFCastBench 161 16 6 8 48 4200
JGFCreateBench 337 27 17 34 520 44860
JGFExceptionBench 129 20 6 6 36 3148
JGFLoopBench 135 16 3 6 36 3159
JGFMathBench 419 45 33 60 360 31498
JGFMethodBench 212 20 9 16 96 8320
JGFCryptBench 146 20 8 10 277 4447
JGFFFTBench 158 17 8 14 4122 24570
JGFHeapSortBench 135 14 7 5 1502 12939
JGFSeriesBench 141 18 24 4 2005 1996013
JGFSORBench 155 21 4 7 10101 990102
JGFSparseMatmultBench 115 18 4 5 204 203200

Average 258,8 33,73 25,07 22,4 4810,07 233544,27

(a) Transformation performance

Benchmark Iterative XT (ms) Recursive XT (ms) Rec/Iter XT (%)

loops2recursion [7083,08 7195, 94 7308,81] [7023,41 7156, 43 7289,46] 99,45 %
JGFArithBench [144,72 144, 96 145,20] [167,49 167, 59 167,69] 115,61 %
JGFAssignBench [113,55 113, 98 114,41] [119,67 119, 83 119,99] 105,14 %
JGFCastBench [47,19 48, 57 49,95] [52,10 53, 89 55,68] 110,94 %
JGFCreateBench [13057,33 13155, 91 13254,49] [12422,11 12581, 79 12741,48] 95,64 %
JGFExceptionBench [819,71 824, 62 829,52] [9288,23 9292, 87 9297,51] 1126,93 %
JGFLoopBench [39,07 39, 96 40,84] [42,79 43, 70 44,61] 109,34 %
JGFMathBench [1616,55 1617, 75 1618,95] [985,08 986, 07 987,06] 60,95 %
JGFMethodBench [94,88 95, 23 95,58] [99,26 99, 38 99,49] 104,36 %
JGFCryptBench [281,63 285, 11 288,59] [287,46 291, 65 295,83] 102,29 %
JGFFFTBench [543,14 560, 15 577,15] [557,91 575, 31 592,72] 102,71 %
JGFHeapSortBench [405,34 414, 09 422,84] [406,91 414, 92 422,93] 100,20 %
JGFSeriesBench [44288,14 44363, 17 44438,21] [44033,69 44197, 43 44361,16] 99,63 %
JGFSORBench [7384,92 7426, 96 7469,01] [7466,40 7472, 71 7479,01] 100,62 %
JGFSparseMatmultBench [2149,15 2204, 96 2260,77] [2208,14 2273, 53 2338,92] 103,11 %

Average 5232,76 5715,14 169,13 %

(b) Transformed code performance: Execution time results

Benchmark Iterative LOT (ms) Recursive LOT (ms) Rec/Iter LOT (%)

loops2recursion [1728,64 1754, 99 1781,35] [1804,54 1840, 76 1876,98] 104,89 %
JGFArithBench [42,44 42, 52 42,60] [49,31 49, 37 49,42] 116,10 %
JGFAssignBench [35,49 35, 60 35,71] [38,87 38, 94 39,02] 109,38 %
JGFCastBench [14,45 14, 67 14,90] [17,11 17, 55 17,98] 119,57 %
JGFCreateBench [96,97 97, 42 97,87] [121,28 123, 59 125,90] 126,87 %
JGFExceptionBench [10,60 11, 29 11,97] [12,86 12, 90 12,95] 114,32 %
JGFLoopBench [11,28 11, 44 11,59] [13,00 13, 17 13,35] 115,19 %
JGFMathBench [171,27 171, 73 172,20] [124,68 125, 04 125,41] 72,81 %
JGFMethodBench [28,18 28, 29 28,40] [30,62 30, 67 30,72] 108,42 %
JGFCryptBench [14,66 15, 46 16,26] [16,94 17, 94 18,94] 116,06 %
JGFFFTBench [73,44 79, 44 85,44] [88,51 94, 96 101,41] 119,54 %
JGFHeapSortBench [45,78 48, 08 50,38] [48,33 50, 41 52,49] 104,84 %
JGFSeriesBench [3952,32 3965, 49 3978,66] [3985,82 4000, 19 4014,57] 100,88 %
JGFSORBench [1841,56 1852, 23 1862,91] [1943,41 1944, 21 1945,01] 104,97 %
JGFSparseMatmultBench [606,37 634, 00 661,62] [660,63 695, 42 730,22] 109,69 %

Average 584,18 603,68 109,57 %

(c) Transformed code performance: LOT results

Table 5.9: Results comparing iterative and recursive benchmark versions

(possibly with repetitions, especially in the case of nested loops). Executed Iterations is the number
of loop iterations performed during the execution. The execution time (XT) is measured in milliseconds
and represents the execution time of the whole benchmark. LOT stands for loop overhead time, it is
measured in milliseconds, and it represents the time used to execute all loops without considering the
time used by the body of the loops. That is, it just measures the time spent in a loop to control the own
loop. This was calculated by inserting the System.nanotime() command, which returns the current
time in nanoseconds, immediately before and after the loop, immediately after entering the iteration,

5.3. Loops to recursion 83

and immediately before leaving the iteration.

Example 5.3.3 Consider the following code that has been instrumented to measure its LOT:

t1 = System.nanotime();

while (cond){
t2 = System.nanotime();

body;

t3 = System.nanotime();

}
t4 = System.nanotime();

If we assume that the loop performs 0 iterations, then LOT is t4 - t1.
If we assume that the loop performs n > 0 iterations, then LOT is calculated as follows:

EntryTime = t2 - t1; PrepareNextIterationTime = t2 - t3; ExitTime = t4 - t3;

LOT = EntryTime + ((n - 1) * PrepareNextIterationTime) + ExitTime

Note that LOT is the appropriate measure to know what the real speedup reached with the transformation
is. XT is not a good indicator because it depends on the body of the loops, but LOT is independent of
the size and content of the loops.

For the recursive versions, LOT is calculated in a similar way. For instance, in the while-loop row of
Table 5.3:

• t1 = System.nanotime(); is placed immediately after Code 1,

• t2 = System.nanotime(); is placed immediately before Code 2,

• t3 = System.nanotime(); is placed immediately after Code 2,

• t4 = System.nanotime(); is placed immediately before Code 3.

Rec/Iter measures the speedup/slowdown of the transformed code with respect to the original code.
It is computed as 100×(Recursive time / Iterative time).

The results of LOT have been normalized in a chart shown in Figure 5.16(a). Thanks to the
confidence intervals computed for the iterative and recursive versions we can extract some statistical
conclusions. In 3 out of 15 experiments, the confidence intervals overlap, thus no statistical conclusion
can be extracted. In 12 out of 15 experiments confidence intervals are disjoint. In 11 experiments, we
can ensure with a confidence level of 99 % that the recursive version is less efficient than the iterative
version of the loops. Finally, in 1 experiment we can ensure with a confidence level of 99 % that the
recursive version is more efficient than the iterative version. Looking at Table 5.9, we see that the
differences have been quantified and they are small (around 10 %).

Initially, this was the end of our experiments. But then, we also looked at the results obtained for
the XT. These results have been normalized in the chart shown in Figure 5.16(b). This figure reveals
something unexpected: Sometimes the recursive version of the benchmarks is statistically (with 99 %
confidence level) more efficient than the iterative version. One could think that this does not make
sense, because all the code except LOT is exactly the same in the iterative version and in the recursive
version. But it is the same before compilation. After compilation it is different due to the optimizations
done by Java, which are different in both versions due to the presence of the transformed code. In
order to prove this idea, we repeated all the experiments in interpreted-only mode using the ‘-Xint’
JVM option. This flag disables the just-in-time (JIT) compilation in the JVM so that all bytecodes
are executed by the interpreter. Disabling JIT compilation avoids many Java optimizations performed

84 Chapter 5. Algorithmic Debugging Techniques

(a) LOT results

(b) XT results (c) XT results with -Xint flag enabled

Figure 5.16: Run-time charts that compare loops with recursion

to the code that significantly speed up recursion. The results obtained for XT with JIT compilation
disabled are shown in Figure 5.16(c). The difference is clear. Without JIT compilation, iteration is
more efficient. With JIT compilation iteration and recursion are similar, and sometimes recursion is
even better (statistically). This confirms that in some cases, the library can increase code efficiency.
However, in Java, our transformation has limited improvement due to the fact that the JVM does
not support tail recursion optimization. This raises the point whether targeting another language the
transformed code would produce better results. This part seems to be certainly interesting and it could
open a line of research to decide in what cases the compiler should transform iterative loops into recursive
methods to produce more efficient code. We left this research for future work.

5.3.7 Related work

The theoretical relation between iteration and recursion has been studied for decades in different
paradigms, with regard to types, with regard to procedures, from a mathematical point of view, from
an algorithmic point of view, etc. There is a big amount of work that studies this theoretical relation
(see, e.g., [34, 29]).

On the practical side, there exist many different approaches to transform recursive functions into

5.3. Loops to recursion 85

loops (see, e.g., [42, 62, 71]). This has been in fact a hot area of research related to compiler optimization
and tuning. Contrarily, there are very few approaches devoted to transform loops into equivalent recur-
sive functions. However, recursion provides important advantages in debugging [56], theorem proving
[70], verification [74] and termination analysis [27].

For instance, this transformation can be very useful in AD. In this debugging technique, the final
output of the debugger is always a buggy method. This is often very imprecise and forces the user to
inspect the whole method to find the bug. It is possible that the method implements several loops with
their own functionality. If we are able to transform all loops into recursive methods, this would mean
that algorithmic debuggers would be able to discard or detect bugs inside these loops, and even report a
particular loop as buggy. For this reason, the debugger DDJ implements our transformation from loops
to recursion since version 2.6.

In some articles, some transformations are proposed or mentioned for particular types of loops. For
instance, in [27] a transformation for while-loops is used to detect the termination conditions of the
transformed recursive functions. Unfortunately, the other types of loops are ignored, but they provide
a treatment for the break statement (however, they do not allow for the use of labels, which is what
introduces the complexity in the transformation).

In [104], authors argue that recursive functions are more efficient than loops in some architectures. In
particular, they want to measure the performance benefits of recursive algorithms on multi-level memory
hierarchies and on shared memory systems. For that, they define a transformation for do-loops (very
similar to the Java’s for -loop).9 The use of break and continue is not accepted by the transformation.

Myreen and Gordon describe a theorem prover in [74]. In their examples, they include an ad-hoc
transformation of a while-loop into an equivalent recursive function. This is done because the recursive
function facilitates the verification condition generation and avoids the inclusion of assertions in the
source code.

We have not been able to find a description of how to transform some specific loops such as the
foreach-loop. Moreover, the program transformations that appear in the literature are just mentioned
or based on ad-hoc examples; and we are not aware of any transformation that accepts break/continue
statements with labels. The use of exceptions has been also ignored in previous implementations. To
the best of our knowledge no systematic transformation has been described in the literature yet, thus,
researchers and programmers are condemned to reinvent the wheel once and again.

The lack of a systematic program transformation is a source of inefficient implementations. This
happens for instance when transforming loops into functions that are not tail-recursive [104] or in
implementations that only work for a reduced subset of the languages and produce buggy transformed
code in presence of not treated commands such as throws, try-catch, break or continue [30].

In this work, we also describe our implementation that is the first to accept the whole Java language;
and it allows us (in the particular case) to automatically transform a given loop into a set of equivalent
recursive methods, or (in the general case) to input a program and output an equivalent program where
all loops have been automatically transformed into recursion. This library has been already incorporated
in the Declarative Debugger for Java (DDJ) [46].

Even though we present a transformation for Java, it could be easily adapted to many other lan-
guages. The only important restriction is that goto statements are not treated (we discussed their use
in Section 5.3.5). Moreover, our transformation uses some features of Java:

• it uses blocks to define scopes. Those languages where blocks cannot be defined, or where the
scope is not limited by the use of blocks, should use fresh variable names in the generated code to
avoid variable clashes between the variables of the transformation and the variables of the rest of
the program.

9The syntax of their do-loops is “do k = 1, N” meaning that N iterations must be done with k taking values from 1

to N.

86 Chapter 5. Algorithmic Debugging Techniques

• it assumes that, by default, arguments are passed by value. In those languages where the default
argument passing mechanism is different, the transformation can be simplified. For instance, with
call by value, exceptions need a special treatment described in Section 5.3.4. With call by reference,
this special treatment can be omitted.

5.3.8 Proofs of technical results

In this section we provide a formal semantics-based specification of our transformation in order to prove
the correctness of the basic transformation (we skip exceptions and labels in this section). For this, we
provide a BNF syntax specification and an operational semantics of Java. We consider the subset of
Java that is needed to implement the transformation (if-then-else, while, method calls, return, etc.), and
we ignore the rest of syntax elements for the sake of simplicity (they do not have any influence because
any command inside the body of the loop remains unchanged in the transformed code). Moreover, in
this section, we centre the discussion on while-loops and prove properties for this type of loop. The proof
for the other types of loops is omitted, but it would be in all cases analogous or slightly incremental.

We start with a BNF syntax of Java:

P ::= M1, . . . ,Mn, Sp (program) Domains
x, y, z . . . ∈ V (variables)
a, b, c . . . ∈ C (constants)

M ::= m(x1, . . . , xn) { Sp; Sr } (method definition) where x1, . . . , xn ∈ V and
m is the name of the method

Sp ::= x := E (assignment)
| x := m(E0, . . . , En) (method invocation)
| if Eb then Sp (if-then)
| if Eb then Sp else Sp (if-then-else)
| while Eb do Sp (while)
| Sp; S′p (sequence)

Sr ::= return E (return)
E ::= Ea | Eb (expresion)
Ea ::= Ea + Ea | Ea − Ea | V (arithmetic expresion)
Eb ::= Eb != Eb | Eb == Eb | V (boolean expresion)
V ::= x | a (variables or constants)

A program is a set of method definitions and at least one initial statement (usually a method invocation).
Each method definition is composed of a set of statements followed by a return statement. For simplicity,
the arguments of a method invocation can only be expressions (not statements). This is not a restriction,
because any statement can be assigned to a variable and then be passed as argument of the method
invocation. However, this simplification allows us to ease the semantics of method invocations and, thus,
it increases readability.

In the following we consider two versions of the same program shown in Algorithms 17 and 18. We
assume that in Algorithm 17 there exists a x variable already defined before the loop and, for the sake
of simplicity, it is the only variable modified inside S. Therefore, Algorithm 18 is the recursive version
of the while-loop in Algorithm 17 according to our transformation, and hence, p0, . . . , pn represent all
variables defined before the loop and used in S (the loop statements) and cond (the loop condition). In
the case that more than one variable are modified, then the output would be an array with all modified
variables. We avoid this case because it is not necessary for the proof.

5.3. Loops to recursion 87

Algorithm 17 While version
1: while cond do
2: S;

Algorithm 18 Recursive version
1: m(p0, . . . , pn) {
2: S;
3: if cond then
4: x := m(a0, . . . , an);
5: return x;
6: }
7: if cond then
8: x := m(a0, . . . , an);

In order to provide an operational semantics for this Java subset, which allows for recursion, we
need a stack to push and pop different frames that represent individual method activations. Frames,
f0, f1, . . . ∈ F, are sequences of variable-value pairs. States, s0, s1, . . . ∈ S, are sequences of frames
(S : F x . . . x F). We make the program explicitly accessible to the semantics through the use of
an environment, e ∈ E, represented with a sequence of functions from method names M to pairs of
parameters P and statements I (E : (M→ (P x I)) x . . . x (M→ (P x I))). Our semantics is based on
the Java semantics described in [77] with some minor modifications. It uses a set of functions to update
the state, the environment, etc.

The Updv function is used to update a variable (var) in the current frame of the state (s) with a
value (value). The current frame in the state is always the last introduced frame (i.e., the last element
in the sequence of frames that represent the state). We use the standard notation f [var → value] to
denote that variable var in frame f is updated to the value value.

Updv(s, var → value) =

{
error if s = []
[f0, . . . , fn[var → value]] if s = [f0, . . . , fn]

The Updr function records the returned value (value) of the current frame of the state (s) inside a
fresh variable < of this frame, so that other frames can consult the value returned by the current frame.

Updr(s, value) =

{
error if s = []
[f0, . . . , fn[< → value]] if s = [f0, . . . , fn]

The Updvr function is used to update a variable (var) in the penultimate frame of the state (s) taking
the value returned by the last frame in the state (which must be previously stored in <). This happens
when a method calls another method and the latter finishes returning a value. In this situation, the
last frame in the state should be removed and the returned value should be updated in the penultimate
frame. We use the notation fn(<) to consult the value of the < variable in the fn frame.

Updvr(s, var) =

{
error if s = [] or s = [f]
[f0, . . . , fn−1[var → fn(<)], fn] if s = [f0, . . . , fn−1, fn]

The Upde function is used to update the environment (env) with a new method definition (m →
(P, I)). The environment is used in method invocations to know the method that should be executed.

Upde(env, m→ (P, I)) = env[m→ (P, I)]

The AddFrame function adds a new frame to the state (s). This frame is a sequence of mappings from
parameters (p0, . . . , pn) to the evaluation of arguments (a0, . . . , an). To evaluate an expression we use
the Eval function: a variable is consulted in the state, a constant is just returned, and a mathematical
or boolean expression is evaluated with the standard semantics. We use this notation because the

88 Chapter 5. Algorithmic Debugging Techniques

evaluation of expressions does not have influence in our proofs, but it significantly reduces the size of
derivations, thus, improving the clarity of the presentation.

AddFrame(s, [p0, . . . , pn], [a0, . . . , an]) ={
[[p0 → Eval(a0), . . . , pn → Eval(an)]] if s = []
[f0, . . . , fm, [p0 → Eval(a0), . . . , pn → Eval(an)]] if s = [f0, . . . , fm]

Analogously, the RemFrame function removes the last frame inserted into the state (s).

RemFrame(s) =

error if s = []
[] if s = [f]
[f0, . . . , fn] if s = [f0, . . . , fn, fn+1]

We are now in a position to introduce our Java operational semantics. Essentially, the semantics is a
big-step semantics composed of a set of rules of the form: p1...pn

env ` <st, s> ⇓ s′
that should be read as “The

execution of the st statement in the s state under the env environment can be reduced to the s′ state
provided that the p1 . . . pn premises hold”. The rules of the semantics are shown below.

New method
env ′ = Upde(env, m0 → (P, I)) ∧ env ′ ` <m1 i, s> ⇓ s′

env ` <m0(P){I} m1 i, s> ⇓ s′

Empty statement

env ` <
√
, s> ⇓ s

Asignment
s′ = Updv (s, x → Eval(op, s))

env ` <x:=op, s> ⇓ s′

Method invocation
(P, I) = env(m) ∧ s′ = AddFrame(s,P,A) ∧ env ` <I, s′> ⇓ s′′ ∧ s′′′ = Updvr (s′′,x) ∧ s′′′′ = RemFrame(s′′′)

env ` <x:=m(A), s> ⇓ s′′′′

If
env ` <if cond then i0 else

√
, s> ⇓ s′

env ` <if cond then i0, s> ⇓ s′

<cond, s> ⇒ true ∧ env ` <i0, s> ⇓ s′

env ` <if cond then i0 else i1, s> ⇓ s′

<cond, s> ⇒ false ∧ env ` <i1, s> ⇓ s′

env ` <if cond then i0 else i1, s> ⇓ s′

While
<cond, s> ⇒ false

env ` <while cond do i, s> ⇓ s

<cond, s> ⇒ true ∧ env ` <i, s> ⇓ s′ ∧ env ` <while cond do i, s′> ⇓ s′′

env ` <while cond do i, s> ⇓ s′′

Sequence
env ` <i0, s> ⇓ s′ ∧ env ` <i1, s′> ⇓ s′′

env ` <i0; i1, s> ⇓ s′′

Return
s′ = Updr (s, Eval(op, s))
env ` <return op, s> ⇓ s′

5.3. Loops to recursion 89

We can now prove our main result.

Theorem 5.3.4 (Correctness) Algorithm 18 is semantically equivalent to Algorithm 17.

Proof. We prove this claim by showing that the final state of Algorithm 17 is always the same as the
final state of Algorithm 18. The semantics of a program P is:

S(P) = s iff [] `< P, [] >⇓ s

Therefore, we say that two programs P1 and P2 are equivalent if they have the same semantics:

S(P1) = S(P2) iff [] `< P1, [] >⇓ s1 ∧ [] `< P2, [] >⇓ s2 ∧ s1 = s2

For the sake of generality, in the following we consider that the loops can appear inside any other code.
Therefore, the environment and the state are not necessarily empty. Thus, we will assume an initial
environment env0 and an initial state s: env0 `< P, s >. We prove this semantics equivalence analyzing
two possible cases depending on whether the loop is executed or not.

1) Zero iterations
This situation can only happen when the cond condition is not satisfied the first time it is evaluated.

Hence, we have the following semantics derivation for each program:

Iterative version

< cond, s > ⇒ false

env0 ` < while cond do S, s > ⇓ s

Recursive version

env = Upde(env0, m → (P, S; I))

< cond, s > ⇒ false env ` <
√
, s > ⇓ s

env ` < if cond then t else
√
, s > ⇓ s

env ` < if cond then t, s > ⇓ s

env0 ` < m(P) { S; I } if cond then t, s > ⇓ s

Clearly, the state is never modified, neither in the iterative version nor in the recursive version. There-
fore, both versions are semantically equivalent.

2) One or more iterations
This means that the cond condition is satisfied at least once. Let us consider that cond is satisfied

n times, producing n iterations. We proof that the final state of the program in Algorithm 18 is equal
to the final state of the program in Algorithm 17 by induction over the number of performed iterations.

(Base Case) In the base case, only one iteration is executed. Hence, we have the following derivations:

Iterative version

< cond, s > ⇒ true env0 ` < S, s > ⇓ s1

< cond, s > ⇒ false

env0 ` < while cond do S, s1 > ⇓ s1

env0 ` < while cond do S, s > ⇓ s1

90 Chapter 5. Algorithmic Debugging Techniques

Recursive version

env ` < S, s1 > ⇓ s2

< cond, s2 > ⇒ false env ` <
√
, s2 > ⇓ s2

env ` < if cond then t else
√
, s2 > ⇓ s2

env ` < if cond then t, s2 > ⇓ s2

s3 = Updr (s
2, Eval(x, s2))

env ` < return x, s2 > ⇓ s3

env ` < if cond then t; return x, s2 > ⇓ s3

env ` < S; I, s1 > ⇓ s3

4

< cond, s > ⇒ true

(P, I) = env(m) s1 = AddFrame(s, P, [a0, . . . , an]) 4 s4 = Updvr (s
3, x) s5 = RemFrame(s4)

env ` < x := m(a0, . . . , an), s > ⇓ s5

env ` < if cond then t else
√
, s > ⇓ s5

env ` < if cond then t, s > ⇓ s5

We can assume that the x variable has an initial value z0, which must be the same in both versions of
the algorithm. Then, states are modified during the iteration as follows:

Iterative version Recursive version
s = [f0]⇒ f0 = {x→ z0} s = [f0]⇒ f0 = {x→ z0}
s1 = [f0]⇒ f0 = {x→ z1} s1 = [f0, f1]⇒ f0 = {x→ z0} ∧ f1 = {x→ z0}

s2 = [f0, f1]⇒ f0 = {x→ z0} ∧ f1 = {x→ z1}
s3 = [f0, f1]⇒ f0 = {x→ z0} ∧ f1 = {x→ z1,< → z1}
s4 = [f0, f1]⇒ f0 = {x→ z1} ∧ f1 = {x→ z1,< → z1}
s5 = [f0]⇒ f0 = {x→ z1}

Clearly, with the same initial states, both algorithms produce the same final state.

(Induction Hypothesis) We assume as the induction hypothesis that executing i iterations in both
versions with an initial value z0 for x then, if the iterative version obtains a final value zn for x then the
recursive version correctly obtains and stores the same final value zn for variable x in the top frame.

Iterative version Recursive version
s = [f0]⇒ f0 = {x→ z0} s = [f0]⇒ f0 = {x→ z0}
.
s′ = [f0]⇒ f0 = {x→ zn} s′ = [f0]⇒ f0 = {x→ zn}

(Inductive Case) We now prove that executing i + 1 iterations in both versions with an initial value
z0 for x then, if the iterative version obtains a final value zn for x then the recursive version correctly
obtains and stores the same final value zn for variable x in the top frame.

The derivation obtained for each version is the following:

Iterative version

< cond, s > ⇒ true env0 ` < S, s > ⇓ s1

Induction hypotesis

env0 ` < while cond do S, s1 > ⇓ s2

env0 ` < while cond do S, s > ⇓ s2

5.3. Loops to recursion 91

Recursive version

env ` < S, s1 > ⇓ s2

Induction hypotesis

env ` < if cond then t, s2 > ⇓ s3

s4 = Updr (s
3, Eval(x, s3))

env ` < return x, s3 > ⇓ s4

env ` < if cond then t; return x, s2 > ⇓ s4

env ` < S; I, s1 > ⇓ s4

4

< cond, s > ⇒ true

(P, I) = env(m) s1 = AddFrame(s, P, [a0, . . . , an]) 4 s5 = Updvr (s
4, x) s6 = RemFrame(s5)

env ` < x := m(a0, . . . , an), s > ⇓ s6

env ` < if cond then t else
√
, s > ⇓ s6

env ` < if cond then t, s > ⇓ s6

Because both algorithms have the same initial value z0 for x then the states during the iteration are
modified as follows (the * state is obtained by the induction hypothesis):

Iterative version Recursive version
s = [f0]⇒ f0 = {x→ z0} s = [f0]⇒ f0 = {x→ z0}
s1 = [f0]⇒ f0 = {x→ z1} s1 = [f0, f1]⇒ f0 = {x→ z0} ∧ f1 = {x→ z0}
s2 = [f0]⇒ f0 = {x→ zn}∗ s2 = [f0, f1]⇒ f0 = {x→ z0} ∧ f1 = {x→ z1}

s3 = [f0, f1]⇒ f0 = {x→ z0} ∧ f1 = {x→ zn}∗
s4 = [f0, f1]⇒ f0 = {x→ z0} ∧ f1 = {x→ zn,< → zn}
s5 = [f0, f1]⇒ f0 = {x→ zn} ∧ f1 = {x→ zn,< → zn}
s6 = [f0]⇒ f0 = {x→ zn}

Hence, Algorithm 18 and Algorithm 17 obtain the same final state, and thus, they are semantically
equivalent. 2

92 Chapter 5. Algorithmic Debugging Techniques

5.4 Loop Expansion

5.4.1 Introduction

In this section we present a technique called Loop Expansion (LE) [56] to improve the performance of
Algorithmic Debugging (AD) by reducing the debugging time. Let us explain the technique with an
example. Consider the Java program shown in Figure 5.17.

public class Matrix {
private int numRows ;
private int numColumns ;
private int [] [] matrix ;

(1) public Matrix (int numRows , int numColumns) {
this . numRows = numRows ;
this . numColumns = numColumns ;
this . matrix = new int [numRows] [numColumns] ;
for (int i = 0 ; i < numRows ; i++)

for (int j = 0 ; j < numColumns ; j++)
this . matrix [i] [j] = 1 ;

}

(2) public int po s i t i o n (int numRow, int numColumn) {
return matrix [numRow] [numColumn] ;

}
}

public class SumMatrix {
(0) public stat ic void main (St r ing [] a rgs) {

int r e s u l t = 0 ;
int numRows = 3 ;
int numColumns = 3 ;
Matrix m = new Matrix (numRows , numColumns) ;
for (int i = 0 ; i < numRows ; i++)

for (int j = 0 ; j < numColumns ; j++)
r e s u l t += m. po s i t i o n (i , j) ;

System . out . p r i n t l n (r e s u l t) ;
}

}

Figure 5.17: Matrix Java program

Figure 5.18: ETs of the examples in Figure 5.17 (left) and 5.19 (right)

This program initializes the elements of a matrix to 1, and then traverses the matrix to add all of
them up. The Execution Tree (ET) associated with this example is shown in Figure 5.18 (left). Because

5.4. Loop Expansion 93

it is not relevant in loop expansion, in the rest of this section we omit the information of the nodes in the
ETs, and instead we label them (inside) with the number of the method associated with them. Observe
that main (0) calls once to the constructor Matrix (1), and then calls nine times to position (2) inside
two nested loops. In the ET, every node has a number (outside) that indicates the number of questions
needed to find the bug when it is the buggy node. To compute this number, we have considered the
Divide and Query [92] strategy, that always selects the ET node that minimizes the difference between
the numbers of descendants and non-descendants (i.e., better divides the ET in half).

AD can produce long series of questions making the debugging session too long. Moreover, it works
at the level of methods, thus the granularity level of the located bug is a method. Loop Expansion
is particularly interesting to solve these problems because it can help to reduce the complexity of the
questions, and also the granularity level of the located bug. This technique is based on a transformation
of the source code, and it produces an ET that can be debugged more efficiently using the standard
algorithms. Therefore, LE is conservative with respect to previous implementations and it can be
integrated in any debugger as a preprocessing stage. The cost of the transformation is low compared
with the cost of generating the whole ET. In fact, it is efficient enough as to be always used in all
algorithmic debuggers before the ET exploration phase.

The rest of the section has been organized as follows. Section 5.4.2 introduces some preliminary
definitions that will be used in the rest of the section. In Section 5.4.3 we explain LE and its main
applications. The correctness of LE is proved in Section 5.4.4. Finally, in Section 5.4.5 we discuss the
related work.

5.4.2 Preliminaries

In this section, we use numbers as method identifiers that uniquely identify each method in the source
code. This simplification is enough to keep our definitions and algorithms precise and simple. Given an
ET, the identifier of the method associated with a node n is referenced with l(n), simple recursion is
represented with a branch of nodes with the same identifier. Nested recursion happens when a recursive
branch is descendant of another recursive branch. Multiple recursion happens when a node labelled with
an identifier n has two or more children labelled with n.

5.4.3 Loop Expansion optimization

Expanding loops into recursive calls is very useful for AD. We, can see an example of this in the right
ET of Figure 5.18. Here, the nodes labelled with 3 inside are the nodes generated from the recursive
calls, and thus each of them is representing an iteration of the loop. Observe that each recursive node of
the recursive branch is the root of a particular subtree (on their right). This is very convenient because
it allows the debugger to prune different iterations. In contrast, loops produce very wide trees where
all iterations are represented as trees with a common root (see the left tree of Figure 5.18). In this
structure, it is impossible to prune more than one iteration at a time, being the debugging of these trees
very expensive.

To perform this optimization, in this section we present a technique for AD that transforms loops into
equivalent recursive methods. Because current compilers produce more efficient code for iteration than
for recursion, there exist many approaches to transform recursive methods into equivalent loops (e.g.,
[42, 62]). However, there exist few approaches to transform loops into equivalent recursive methods.
An exception is the one presented in [104] to improve performance in multi-level memory hierarchies.
Nevertheless, we are not aware of any algorithm of this type proposed for Java or for any other object-
oriented language. Hence, we had to implement this algorithm as a Java library and made it public for
the community:

http://www.dsic.upv.es/~jsilva/loops2recursion/

94 Chapter 5. Algorithmic Debugging Techniques

Our library to transform iterative loops into recursive methods is called loops2recursion (see Sec-
tion 5.3). This library has been integrated into an algorithmic debugger [46] as part of LE. This algorithm
has an asymptotic cost linear with respect to the number of loops in the program and it is the basis
of LE. Basically, it transforms each loop into an equivalent recursive method. The transformation is
slightly different for each type of loop (while, do, for, or foreach). In the case of for-loops, it can be
explained with the code in Figure 5.20 where A, B, C and D represent blocks of code. If we observe the
transformed ET, where the information shown for each node is the call to the function, we see that each
iteration is represented with a different node of the recursive branch r(1)→ r(2)→ . . .→ r(10), thus it
is possible to detect a bug in a single iteration. This means that, in the case that the f function had a
bug, thanks to the transformation, the debugger could detect that a bug exists in the code in B + C or
in A + D. Note that this is not possible in the original ET where the debugger would report that A +
B + C + D has a bug. This is a very important result because it augments the granularity level of the
reported bugs, detecting bugs inside loops and not only inside methods.

Example 5.4.1 An AD session for the right ET in Figure 5.20 using D&Q follows (YES and NO answers
are provided by the user):

Starting Debugging Session...

r(5) YES r(3) YES r(2) NO g(2, ...) YES

Bug located in: the second iteration of the r loop in method f(...).

Thanks to the nodes inserted by LE, the debugger can identify that the bug is located in the code in B +
C and not in A + D.

Nested recursion augments the possibilities of pruning. For instance, the Matrix class in Figure 5.17
can be automatically transformed10 to the code in Figure 5.19. The ET obtained from executing the
transformed program is shown in Figure 5.18 (right). Observe that there is a recursion branch for each
executed loop, and thus, we have recursive branches (those labelled with 4) inside a recursive branch
(labelled with 3). Hence, the new nodes added by the transformation are used to represent each single
iteration; and thanks to them, now it is possible to prune loops, iterations, or single calls inside an
iteration.

5.4.4 Correctness

In this section we prove that after our transformation, all bugs that could be detected in the original
ET can still be detected in the transformed one. An even more interesting result is that the transformed
ET can contain more buggy nodes than the original one, and thus, we can detect bugs that before were
undetectable. The correctness of LE is stated in the following.

Theorem 5.4.2 (Completeness) Let P be a program, let T be the ET associated with P, let P ′ be
the program obtained by applying Loop Expansion to P, and let T ′ be the ET associated with P ′. For
each buggy node in T , there is at least one buggy node in T ′.

Proof. Let us prove the theorem for an arbitrary buggy node n in T associated with a f function.
Firstly, because LE only transforms iterative loops into recursive loops, all functions executed in P are

10For the sake of clarity, in the figure we replace the names of the generated recursive methods by sumRows and
sumColumns. In the implementation, if a loop has a Java label in the original source code, the transformation uses this
label to name the recursive method. If this label does not exist, then the name of the loop is the name of the method that
contains this loop followed by “ loopN”, where N is an autonumeric. While debugging, the user can see the source code
of the loop, and they can change its name if they want to do it.

5.4. Loop Expansion 95

public class SumMatrix {
(0) public stat ic void main (St r ing [] a rgs) {

int r e s u l t = 0 ;
int numRows = 3 ;
int numColumns = 3 ;
Matrix m = new Matrix (numRows , numColumns) ;
// For loop
{ // I n i t f o r loop

int i = 0 ;
// F i r s t i t e r a t i o n
i f (i < numRows) {

Object [] r e s = SumMatrix . sumRows(m, i , numRows , numColumns , r e s u l t) ;
r e s u l t = (In t eg e r) r e s [0] ;

}
}
System . out . p r i n t l n (r e s u l t) ;

}
(3) private stat ic Object [] sumRows(Matrix m, int i , int numRows , int numColumns , int r e s u l t) {

// For loop
{ // I n i t f o r loop

int j = 0 ;
// F i r s t i t e r a t i o n
i f (j < numColumns) {

Object [] r e s = SumMatrix . sumColumns (m, i , j , numColumns , r e s u l t) ;
r e s u l t = (In t eg e r) r e s [0] ;

}
}
// Update f o r loop
i++;
// Next i t e r a t i o n
i f (i < numRows)

return SumMatrix . sumRows(m, i , numRows , numColumns , r e s u l t) ;
return new Object [] { r e s u l t } ;

}
(4) private stat ic Object [] sumColumns (Matrix m, int i , int j , int numColumns , int r e s u l t) {

r e s u l t += m. po s i t i o n (i , j) ;
// Update f o r loop
j++;
// Next i t e r a t i o n
i f (j < numColumns)

return SumMatrix . sumColumns (m, i , j , numColumns , r e s u l t) ;
return new Object [] { r e s u l t } ;

}
}

Figure 5.19: Recursive version of the program in Figure 5.17

Figure 5.20: ET transformation from a loop into a recursive method

also executed in P ′. This means that every node in T has a counterpart (equivalent) node in T ′ that
represents the same (sub)computation. Therefore, we can call n′ to the node that represents in T ′ the
same execution than n in T . Because n is buggy, then n is wrong, and all the children of n (if any) are

96 Chapter 5. Algorithmic Debugging Techniques

correct. Hence, n′ is also wrong. Moreover, if f does not contain a loop, then LE has no effect on the
code of f and thus n and n′ will have exactly the same children, and thus, trivially, n′ is also buggy in
T ′. If we assume the existence of a loop in f , then we will have a situation as the one shown in the ETs
of Figure 5.20. We can consider for the proof that the ET on the left is the subtree of n and the ET on
the right is the subtree of n′. Then, because n is buggy, all nodes labelled with g are correct (in both
ETs) and, thus, either n′ or one of the nodes labelled with r are buggy. 2

Theorem 5.4.3 (Soundness) Let P be a program, let T be the ET associated with P, let P ′ be the
program obtained by applying Loop Expansion to P, and let T ′ be the ET associated with P ′. If T
contains a buggy node associated with code f ⊆ P, then, T ′ contains a buggy node associated with code
g ⊆ P and g ⊆ f .

Proof. According to the proof of Theorem 5.4.2, every node in T has a counterpart (equivalent) node
in T ′. Hence, let n be the buggy node in T and let n′ be the associated buggy node in T ′. If f does not
have a loop, then both n and n′ point to the same function (f) and thus the theorem holds trivially. If
f contains a loop that has been expanded, then, as stated in the proof of Theorem 5.4.2, either n′ or
one of its descendants (say n′′) that represent the iterations of the loop are buggy. But we know that
the code of n′′ is the code of the loop that is included in the code of f . Therefore, assuming that g is
the code of either n′ or n′′, then in all cases g ⊆ f . 2

From Theorem 5.4.2 and 5.4.3 we have a very interesting corollary that reveals that more bugs can
be found in the transformed tree than in the original ET.

Corollary 5.4.4 Let P be a program, let T be the ET associated with P, let P ′ be the program obtained
by applying Loop Expansion to P, and let T ′ be the ET associated with P ′. If T contains n buggy nodes,
then T ′ contains n′ buggy nodes with n ≤ n′.

Proof. Trivial from Theorems 5.4.2 and 5.4.3. On the one hand, equality is ensured with Theorem 5.4.2
because for each buggy node in T , there is at least one buggy node in T ′. On the other hand, if a node
in T is associated with a function whose code contains more than one loop that has been expanded,
then T ′ can contain more new buggy nodes not present in T . 2

5.4.5 Related Work

Reducing the number of questions asked by algorithmic debuggers is a well-known objective in the field,
and there exist several works devoted to achieve this goal. Some of them face the problem by defining
different ET transformations that modify the structure of the ET to explore it more efficiently.

For instance, the authors of [90] improve the ET produced from Maude programs by introducing
nodes. These nodes represent transitivity inferences done by their inference system. Although these
nodes could be omitted, if they are kept, the ET becomes more balanced. Balanced ETs are very
convenient for search strategies such as Divide and Query [97], because it is possible to prune almost
half of the tree after every answer, thus obtaining a logarithmic number of questions with respect to
the number of nodes in the ET. This approach is related to our technique, but it has some drawbacks:
it can only be applied where transitivity inferences took place while creating the ET, and thus most of
the parts of the tree cannot be balanced, and even in these cases the balancing only affects two nodes.
Our techniques, in contrast, balance loops, that usually contain many nodes.

Another related approach was presented in [78]. Here, authors introduced a source code (instead
of an ET) transformation for list comprehensions in functional programs. Concretely, this technique
transforms list comprehensions into a set of equivalent methods that implement the iteration. Even

5.4. Loop Expansion 97

though this technique is used in other paradigm and only works for a different program construct
(list comprehensions instead of loops), it is very similar to our loop expansion technique because it
transforms the program to implement the list comprehension iterations with recursive functions. This is
somehow equivalent to our transformation of for-each loops. However, the objective of their technique
is different. Their objective is to divide a question related to a list comprehension in different (probably
easier) questions, while our objective is to balance the tree, and thus they are optimized in a different
way. Of course, their transformation is orthogonal to our technique and it can be applied before.

Even though the techniques discussed can be applied to any language, they only focus on recursion.
This means that they cannot improve ETs that use loops, avoiding their use in the imperative or the
object-oriented paradigm where loops predominate. Our technique is based on an automatic transfor-
mation of loops into recursive methods. Hence, it allows the previously discussed transformations to
work in presence of iteration.

98 Chapter 5. Algorithmic Debugging Techniques

5.5 Tree Compression

5.5.1 Introduction

The technique [56] of Algorithmic Debugging (AD) shown in this section is based on the Tree Com-
pression (TC) technique introduced by Davie and Chitil [24]. In particular, we define an algorithm to
decide when TC must be applied (or partially applied) in an Execution Tree (ET). TC is a conservative
approach that transforms an ET into an equivalent (smaller) ET where we can detect the same bugs.
The objective of this technique is to reduce the size of the ET by removing redundant nodes, and it is
only applicable to recursive calls. For each recursive call, TC removes the child node associated with the
recursive call and all its children become children of the parent node. Let us explain it with an example.

Example 5.5.1 Consider the ET in Figure 5.21. Here, TC removes six nodes, thus statically reducing
the size of the tree. The number by each node represents the number of questions that a particular search
strategy (in this case D&Q) needs to find a bug in that node when it is buggy. Observe that the average
number of questions has been reduced (72

17
vs 42

11
) thanks to the use of TC.

Figure 5.21: Example of Tree Compression

Unfortunately, TC does not always produce good results. Sometimes reducing the number of nodes
causes a worse ET structure that is more difficult to debug and thus the number of questions is increased,
producing the contrary effect to the intended one.

Example 5.5.2 Consider the ET in Figure 5.22 (top). In this ET, the average number of questions
needed to find the bug is 33

9
. Nevertheless, after compressing the recursive calls (the dark nodes), the

average number of questions is augmented up to 28
7

(see the ET on the left). The reason is that in the
new compressed ET we cannot prune any node because its structure is completely flat. The previous
structure allowed for pruning some nodes because deep trees are more convenient for AD. However, if
we only compress one of the two recursive calls, the number of questions is reduced down to 27

8
(see the

ET on the right).

Example 5.5.2 clearly shows that TC should not be always applied. To the best of our knowledge,
there does not exist an algorithm to decide when to apply TC, and current implementations always
compress all recursive calls [23, 46]. Our new technique solves this problem with an analysis to decide
when to compress them.

The rest of the section has been organized as follows. Section 5.5.2 introduces some preliminary
definitions that will be used in the rest of the section. In Section 5.5.3 we explain our technique and its
main applications, and we introduce the algorithm that improves the structure of the ET.

5.5. Tree Compression 99

Figure 5.22: Negative and positive effects of Tree Compression

5.5.2 Preliminaries

We use numbers as method identifiers that uniquely identify each method in the source code. This
simplification is enough to keep our definitions and algorithms precise and simple. Given an ET, the
identifier of the method associated with a node n is referenced with l(n), simple recursion is represented
with a branch of chained nodes with the same identifier. Nested recursion happens when a recursive
branch is descendant of another recursive branch. Multiple recursion happens when a node labelled with
an identifier n has two or more children labelled with n.

In the following, we will refer to the two most used search strategies for AD: Top-Down (TD) [63]
and Divide and Query (D&Q) [92]. In both cases, we will always implicitly refer to the most efficient
version of both search strategies, respectively named, (i) Heaviest First [5], which always traverses the
ET from the root to the leaves selecting always the heaviest node; and (ii) Hirunkitti’s Divide and Query
[44], which always selects the node in the ET that better divides the number of nodes in the ET in half.
A comparative study of these techniques can be found in [97].

For the comparison of search strategies we use the Questions(T, s) function that computes the
number of questions needed (as an average) to find the bug in an ET T using the search strategy s.

5.5.3 Tree Compression Optimization

Tree compression was proposed as a general technique for AD. However, it was defined in the context of
a functional language (Haskell) and with the use of a particular search strategy (Hat-Delta). The own
authors realized that TC can produce wide trees that are difficult to debug and, for this reason, they
defined search strategies that avoid asking repeatedly about the same method. These search strategies
do not prevent to apply TC. They just assume that the ET has been totally compressed and they
follow a top-down traversal of the ET that can jump to any node when they have a high probability of
containing a bug. This way of proceeding somehow partially mitigates the bad structure of the produced
ET when it is totally compressed. Our approach is radically different: We do not create a new search
strategy to avoid the bad ET structure; but we transform the ET to ensure a good structure.

Even though TC can produce bad ETs (as shown in Example 5.5.2), its authors did not study how
this technique works with other (more extended) search strategies such as Top-Down (TD) or Divide
& Query (D&Q). So it is not clear at all when to use it. To study when to use TC, we can consider
the most general case of a simple recursion in an ET. It is shown in Figure 5.23 where clouds represent
possibly empty sets of subtrees and the dark nodes are the recursion branch with a length of n ≥ 2 calls.

It should be clear that the recursion branch can be useful to prune nodes of the tree. For instance,
in the figure, if we ask about the n/2 node of the recursion branch, we prune n/2 subtrees. Therefore,
in the case that the subtrees Ti, 1 ≤ i ≤ n, are empty, then no pruning is possible. In that case, only

100 Chapter 5. Algorithmic Debugging Techniques

Figure 5.23: Recursion branch in an ET

the nodes in the recursion branch could be buggy; but, because they form a recursive chain, all of them
have the same label. Thus, no matter which one is buggy because all of them refer to the same method.
Hence, TC must be used to reduce the recursive branch to a single node avoiding search strategies to
explore this branch. Therefore, we can conclude that we must compress every node whose only child is
a recursive call. This result can be formally stated for Top-Down as follows.

Theorem 5.5.3 Let T be an ET with a recursion branch R = n1 → n2 → . . . → nm where the only
child of a node ni, 1 ≤ i ≤ m− 1, is ni+1. And let T ′ be an ET equivalent to T except that nodes ni and
ni+1 have been compressed. Then, Questions(T ′,Top-Down) < Questions(T,Top-Down).

Proof. Let us consider the two nodes that form the sub-branch to be compressed. For the proof
we can call them n1 → n2. Firstly, the number of questions needed to find a bug in any ancestor of
n1 is exactly the same if we compress or not the sub-branch. Therefore, it is enough to prove that
Questions(T1c,Top-Down) < Questions(T1,Top-Down) where T1 is the subtree whose root is n1 and T1c
is the subtree whose root is n1 after tree compression.
Let us assume that n2 has j children. Thus we call T2 the subtree whose root is n2, and T2i the subtree
whose root is the i-th child of n2. Then,

Questions(T2,Top-Down) =
(j+1)+

j∑
i=1
|T2i |∗(i+Questions(T2i ,Top-Down))

|T2|

Here, (j + 1) are the questions needed to find a bug in n2. To reach the children of n2, the own
n2 and the previous i − 1 children must be asked about first, and this is why we need to add i to
Questions(T2i ,Top-Down), Finally, |Tx| represents the number of nodes in the (sub)tree Tx.
Therefore, Questions(T1c,Top-Down) = Questions(T2,Top-Down)

and Questions(T1,Top-Down) = 2+|T2|∗(i+Questions(T2,Top-Down))
|T2|+1

Clearly, Questions(T1c,Top-Down) < Questions(T1,Top-Down), and thus the claim follows. 2

This theorem shows that, in some situations, TC must be used to statically improve the ET structure.
But TC is not the panacea, and we need to identify in what cases it should be used. Divide & Query is
a good example of a search strategy where TC has a negative effect.

Tree Compression for Divide & Query

In general, when debugging an ET with the D&Q strategy, TC should only be applied in the case
described by Theorem 5.5.3 (Ti, 1 ≤ i ≤ n, are empty). The reason is that D&Q can jump to any node
of the ET without following a predefined path. This allows D&Q to ask about any node of the recursion
branch without asking about the previous nodes in the branch. Note that this does not happen in other
search strategies such as Top-Down. Therefore, D&Q has the ability to use the recursion branch as a
mean to prune half of the iterations.

Observe in Figure 5.24 that, except for very small recursion branches (e.g., n ≤ 3), D&Q can take
advantage of the recursion branch to prune half of the iterations. The greater n is, the more nodes are
pruned. Observe that D&Q can prune nodes even in the case when every node in the recursion branch

5.5. Tree Compression 101

Figure 5.24: Tree Compression applied to a recursive method

only has one child (e.g., Ti, 1 ≤ i ≤ n, are single nodes). Therefore, if we add more nodes to the Ti
subtrees, then more nodes can be pruned and D&Q will behave even better.

Tree Compression for Top-Down

In the case of TD-based search strategies, it is not trivial at all to decide when to apply TC.
Considering again the ET in Figure 5.23, there are two factors that must be considered: (i) the length
n of the recursive branch, and (ii) the size of the trees Ti, 1 ≤ i ≤ n. In order to decide when TC should
be used, we provide Algorithm 19 that takes an ET and compresses all recursion branches whenever it
improves the ET structure.

Essentially, Algorithm 19 analyzes for each recursion what the effect of applying TC is, and it is
finally applied only when it produces an improvement. This analysis is done little by little, separately
analyzing each pair of parent-child (recursive) nodes in the sequence. Thus, it is possible that the final
result is to only compress one (or several) parts of one recursion branch. For this, the recs variable
initially contains all nodes of the ET with a recursive child. Each of these nodes is processed with the
loop in line 1 in a bottom-up way (lines 2-3). That is, the nodes closer to the leaves are processed first.
In order to also consider multiple recursion, the algorithm uses the loops in lines 5 and 8. These loops
store in the improvement variable the improvement achieved when compressing each recursive branch.
In addition to the (Cost and Compress) functions shown here, the algorithm uses three more functions
whose code has not been included because they are trivial: the Children function computes the set of
children of a node in the ET (i.e., Children(m) = { n | (m → n) ∈ E }); the Sort function takes
a set of nodes and produces an ordered sequence where nodes have been decreasingly ordered by their
weights; and the Pos function takes a node and a sequence of nodes and returns the position of the node
in the sequence.

Given two nodes parent and child candidates to perform a TC, the algorithm first sorts the children
of both the parent and the child (lines 9-10) in the order in which TD would ask about them (sorted
by their weight). Then, it combines the children of both nodes simulating a TC (line 11). Finally, it
compares the average number of questions when compressing or not the nodes (line 12). The equation
that appears in line 12 is one of the main contributions of the algorithm, because this equation determines
when to perform TC between two nodes in a branch with the TD strategy. This equation depends in
turn on the formula (line 22 in the Cost function) used to compute the average cost of exploring an ET
with TD.

If we analyze Algorithm 19, we can easily realize that its asymptotic cost is quadratic with the number
of recursive calls O(N2) because in the worst case, all recursive calls would be compared between them.
Note also that the algorithm could be used with incomplete ETs [47] (this is useful when we try to
debug a program while the ET is being generated, see Section 5.1). In this case, the algorithm can still
be applied locally, i.e., to those subtrees of the ET that are totally generated.

102 Chapter 5. Algorithmic Debugging Techniques

Algorithm 19 Optimized Tree Compression
Input: An ET T = (N,E)
Output: An ET T ′

Inicialization: T ′ = T and recs = {n | n, n′ ∈ N ∧ (n→ n′) ∈ E ∧ l(n) = l(n′)}

begin
1) while (recs 6= ∅)
2) take n ∈ recs such that @n′ ∈ recs with (n→ n′) ∈ E+

3) recs = recs\{n}
4) parent = n
5) do
6) maxImprovement = 0
7) children = {c | (n→ c) ∈ E ∧ l(n) = l(c)}
8) for each child ∈ children
9) pchildren = Sort(Children(parent))

10) cchildren = Sort(Children(child))
11) comb = Sort((pchildren ∪ cchildren)\{child})
12) improvement = Cost(pchildren)+Cost(cchildren)

wparent
− Cost(comb)

wparent−1
13) if (improvement > maxImprovement)
14) maxImprovement = improvement
15) bestNode = child
16) end for each
17) if (maxImprovement 6= 0)
18) T ′ = Compress(T ′, parent , bestNode)
19) while (maxImprovement 6= 0)
20) end while
21) return T ′

end

function Cost(sequence)
begin
22) return

∑
{Pos(node, sequence) ∗ wnode | node ∈ sequence}+ |sequence|

end

function Compress(T = (N,E), parent , child)
begin
23) nodes = Children(child)
24) E′ = E\{(child → n) ∈ E | n ∈ nodes}
25) E′ = E′ ∪ {(parent → n) | n ∈ nodes}
26) N ′ = N\{child}
27) return T ′ = (N ′, E′)
end

5.6. Combining Loop Expansion and Tree Compression 103

5.6 Combining Loop Expansion and Tree Compression

We have implemented the original TC algorithm and the optimized version presented in this thesis
(see Section 5.5); and also the LE algorithm (see Section 5.4) in such a way that they all can work
together. This implementation has been integrated into the Declarative Debugger for Java DDJ [46].
The experiments, the source code of the tool, the benchmarks, and other materials can be found at:

http://www.dsic.upv.es/~jsilva/DDJ/

All the implementation has been done in Java. The optimized TC algorithm contains around 90
LOC, and the LE algorithm contains around 1700 LOC. We conducted a series of experiments in order
to measure the influence of both techniques in the performance of the debugger. Table 5.10 summarizes
the obtained results.

Benchmark
Nodes

LE
Time Questions %

ET LE TCori TCopt LE TC ET LE TCori TCopt LETC TC

Factoricer 55 331 51 51 5 151 105 11.62 8.50 7.35 7.35 63.25 100.0

Classifier 25 57 22 24 3 184 4 8.64 6.19 6.46 6.29 72.80 97.36

LegendGame 87 243 87 87 10 259 31 12.81 8.28 11.84 11.84 92.43 100.0

Romanic 121 171 112 113 3 191 12 16.24 7.74 10.75 9.42 58.00 87.62

FibRecursive 5378 6192 98 101 12 251 953 15.64 12.91 9.21 8.00 51.15 86.86

FactTrans 197 212 24 26 3 181 26 10.75 7.88 6.42 5.08 47.26 79.13

BinaryArrays 141 203 100 100 5 172 79 12.17 7.76 7.89 7.89 64.83 100.0

FibFactAna 178 261 44 49 7 202 33 7.90 8.29 8.50 6.06 76.71 71.29

RegresionTest 13 121 15 15 5 237 4 4.77 7.17 4.20 4.20 88.05 100.0

BoubleFibArrays 16 164 10 10 10 213 27 9.31 8.79 4.90 4.90 52.63 100.0

StatsMeanFib 19 50 23 23 6 195 21 7.79 8.12 6.78 6.48 83.18 95.58

Integral 5 8 8 8 3 152 2 6.80 5.75 7.88 5.88 86.47 74.62

TestMath 3 5 3 3 3 195 2 7.67 6.00 9.00 7.67 100.0 85.22

TestMath2 92 2493 13 13 3 211 607 14.70 11.54 15.77 12.77 86.87 80.98

Figures 2 10 10 10 24 597 13 9.00 7.20 6.60 6.60 73.33 100.0

FactCalc 128 179 75 75 3 206 46 8.45 7.60 7.96 7.96 94.20 100.0

SpaceLimits 95 133 98 100 15 786 10 36.26 12.29 18.46 14.04 38.72 76.06

Table 5.10: Experiments applying Loop Expansion and Tree Compression

The first column in Table 5.10 shows the name of the benchmarks. For each benchmark, the nodes

column shows the number of nodes that are descendant of a loop11 in the original ET (ET), in the
ET after applying LE (LE), in the ET after applying LE first and then the original version of TC—
compressing all nodes—(TCori), and in the ET after applying LE first and then the optimized version
of TC—Algorithm 19—(TCopt); the LE column shows the number of expanded loops; the Time column
shows the time (in milliseconds) needed to apply LE and TE; the Questions columns show the average
number of questions asked, using each of the previously described ETs. Each benchmark has been
analyzed assuming that the bug could be in any node of its associated ET. This means that each value
in the Questions column represents the average of a set of experiments. For instance, in order to obtain
the information associated with Factoricer, this benchmark has been debugged 55 times with the
original ET, 331 with the ET after applying loop expansion, etc. In total, Factoricer was debugged
55+331+51+51=488 times, considering all ET transformations and assuming each time that the bug
was a different node (and computing the average of all tests for each ET); finally, the (%) column shows,
on the one hand, the percentage of asked questions after applying our transformations (LE and TC)
with respect to the original ET (LETC); and, on the other hand, the percentage of questions asked using
Algorithm 19 to decide when to apply TC with respect to always applying TC (TC). From the table

11We consider these nodes because the part of the ET that is not descendant of a loop remains unchanged after applying
our technique, and thus the number of questions needed to find the bug is the same before and after the transformations.

104 Chapter 5. Algorithmic Debugging Techniques

we can conclude that LE has a temporal cost of 274 ms whereas TC needs about 123 ms, and that
our transformations produce a reduction of 27.65 % in the number of questions asked by the debugger.
Moreover, the use of Algorithm 19 to decide when to apply TC also produces an important reduction
in the number of questions with an average of 9.72 %.

Chapter 6

Algorithmic Debugging Search Strategies

Divide & Query has been considered the best search strategy for more than 30 years. In this chapter
we provide two search strategies that are better than Divide & Query with respect to the number of
questions performed by the debugger. First of all we provide a definition of Divide & Query and the
reasons why it is not an optimal strategy, later we provide our two new search strategies.

6.1 Divide & Query

6.1.1 Shapiro vs Hirunkitty

In this section we recall the D&Q strategy to show the differences between the original version by Shapiro
[92] and the improved version by Hirunkitti and Hogger [44].

Both D&Q by Shapiro and D&Q by Hirunkitti assume that the individual weight of a node is always
1. The individual weight of a node stands for the probability of that node to contain a bug. Therefore,
given a Marked Execution Tree (MET) T = (N,E,M) (see Definition 4.2.2), the weight of the subtree
rooted at node n ∈ N , wn, is defined recursively as its number of descendants including itself (i.e.,
1 +

∑
{wn′ | (n→ n′) ∈ E}).

D&Q tries to simulate a dichotomic search by selecting the node that better divides the MET into
two subMETs with a weight as similar as possible. Therefore, given a MET with n nodes, D&Q searches
for the node whose weight is closer to n

2
. The original algorithm by Shapiro always selects:

• the heaviest node n′ whose weight is as close as possible to n
2

with wn′ ≤ n
2

Hirunkitti and Hogger noted that this is not enough to divide the MET in half and their improved
version always selects the node whose weight is closer to n

2
between:

• the heaviest node n′ whose weight is as close as possible to n
2

with wn′ ≤ n
2
, or

• the lightest node n′ whose weight is as close as possible to n
2

with wn′ ≥ n
2

Because it is strictly better, in the rest of the chapter we only consider Hirunkitti’s D&Q and refer
to it as D&Q.

105

106 Chapter 6. Algorithmic Debugging Search Strategies

6.1.2 Limitations of Divide & Query

In this section we show that D&Q is suboptimal when the MET does not contain a wrong node (i.e., all
nodes are marked as undefined).1 The intuition beyond this limitation is that the objective of D&Q is
to divide the tree in half, but the real objective should be to reduce the number of questions the oracle
would be asked. For instance, consider the MET in Figure 6.1 (left) where the black node is marked as
wrong and D&Q would select the grey node. The objective of D&Q is to divide the 8 nodes into two
groups of 4. Nevertheless, the real motivation of dividing the tree should be to divide the tree into two
parts that would produce the same number of remaining questions (in this case 3).

The problem comes from the fact that D&Q does not take into account the marking of wrong nodes.
For instance, observe the two METs in Figure 6.1 (centre) where each node is labelled with its weight
and the black node is marked as wrong. In both cases D&Q would behave exactly in the same way,
because it completely ignores the marking of the root. Nevertheless, it is evident that we do not need
to ask again about a node that is already marked as wrong to determine whether it is buggy. However,
D&Q counts the nodes marked as wrong as part of their own weight, and this is a source of inefficiency.

Figure 6.1: Behaviour of Divide and Query

In the METs of Figure 6.1 (centre) we have two METs. In the one on the right, the nodes with
weight 1 and 2 are optimal, but in the one on the left, only the node with weight 2 is optimal. In both
METs D&Q would select either the node with weight 1 or the node with weight 2 (both are equally
close to 3

2
). However, we show in Figure 6.1 (right) that selecting the node with weight 1 is suboptimal,

and the search strategy should always select the node with weight 2. Considering that the grey node
is the first node selected by the search strategy, then the number on the side of a node represents the
number of questions needed to find the bug if the buggy node is this node. The number at the top of
the figure represents the number of questions needed to determine that there is not a bug. Clearly, as
an average, it is better to select first the node with weight 2 because we would perform less questions
(8
4

vs. 9
4

considering all four possible cases).
Therefore, D&Q returns a set of nodes that contains the best node, but it is not able to determine

which of them is the best node, thus being suboptimal when it is not selected. In addition, the METs
in Figure 6.2 show that D&Q is incomplete. Observe that the METs have 5 nodes, thus D&Q would
always select the node with weight 2. However, the node with weight 4 is equally optimal (both need
16
6

questions as an average to find the bug) but it will be never selected by D&Q because its weight is
far from the half of the tree 5

2
.

Another limitation of D&Q is that it was designed to work with METs where all the nodes have the
same individual weight, and moreover, this weight is assumed to be one. This is because D&Q assumes
that all the nodes have the same probability of containing the bug, and thus an individual weight of
one for all nodes is enough to represent this. If we work with METs where nodes can have different
individual weights (i.e., the nodes have different probabilities of containing the bug) and these weights
can be any value greater or equal to zero, then D&Q is suboptimal as it is demonstrated by the MET
in Figure 6.3. In this MET, D&Q would select the n1 node because its weight is closer to 21

2
than any

1Modern debuggers [46] allow the user to debug the MET while it is being generated (see Section 5.1). Thus the root
node of the subtree being debugged is not necessarily marked as Wrong.

6.1. Divide & Query 107

Figure 6.2: Incompleteness of Divide and Query

other node. However, the n2 node is the node that better divides the tree in two parts with the same
probability of containing the bug.

Figure 6.3: MET with decimal individual weights

In summary,

1. D&Q is suboptimal when the MET is free of wrong nodes,

2. D&Q is correct when the MET contains wrong nodes and all the nodes of the MET have the same
weight, but

3. D&Q is suboptimal when the MET contains wrong nodes and the nodes of the MET have different
individual weights.

Despite in this section we have shown the problems D&Q has, those problems only show that the
strategy does not properly perform its job, but we have never said that D&Q is an optimal search
strategy or not. In the next section we claim and prove that D&Q based strategies are suboptimal.

6.1.3 Divide & Query is not an optimal search strategy

In this section we show that the D&Q strategy is not optimal. The reason is that the initial hypothesis
of D&Q, which says to divide the tree in two subtrees with the same number of nodes, does not actually
convert the search strategy into a dichotomic search.

An AD search strategy is optimal if the average number of questions that it performs in any MET is
minimum. We can calculate the number of performed questions assuming that the bug can be located in
the code associated with any node of the tree and, therefore, calculating the sequences of questions that
the debugger would ask for each node. Evidently, there can exist several different optimal strategies.
From here on, we will call optimal node to the first node that an optimal search strategy would ask
about.

Definition 6.1.1 (Optimal search strategy) Let ε be an AD search strategy. Given a MET T =
(N,E,M), being sεn the sequence of questions performed by Algorithm 1 using the ε search strategy, and

108 Chapter 6. Algorithmic Debugging Search Strategies

assuming that the only buggy node of T is n ∈ N . Let tε =
∑
ni∈N
|sεni
|. We say that ε is an optimal search

strategy if for any MET we have that @ε′.tε > tε′.

We show here three counterexamples where we can see that the information D&Q uses to select the
optimal node is not enough. The examples are based on the cost (measured in number of questions
performed by the debugger) associated with the nodes selected by D&Q. To measure this cost, we use
the following definition of sequence of questions.

Definition 6.1.2 (Sequence of questions) Given a MET T = (N,E,M) and two nodes n1, n2 ∈ N ,
the sequence of questions of n1 with respect to n2, sp(n1, n2), is formed by all the questions performed
by Algorithm 1 assuming that the first node selected by selectNode(T) function is n2 and that n1 is the
only buggy node in T .

Intuitively, sp(n1, n2) is composed of the sequence of questions that the debugger would ask to
determine that n1 is a buggy node assuming that the first question of the sequence is associated with
n2. This implies that the sequence of questions completely depends on the search strategy used. In the
concrete case of D&Q, in the MET of Figure 6.4 (left) we can see that:

Figure 6.4: Divide & Query counterexample

sp(n2, n6) = [n6, n3, n2] sp(n6, n2) = [n2, n6, n7, n8, n9]
sp(n2, n2) = [n2, n4, n3] sp(n6, n6) = [n6, n7, n8, n9]

In the middle and right METs of Figure 6.4, as well as in the following figures, the number in the bottom
right corner of a node represents the size of the sequence of questions of this node with respect to the
grey node. This is, the number of questions that should be asked to find an error assuming that it will
be found at that node and that the first question is associated with the grey node.

Example 6.1.3 Consider the MET of Figure 6.4 (left). In this figure, the root node is marked as wrong
and D&Q selects n2 and n6 as optimal nodes. When adding up the number of questions performed in the
MET of Figure 6.4 (centre), where the first question is associated with the n2 node, we can see that the
total number of questions is 31, producing an average of 31

9
= 3, 44 questions to find the bug wherever it

is in the 9 nodes of the tree. However, in the MET of Figure 6.4 (right), in which the first question is
associated with the n6 node, the total number of questions is 30, hence having an average of 30

9
= 3, 33

questions.

It can be seen that, despite what D&Q assumes, starting selecting the node that divides the tree in
two subtrees with the same quantity of nodes is not enough to determine which is the optimal node.
In this example both nodes have the same weight (4) and both divide the tree in a similar way. But
we have shown that starting asking about the n6 node produces less questions on average than starting
asking about the n2 node. Being, hence, the n6 node optimal instead of n2. To explain the reason, we
use the following example.

6.1. Divide & Query 109

Figure 6.5: Divide & Query second counterexample

Example 6.1.4 In the MET at the top of Figure 6.5 we can observe that the subtree whose root is n1 is
a completely balanced (sub)MET [47] (i.e., in the worst case the subtree can be debugged in a logarithmic
number of questions). But the subtree whose root is n2 is a completely unbalanced (sub)MET (i.e., in
the worst case the debugger would ask about all the nodes to find the bug).

D&Q tries to do a logarithmical search by asking about the node that divides the weight in half, in
this case 16

2
= 8, hence the n1 node is optimal according to D&Q. In the MET of Figure 6.5 (left) the

numbers of questions performed when starting to ask about this node adds up 70 questions in total, this
is 70

16
= 4, 38 as an average to find the bug wherever it is in the 16 nodes. However, if we start asking

about the n2 node, the same amount of questions are performed. The numbers of questions of this last
case can be seen in the MET of Figure 6.5 (right). Even though both nodes are equally good, the n2 node
will never be selected by D&Q because its weight is farther away from 16

2
than n1.

The reason why the n2 node is equally good as n1 is straightforward. Having a look at the top tree
of Figure 6.5 we can see that, if n2 is the first node to be asked about and the bug is not in its subtree,
then the remaining subtree can be easily explored thanks to its balanced structure. However, in the
other option this is not true. If n1 is the first node to be asked about and the bug is not in its subtree,
then the remaining subtree is completely unbalanced and thus it would be very difficult to explore. This
can be seen comparing the left tree with the right tree of Figure 6.5: almost all nodes of the subtree
whose root is n1 do not increment their number of questions regardless of which the first node to be
asked about is, whereas asking first about n1 would produce an increment of questions in the nodes of
the subtree whose root is n2.

All this take us to the conclusion that it is not only important to prune big subtrees of the MET, but
it is also important to prune unbalanced trees that are more difficult to explore. The latter is ignored
by D&Q and this is the reason why it is not an optimal search strategy.

Finally, we show an example in which D&Q is not only unable to find all optimal nodes as in the
previous case, but it cannot even find any of them. The example is the same tree from Example 6.1.3
in which we have added 59 nodes in a deep way to the n2 node and 46 nodes in a wide way to the n6

node.

Example 6.1.5 Consider the MET of Figure 6.6 (left) in which D&Q determines that the optimal node
should be in the left branch of the tree, concretely the n1 node because it is the node whose weight is as
close as possible to 114

2
= 57. However, the right child n2 is the optimal node because it produces less

questions than n1, in spite of having a weight farther from 57.
In the tree in the middle of Figure 6.6 the first question is associated with the node selected by D&Q,

n1. If the bug were in the subtree whose root is n1, because the tree is a sequence of nodes in depth, the

110 Chapter 6. Algorithmic Debugging Search Strategies

Figure 6.6: Divide & Query third counterexample

search strategy would ask log2 57 = 5, 83 questions as an average to each node (+1 because of having
initially asked about the n1 node). If the error were not in the subtree whose root is n1 after asking
about it, the subtree whose root is the n2 node would start to be explored. If the error is in this subtree,
the search strategy would ask about all nodes until it finally finds it, and all of them carry the question
previously asked about the n1 node, in total it is (

∑51
i=3 i) + 51 = 1374 questions. If finally it is not in

that subtree either, then the bug must be in the rest 7 nodes above the n1 node (including the root). In
such nodes the search strategy would perform log2 7 = 2, 8 questions as an average to each node (+2
because of asking about n1 and n2 nodes). In total it sums 57∗6, 83+1374+7∗4, 8 = 1796, 91 questions,
and an average of 1796,91

114
= 15, 76 questions.

Contrarily, if we start by asking directly about n2 and the bug is in this subtree, then the search
strategy would make (

∑50
i=2 i) + 50 = 1324 because they do not have any carried questions. If the bug is

in the other branch, after asking about the n2 node there are 64 nodes left in depth, so in log2 64 = 6
questions (+1 because of having previously asked about the n2 node) the error would be found. In total
it sums 1324 + 64 ∗ 7 = 1772 questions, and an average of 1772

114
= 15, 54 questions.

These counterexamples confirm that D&Q is not always able to find all optimal nodes, being then not
complete. Moreover, it also shows that in some cases, D&Q selects a node that it is not optimal, being
then not correct either. Additionally, the examples have revealed that besides considering the amount
of nodes, the structure of the tree should also be consider to obtain a search strategy that performs less
questions as possible to the oracle.

6.2. Optimal Divide & Query 111

6.2 Optimal Divide & Query

6.2.1 Introduction

The search strategy used to decide which nodes of the Marked Execution Tree (MET) should be asked
about is crucial for the performance of Algorithmic Debugging (AD). Since the definition of AD, there
have been a lot of research concerning the definition of new search strategies trying to minimize the
number of questions [95, 97]. We conducted several experiments to measure the performance of all
current AD search strategies. The results of the experiments are shown in Figure 6.7, where the first
column contains the names of the benchmarks; the nodes column shows the number of nodes in the MET
associated with each benchmark; and the other columns represent AD search strategies [95] that are
ordered according to their performance: Optimal Divide & Query (D&QO), Divide & Query by Hirunkitti
(D&QH), Divide & Query by Shapiro (D&QS), Divide by Rules & Query (DR&Q), Heaviest First (HF), More
Rules First (MRF), Hat Delta Proportion (HD-P), Top-Down (TD), Hat Delta YES (HD-Y), Hat Delta NO
(HD-N), Single Stepping (SS).

Figure 6.7: Performance of AD search strategies

For each benchmark, we produced its associated MET and assumed that the buggy node could be any
node of the MET (i.e., any subcomputation in the execution of the program could be buggy). Therefore,
we performed a different experiment for each possible case and, hence, each cell of the table summarizes
a number of experiments that were automatized. In particular, the Factoricer benchmark has been
debugged 62 times with each search strategy; each time we selected a different node and simulated that
it was buggy, thus the results shown are the average number of questions performed by each search
strategy with respect to the number of nodes (i.e., the mean percentage of asked nodes). Similarly, the
Cglib benchmark has been debugged 1216 times with each search strategy, and so on.

Observe that the best AD search strategies in practice are the two variants of Divide and Query
(ignoring our new technique D&QO that reduces the average number of questions by 0.5 points (see
Figure 6.7). Moreover, from a theoretical point of view, this search strategy has been thought optimal in
the worst case, and it has been implemented in almost all current algorithmic debuggers (see, e.g., [13,
87, 24, 46, 85]). Moreover, the original search strategy was only defined for METs where all the nodes

112 Chapter 6. Algorithmic Debugging Search Strategies

have an individual weight of 1. In contrast, we allow our algorithms to work with different individual
weights that can be integer, but also decimal. An individual weight of zero means that this node
cannot contain the bug. A positive individual weight approximates the probability of being buggy. The
higher the individual weight is, the higher the probability is. This generalization strongly influences the
technique and allows for assigning different probabilities of being buggy to different parts of the program.
For instance, a recursive function with higher-order calls should be assigned a higher individual weight
than a function implementing a simple base case [95]. The weight of the nodes can also be reassigned
dynamically during the debugging session in order to take into account the oracle’s answers [24].

We show that the original algorithms are inefficient with METs where nodes can have different
individual weights in the domain of the positive real numbers (including zero) and we redefine the
technique for these generalized METs.

The rest of the section has been organized as follows. In Section 6.2.2 we introduce some preliminary
definitions that will be used in the rest of the section. Section 6.2.3 introduces a new algorithm that is
optimal for METs whose nodes have the same individual weights. In Sections 6.2.4 and 6.2.5 we extend
the algorithm of Section 6.2.3 to also consider METs whose nodes can have different individual weights
including and excluding zero, respectively. Finally, detailed proofs of the results shown in the section
are presented in Section 6.2.6.

6.2.2 Preliminary definitions

In the next sections we introduce a new version of D&Q [48, 50] that tries to divide the MET into two
parts with the same probability of containing the bug (instead of two parts with the same weight). We
introduce new algorithms that are correct and complete even if the MET contains nodes with different
individual weights. For this, we firstly need to define the search area of a MET, which is the set of
undefined nodes.

Definition 6.2.1 (Search area) Let T = (N,E,M) be a MET. The search area of T , Sea(T), is
defined as { n ∈ N |M(n) = Undefined }.

While D&Q uses the whole T , we only use Sea(T), because answering all nodes in Sea(T) guarantees
that we can discover all buggy nodes [63]. Moreover, in the following we refer to the individual weight
of a node n with win; and we refer to the weight of a (sub)tree rooted at n with wn that is recursively
defined as:

wn =

{ ∑
{wn′ | (n→ n′) ∈ E} if M(n) 6= Undefined

win +
∑
{wn′ | (n→ n′) ∈ E} otherwise

Note that, contrarily to standard D&Q, the definition of wn excludes those nodes that are not in the
search area (i.e., the root node when it is wrong). Note also that win allows for assigning any individual
weight to the nodes. This is an important generalization of D&Q where it is assumed that all nodes
have the same individual weight and it is always 1.

6.2.3 Debugging METs where all nodes have the same individual weight

For the sake of clarity, given a node n ∈ Sea(T), we distinguish between three subareas of Sea(T)
induced by n: (1) n itself, whose individual weight is win; (2) descendants of n, whose weight is

Down(n) =
∑
{win′ | n′ ∈ Sea(T) ∧ (n→ n′) ∈ E+}

and (3) the rest of nodes, whose weight is

Up(n) =
∑
{win′ | n′ ∈ Sea(T) ∧ (n→ n′) 6∈ E∗}

6.2. Optimal Divide & Query 113

Figure 6.8: Functions Up and Down of Optimal Divide & Query

Example 6.2.2 Consider the MET in Figure 6.8.
Assuming that the root n is marked as wrong and all nodes have an individual weight of 1, then

Sea(T) contains all nodes except n, Up(n′) = 4 (total weight of the grey nodes), and Down(n′) = 3
(total weight of the white nodes).

Clearly, for any MET whose root is n and a node n′, M(n′) = Undefined , we have that:

wn = Up(n′) + Down(n′) + win′ (Equation 1)
wn′ = Down(n′) + win′ (Equation 2)

Intuitively, given a node n, what we want to divide in half is the area formed by Up(n) + Down(n).
That is, n will not be part of Sea(T) after being answered, thus the objective is to make Up(n) equal
to Down(n). This is another important difference with traditional D&Q: win should not be considered
when dividing the MET. We use the notation n1 � n2 to express that n1 divides Sea(T) better than
n2 (i.e., |Down(n1)− Up(n1)| < |Down(n2)− Up(n2)|). And we use n1 ≡ n2 to express that n1 and n2

equally divide Sea(T). If we find a node n such that Up(n) = Down(n) then n produces an optimal
division, and should be selected by the search strategy. If an optimal solution cannot be found, the
following theorem states how to compare the nodes in order to decide which of them should be selected.

Theorem 6.2.3 Given a MET T = (N,E,M) whose root is n ∈ N , where ∀n′, n′′ ∈ N,win′ = win′′

and ∀n′ ∈ N,win′ > 0, and given two nodes n1, n2 ∈ Sea(T), with wn1 > wn2, n1 � n2 if and only if
wn > wn1 + wn2 − win.

Theorem 6.2.4 Given a MET T = (N,E,M) whose root is n ∈ N , where ∀n′, n′′ ∈ N,win′ = win′′

and ∀n′ ∈ N,win′ > 0, and given two nodes n1, n2 ∈ Sea(T), with wn1 > wn2, n1 ≡ n2 if and only if
wn = wn1 + wn2 − win.

Theorems 6.2.3 and 6.2.4 are useful when one node is heavier than the other. In the case that both
nodes have the same weight, then the following theorem guarantees that they both equally divide the
MET in all situations.

Theorem 6.2.5 Let T = (N,E,M) be a MET where ∀n, n′ ∈ N,win = win′ and ∀n ∈ N,win > 0, and
let n1, n2 ∈ Sea(T) be two nodes, if wn1 = wn2 then n1 ≡ n2.

Corollary 6.2.6 Given a MET T = (N,E,M) where ∀n, n′ ∈ N,win = win′ and ∀n ∈ N,win > 0,
and given a node n ∈ Sea(T), then n optimally divides Sea(T) if and only if Up(n) = Down(n).

While Corollary 6.2.6 states the objective of optimal D&Q (finding a node n such that Up(n) =
Down(n)), Theorems 6.2.3 and 6.2.5 provide a method to approximate this objective (finding a node n
such that |Down(n)− Up(n)| is minimum in Sea(T)).

114 Chapter 6. Algorithmic Debugging Search Strategies

An algorithm for Optimal Divide & Query.

Theorems 6.2.3 and 6.2.4 provide equation wn ≥ wn1 + wn2 − win to compare two nodes n1, n2 by
efficiently determining n1 � n2, n1 ≡ n2 or n1 � n2. However, with only this equation, we should
compare all nodes to select the best of them (i.e., n such that @n′, n′ � n). Hence, in this section
we provide an algorithm that allows for finding the best node in a MET with a minimum set of node
comparisons.

Given a MET, Algorithm 20 efficiently determines the best node to divide Sea(T) in half (in the
following the optimal node). In order to find this node, the algorithm does not need to compare all
nodes in the MET. It follows a path of nodes from the root to the optimal node that is closer to the
root producing a minimum set of comparisons.

Algorithm 20 Optimal D&Q —SelectNode in Algorithm 1—

Input: A MET T = (N,E,M) whose root is n ∈ N ,
∀n′, n′′ ∈ N,win′ = win′′ and ∀n′ ∈ N,win′ > 0

Output: A node nOptimal ∈ N
Preconditions: ∃n′ ∈ N,M(n′) = Undefined

begin
1) Candidate = n
2) do
3) Best = Candidate
4) Children = {m | (Best → m) ∈ E}
5) if (Children = ∅) then return Best
6) Candidate = n′ | ∀n′′ with n′, n′′ ∈ Children, wn′ ≥ wn′′

7) while (wCandidate >
wn

2
)

8) if (M(Best) = Wrong) then return Candidate
9) if (wn ≥ wBest + wCandidate − win) then return Best

10) else return Candidate
end

Example 6.2.7 Consider the MET in Figure 6.9 where ∀n ∈ N,win = 1 and M(n) = Undefined.
Observe that Algorithm 20 only needs to apply the equation in Theorem 6.2.3 once to identify an optimal

Figure 6.9: Defining a path in a MET to find the optimal node

node. Firstly, it traverses the MET top-down from the root selecting at each level the heaviest node until
we find a node whose weight is smaller than the half of the MET (wn

2
), thus, defining a path in the MET

that is coloured in grey. Then, the algorithm uses the equation wn ≥ wn1 +wn2 −win to compare the n1

and n2 nodes. Finally, the algorithm selects n1.

6.2. Optimal Divide & Query 115

In order to prove the correctness of Algorithm 20, we need to prove that (1) the node returned is
really an optimal node, and (2) this node will always be found by the algorithm (i.e., it is always in the
path defined by the algorithm).

The first point can be proved with Theorems 6.2.3, 6.2.4 and 6.2.5. The second point is the key idea
of the algorithm and it relies on an interesting property of the defined path: while defining the path in
the MET, only four cases are possible, and all of them coincide in that the subtree of the heaviest node
will contain an optimal node.

In particular, when we use Algorithm 20 and compare two nodes n1, n2 in a MET whose root is n,
we find four possible cases:

Case 1: n1 and n2 are siblings.
Case 2: wn1 > wn2 ∧ wn2 >

wn

2
.

Case 3: wn1 >
wn

2
∧ wn2 ≤ wn

2
.

Case 4: wn1 > wn2 ∧ wn1 ≤ wn

2
.

Case 1 Case 2 Case 3 Case 4

Figure 6.10: Determining the best node in a MET (four possible cases)

We have proved—the individual proofs are part of the proof of Theorem 6.2.8—that in cases 1 and
4, the heaviest node is better (i.e., if wn1 > wn2 then n1 � n2); In case 2, the lightest node is better;
and in case 3, the best node must be determined with the equations of Theorems 6.2.3, 6.2.4 and 6.2.5.
Observe that these results allow the algorithm to determine the path to the optimal node that is closer
to the root. For instance, in Example 6.2.7 case 1 is used to select a child, e.g., node 12 instead of node
5 or node 2, and node 8 instead of node 3. Case 2 is used to go down and select node 12 instead of
node 20. Case 4 is used to stop going down at node 8 because it is better than all its descendants. And
it is also used to determine that nodes 2, 3 and 5 are better than all their descendants. Finally, case 3
is used to select the optimal node, 12 instead of 8. Note that D&Q could have selected node 8 that is
equally close to 20

2
than node 12; but it is suboptimal because Up(8) = 12 and Down(8) = 7 whereas

Up(12) = 8 and Down(12) = 11.

The correctness of Algorithm 20 is stated by the following theorem.

Theorem 6.2.8 (Correctness) Let T = (N,E,M) be a MET where ∀n, n′ ∈ N,win = win′ and
∀n ∈ N,win > 0, then the execution of Algorithm 20 with T as input always terminates producing as
output a node n ∈ Sea(T) such that @n′ ∈ Sea(T) | n′ � n.

Algorithm 20 always returns a single optimal node. However, the equation in Theorem 6.2.3 in
combination with the equation in Theorem 6.2.4 can be used to identify all optimal nodes in the MET.
This is implemented in Algorithm 21 that is complete, and thus it returns nodes 2 and 4 in the MET of
Figure 6.2 where D&Q can only detect node 2 as optimal.

116 Chapter 6. Algorithmic Debugging Search Strategies

Algorithm 21 Optimal D&Q (Complete) —SelectNode in Algorithm 1—

Input: A MET T = (N,E,M) whose root is n ∈ N ,
∀n′, n′′ ∈ N,win′ = win′′ and ∀n′ ∈ N,win′ > 0

Output: A set of nodes O ⊆ N
Preconditions: ∃n′ ∈ N,M(n′) = Undefined

begin
1) Candidate = n
2) do
3) Best = Candidate
4) Children = {m | (Best → m) ∈ E}
5) if (Children = ∅) then return {Best}
6) Candidate = n′ | ∀n′′ with n′, n′′ ∈ Children, wn′ ≥ wn′′

7) while (wCandidate >
wn

2
)

8) Candidates = {n′ | ∀n′′ with n′, n′′ ∈ Children, wn′ ≥ wn′′}
9) if (M(Best) = Wrong) then return Candidates

10) if (wn > wBest + wCandidate − win) then return {Best}
11) if (wn = wBest + wCandidate − win) then return {Best} ∪ Candidates
12) else return Candidates
end

6.2.4 Debugging METs where nodes can have different individual weights
(including zero)

In this section we generalize Divide and Query to the case where nodes can have different individual
weights and these weights can be any value greater or equal to zero. As shown in Figure 6.3, in this
general case traditional D&Q fails to identify the optimal node (it selects node n1 but the optimal node
is n2). The algorithm presented in the previous section is also suboptimal when the individual weights
can be different. For instance, in the MET of Figure 6.3, it would select node n3. For this reason, in
this section we introduce Algorithm 22, a general algorithm able to identify an optimal node in all cases.
It does not mean that Algorithm 20 is useless. Algorithm 20 is optimal when all nodes have the same
weight, and in that case, it is more efficient than Algorithm 22. Theorem 6.2.9 ensures the finiteness
and correctness of Algorithm 22.

Theorem 6.2.9 (Correctness) Let T = (N,E,M) be a MET where ∀n ∈ N,win ≥ 0, then the
execution of Algorithm 22 with T as input always terminates producing as output a node n ∈ Sea(T)
such that @n′ ∈ Sea(T) | n′ � n.

6.2.5 Debugging METs where nodes can have different individual weights
(excluding zero)

In the previous section we provided an algorithm that optimally selects an optimal node of the MET
with a minimum set of node comparisons. But this algorithm is not complete due to the fact that we
allow the nodes to have an individual weight of zero. For instance, when all nodes have an individual
weight of zero, Algorithm 22 returns a single optimal node, but it is not able to find all optimal nodes.

Given a node (say n), the difference between having an individual weight of zero, win, and having
a (total) weight of zero, wn, should be clear. The former means that this node did not cause a bug,
the later means that none of the descendants of this node (including the node itself) caused a bug.
Surprisingly, the use of nodes with individual weights of zero has not been exploited in the literature.

6.2. Optimal Divide & Query 117

Algorithm 22 Optimal D&Q General —SelectNode in Algorithm 1—

Input: A MET T = (N,E,M) whose root is n ∈ N and ∀n′ ∈ N,win′ ≥ 0
Output: A node nOptimal ∈ N
Preconditions: ∃n′ ∈ N,M(n′) = Undefined

begin
1) Candidate = n
2) do
3) Best = Candidate
4) Children = {m | (Best → m) ∈ E}
5) if (Children = ∅) then return Best
6) Candidate = n′ | ∀n′′ with n′, n′′ ∈ Children, wn′ ≥ wn′′

7) while (wCandidate − wiCandidate

2
> wn

2
)

8) Candidate = n′ | ∀n′′ with n′, n′′ ∈ Children, wn′ − win′
2
≥ wn′′ − win′′

2

9) if (M(Best) = Wrong) then return Candidate
10) if (wn ≥ wBest + wCandidate − wiBest

2
− wiCandidate

2
) then return Best

11) else return Candidate
end

Assigning a (total) weight of zero to a node has been used for instance in the technique called Trusting
[65]. This technique allows the user to trust a method. When this happens all the nodes related to this
method and their descendants are pruned from the tree (i.e., these nodes have a (total) weight of zero).

If we add the restriction that nodes cannot be assigned with an individual weight of zero, then we
can refine Algorithm 22 to ensure completeness. This refined version is Algorithm 23.

Algorithm 23 Optimal D&Q General (Complete) —SelectNode in Algorithm 1—

Input: A MET T = (N,E,M) whose root is n ∈ N and ∀n′ ∈ N,win′ > 0
Output: A set of nodes O ⊆ N
Preconditions: ∃n′ ∈ N,M(n′) = Undefined

begin
1) Candidate = n
2) do
3) Best = Candidate
4) Children = {m | (Best → m) ∈ E}
5) if (Children = ∅) then return {Best}
6) Candidate = n′ | ∀n′′ with n′, n′′ ∈ Children, wn′ ≥ wn′′

7) while (wCandidate − wiCandidate

2
> wn

2
)

8) Candidates = {n′ | ∀n′′ with n′, n′′ ∈ Children, wn′ − win′
2
≥ wn′′ − win′′

2
}

9) Candidate = n′ ∈ Candidates
10) if (M(Best) = Wrong) then return Candidates
11) if (wn > wBest + wCandidate − wiBest

2
− wiCandidate

2
) then return {Best}

12) if (wn = wBest + wCandidate − wiBest

2
− wiCandidate

2
) then return {Best} ∪ Candidates

13) else return Candidates
end

118 Chapter 6. Algorithmic Debugging Search Strategies

6.2.6 Proofs of technical results

In this section, for the sake of clarity, we use un and dn instead of Up(n) and Down(n) respectively.
Moreover, we distinguish between two kinds of METs to prove the theorems of Sections 6.2.3 and 6.2.4,
respectively.

Definition 6.2.10 (Uniform MET) A uniform MET T = (N,E,M) is a MET, where ∀n, n′ ∈
N,win = win′ and ∀n ∈ N,win > 0.

Definition 6.2.11 (Variable MET) A variable MET T = (N,E,M) is a MET, where ∀n ∈ N,win ≥
0.

Proofs of Theorems 6.2.3, 6.2.4 and 6.2.5

Here, we prove Theorems 6.2.3, 6.2.4 and 6.2.5 that are used in Algorithm 20 to compare nodes of the
MET and determine which of them is better. For the proof of Theorem 6.2.3, we need to prove first the
following lemma.

Lemma 6.2.12 Let T = (N,E,M) be a uniform MET whose root is n ∈ N , and let n1, n2 ∈ Sea(T)
be two nodes. Then, n1 � n2 if and only if un1 ∗ dn1 > un2 ∗ dn2.

Proof. We prove that un1 ∗ dn1 > un2 ∗ dn2 implies that |dn1 − un1| < |dn2 − un2| and vice versa. This
can be shown by developing the equation un1 ∗ dn1 > un2 ∗ dn2 .
Firstly, note that wn =

∑
{win′ | n′ ∈ Sea(T)}, then by Equation 1 we know that wn = un1+dn1+win1 =

un2 + dn2 + win2 . Therefore, as win1 = win2 = win the optimal division of Sea(T) happens when un1 =
dn1 = wn−win

2
. For the sake of simplicity in the notation, let c = wn−win

2
and let h1 = c− dn1 = un1 − c

and h2 = c− dn2 = un2 − c. Then,

un1 ∗ dn1 > un2 ∗ dn2

Therefore, we replace un1, dn1, un2 and dn2:
(c+ h1) ∗ (c− h1) > (c+ h2) ∗ (c− h2)
c2 − h1 ∗ c+ h1 ∗ c− h21 > c2 − h2 ∗ c+ h2 ∗ c− h22
We simplify:
c2 − h21 > c2 − h22
−h21 > −h22
h21 < h22
And finally we obtain that:
|h1| < |h2|

Hence, if the product un1 ∗ dn1 is greater than un2 ∗ dn2 then |h1| < |h2| and thus, because h1 and h2
represent distances to the centre, n1 � n2. 2

Theorem 6.2.3. Given a uniform MET T = (N,E,M) whose root is n ∈ N , and given two nodes
n1, n2 ∈ Sea(T), with wn1 > wn2, n1 � n2 if and only if wn > wn1 + wn2 − win.

Proof. By Lemma 6.2.12 we know that if un1 ∗ dn1 > un2 ∗ dn2 then n1 � n2. Thus it is enough to
prove that wn > wn1 + wn2 − win implies un1 ∗ dn1 > un2 ∗ dn2 and vice versa when wn1 > wn2 .

6.2. Optimal Divide & Query 119

wn > wn1 + wn2 − win
Adding win − win:
wn > wn1 + wn2 − 2 ∗ win + win
We replace wn1, wn2 by Equation 2:
wn > dn1 + dn2 + win
Adding win ∗ d− win ∗ d:
wn > dn1 + dn2 + win ∗ d+ win − win ∗ d
wn > dn1 + dn2 + win ∗ d+ win(1− d)

Using d =
dn1

dn1−dn2
we get:

wn > dn1 + dn2 + win
dn1

dn1−dn2
+ win(1− dn1

dn1−dn2
)

wn > dn1 + dn2 + win
dn1

dn1−dn2
+ win(

dn1−dn2

dn1−dn2
− dn1

dn1−dn2
)

wn > dn1 + dn2 + win
dn1

dn1−dn2
+ win

−dn2

dn1−dn2

wn > dn1 + dn2 + win
dn1

dn1−dn2
− win

dn2

dn1−dn2

Because dn1 + dn2 =
d2n1
−d2n2

dn1−dn2
then:

wn >
d2n1
−d2n2

dn1−dn2
+

dn1∗win
dn1−dn2

− dn2∗win
dn1−dn2

Because wn1 > wn2 we know by Equation 2 that dn1 − dn2 > 0, thus:
(dn1 − dn2) ∗ wn > d2n1

− d2n2
+ dn1 ∗ win − dn2 ∗ win

dn1 ∗ wn − dn2 ∗ wn > d2n1
− d2n2

+ dn1 ∗ win − dn2 ∗ win
dn1 ∗ wn − d2n1

− dn1 ∗ win > dn2 ∗ wn − d2n2
− dn2 ∗ win

dn1 ∗ (wn − dn1 − win) > dn2 ∗ (wn − dn2 − win)
As win = win1 = win2 we replace wn − dn1 − win, wn − dn2 − win by Equation 1:
dn1 ∗ un1 > dn2 ∗ un2

2

Theorem 6.2.4. Given a uniform MET T = (N,E,M) whose root is n ∈ N , and given two nodes
n1, n2 ∈ Sea(T), with wn1 > wn2, n1 ≡ n2 if and only if wn = wn1 + wn2 − win.

Proof. The proof is completely analogous to the proof of Theorem 6.2.3. The only difference is that
the equation that is developed should be wn = wn1 + wn2 − win. 2

Theorem 6.2.5. Let T = (N,E,M) be a uniform MET, and let n1, n2 ∈ Sea(T) be two nodes, if
wn1 = wn2 then n1 ≡ n2.

Proof. We prove that wn1 = wn2 implies |dn1 − un1| = |dn2 − un2| and thus n1 ≡ n2:

wn1 = wn2 we replace wn1 , wn2 by Equation 2
dn1 + win1 = dn2 + win2 using win1 = win2

dn1 = dn2 using wn1 = wn2

wn1 − wn + dn1 = wn2 − wn + dn2 replacing wn1 , wn2 by Equation 2
(dn1 + win1)− (un1 + dn1 + win1) + dn1 and wn by Equation 1

= (dn2 + win2)− (un2 + dn2 + win2) + dn2 we simplify
dn1 − un1 = dn2 − un2

|dn1 − un1| = |dn2 − un2|
2

Corollary 6.2.6. Given a uniform MET T = (N,E,M), and given a node n ∈ Sea(T), then n
optimally divides Sea(T) if and only if un = dn.

120 Chapter 6. Algorithmic Debugging Search Strategies

Proof. If n optimally divides Sea(T) then the product un ∗ dn is maximum, and there does not exist
other node n′ ∈ Sea(T) such that un′ ∗ dn′ > un ∗ dn. This can be easily shown taking into account that
the figure of the product is a parabola whose vertex is the maximum value. Therefore, we can compute
the maximum by deriving the product.

For simplicity, let prod = un ∗ dn and sum = un + dn. Then, we start by transforming the equation
un ∗ dn in such a way that it only depends on one of the factors (e.g., un):

un ∗ dn = prod
We replace dn :
un ∗ (sum− un) = prod
un ∗ sum− u2n = prod
We derive the equation and equate it to zero:
d
dun

(un ∗ sum− u2n) = 0

sum− 2un = 0
And finally we get the value of un in the vertex:
un = sum

2
Now, we can infer dn from un by simply replacing the value of un in the equation un + dn = sum:

sum
2

+ dn = sum
dn = sum− sum

2

dn = sum
2

dn = un
2

Proof of Theorem 6.2.8

Theorem 6.2.8 states the correctness of Algorithm 20 used when all nodes have the same individual
weight. Firstly, we prove the following auxiliary lemma.

Lemma 6.2.13 Let T = (N,E,M) be a uniform MET whose root is n ∈ N and n1, n2 ∈ Sea(T) with
wn1 > wn2, if wn ≥ wn1 + wn2 then n1 � n2.

Proof. Firstly, by Theorem 6.2.3 we know that if wn > wn1 +wn2−win when wn1 > wn2 then n1 � n2.
Therefore, as win > 0, if wn ≥ wn1 + wn2 then wn > wn1 + wn2 − win and hence n1 � n2. 2

In order to prove the correctness of Algorithm 20, we also need to prove the four cases presented in
Section 6.2.3 that are used in the algorithm:

Case 1: n1 and n2 are siblings.
Case 2: wn1 > wn2 ∧ wn2 >

wn

2
.

Case 3: wn1 >
wn

2
∧ wn2 ≤ wn

2
.

Case 4: wn1 > wn2 ∧ wn1 ≤ wn

2
.

We prove each case in a separate lemma. In case 1, the following lemma shows that given two sibling
nodes n1 and n2, then the heaviest node is better.

Lemma 6.2.14 Given a uniform MET T = (N,E,M) whose root is n ∈ N and given three nodes
n1 ∈ N and n2, n3 ∈ Sea(T) with (n → n1) ∈ E∗,(n1 → n2), (n1 → n3) ∈ E, n2 � n3 ∨ n2 ≡ n3 if and
only if wn2 ≥ wn3.

Proof. We prove first that wn2 ≥ wn3 implies n2 � n3 ∨n2 ≡ n3: Trivially, wn ≥ wn2 +wn3 because n2

and n3 are children of n1 and n1 is descendant of n. Therefore, by Lemma 6.2.13 and Theorem 6.2.5,

6.2. Optimal Divide & Query 121

n2 � n3 ∨ n2 ≡ n3. Now, we prove that n2 � n3 ∨ n2 ≡ n3 implies wn2 ≥ wn3 : We prove it by
contradiction assuming that wn2 < wn3 when n2 � n3 ∨n2 ≡ n3, and proving that when wn2 < wn3 and
n2 � n3 ∨ n2 ≡ n3, neither wn > wn2 + wn3 − win nor wn ≤ wn2 + wn3 − win hold. By Theorem 6.2.3
wn > wn2 +wn3 −win is false because n2 � n3 ∨ n2 ≡ n3. Moreover, because n2 and n3 are siblings, we
know that wn ≥ wn2 + wn3 , and hence wn ≤ wn2 + wn3 − win is also false. 2

In case 2, the following lemma ensures that given two nodes n1 and n2 such that n1 is the parent of
n2, if wn2 >

wn

2
then n2 is better.

Lemma 6.2.15 Given a uniform MET T = (N,E,M) whose root is n ∈ N , and given two nodes
n1, n2 ∈ Sea(T), with (n1 → n2) ∈ E, if wn2 >

wn

2
then n2 � n1.

Proof. We prove the lemma by contradiction assuming that n1 � n2 or n1 ≡ n2. First, we know that
wn2 = wn

2
+ incn2 with incn2 > 0. And we know that wn1 = wn

2
+ incn2 + win + incn1 with incn1 ≥ 0,

where incn1 represent the weight of the possible siblings of n2. By Theorems 6.2.3 and 6.2.4 we know
that wn ≥ wn1 + wn2 − win when wn1 > wn2 implies n1 � n2 ∨ n1 ≡ n2.

wn ≥ wn1 + wn2 − win We replace wn1 , wn2

wn ≥ (wn

2
+ incn2 + win + incn1) + (wn

2
+ incn2)− win we simplify

wn ≥ wn

2
+ incn2 + incn1 + wn

2
+ incn2

wn ≥ wn

2
+ wn

2
+ 2 ∗ incn2 + incn1

wn ≥ wn + 2 ∗ incn2 + incn1

0 ≥ 2 ∗ incn2 + incn1

But, this is a contradiction with incn2 > 0. Hence, n2 � n1. 2

In case 4, the following lemma ensures that given two nodes whose weight is smaller than wn

2
then

the heaviest node is better.

Lemma 6.2.16 Given a uniform MET T = (N,E,M) whose root is n ∈ N , and two nodes n1, n2 ∈
Sea(T), where wn

2
≥ wn1 > wn2 then n1 � n2.

Proof. We can assume that wn1 = wn

2
−decn1 and wn2 = wn

2
−decn2 where decn2 > decn1 ≥ 0. Moreover,

we know that wn1 +wn2 = wn

2
− decn1 + wn

2
− decn2 and thus wn1 +wn2 = wn− decn1 − decn2 . Therefore,

because decn2 > decn1 ≥ 0, we deduce that wn > wn1 +wn2 . And as wn1 > wn2 then, by Lemma 6.2.13,
n1 � n2. 2

If two nodes n1 and n2 are siblings and n1 is better than n2 then n1 is better than any descendant
of n2. The following lemma proves this property that is complementary to Lemma 6.2.14 for case 1.

Lemma 6.2.17 Given a uniform MET T = (N,E,M) whose root is n ∈ N and four nodes n1 ∈ N
and n2, n3, n4 ∈ Sea(T) with (n → n1) ∈ E∗, (n1 → n2), (n1 → n3) ∈ E, (n3 → n4) ∈ E+, if
n2 � n3 ∨ n2 ≡ n3 then n2 � n4.

Proof. First, n2 and n3 are siblings and n2 � n3 ∨ n2 ≡ n3 then, by Lemma 6.2.14, we know that
wn2 ≥ wn3 . We distinguish two cases wn2 >

wn

2
and wn

2
≥ wn2 .

If wn

2
≥ wn2 then wn

2
≥ wn3 and by Lemma 6.2.16 n3 � n4.

If wn2 >
wn

2
then we only have to demonstrate that wn

2
> wn3 and then (as before) by Lemma 6.2.16

n3 � n4.
This can be easily proved taking into account that wn ≥ wn2 + wn3 because n2 and n3 are children of
n1 and n1 is descendant of n, and that wn2 = wn

2
+ incn2 with incn2 > 0.

122 Chapter 6. Algorithmic Debugging Search Strategies

wn ≥ wn2 + wn3 we replace wn2

wn ≥ (wn

2
+ incn2) + wn3

wn − wn

2
≥ incn2 + wn3

wn

2
≥ incn2 + wn3 as incn2 > 0

wn

2
> wn3

Therefore as n2 � n3 ∨ n2 ≡ n3 and n3 � n4 then n2 � n4. 2

The previous lemmas allow Algorithm 20 to find a path between the root node and an optimal node.
The correctness of this algorithm is proved by the following theorem.

Theorem 6.2.8. Let T = (N,E,M) be a uniform MET, then the execution of Algorithm 20 with T
as input always terminates producing as output a node n ∈ Sea(T) such that @n′ ∈ Sea(T) | n′ � n.

Proof. The finiteness of the algorithm is proved thanks to the following invariant: wCandidate strictly
decreases in each iteration. Therefore, because N is finite, wCandidate will eventually become smaller or
equal to wn

2
and the loop will terminate.

The correctness can be proved showing that after any number of iterations the algorithm always
finishes with an optimal node. We prove it by induction on the number of iterations performed.

(Base Case) In the base case, only one iteration is executed. If the condition in Line (5) is satisfied
then the root is marked as undefined and it is trivially the optimal node. This optimal node is returned
in Line (5). Otherwise, Lines (4) and (6) select the heaviest child of the root, the loop terminates and
Lines (9) or (10) return the optimal node.

Note that the root node—when it is marked as Wrong—can only be selected in the first iteration.
But even in this case, this node is never selected because the root node must have at least one child
marked as Undefined . Thus Line (5) is not satisfied and Line (6) selects this node. If the condition of
the loop is not satisfied, then Line (8) returns the child of the root.

(Induction Hypothesis) We assume as the induction hypothesis that after i iterations, the algorithm
has a candidate node Best ∈ Sea(T) such that ∀n′ ∈ Sea(T), (Best→ n′) 6∈ E∗, Best� n′.

(Inductive Case) We now prove that the iteration i + 1 of the algorithm will select a new candidate
node Candidate such that Candidate� Best, or it will terminate selecting an optimal node.

Firstly, when the condition in Line (5) is satisfied Best and Candidate are the same node (say
n′). According to the induction hypothesis, this node is better than any other of the nodes in the set
{n′′ ∈ Sea(T) | (n′ → n′′) 6∈ E∗}. Therefore, because n′ has no children, then it is an optimal node; and
it is returned in Line (5). Otherwise, if the condition in Line (5) is not satisfied, Line (7) in the algorithm
ensures that wBest >

wn

2
being n the root of T because in the iteration i the loop did not terminate

or because Best is the root. Moreover, according to Lines (4) and (6), we know that Candidate is the
heaviest child of Best. We have two possibilities:

• wCandidate > wn
2 : In this case the loop does not terminate and ∀n′ ∈ Sea(T), (Candidate → n′) 6∈

E∗,Candidate � n′. Firstly, by Lemma 6.2.15 we know that Candidate � Best , and thus, by the
induction hypothesis we know that ∀n′ ∈ Sea(T), (Best → n′) 6∈ E∗,Candidate � n′. By Lemma 6.2.14
Candidate � n′ ∨ Candidate ≡ n′ being n′ a sibling of Candidate. But as we know that wCandidate > wn

2
then Candidate 6≡ n′. Moreover, by Lemma 6.2.17 we can ensure that Candidate � n′ being n′ a
descendant of a sibling of Candidate.

• wCandidate ≤ wn
2 : In this case the loop terminates (Line (7)) and by Lemma 6.2.14 we know that

Candidate � n′ ∨ Candidate ≡ n′ being n′ a sibling of Candidate. Moreover, by Lemma 6.2.17 we
can ensure that Candidate � n′ being n′ a descendant of a sibling of Candidate. Then equation
(wn ≥ wBest +wCandidate−win) is applied in Line (9) to select an optimal node. Theorems 6.2.3 and 6.2.4
ensures that the node selected is an optimal node because, according to Lemma 6.2.16, for all descendant
n′ of Candidate, Candidate � n′.

6.2. Optimal Divide & Query 123

2

Proof of Theorem 6.2.9

Theorem 6.2.9 states the correctness of Algorithm 22 used in the general case when nodes can have
different individual weights. For the proof of this theorem we define first some auxiliary lemmas. The
following lemma ensures that wn1 −

win1

2
> wn

2
used in the condition of the loop implies dn1 > un1 .

Lemma 6.2.18 Given a variable MET T = (N,E,M) whose root is n ∈ N and a node n1 ∈ Sea(T),

dn1 > un1 if and only if wn1 −
win1

2
> wn

2
.

Proof. We prove that wn1 −
win1

2
> wn

2
implies dn1 > un1 and vice versa.

wn1 −
win1

2
> wn

2

2wn1 − win1 > wn
We replace wn1 using Equation 2:
2(dn1 + win1)− win1 > wn
2dn1 + win1 > wn
dn1 > wn − dn1 − win1

We replace wn − dn1 − win1 using Equation 1:
dn1 > un1

2

The following lemma ensures that given two nodes n1 and n2 where dn ≥ un in both nodes and
n1 → n2 then n2 � n1 ∨ n2 ≡ n1.

Lemma 6.2.19 Given a variable MET T = (N,E,M) and given two nodes n1, n2 ∈ Sea(T), with
(n1 → n2) ∈ E, if dn2 ≥ un2 then n2 � n1 ∨ n2 ≡ n1.

Proof. We prove that |dn2 − un2| ≤ |dn1 − un1 | holds. First, we know that dn1 = dn2 + win2 + inc and
un1 = un2 − win1 − inc with inc ≥ 0, where inc represent the weight of the possible siblings of n2.

|dn2 − un2| ≤ |dn1 − un1|
As we know that dn ≥ un in both nodes:
dn2 − un2 ≤ dn1 − un1

We replace dn1 and un1:
dn2 − un2 ≤ (dn2 + win2 + inc)− (un2 − win1 − inc)
dn2 − un2 ≤ dn2 − un2 + win1 + win2 + 2inc
0 ≤ win1 + win2 + 2inc

Hence, because win1 , win2 , inc ≥ 0 then |dn2−un2| ≤ |dn1−un1| is satisfied and thus n2 � n1∨n2 ≡ n1.
2

The following lemma ensures that given two nodes n1 and n2 where dn ≤ un in both nodes and
n1 → n2 then n1 � n2 ∨ n1 ≡ n2.

Lemma 6.2.20 Given a variable MET T = (N,E,M) and given two nodes n1, n2 ∈ Sea(T), with
(n1 → n2) ∈ E, if dn1 ≤ un1 then n1 � n2 ∨ n1 ≡ n2.

Proof. We prove that |dn1 − un1| ≤ |dn2 − un2| holds. First, we know that dn2 = dn1 − win2 − inc and
un2 = un1 + win1 + inc with inc ≥ 0, where inc represents the weight of the possible siblings of n2.

124 Chapter 6. Algorithmic Debugging Search Strategies

|dn1 − un1| ≤ |dn2 − un2 |
As we know that un ≥ dn in both nodes:
un1 − dn1 ≤ un2 − dn2

We replace dn2 and un2:
un1 − dn1 ≤ (un1 + win1 + inc)− (dn1 − win2 − inc)
un1 − dn1 ≤ un1 − dn1 + win1 + win2 + 2inc
0 ≤ win1 + win2 + 2inc

Hence, because win1 , win2 , inc ≥ 0 then |dn1−un1| ≤ |dn2−un2| is satisfied and thus n1 � n2∨n1 ≡ n2.
2

The following lemma ensures that given two sibling nodes n1 and n2, if dn1 ≥ un1 then dn2 ≤ un2 .

Lemma 6.2.21 Given a variable MET T = (N,E,M) whose root is n ∈ N , and given three nodes
n1 ∈ N and n2, n3 ∈ Sea(T), with (n → n1) ∈ E∗, (n1 → n2), (n1 → n3) ∈ E, if dn2 ≥ un2 then
dn3 ≤ un3.

Proof. We prove it by contradiction assuming that dn3 > un3 when dn2 ≥ un2 and they are siblings.
First, we know that as n2 and n3 are siblings then un2 ≥ wn3 and un3 ≥ wn2 . Therefore, if dn3 > un3

then dn2 ≥ un2 ≥ wn3 ≥ dn3 > un3 ≥ wn2 ≥ dn2 that implies dn2 > dn2 that is a contradiction itself. 2

If two nodes n1 and n2 are siblings and dn1 ≥ un1 then n1 � n2 ∨ n1 ≡ n2. The following lemma
proves this property.

Lemma 6.2.22 Given a variable MET T = (N,E,M) whose root is n ∈ N , and given three nodes
n1 ∈ N and n2, n3 ∈ Sea(T), with (n → n1) ∈ E∗, (n1 → n2), (n1 → n3) ∈ E, if dn2 ≥ un2 then
n2 � n3 ∨ n2 ≡ n3.

Proof. We prove that |dn2 − un2| ≤ |dn3 − un3| holds. First, as n2 and n3 are siblings we know that
wn ≥ dn2 + dn3 + win2 + win3 , then wn = dn2 + dn3 + win2 + win3 + inc with inc ≥ 0.

|dn2 − un2| ≤ |dn3 − un3|
As dn2 ≥ un2 by Lemma 6.2.21 we know that un3 ≥ dn3:
dn2 − un2 ≤ un3 − dn3

We replace un2 and un3 using Equation 1:
dn2 − (wn − dn2 − win2) ≤ (wn − dn3 − win3)− dn3

−wn + 2dn2 + win2 ≤ wn − 2dn3 − win3

−2wn ≤ −2dn2 − 2dn3 − win2 − win3

2wn ≥ 2dn2 + 2dn3 + win2 + win3

wn ≥ dn2 + dn3 +
win2

2
+

win3

2

We replace wn:

dn2 + dn3 + win2 + win3 + inc ≥ dn2 + dn3 +
win2

2
+

win3

2

win2 + win3 + inc ≥ win2

2
+

win3

2
win2

2
+

win3

2
+ inc ≥ 0

Hence, because win2 , win3 , inc ≥ 0 then |dn2−un2| ≤ |dn3−un3| is satisfied and thus n2 � n3∨n2 ≡ n3.
2

The following lemma ensures that given two sibling nodes n1 and n2, if wn1 ≥ wn2 and dn1 ≤ un1

then dn2 ≤ un2 .

Lemma 6.2.23 Given a variable MET T = (N,E,M) whose root is n ∈ N , and given three nodes
n1 ∈ N and n2, n3 ∈ Sea(T), with (n → n1) ∈ E∗, (n1 → n2), (n1 → n3) ∈ E, if wn2 ≥ wn3 and
dn2 ≤ un2 then dn3 ≤ un3.

6.2. Optimal Divide & Query 125

Proof. We prove it by contradiction assuming that dn3 > un3 when wn2 ≥ wn3 and dn2 ≤ un2 and they
are siblings. First, we know that as n2 and n3 are siblings then un2 ≥ wn3 and un3 ≥ wn2 . Therefore, if
dn3 > un3 then dn3 > un3 ≥ wn2 ≥ wn3 ≥ dn3 that implies dn3 > dn3 that is a contradiction itself. 2

If two nodes n1 and n2 are siblings and un1 ≥ dn1 ∧ un2 ≥ dn2 then, if wn1 −
win1

2
≥ wn2 −

win2

2
is

satisfied then n1 � n2 ∨ n1 ≡ n2. The following lemma proves this property.

Lemma 6.2.24 Given a variable MET T = (N,E,M) whose root is n ∈ N , and given three nodes
n1 ∈ N and n2, n3 ∈ Sea(T), with (n → n1) ∈ E∗, (n1 → n2), (n1 → n3) ∈ E, and un2 ≥ dn2 and

un3 ≥ dn3, n2 � n3 ∨ n2 ≡ n3 if and only if wn2 −
win2

2
≥ wn3 −

win3

2
.

Proof. First, if |dn2 − un2| ≤ |dn3 − un3| then n2 � n3 ∨ n2 ≡ n3. Thus it is enough to prove that

wn2 −
win2

2
≥ wn3 −

win3

2
implies |dn2 − un2| ≤ |dn3 − un3| and vice versa when un ≥ dn in both nodes

and they are siblings.

wn2 −
win2

2
≥ wn3 −

win3

2

2wn2 − win2 ≥ 2wn3 − win3

We replace wn2 and wn3 using Equation 2:
2(dn2 + win2)− win2 ≥ 2(dn3 + win3)− win3

2dn2 + win2 ≥ 2dn3 + win3

We add −wn:
−wn + 2dn2 + win2 ≥ −wn + 2dn3 + win3

wn − 2dn2 − win2 ≤ wn − 2dn3 − win3

We replace wn using Equation 1:
(dn2 + un2 + win2)− 2dn2 − win2 ≤ (dn3 + un3 + win3)− 2dn3 − win3

−dn2 + un2 ≤ −dn3 + un3

un2 − dn2 ≤ un3 − dn3

As un ≥ dn in both nodes:
|un2 − dn2| ≤ |un3 − dn3|
|dn2 − un2| ≤ |dn3 − un3|

2

If two nodes n1 and n2 are siblings and dn1 ≥ un1 and n2 is an ancestor of n3 then, if n1 ≡ n2 then
n1 � n3 ∨ n1 ≡ n3. The following lemma proves this property.

Lemma 6.2.25 Given a variable MET T = (N,E,M) whose root is n ∈ N , and given four nodes
n1 ∈ N and n2, n3, n4 ∈ Sea(T), with (n → n1) ∈ E∗, (n1 → n2), (n1 → n3) ∈ E, (n3 → n4) ∈ E+, if
dn2 ≥ un2 and n2 ≡ n3 then n2 � n4 ∨ n2 ≡ n4.

Proof. This can be trivially proved taking into account that dn3 ≤ un3 when dn2 ≥ un2 by Lemma 6.2.21
and then by Lemma 6.2.20 we know that n3 � n4 ∨ n3 ≡ n4 and as n2 ≡ n3 then n2 � n4 ∨ n2 ≡ n4. 2

If two nodes n1 and n2 are siblings and dn1 ≤ un1 ∧ dn2 ≤ un2 and n2 is an ancestor of n3 then, if
n1 ≡ n2 then n1 � n3 ∨ n1 ≡ n3. The following lemma proves this property.

Lemma 6.2.26 Given a variable MET T = (N,E,M) whose root is n ∈ N , and given four nodes
n1 ∈ N and n2, n3, n4 ∈ Sea(T), with (n → n1) ∈ E∗, (n1 → n2), (n1 → n3) ∈ E, (n3 → n4) ∈ E+, if
dn2 ≤ un2 and dn3 ≤ un3 and n2 ≡ n3 then n2 � n4 ∨ n2 ≡ n4.

Proof. This can be trivially proved taking into account that dn3 ≤ un3 and then by Lemma 6.2.20 we
know that n3 � n4 ∨ n3 ≡ n4 and as n2 ≡ n3 then n2 � n4 ∨ n2 ≡ n4. 2

If two nodes n1 and n2 are siblings and n1 � n2 and n2 is an ancestor of n3 then n1 � n3. The
following lemma proves this property.

126 Chapter 6. Algorithmic Debugging Search Strategies

Lemma 6.2.27 Given a variable MET T = (N,E,M) whose root is n ∈ N , and given four nodes
n1 ∈ N and n2, n3, n4 ∈ Sea(T), with (n → n1) ∈ E∗, (n1 → n2), (n1 → n3) ∈ E, (n3 → n4) ∈ E+, if
n2 � n3 then n2 � n4.

Proof. We show that if n2 � n3 then dn3 < un3 . We prove it by contradiction assuming that dn3 ≥ un3

when n2 � n3. First, as n2 and n3 are siblings we know that wn ≥ dn2 + dn3 + win2 + win3 , then
wn = dn2 + dn3 + win2 + win3 + inc with inc ≥ 0. Therefore, if |dn2 − un2| < |dn3 − un3| then n2 � n3.
Thus it is enough to prove that |dn2 − un2| < |dn3 − un3| is not satisfied when dn3 ≥ un3 and n2 and n3

are siblings.

|dn2 − un2| < |dn3 − un3 |
As dn3 ≥ un3 by Lemma 6.2.21 we know that un2 ≥ dn2:
un2 − dn2 < dn3 − un3

We replace un2 and un3 using Equation 1:
(wn − dn2 − win2)− dn2 < dn3 − (wn − dn3 − win3)
wn − 2dn2 − win2 < 2dn3 − wn + win3

2wn < 2dn2 + 2dn3 + win2 + win3

wn < dn2 + dn3 +
win2

2
+

win3

2

We replace wn:

dn2 + dn3 + win2 + win3 + inc < dn2 + dn3 +
win2

2
+

win3

2

win2 + win3 + inc <
win2

2
+

win3

2
win2

2
+

win3

2
+ inc < 0

But, this is a contradiction with win2 , win3 , inc ≥ 0. Hence, dn3 < un3 .

Now we show that, if n2 � n3 then n2 � n4. We prove it by contradiction assuming that n4 �
n2∨n4 ≡ n2 when n2 � n3. First, we know that dn3 < un3 . Therefore we know that dn4 = dn3−win4−dec
and un4 = un3 + win3 + dec with dec ≥ 0, where dec represent the weight of the possible siblings of n4.

|dn3 − un3| > |dn2 − un2| ≥ |dn4 − un4|
We replace dn4 and un4:
dn3 − un3	>	dn2 − un2	≥	(dn3 − win4 − dec)− (un3 + win3 + dec)
dn3 − un3	>	dn2 − un2	≥	dn3 − win4 − dec− un3 − win3 − dec
dn3 − un3	>	dn2 − un2	≥	dn3 − un3 − win3 − win4 − 2dec

Note that dn3 − un3 must be positive, thus dn3 > un3 . But this is a contradiction with dn3 < un3 . 2

The following lemma ensures that given two nodes n1 and n2 where dn1 ≥ un1 and dn2 ≤ un2 and n1

is the parent of n2 then if wn ≥ wn1 + wn2 −
win1

2
− win2

2
is satisfied then n1 � n2 ∨ n1 ≡ n2.

Lemma 6.2.28 Given a variable MET T = (N,E,M) and given two nodes n1, n2 ∈ Sea(T), with (n1 →
n2) ∈ E, and dn1 ≥ un1, and dn2 ≤ un2, n1 � n2 ∨ n1 ≡ n2 if and only if wn ≥ wn1 +wn2 −

win1

2
− win2

2
.

Proof. First, if |dn1 − un1| ≤ |dn2 − un2| then n1 � n2 or n1 ≡ n2. Thus it is enough to prove that

wn ≥ wn1 + wn2 −
win1

2
− win2

2
implies |dn1 − un1| ≤ |dn2 − un2 | and vice versa when dn1 ≥ un1 and

dn2 ≤ un2 .

6.2. Optimal Divide & Query 127

wn ≥ wn1 + wn2 −
win1

2
− win2

2

We replace wn1 , wn2 using Equation 2:

wn ≥ (dn1 + win1) + (dn2 + win2)−
win1

2
− win2

2

wn ≥ dn1 + dn2 +
win1

2
+

win2

2

2wn ≥ 2dn1 + 2dn2 + win1 + win2

−2wn ≤ −2dn1 − 2dn2 − win1 − win2

−wn + 2dn1 + win1 ≤ wn − 2dn2 − win2

We replace wn using Equation 1:
−(dn1 + un1 + win1) + 2dn1 + win1 ≤ (dn2 + un2 + win2)− 2dn2 − win2

−dn1 − un1 − win1 + 2dn1 + win1 ≤ dn2 + un2 + win2 − 2dn2 − win2

−un1 + dn1 ≤ −dn2 + un2

dn1 − un1 ≤ un2 − dn2

As dn1 ≥ un1 and dn2 ≤ un2:
|dn1 − un1| ≤ |un2 − dn2 |
|dn1 − un1| ≤ |dn2 − un2 |

2

Finally, we prove the correctness of Algorithm 22.

Theorem 6.2.9. Let T = (N,E,M) be a variable MET, then the execution of Algorithm 22 with T
as input always terminates producing as output a node n ∈ Sea(T) such that @n′ ∈ Sea(T) | n′ � n.

Proof. The finiteness of the algorithm is proved thanks to the following invariant: each iteration
processes one single node, and the same node is never processed again. Therefore, because N is finite,
the loop will terminate.

The proof of correctness is completely analogous to the proof of Theorem 6.2.8. The only difference
is the induction hypothesis and the inductive case:

(Induction Hypothesis) After i iterations, the algorithm has a candidate node Best ∈ Sea(T) such
that ∀n′ ∈ Sea(T), (Best→ n′) 6∈ E∗, Best� n′ ∨Best ≡ n′.

(Inductive Case) We prove that the iteration i+ 1 of the algorithm will select a new candidate node
Candidate such that Candidate� Best ∨ Candidate ≡ Best, or it will terminate selecting an optimal
node.
Firstly, when the condition in Line (5) is satisfied Best and Candidate are the same node (say n′).
According to the induction hypothesis, this node is better or equal than any other of the nodes in the
set {n′′ ∈ Sea(T)|(n′ → n′′) 6∈ E∗}. Therefore, because n′ has no children, then it is an optimal node;
and it is returned in Line (5). Otherwise, if the condition in Line (5) is not satisfied, Line (7) in the
algorithm ensures that wBest − wiBest

2
> wn

2
being n the root of T because in the iteration i the loop did

not terminate or because Best is the root (observe that an exception can happen when all nodes have
an individual weight of 0. But in this case all nodes are optimal, and thus the node returned by the
algorithm is optimal). Then we know that dBest > uBest by Lemma 6.2.18. Moreover, according to Lines
(4) and (6), we know that Candidate is the heaviest child of Best. We have two possibilities:

• dCandidate > uCandidate : In this case the loop does not terminate and ∀n′ ∈ Sea(T), (Candidate →
n′) 6∈ E∗,Candidate � n′ ∨ Candidate ≡ n′. Firstly, by Lemma 6.2.19 we know that Candidate �
Best∨Candidate ≡ Best , and thus, by the induction hypothesis we know that ∀n′ ∈ Sea(T), (Best → n′) 6∈
E∗,Candidate � n′ ∨Candidate ≡ n′. By Lemma 6.2.22 we know that Candidate � n′ ∨Candidate ≡ n′

being n′ a sibling of Candidate. Moreover, by Lemma 6.2.25 and 6.2.27 we can ensure that Candidate �
n′ ∨ Candidate ≡ n′ being n′ a descendant of a sibling of Candidate.

128 Chapter 6. Algorithmic Debugging Search Strategies

• dCandidate ≤ uCandidate : In this case the loop terminates (Line (7)) and we know by Lemma 6.2.23 that
dn′ ≤ un′ being n′ any sibling of Candidate. In Line (8) according to Lemma 6.2.24 we select the
Candidate such that Candidate � n′ ∨ Candidate ≡ n′ being n′ a sibling of Candidate. Moreover, by
Lemma 6.2.26 and 6.2.27 we can ensure that Candidate � n′ ∨ Candidate ≡ n′ being n′ a descendant of
a sibling of Candidate. Then equation (wn ≥ wBest + wCandidate − wiBest

2 − wiCandidate
2) is applied in Line

(10) to select an optimal node. Lemma 6.2.28 ensures that the selected node is an optimal node because,
according to Lemma 6.2.20, for all descendant n′ of Candidate, Candidate� n′ ∨ Candidate ≡ n′.

2

6.3. Implementation of Optimal Divide & Query 129

6.3 Implementation of Optimal Divide & Query

6.3.1 Introduction

The internal algorithm used in Algorithmic Debugging (AD) to decide which nodes of the Marked
Execution Tree (MET) should be asked about is crucial for the performance of the technique. In [48,
50] (see Section 6.2), we conducted a series of experiments to compare the performance of different
algorithms, and Divide & Query (D&Q) and its variants [95] showed the best performance. In that
work, it is also proved that the Optimal D&Q variant asks (as an average) less questions.

In this section we present an implementation of Optimal D&Q [51] that has been integrated into the
Declarative Debugger for Java [46]. We show how to implement this algorithm in different implementa-
tion contexts that are present in different architectures.

The rest of the section has been organized as follows. In Section 6.3.2 we recall our improved version
of D&Q called Optimal D&Q. Then, in Section 6.3.3 we discuss the implementation of Optimal D&Q.
Finally, Sections 6.3.4, 6.3.5 and 6.3.6 show the specific changes needed to adapt the implementation to
standard, static MET and dynamic MET architectures, respectively.

6.3.2 Optimal Divide & Query

In [48, 50], Optimal Divide & Query was introduced as a new variant of D&Q that optimally divides
the remaining tree with every answer. It is presented in Algorithm 24 where wn represents the weight
of node n (i.e., the weight of the subtree rooted at n), and win represents the individual weight of node
n (i.e., the weight of the single node n without taking into account its descendants). It is important
to note that, in this algorithm, the weight of a subtree with root n is computed with the sum of the
individual weights of all nodes in the subtree, but the individual weight of n is only added if it is marked
as Undefined. In the case that it is marked as Wrong, then it is ignored.

Algorithm 24 Optimal D&Q (SelectNode)
Input: A MET T = (N,E,M) whose root is n ∈ N ,

∀n1, n2 ∈ N,win1 = win2 and ∀n1 ∈ N,win1 > 0
Output: A node n′ ∈ N

begin
1) Candidate = n
2) do
3) Best = Candidate
4) Children = {m | (Best → m) ∈ E}
5) if (Children = ∅) then return Best
6) Candidate = n′ ∈ Children | ∀n′′ ∈ Children, wn′ ≥ wn′′

7) while (wCandidate > wn

2)
8) if (M(Best) = Wrong) then return Candidate
9) if (wn ≥ wBest + wCandidate − win)

10) then return Best
11) else return Candidate
end

Essentially, Algorithm 24 traverses the MET top-down from the root until it finds the buggy node.
In order to do this, it compares nodes to discard some of them and define a path until the buggy node.
It is based on four properties that are summarized in Figure 6.11: In cases 1 and 4, the heaviest node
is better. In case 2, the lightest node is better. And in case 3, the best node must be determined with
the equation wroot ≥ wn1 +wn2 −wiroot that is implemented in Line (9) of the algorithm. Observe that

130 Chapter 6. Algorithmic Debugging Search Strategies

these cases allow the algorithm to determine the path to the optimal node that is closer to the root by
comparing a reduced number of nodes.

Case 1 Case 2 Case 3 Case 4

Figure 6.11: Path to the best node in a MET

6.3.3 Implementation of Optimal Divide & Query

In this section we present our implementation of the Optimal D&Q strategy and in the following sections
we discuss how it can be adapted to different architectural contexts. Our algorithmic debugger, the
Declarative Debugger for Java (DDJ) [46], debugs Java programs. Consequently, in this debugger the
information of the nodes contain method executions and their effects.

Along this section, we assume the existence of an object that implements the Optimal D&Q strategy.
We will refer to this object with the usual reference this, and thus, we can access the methods of this
object as usual (e.g., this.node.getState(), this.moveNodeToChild(indexChild), etc.).

The presented implementation includes the methods that compose the OptimalDivideQuery class.
Some of these methods must be adapted depending on the architecture of the host debugger. In partic-
ular, we discuss these methods for three different architectures:

1. Standard architecture. Where nodes are pruned after every answer according to Algorithm 1; and
where all the nodes of the MET are already generated when the first question is asked.

2. Static MET architecture. Where the MET is never pruned; and thus nodes have a state attribute
that indicates to the search strategy whether this node can be buggy or not. Here again, it is
assumed that all the nodes of the MET are already generated when the first question is asked.

3. Dynamic MET architecture. Where nodes are pruned after every answer according to Algorithm 1;
and where the nodes in the MET can be dynamically generated while the questions are asked.

The code of the OptimalDivideQuery class, which is common for the three architectures, is shown in
Frame 1. The code that is only used in the standard architecture is shown in Frame 2 (it continues the
code of Frame 1). The code that is only used in the static MET architecture is shown in Frame 3 (it
continues the code of Frame 1). The code that is only used in the dynamic MET architecture is shown
in Frame 4 (it continues the code of Frame 1).

Clearly, the search strategy needs a mechanism to explore the MET and extract the information
from nodes. For this, we use a pointer that can point to any node in the MET. This pointer is the
node attribute of the search strategy that initially points to the root of the MET and can be moved to
any node by means of the selectNode method. This method (selectNode) implements the Optimal D&Q
strategy presented in Algorithm 24, and it uses 7 different methods during its execution:

• node.getState() returns the state of the current node:

6.3. Implementation of Optimal Divide & Query 131

private Node node;

public Node selectNode()
begin
(1) this.node = this.root;
(2) double weight = this.calculateWeight();
(3) double weightParent = weight;
(4) boolean thru = true;
(5)
(6) mainLoop:
(7) do {
(8) int numChildren = this.getNodeChildren();
(9)
(10) // Heaviest child
(11) int indexChild = -1;
(12) double weightChild = -1;
(13) for (int index = 0; index < numChildren; index++) {
(14) this.moveNodeToChild(index);
(15) double weightCandidate = this.node.getWeight();
(16) if (this.node.getState() == Undefined && weightCandidate > weightChild)
(17) {
(18) weightChild = weightCandidate;
(19) indexChild = index;
(20) }
(21) this.moveNodeToParent();
(22) }
(23)
(24) // Leaf
(25) if (indexChild == -1)
(26) return this.node;
(27)
(28) // Continue going down or equation
(29) thru = weightChild > weight / 2;
(30) if (thru || this.node.getState() == Wrong ||

!this.equation(weight, weightParent, weightChild, this.root.getIndividualWeight()))
{

(31) this.moveNodeToChild(indexChild);
(32) weightParent = weightChild;
(33) }
(34) } while (thru);
(35)
(36) return this.node;
end

private boolean equation(double rootWeight, double weightNode1, double weightNode2, double individualWeight)
begin
(1) if (weightNode1 == weightNode2)
(2) return true;
(3) if (weightNode1 > weightNode2)
(4) return rootWeight ≥ weightNode1 + weightNode2 - individualWeight;
(5) return rootWeight < weightNode1 + weightNode2 - individualWeight;
end

Frame 1: OptimalDivideQuery class (code independent of the architecture)

– Undefined if no information is known about this node,

– Wrong if this node has been marked as wrong,

– Right if this node has been marked as correct,

132 Chapter 6. Algorithmic Debugging Search Strategies

– Trusted if the method associated with this node is trusted [65] and, therefore, cannot contain
the bug, and

– Unknown if this node has been marked as unknown, e.g., because its associated question
was too difficult.

• node.getIndividualWeight() returns the probability that the node contains a bug,

• node.getWeight() returns the probability that the subtree of the node contains a bug,

• this.getNodeChildren() returns the number of children from the node attribute,

• this.moveNodeToChild(index) updates the node attribute in order to point to one of its chil-
dren,

• this.moveNodeToParent() updates the node attribute in order to point to its parent,

• this.calculateWeight() calculates the weight of the node attribute taking its state into account.

Only four of these methods depend on the selected architecture from the three discussed above.
Therefore, these methods are implemented at the level of the search strategy (i.e., this.getNodeChildren(),
this.moveNodeToChild(index), this.moveNodeToParent() and this.calculateWeight()) and not at the level
of a node (i.e., node.getState(), node.getWeight() and node.getIndividualWeight()).

The code of selectNode() is divided into three parts: Lines (1) to (4) initialize the main loop. Here,
the weight variable represents the weight of the root, the weightParent variable represents the weight of
the best node located so far and it is initialized with the weight of the root node, and the thru variable is
used to decide when the loop must terminate; Lines (6) to (34) implement a loop that finds the optimal
node; and finally Line (36) returns the optimal node.

The loop traverses the MET in a top-down manner in order to find the optimal node. We start the
search in the root node and in each iteration we descend to one of its children. Once we have selected
one child, the other children are discarded. Lines (8) to (22) determine this child and stores it in variable
indexChild. If this child does not exist (e.g., the node is a leaf) then Lines (24) to (26) return the node
itself as the optimal node.

After selecting the child, Line (29) checks whether the optimal node is in the subtree of the child
(otherwise it must be in the child itself or in its parent). If the optimal node is in the subtree then the
thru variable remains true, and another iteration is performed to look for the buggy node in this subtree.
Otherwise, the thru variable becomes false and the equation method is used to determine the optimal
node. If it returns true, the node attribute remains pointing to the parent, otherwise it is updated to
point to the child. Finally, the node pointed by the node attribute is returned as the optimal node.

Note that the behaviour of the search strategy should be the same when the thru variable remains
true and when the equation method returns false. In both cases the node attribute should be updated
to point to the child. Algorithm 24 directly finishes the loop at this point and then it checks which node
is the optimal one. But in our code this procedure would repeat Lines (30) and (31) after the loop. This
can be easily avoided extending the if condition, because during the execution of Line (31) the value of
thru is not modified and then the loop will terminate.

Another important part of the code is implemented by the equation method that implements Line
(9) of Algorithm 24. It is used to decide which node is better between any pair of nodes. If it returns
true the first node is better, otherwise the second node is better.

The following sections discuss specific changes in the algorithms that are used for each of the discussed
architectures.

6.3. Implementation of Optimal Divide & Query 133

6.3.4 Standard architecture

The specific code for this architecture is shown in Frame 2. In this setting the nodes that cannot be
buggy are pruned from the MET. This means that the root node can be marked as Undefined or Wrong,
and the others can only be marked as Undefined. This property strongly simplifies the technique and
the implementation of the methods.

private int getNodeChildren()
begin
(1) return this.node.children.size();
end

private void moveNodeToChild(int index)
begin
(1) this.node = this.node.getChild(index);
end

private void moveNodeToParent()
begin
(1) this.node = this.node.getParent();
end

private double calculateWeight()
begin
(1) double weight = this.node.getWeight();
(2) if (this.node.getState() == Wrong)
(3) weight -= this.node.getIndividualWeight();
(4) return weight;
end

Frame 2: OptimalDivideQuery class (code for the standard architecture)

Traditionally, the weight of a node represents the number of nodes of the subtree. In our approach
the weight of a node represents the probability that the subtree of this node contains the bug. This
probability is computed with the calculateWeight method shown in Frame 2. This method does not
take into account the wrong root when computing probabilities because it is not necessary to answer it
again to determine whether it is wrong.

In this architecture, Lines (24) to (26) of Frame 1 could be moved to Line (9) using the condition
numChildren == 0 instead of indexChild == -1 and the condition this.node.getState() == Undefined
in line (16) can be removed. These changes make the algorithm to avoid unnecessary checks.

6.3.5 Static MET architecture

As stated before, in the standard architecture nodes are pruned from the MET. While this simplifies
the technique, it also removes the possibility of reusing the same MET in other sessions (e.g., in order
to find more than one bug). For this reason many debuggers avoid the pruning of the MET with some
labelling mechanism that labels nodes with “possibly-buggy” or “no-buggy”. In order to make this
labelling mechanism compatible with the code in Frame 1, we assign a weight of 0 to Right and Trusted
nodes, Unknown nodes are assigned an individual weight of 0, and Undefined and Wrong nodes maintain
their usual weights.

In an architecture where no nodes are pruned and different debugging sessions can use the same MET,
a debugging session can end up with multiple Wrong nodes. This means that, in order to maintain the
standard behaviour, the last node marked as wrong should be the initial (root) node of the search

134 Chapter 6. Algorithmic Debugging Search Strategies

private Node parent = null;
private List<Node> children = new ArrayList<Node>();

public Node selectNode()
begin
(1) ...
(15) if (this.node.getState() == Wrong) {
(16) weight = this.calculateWeight();
(17) weightParent = weight;
(18) continue mainLoop;
(19) }
(20) ...
end

private int getNodeChildren()
begin
(1) this.children.clear();
(2) this.parent = this.node;
(3) int numChildren = this.getNodeChildren(0);
(4) this.node = this.parent;
(5) return numChildren;
end

private int getNodeChildren(int numChildren)
begin
(1) for (Node child : this.node.children)
(2) if (child.getState() == Undefined || child.getState() == Wrong)
(3) this.children.add(numChildren++, child);
(4) else if (child.getState() == Unknown) {
(5) this.node = child;
(6) numChildren = this.getNodeChildren(numChildren);
(7) }
(8) return numChildren;
end

private void moveNodeToChild(int index)
begin
(1) this.node = this.children.get(index);
end

private void moveNodeToParent()
begin
(1) this.node = this.parent;
end

private double calculateWeight()
begin
(1) double weight = this.node.getWeight();
(2) if (this.node.getState() == Wrong)
(3) weight -= this.node.getIndividualWeight();
(4) return weight;
end

Frame 3: OptimalDivideQuery class (code for the static MET architecture)

strategy (Line (1) of selectNode method in Frame 1). However, some debuggers [85, 10, 23] allow the
user to make manual debugging sessions. In these cases the user can select a node whose subtree already
has a wrong node. The algorithm of the standard architecture is not prepared for METs with multiple
wrong nodes, but this situation can be easily handled adding Lines (15) to (19) in Frame 3 between
Lines (14) and (15) of the selectNode method in Frame 1. These lines make the algorithm to restart the

6.3. Implementation of Optimal Divide & Query 135

search in the subtree whose root is already marked as wrong. In order to do this, we use the wrong node
as the new root of the algorithm (this is done implicitly), we update both weight and weightParent to
the weight of the new root, and we re-execute the external loop.

In addition, when the user marks a node as unknown, this node should be removed from the MET.
But, because we do not prune nodes, they remain in the middle of the tree. This means that the
getNodeChildren method should be modified in order to exclude Unknown nodes. Moreover, it should
also be modified to exclude Right and Trusted nodes that also remain in the MET. This is performed
by the new version of getNodeChildren shown in Frame 3, that stores in the children attribute the
children of the current node. If one of its children is an Unknown node, it is ignored, but the children
of this Unknown node are also added. After collecting the children of the current node, we can use
moveNodeToChild and moveNodeToParent methods in Frame 3 to move from parent to children and
vice versa. Finally, having correctly updated the weights of Right, Trusted and Unknown nodes, the
calculateWeight method can be implemented as the one in Frame 2.

6.3.6 Dynamic MET architecture

In this section we show the changes that we should make in order to adapt the algorithm to debuggers
where the MET is dynamically generated while the debugging session is performed. These debuggers
allow the user to start the debugging session while the MET is being produced and thus it is uncompleted.
Therefore, the MET contains:

1. Completed nodes. Those nodes that have been invoked and their execution already finished,

2. Not completed nodes. Those nodes that have been invoked but their execution did not finish,
and

3. Not generated nodes. Those nodes that are not present in the MET because their invocation
has not been performed yet.

An algorithmic debugger can only ask questions about completed nodes, that contain not only
arguments and initial context but also final context and return value. Therefore, the getNodeChildren(int
numChildren) method should exclude those nodes that are not completed yet. The implementation of
this method is similar to the one from Frame 3 changing Lines (2) and (4) (see Frame 4). Note that
both approaches can be used together by using a && operator in Line (2) and changing Line (4) by else
if (!node.isCompleted() || node.getState() == Unknown) {. The getNodeChildren(), moveNodeToChild
and moveNodeToParent methods can be implemented as in Frame 3.

In AD the weight of a node is computed with the sum of the weights of its children adding its own
individual weight. In order to ensure that we calculate the weights of the nodes in linear time, they
are calculated only when the node is completed. Note that when a node is completed, its children
are also completed and thus no more nodes can be added. Therefore, in trees where nodes are not
completed, the weights of some descendants of the root have not been calculated yet and, hence, the
weight of the root node cannot be determined. Consequently, the calculateWeight method should also
be modified. The new version of this method in Frame 4 uses the getNodeChildren, moveNodeToChild
and moveNodeToParent methods to transform into children of the root node all those completed nodes
in the MET whose parent is not completed. In this way, when the search strategy is used again, the
weight of the root will be updated as new nodes become completed.

In this architecture, as in the standard architecture, Lines (24) to (26) of Frame 1 could also be
moved to Line (9) using the numChildren == 0 condition instead of indexChild == -1 and removing
the this.node.getState() == Undefined condition in line (16). Here again, these changes make the
algorithm to avoid unnecessary checks.

136 Chapter 6. Algorithmic Debugging Search Strategies

private Node parent = null;
private List<Node> children = new ArrayList<Node>();

private int getNodeChildren()
begin
(1) this.children.clear();
(2) this.parent = this.node;
(3) int numChildren = this.getNodeChildren(0);
(4) this.node = this.parent;
(5) return numChildren;
end

private int getNodeChildren(int numChildren)
begin
(1) for (Node child : this.node.children)
(2) if (child.isCompleted())
(3) this.children.add(numChildren++, child);
(4) else {
(5) this.node = child;
(6) numChildren = this.getNodeChildren(numChildren);
(7) }
(8) return numChildren;
end

private void moveNodeToChild(int index)
begin
(1) this.node = this.children.get(index);
end

private void moveNodeToParent()
begin
(1) this.node = this.parent;
end

private double calculateWeight()
begin
(1) double weight = 0;
(2) int numChildren = this.getNodeChildren();
(3) for (int index = 0; index < numChildren; index++) {
(4) this.moveNodeToChild(index);
(5) weight += this.node.getWeight();
(6) this.moveNodeToParent();
(7) }
(8) if (this.node.isCompleted() && this.node.getState() != Wrong)
(9) weight += this.node.getIndividualWeight();
(10) return weight;
end

Frame 4: OptimalDivideQuery class (code for the dynamic MET architecture)

6.4. Divide by Queries 137

6.4 Divide by Queries

6.4.1 Introduction

The search strategy used to decide which is the best node of the Marked Execution Tree (MET) to be
asked about is crucial for the performance of Algorithmic Debugging (AD). After the definition of AD,
there have been a lot of research to define new search strategies that reduce the amount of questions
[95].

In practice, the Divide & Query strategy by Hirunkitti and Hogger [44] needs to perform less questions
than other search strategies to find a bug, and this is why it has been implemented in almost all
algorithmic debuggers (see, e.g., [85, 10, 24, 88, 67, 13, 87, 46]). However, in Section 6.1.3 we showed
that Divide & Query is not an optimal strategy because it does not take into consideration the structure
of the tree. In fact, the own name of the technique clearly states that the objective of the technique
is to find the node that divides the tree into two parts with the same amount of nodes (Divide), and
then ask about that node (Query). However, not taking into account the amount of queries that will
be performed is the main mistake of Divide & Query, and this is why it cannot be an optimal strategy
ever. In this section we introduce the Divide by Queries strategy, which not only takes into account the
queries done, but they are what is actually considered to divide the tree. To explain this strategy, we
show the beginnings that it should fulfill, and we provide an approximation [49]. We should make clear
that, as demonstrated in [57], the problem we want to solve is a NP-hard problem, and thus we only
present methods to approximate the solution.

The rest of the section is structured as follows: In Section 6.4.2 we show that the problem of obtaining
such search strategy is decidable. Section 6.4.3 shows how we face the problem and introduces sequences
of questions. Finally, Section 6.4.4 explains which of the sequences are optimal and shows how to obtain
them.

6.4.2 Decidability

In this section we show the beginnings that an AD search strategy should have to be considered optimal.
First of all, we show that the problem that should solve a search strategy is decidable by showing a
naive approximation of the algorithm that allows for selecting an optimal node.

Theorem 6.4.1 (Decidability) Given a MET, finding all optimal nodes is a decidable problem.

Proof. We face this proof by showing that there exists at least one finite method to find all possible
optimal nodes. Firstly, we know that the size of the MET is finite because the question of the root
can only be completed when the execution of the program has finished, and therefore, the number of
subcomputations—and hence also of nodes—is finite [47]. Because of being a finite tree, we know (by
Algorithm 1) that any sequence of questions made by the debugger (without taking into account the
search strategy used) is also finite, because in the worst case we can ask as maximum about all the
nodes of the tree. Therefore, the number of possible sequences is also finite. This guaranties that it is
always possible to calculate all possible sequences and keep afterward only the best ones according with
Definition 6.1.1. The optimal nodes would be the first nodes of the selected sequences. 2

Although the method presented in Theorem 6.4.1 is effective, it is also computationally expensive
because it implies calculating all possible sequences of questions. In the next sections we show a more
efficient approximation to find these optimal nodes.

138 Chapter 6. Algorithmic Debugging Search Strategies

6.4.3 Valid sequence of questions

For clarity reasons, from here on when we mention a sequence of questions of a node, this sequence will
assume that the own node is marked as Wrong and it will be composed of a set of nodes that, after
being asked about, will allow for determining whether the node is buggy or not.

According with Definition 6.1.1, a sequence of questions is optimal (is what an optimal search strategy
would calculate) when the sum of the number of questions produced by the debugger is minimum
assuming that the buggy node can be any node of the tree. Therefore, as previously explained in the
proof of Theorem 6.4.1, a method to calculate the optimal sequences is to calculate all possible sequences
and afterwards to select the bests of them. However, not all possible sequences are valid, and therefore
many of them can be omitted.

Definition 6.4.2 (Valid sequence of questions of a node, SPn) Let T = (N,E,M) be a MET
whose root is n ∈ N . A valid sequence of questions spn = [n1, . . . , nm] of n must fulfill:

1. ∀ni ∈ spn, (n→ ni) ∈ E+

2. ∀ni, nj ∈ spn, 1 ≤ i < j ≤ m, (ni → nj) 6∈ E∗

3. N\{nj | (ni → nj) ∈ E∗ ∧ ni ∈ spn} = {n}

We call SPn the set of all valid sequences of questions.

Roughly speaking, the valid sequences of a n node are all sequences of not repeated nodes that (1)
all nodes are descendants of n, (2) a node in the sequence cannot be descendant of a previous node in
the sequence, and (3) after pruning all subtrees whose roots are the nodes of the sequence, the n node
ends without descendants. Note that, according with the definition, all nodes of a tree can have their
own sequence of questions.

In the following example we show that if we label each node of the MET with a valid sequence of
questions, then it is possible to know how many questions are necessary to find a buggy node in the
MET.

Example 6.4.3 Consider the next tree formed by two subtrees of depth 2 and one subtree of depth 1.

Besides the weight and the identifier, each node is labelled with a valid sequence of questions in the
top right corner, and in the bottom right corner with the number of questions needed to find a bug in
this node.

There exist a lot of possible sequence of questions for the n1 node, (e.g., [n2, n7, n10], [n2, n10, n7],
[n3, n2, n7, n10], etc.). Using the sequence of the figure ([n2, n7, n10]) and taking into account that the
first node to be asked about is always the root,2 we can determine the number of questions needed to

2Imposing that the first node to be asked about is always the root is not a limitation of the method. Note that, in
order to find the optimal sequence of the root without starting to ask about it, we can always add a new node as parent
of the root and use the method proposed here with this new tree. The obtained sequence would be the optimal sequence
of the original tree without starting to ask about its root (i.e., removing the first question).

6.4. Divide by Queries 139

find a bug wherever it is. For example, to find a bug in the n1 node the debugger would ask 4 questions
(n1, n2, n7, n10). In a similar way, qn4 = 4 (n1, n2, n3, n4).

Once we know the number of questions needed to find a bug for each node (from here on referenced
as qn), it is possible to obtain the number of questions of the whole MET (from here on referenced as
Qn). This number is shown in the previous example in the bottom left corner of each node. Note for
instance that the root has a total number of question of 46 (Qn1 = 46), the n2 node has 19 (Qn2 = 19),
and each leaf has 1 question (this node itself). In some cases it is easy to calculate Qn. For instance, a
moment of thought would convince the reader that the next values for Qn1 using [n2, n7, n10], [n2, n10, n7],
[n7, n2, n10] are correct:

[n2, n7, n10] → Qn1 = (Qn2 + wn2) + (Qn7 + 2 ∗ wn7) + (Qn10 + 3 ∗ wn10) + (4)
= (19 + 5) + (8 + 6) + (1 + 3) + (4) = 46

[n2, n10, n7] → Qn1 = (Qn2 + wn2) + (Qn10 + 2 ∗ wn10) + (Qn7 + 3 ∗ wn7) + (4)
= (19 + 5) + (1 + 2) + (8 + 9) + (4) = 48

[n7, n2, n10] → Qn1 = (Qn7 + wn7) + (Qn2 + 2 ∗ wn2) + (Qn10 + 3 ∗ wn10) + (4)
= (8 + 3) + (19 + 10) + (1 + 3) + (4) = 48

Because the aim is to minimize Qn, we can conclude that the optimal sequence of the n1 node is
[n2, n7, n10].

In summary, all collected and labelled information can be shown in Figure 6.12.
In the rest of the section we show a technique to calculate Qn for any node of the MET. We start by
defining two base cases:

• Tree of depth 1 (n is a leaf): Qn = 1

• Tree of depth 2 (n has m children): Qn = (
∑m+1

i=2 i) +m+ 1

These base cases are associated with the following trees:

Figure 6.12: Divide by Queries base cases

The base case 1 (the tree in the middle of Figure 6.12) only has one node and therefore, because
we start asking about it, in only one question we can find the bug. In the base case 2 (the tree on the
right of Figure 6.12), the root is the first node to be asked about, hence all nodes have accumulated
this question, and then the children are asked from left to right. If the buggy node is the root, then the
debugger needs to ask about and discard all its children, hence the root has a qn of 5.

In order to calculate Qn for trees whose depth is 3 or more, a more sophisticated process is needed.
Luckily, this process is compositional (i.e., Qn of a n node can be obtained from the information previ-
ously calculated in its descendants) and therefore, it can be obtained while the MET is being generated.

6.4.4 Optimal sequence of questions

In the previous section we saw that the cost Qn of a node n only depends on its own tree. This number
can be used to indicate the amount of questions needed to find a bug in this tree when the debugger
starts to ask about the root node. In this section we want to find which is the sequence sqn ∈ SPn that
minimizes Qn for that node. Algorithm 25 obtains this sequence.

140 Chapter 6. Algorithmic Debugging Search Strategies

Algorithm 25 Calculate optimal spn
Input: A MET T = (N,E,M) and a node n ∈ N
Output: (spn, Qn)
Preconditions: n.depth returns the depth of the n node

begin
1) if (n.depth = 1)
2) spOptimal = []
3) QOptimal = 1
4) else if (n.depth = 2)
5) spOptimal = [na, ..., nz] | na, ..., nz ∈ N ∧ (n→ na), ..., (n→ nz) ∈ E
6) QOptimal = (

∑m
i=2 i) + m | m = 1 + Card(spOptimal)

7) else
8) spOptimal = spn ∈ SPn | @sp′n ∈ SPn, calculateQ(T, n, spn) > calculateQ(T, n, sp′n)
9) QOptimal = calculateQ(T, n, spOptimal)

10) end if
11) return (spOptimal ,QOptimal)
end

As the MET is being completed, Algorithm 25 can use it to generate (at the same time) the optimal
sequence of questions of each generated node. To do this, the algorithm needs to be executed for each
completed node (i.e., this cannot have more descendants), so each descendant of the new generated node
will always have its optimal sequence. This algorithm has into account both base cases for trees with
depth 1 (Lines 2 and 3), and 2 (Lines 5 and 6). If the tree would have a depth of 3 or more, the best
sequence is selected from the valid sequences of the node by comparing the Qn obtained for each valid
sequence (Line 8). In order to calculate Qn for each sequence, we use Algorithm 26.

Algorithm 26 Calculate Qn from a given sequence of questions
Input: A MET T = (N,E,M), a node n ∈ N and a sequence of questions spn ∈ SPn

Output: Qn

Initialization: questions = 0
questAcum = 0

begin
1) while ({n′ | (n→ n′) ∈ E∗} 6= {n})
2) node = spn [questAcum]
3) questAcum = questAcum + 1
4) questions = questions + (Qnode + questAcum ∗ wnode)
5) T = adjustNodesInPath(T, n,node)
6) end while
7) questions = questions + (1 + questAcum)
8) return questions

end

Algorithm 26, after the evaluation of each node of the sequence node (Line 4), invokes a method to
adjust the Qn′ cost of each node n′ in the path from n to node. (Line 5). This is because the Qn′ cost
of each node between n and node was calculated using the subtree whose root is node. However, now,
if the search strategy asks about these nodes while using the sequence, these subtrees would have been
pruned. Algorithm 27 is in charge of adjusting the Qn′ value for each of these nodes.

Example 6.4.4 Consider the next tree (left) of depth 4, where we want to obtain the cost of Qn1

associated with the [n3, n6, n2] sequence.

6.4. Divide by Queries 141

Algorithm 26 evaluates along the first iteration the n3 node. After that, Algorithm 27 prunes the subtree
of the n3 node and recalculates the value of Qn2 and wn2. As it can be seeing, when Algorithm 26
evaluates n2 along the third iteration (the tree on the right), this node should have a Qn2 associated with
the current structure of the MET.

Algorithm 27 Adjust nodes in the path
Input: A MET T = (N,E,M) and two nodes n, n′ ∈ N | n 6= n′ ∧ (n→ n′) ∈ E∗

Output: A MET T ′ = (N ′, E′,M ′)

begin
1) O = {n′′ ∈ N | (n′ → n′′) ∈ E∗}
2) N = N\O
3) n′ = n′′ | (n′′ → n′) ∈ E
4) while (n′ 6= n)
5) (, Qn′) = calculateOptimalSp(T, n′)
6) wn′ = wn′ − |O|
7) n′ = n′′ | (n′′ → n′) ∈ E
8) end while
9) return T

end

Algorithm 27 prunes the already evaluated subtree (Lines 1 and 2) and besides calculating the new
Qn value for the nodes in the path (Line 5), it also updates their weights (Line 6) by subtracting the
number of removed nodes from their previous weights.

Chapter 7

Implementations

In this chapter we explain the current state of the Declarative Debugger for Java (DDJ). First of all we
show all the features implemented into the algorithmic debugger, and later we explain how this debugger
has been integrated into Eclipse to work together with two other debugging techniques in such a way
that they work together to help the user to find the bug.

7.1 Declarative Debugger for Java (DDJ)

7.1.1 Introduction

Debugging is one of the most important tasks in the software development process. Unfortunately, the
efforts of the scientific community in producing usable and scalable debuggers have been historically
low. One important example is the lack of an algorithmic debugger for Java. The debugging of Java
programs has been traditionally done with the use of breakpoints that allow us to execute the program
step by step, and inspect computations (manually) at a given point. However, the adaptation of semi-
automatic debugging techniques such as Algorithmic Debugging (AD) has not been successfully done,
and neither Sun Java Studio Creator [100], Borland JBuilder [6], NetBeans [76], JCreator [99], nor
Eclipse [25] implement an algorithmic debugger.

To the best of our knowledge there has been only one attempt (the algorithmic debugger JDD [38])
of implementing an algorithmic debugger for Java. Other debuggers exist that incorporate declarative
aspects such as the Eclipse plugin JavaDD [36] or the Oracle JDeveloper’s declarative debugger [35]
however, they are not able to automatically produce questions and to control a search to automatically
find the bug. This means that they lack current search strategies for AD implemented in standard
algorithmic debuggers of declarative languages such as Haskell (Hat-Delta [24]) or Toy (DDT [10]).

The main drawback of JDD is that it suffers from important scalability problems: the internal
data structure needed for AD—the so called Execution Tree (ET)—is huge (indeed in gigabytes) and it
does not usually fit in main memory. Even with the use of a database, the construction of the ET is
costly (e.g., minutes). This is the main cause of the lack of algorithmic debuggers for imperative and
object-oriented languages such as Java.

For instance, we conducted some experiments to measure the time needed by JDD to start a de-
bugging session1 with a collection of medium/large benchmarks. Results are shown in column JDD of

1These times correspond to the execution of the program, the production of the ET and its storage in a database.

142

7.1. Declarative Debugger for Java (DDJ) 143

Table 7.1. Note that, in order to generate the ET, JDD needs some minutes, thus the debugging session
cannot start before this time.

Benchmark JDD DDJ

argparser 22 s. 407 ms.
cglib 230 s. 719 ms.
kxml2 1318 s. 1844 ms.
javassist 556 s. 844 ms.
jtstcase 1913 s. 1531 ms.
HTMLcleaner 4828 s. 609 ms.

Table 7.1: Benchmark run-time results evaluating JDD and DDJ

In this section we present the Declarative Debugger for Java (DDJ) [46], a new implementation based
on the old JDD but with a completely new architecture that incorporates many new features that make
the debugging process scalable. In particular, the DDJ column of Table 7.1 shows the time needed to
start a debugging session with DDJ.2

7.1.2 Tool description

This section describes the main features of DDJ, and it explains why its new architecture allows for
scaling up in time and memory.

Architecture

The architecture of DDJ is new not only for Java, but for all paradigms. DDJ is the first algorithmic
debugger that allows for debugging a program at the same time that the ET is being generated, and it is
the first implementation that automatically improves the ETs to reduce the number of asked questions
thanks to several techniques presented along this thesis such as Balancing, Loop Expansion and Tree
Compression.

The architecture of DDJ is summarized in Figure 7.1. It uses the Java Platform Debugger Architec-
ture (JPDA) [72] to generate the ET. This architecture uses the Java Virtual Machine Tools Interface,
a native interface that helps to inspect the state and to control the execution of applications running
in the Java Virtual Machine (JVM). Therefore, using JPDA the debugger can execute the source code
and inspect the state of the memory at any time. In order to solve the memory scalability problem,
DDJ uses a database to store the ET. Therefore, it can work with ETs of any size. Moreover, to avoid
showing all the ET to the user, only a part of the ET is shown in the GUI (e.g., the part associated to
the current question); the user can configure the amount of ET nodes shown in the GUI. In order to
solve the time scalability problem, DDJ implements an algorithm that allows search strategies to work
with uncompleted ET nodes. This means that the debugger can start the debugging session when a
subcomputation has been executed (i.e., when the ET has at least one completed node), but the program
is still running, and thus, the ET is incomplete.

The architecture is composed of three tiers that modularize the processes and limit the memory
used in the graphical memory (presentation tier), in main memory (logic tier) and in secondary memory
(persistence tier).

All the components of the architecture are described bellow:

2These times correspond to the execution of the program up to the generation of the first ET node and its storage in
a database.

144 Chapter 7. Implementations

Figure 7.1: Architecture of DDJ

GUI: The GUI is independent of the other components. It can be adapted to interact with other
oracles apart from the user.

Database: The database stores the complete ET and it is independent of the architecture. The
connection is done via JDBC, thus any database could be used. The current distribution uses MySQL
by default.

JPDA / JVM: JPDA is used to control the execution of the source code in the JVM in order to
produce the ET. The architecture only communicates with this component via thread 1; therefore, the
debugger could be easily adapted to another language (e.g., C++) by only changing thread 1.

Virtual ET: A copy of the ET in the database is always in main memory. However, this copy called
“virtual ET” only contains the structure of the ET, being the nodes empty. When it is required, the
information of a cluster of nodes is loaded from the database to the virtual ET. This allows us to control
how much memory is used by the virtual ET.

Presentation Cache: It contains the subset of the ET shown in the GUI.
Logic Cache: It contains the subset of the ET stored in the virtual ET.
Persistence Cache: It contains a subset of nodes computed by JPDA that will be stored in the

database with a single transaction. This clustering mechanism allows for reducing the number of accesses
to the database.

Thread 1: It constructs the virtual ET.
Thread 2: It stores the ET in the database.
Thread 3: It interacts with the user.
Thread 4: It controls which nodes of the ET are stored (also) in the virtual ET. It implements all

the AD search strategies.

Functionality

An enumeration of the main features and functionalities of DDJ follows:

1. AD search strategies. The chosen search strategy strongly influences the performance of AD [95].
DDJ is the algorithmic debugger that currently implements more search strategies, and moreover,
it allows the user to change the search strategy during a debugging session. Currently, 13 search
strategies are implemented: Top down [2], Single stepping [92], Heaviest first [5], More rules first

7.1. Declarative Debugger for Java (DDJ) 145

[94], Less YES first [95], both Shapiro’s [92] and Hirunkitti’s [44] Divide & query, Divide by rules
& query [94], Divide by YES & Query [95], the three Hat Delta heuristics [24] and our Optimal
Divide & Query version [48, 50].

2. GUI. Many algorithmic debuggers (e.g., Hat or Buddha) lack a GUI because they are based on
a semi-automatic search. However, the user can provide useful information to the debugger if
they are allowed to freely (manually) explore the ET. This allows them, for instance, to select a
subtree of the ET (e.g., the suspicious one or the one associated to the last changes, etc.) instead
of selecting always the whole ET. It also allows them to change the state of some nodes and thus
avoiding the exploration of correct parts of the ET.

Clearly, having a graphical (and interactively explorable) ET can speed up the debugging session.
However, this comes at a cost: too much information shown to the user can lead to confusion. To
solve this situation, DDJ provides a clustering mechanism (based on the use of the presentation
cache) that permits to load the part of the ET that (i) is required by the user, or (ii) is required
by the search strategy being used. This mechanism automatically ensures that the current node is
shown in the GUI with a number of directly related nodes (ancestors, descentants, siblings, etc.).

3. Portability. The architecture of DDJ is similar to the architecture of a compiler. There is a
front-end that depends on the source language, and a back-end that is independent of the source
language and only depends on the intermediate representation, which in this case is the ET. This
means that the GUI, the database, the search strategies, and all the components of the back-end
are mostly independent of the language that is being debugged. Therefore, if we change the front-
end, e.g., to work with C++, the debugger could debug C++ programs by only changing the
implementation of thread 1.

4. Uncompleted ETs (Section 5.1). Another feature that makes DDJ different from the other de-
buggers is that DDJ is able to work with uncompleted ETs. This feature does not only speed up
the debugging session but it also allows for making AD scalable. Traditional AD is based on two
sequential phases: producing an ET and exploring the ET. Contrarily, in DDJ both phases can be
overlapped so that the user is able (if desired) to start the debugging session long before the ET
is completed, avoiding to waste time (see Table 7.1), given that the generation of the ET is the
bottle neck of AD. This feature required the reimplementation and adaptation of the debugging
search strategies to work with uncompleted ETs [47].

5. Balancing technique (Section 5.2). DDJ is the first implementation of a novel technique [55] that
allows for reducing the number of asked questions performed to the user during the debugging
session. This technique is able to automatically balance ETs by a transformation that collapses
some nodes and introduces new ones. The result is an ET that is often bigger than the original,
but it is more efficient when it is explored by the search strategies.

6. Loop Expansion technique (Section 5.4). DDJ also includes a new technique [56] that transforms
all iterative loops into recursive methods. This allows for reducing the granularity of the bugs
that would be found by the debugger (i.e., the source code reported as buggy is smaller). Before
the definition of this technique, all detected bugs were always associated with a method. This
technique allows now for indicating a loop inside the method as the responsible of a bug, as well
as discarding it.

7. Tree Compression technique (Section 5.5). This technique has been created in [24] and it is
implemented in some algorithmic debuggers. However, until now, there did not exist a mechanism
to determine whether this technique should be applied (as discussed in Section 5.5, tree compression

146 Chapter 7. Implementations

can speed up, but also slow down, the debugging session). In DDJ we introduce this mechanism
[56], which improves the original version, and we provide to the user both the original and the
improved one.

8. Optimal Divide & Query strategy (Section 6.2). Search strategies are a fundamental part of any
algorithmic debuggers. It determines which the next node to be asked about is. In DDJ we
have implemented an improved version [48, 50, 51] of the previously best search strategy in the
literature.

7.1.3 Usage scenario

This section describes a typical usage scenario of DDJ. We describe a scenario in which the user decides
to use the guided search for a bug. In this case, the debugger uses a search strategy to search for the
error, and the debugging session is semi-automatic because the user only has to answer questions.

A summary of the steps described in the usage scenario is shown in Table 7.2.

Steps Output Comments

1.- Load a program The ET is shown in the GUI Select the .class file and dependencies (if any),
and provide the arguments (if any)

2.- Select a search strategy The GUI shows a question It is also possible to freely explore the ET
and debug the program manually

3.- Answer questions The ET is pruned in the GUI Possible answers:
and a new question is shown correct, wrong, I don’t know, trusted

(...) (...) Step 3 is repeated until the bug is found
4.- Locate the bug A bug is highlighted in

the source code

Table 7.2: Usage scenario with DDJ

Step 1: The first step in a debugging session is to load the buggy program. This can be done with
the window shown in Figure 7.2 where we see that the vector.class file is selected. This file
communicates with other files that implement sorting algorithms such as Quicksort. In addition
to the .class, it is possible to select the dependencies that the program will use, and the arguments
used for the execution of the program. In this example the arguments are 10 and 20.

With this information, DDJ executes the provided program and gradually produces the associated
ET. A portion of the ET associated to the loaded program is shown in the main panel of Figure 7.3.
Even if the ET is incomplete, the debugging session can start as long as one node has been
completed. In this case the debugger will only ask about those nodes that have already been
completed, and, therefore, the user is able to determine whether the computation of the node is
correct or not.

Step 2: Once a program has been loaded, the debugging session can start either manually or guided by
the debugger. During a debugging session, at any point, the user can change to manually or guided
debugging several times. In manual debugging, the user can explore the ET and select wrong
computations or discard computations that are correct. It is also possible to mark computations
as trusted (e.g., because the code is reused, it is already tested, etc.). When a node is marked
as trusted, the debugger automatically searches for all computations associated with the trusted
code, and they are automatically discarded (i.e., marked as correct).

In guided debugging, the user only needs to choose which search strategy to use (e.g., Top-Down)
and start the debugging session with a single click.

7.1. Declarative Debugger for Java (DDJ) 147

Figure 7.2: Assistant to load a Java program with DDJ

Figure 7.3: Question produced by DDJ

Step 3: When the debugging session is guided, it becomes a dialogue between the debugger and
the user. The debugger selects a node according to the selected search strategy and asks the user
whether the computation of this node is correct. To answer the question, the user can inspect (it
is interactively shown in the GUI) all the variables of the program that are in the scope of this

148 Chapter 7. Implementations

computation. These variables are shown with both values before and after the execution, so that
the user can inspect the effects of the computation.

If the result of the computation is what the user expected, then the user answers correct and the
node and its descendants are automatically marked as correct and thus discarded in the search
for the bug. In the case that the user is sure that the method appearing in the question of the
debugger is well implemented, they can answer trusted. As described before, this produces that
all the nodes associated with this method are also marked as correct.

Figure 7.4: Buggy source code highlighted by DDJ

On the other hand, if the result is not the expected one, then the user answers wrong. This means
that the execution of this node is wrong, and thus, the error has been generated by itself or by any
of its descendant nodes. Finally, if the user does not know what the expected result of the node
is, then they can answer I don’t know, and the debugger will continue the search without taking
into account this node and producing a new question.

For instance, in Figure 7.3 we see DDJ with the ET of the execution of the vector class. We see in
the main panel the part of the ET associated with a Quicksort computation. Some nodes are dark
and others are light because the user already answered some of them stating their correctness. At
this screenshot, DDJ is asking the question:
quickSort(int[] vector, int 5, int 9) --> void

where the values of the ‘vector’ argument are shown in the panel on the right. Here, those variables
that changed during the call are in red and their initial and final values are shown. For instance,
array[9] had initially the value 7 and it was changed to 18.

The intended meaning of this call to Quicksort is to sort the values at the positions located between

7.1. Declarative Debugger for Java (DDJ) 149

position 5 and 9 (both included). In the panel we see that the initial values were [11, 15, 10, 18,
7], and the final values are [7, 10, 15, 11, 18]. Therefore, the user should mark this computation
as wrong.

After every user’s answer, the debugger uses the provided information to prune the ET and select
a new question. This process is repeated until the bug is found.

Step 4: After the dialogue with the user, the debugger identifies one node of the ET as buggy. This
node is responsible of the wrong behaviour of the program, and thus the source code associated
with it contains the bug. When the bug is found, DDJ shows a message indicating the method
that produced the wrong behaviour and allowing the user to see the part of the source code that
contains the bug (see Figure 7.5).

Figure 7.5: Bug located with DDJ

Figure 7.4 shows the source code panel (at the bottom) where the user can see the source code
associated with any node of the ET. In this screenshot, the part of the code associated with the
buggy node is highlighted. Observe that during the debugging session, the user does not need
to control the execution of the program or use breakpoints and they do not even need to see the
source code.

7.1.4 Tool information

DDJ has been completely implemented in Java. It contains about 20400 LOC and it uses SWT for
the graphical visualization, which is standard and hence, it can be used in different operative systems.
Thanks to JDBC, DDJ can interact with different databases. The current distribution includes both a
MySQL and Access databases. The last release of the debugger is distributed in English, Spanish and
French.

All described functionalities in this paper are completely implemented in the last stable release. This
version is open and publicly available at:

http://www.dsic.upv.es/~jsilva/DDJ/

On this website, the interested reader can find installation steps, examples, demonstration videos, and
other useful material.

150 Chapter 7. Implementations

7.2 Hybrid Debugger for Java (HDJ)

7.2.1 Introduction

In this section we introduce a hybrid debugging technique [37] that combines three different techniques,
namely, Trace Debugging (TrD), Omniscient Debugging (OD) and Algorithmic Debugging (AD). The
combination is done exploiting the strong points of each technique, and counteracting or removing the
weak points with their composition. Our method is presented for the programming language Java—our
implementation is an Eclipse plugin for Java—but the technique and the architecture of our debugger
could be applicable to any other programming language. In summary, the main contributions of this
section are the following:

• The design of a new hybrid debugging technique that combines TrD, OD, and AD.

• The integration of the technique on top of the JPDA architecture—which was conceived for tracing,
but not for OD or AD—.

• The implementation of the technique as an Eclipse plugin.

• The empirical evaluation of the new architecture that demonstrates the practical scalability of the
technique.

The rest of this section is structured as follows: In Section 7.2.2 we analyze the strong and weak
points of TrD, OD and AD. Then, in Section 7.2.3 we present our new hybrid debugging technique and
explain its architecture. In Section 7.2.4 we describe our implementation, which has been integrated
into Eclipse. Finally, the related work is presented in Section 7.2.5.

7.2.2 Debugging techniques

Table 7.3 summarizes the strong and weak points of each technique in HDJ.

Feature Trace Omniscient Algorithmic

Scalability Very Good Very bad Bad

Error granularity Expression Expression Method

Automatized process Manual Manual Semi-automatic

Execution Forwards Forwards and backwards Forwards and backwards

Abstraction level Low Low High

Table 7.3: Comparison of debugging techniques

In our hybrid technique, we want to take advantage of the high abstraction level of AD. We also
want to exploit the semi-automatic nature of this technique to speed up bug finding and to avoid errors
introduced by the user when searching the bug. However, AD on its own would explore all computations
as if they all were suspicious. To avoid this, we want to take advantage of the breakpoints, which provide
information to the debugger about what parts of the computation are suspicious for the user (e.g., the
last changed code). Hence, we designed our technique to start using the breakpoints introduced by the
user, and then automatize the search using AD. Another problem that must be faced is that AD is able
to find a buggy method, but not a buggy expression. Therefore, once AD has found a buggy method,
we can use OD to further investigate this method in order to find the exact expression that produced
the error.

7.2. Hybrid Debugger for Java (HDJ) 151

In order to analyze whether this scheme is feasible, we studied the scalability problem of both AD and
OD. Operationally, AD and OD are similar. They both record events produced during an execution, and
they associate with each event a timestamp. The main difference is that AD only needs to reconstruct
the state of the events that correspond to method invocations and method exits (white and black circles
in Figure 2.1). Moreover, AD does not need to store information about local variables—only about
attributes and global variables—, which is an important difference regarding scalability.

We conducted some experiments to measure the amount of information stored by an algorithmic
debugger to produce the ET of a collection of medium/large benchmarks (e.g., an interpreter, a parser,
a debugger, etc.) accessible at:

http://www.dsic.upv.es/~jsilva/DDJ/experiments.html

Results are shown in Table 7.4.

Benchmark var. num. ET size ET depth

argparser 8.812 2 MB 7
cglib 216.931 200 MB 18
kxml2 194.879 85 MB 9
javassist 650.314 459 MB 16
jtstcase 1.859.043 893 MB 57
HTMLcleaner 3.575.513 2909 MB 17

Table 7.4: Benchmark scalability results

The var. num. column represents the total amount of variable changes stored in the debugger.
The ET size column represents the size of the stored information. Observe that the last benchmark
needs almost 3 GB. The ET depth column is the maximum depth of the ET (e.g., in the jtstcase

benchmark, there was a stack of 57 activation records during its execution). If we consider that this
information does not include local variables, then we can think that the amount of information needed
by an omniscient debugger can be huge. Clearly, these numbers show that neither AD nor OD are
scalable enough as to be used with the whole program. They should be restricted to a part of the
execution. For AD, we propose to restrict its use only to the part of the execution that corresponds to a
breakpoint (i.e., the execution of the method where the breakpoint is located). For OD, we propose to
restrict its use only to the part of the execution that corresponds to a single method (i.e., the method
where AD identified a bug). This proposal is completely in line with the previously discussed ideas:
AD will only start in a suspicious area pointed out by a breakpoint, and OD will only be used when a
buggy method has been found, and thus the user can trace backwards the incorrect values identified at
the end of this method.

7.2.3 Hybrid Debugging

In this section we present our Hybrid Debugger for Java (HDJ) based on the ideas discussed in the
previous section. It combines TrD, AD and OD to produce a synergy that exploits the best properties
and strong points of each technique.

We start by describing the steps that are followed in a hybrid debugging session. Consider the
diagram in Figure 7.6 that summarizes our hybrid debugging method. We see three main blocks that
correspond to TrD, AD, and OD. These blocks contain four items that have been numbered; and
these items are connected by arrows. Black arrows represent an automatic process (performed by the
debugger), whereas white arrows represent a manual process (performed by the user):

152 Chapter 7. Implementations

Figure 7.6: Hybrid debugging with HDJ

Trace Debugging. Firstly, after a bug symptom is identified, the user explores the code as usual with
the trace debugger and they place a breakpoint b1 in a suspicious line (probably, inside one of the
last modified parts of the code).

Algorithmic Debugging. Secondly, the debugger identifies the method m1 that contains the b1 break-
point, and it generates an ET whose root is associated with m1. This is completely automatic.
Then, the user explores the ET using AD until a buggy node n is found. Note that, according to
Theorem 4.2.5, if the m1 method is wrong, then it is guaranteed that AD will eventually find a
buggy node (and thus a buggy method). From n, the AD automatically generates a new break-
point b2. b2 is placed in the definition of the m2 method associated with n. And, moreover, b2 is
a conditional breakpoint that forces the debugger to stop at this definition only when the bug is
guaranteed to happen. The condition ensures that all values of the parameters of m2 are exactly
the same as their values in the call to m2 associated with n.

Example 7.2.1 Consider a buggy node {x = 0} m(42) {x = 1}, where the definition of method
m, void m(int a), is located between lines 176 and 285. Then, the conditional breakpoint generated
for it is (176, {x = 0, a = 42}). Alternatively, another conditional breakpoint can also be generated
at the end of the method.

According to Theorem 4.2.4, because the n node is buggy, then the m2 method contains a bug.

Omniscient Debugging. Thirdly, the debugger acts as an omniscient debugger that explores the m2

method by reproducing the concrete execution where the bug showed up during AD. The user can
explore the method backwards from the final incorrect result of the method. Observe that the
OD phase is scalable because it only needs to record the trace of a single method. Note that all
method executions performed from this method are known to be correct thanks to the AD phase.

The three described phases produce a debugging technique that takes advantage of all the best
properties of each technique. However, one of the most important objectives in our debugger is to avoid
a rigid methodology. We want to give the user the freedom of changing from one technique to another
at any point. For instance, if the user is using TrD and decides to use OD in a method, they should be
able to do it. Similarly, new breakpoints can be inserted at any moment, and AD can be activated when
required. The architecture of our tool provides this flexibility that significantly increases the usability
of the tool, and we think that it is the most realistic approach for debugging.

Architecture

This section explains the internal architecture of HDJ, and it describes its main features. HDJ is an
Eclipse plugin that takes advantage of the debugging capabilities already implemented in Eclipse (i.e.,

7.2. Hybrid Debugger for Java (HDJ) 153

HDJ uses the Eclipse’s trace debugger), and it adapts the already existent Declarative Debugger for
Java (DDJ, see Section 7.1) [46] to the Eclipse workbench. In fact, all the techniques explained along
this thesis are also present in HDJ, the only exception is the Loop Expansion technique which could
not be adapted. The reason is that the technique is based on adding methods that represent loops,
and, currently, Eclipse does not allow for adding new methods to the source code during the debugging
sessions. The integration of HDJ into Eclipse is described in Figure 7.7.

Figure 7.7: Integration of HDJ into Eclipse

One of the debuggers, the trace debugger, was already implemented by an Eclipse plugin called JDT
Debug. The other two debuggers have been implemented in the HDJ plugin. The tool allows the user
to switch between three perspectives:

Debug: This perspective allows for performing TrD. It is the standard debugging perspective of Eclipse.
It is composed of several views and editors and it offers a wide functionality that includes condi-
tional breakpoints, exception breakpoints, watch points, etc.

ODJ: This perspective allows for performing OD. It contains the Java editor and a view that shows
the variables in the scope at this point of the execution. The main difference is that ODJ allows
for exploring the execution backwards. Internally, it uses a trace of the execution (as the one
described in Section 2.2) that is stored in a database.

DDJ: This perspective allows for performing AD. A usage example of this perspective interface is
presented in Figure 7.8. In the figure we can see two of its three views and one editor. Firstly, on
the left we see the ET view, which contains the ET and the questions generated by the debugger.
Secondly, on the right we see the Node inspector, which shows all the information associated
with the selected ET node. This includes the initial context, the executed method and the final
context, where changes are highlighted with colours. Thirdly, at the bottom we see the Java

editor, which contains the source code and the breakpoints. This editor is shared among the
three debuggers, and thus, all of them manipulate the same source code, and handle the same
user’s breakpoints.

One of the important challenges when integrating two new debuggers into Eclipse was to allow all
of them to debug the same program at the same time (i.e., giving the user the freedom to change
from one debugger to the other in the same debugging session). For this, all of them must have access
to the same target source code (e.g., a breakpoint in the target source code should be shared by the
debuggers), and use the same target Java Virtual Machine (JVM) and the same execution control over
this target JVM. In the figure, this common target JVM is represented with the black box. The Java
Virtual Machine Tools Interface (JVM TI) provides both a way to inspect the state and to control the
execution running in the target JVM. The debuggers access it through the Java Debug Interface (JDI)
whose communication is ruled by the Java Debug Wire Protocol (JDWP). This small architecture to
control the JVM is called Java Platform Debugger Architecture (JPDA) [72].

154 Chapter 7. Implementations

Figure 7.8: Snapshot of HDJ (DDJ perspective)

The integration of HDJ into Eclipse implies having three different debuggers accessing and controlling
the same JVM where the debuggee is being executed. Therefore, our architecture uses two different JVMs
that run in parallel and communicate via JPDA. The first JVM is where the debuggee is executed. The
second JVM is where the debuggers are executed. It is important to remark that the information of one
JVM cannot be directly accessed by the other JVM. Controlling one JVM from the other must be done
through JPDA.

A first idea could be to execute the program in the target JVM and stop it when the statement that
the user wants to inspect is reached. However, this would imply to re-execute the program once and
again every time the user wants to perform a step backwards (i.e., to inspect the previous statement).
Obviously, this is a bad strategy, because every time the program is re-executed, the state could change
due to, e.g., concurrency, nondeterminism, inputs, etc. Therefore, even if we reach the same statement,
it could vary between executions, and the information shown to the user would not be confident. Hence,
we need to use some memorization mechanism to store all relevant states of a single execution.

Prior to our current implementation, our first design was conceived in such a way that the JVM of
the debugger directly controlled the JVM of the debuggee using communication through JPDA. This
implementation had to establish communication between both JVMs after every relevant event. This
produced a heavy interaction with a massive message passing that was not scalable even for small
programs. Therefore, we designed a second strategy whose key idea is to let the JVM of the debuggee
to control itself. More precisely, before executing the debuggee in the JVM, we load a thread in this
JVM so that, this thread directs the debugging of the program, thus, avoiding unneeded communication
through JPDA. The drawback of this approximation is that to load this thread we first need to add a
class and instantiate an object of this class in the first lines of the debugee. Figure 7.9 summarizes this
internal architecture of the debugger to control the execution of the debuggee.

The big boxes represent two JVMs. One for the debugger, and one for the debuggee. The debugger
has two independent modules that can be executed in parallel: The algorithmic debugger DDJ, and
the omniscient debugger ODJ. Each dark box represents a thread. DDJ has four threads: interface to
control the GUI, construction to build the ET, control to control and communicate with the debuggee
JVM, and selection to select the next question. ODJ has two threads: interface and control that perform
similar tasks as in DDJ. In the debuggee, a new thread is executed in parallel with the program. This
thread, called HDJ, is in charge of collecting all debugging information and storing it in a database. This
information is later retrieved by the control threads. The HDJ thread makes this approach scalable,
because it allows for retrieving all the necessary information with a very reduced set of JPDA connections.
In the case of OD, the information stored in the database by the HDJ thread contains all changes of

7.2. Hybrid Debugger for Java (HDJ) 155

Figure 7.9: Architecture of HDJ

the values of variables that occurred during the execution of the method being debugged.

Example 7.2.2 Consider again the debugging session in Example 3.0.1. In this debugging session AD
determined that the mark method is buggy, and that the bug shows up with the specific game.mark(’O’,0,1)
call. With this information, HDJ automatically generates a conditional breakpoint to debug this call. The
information stored in the database by the HDJ thread for this call is shown in Figure 7.10. Observe that
only the variables that changed their value during the execution are stored.

Figure 7.10: Information stored in the database by the omniscient debugger

7.2.4 Implementation and empirical evaluation

HDJ has been completely implemented in Java. It contains about 29000 LOC: 19000 LOC correspond to
the implementation of the algorithmic debugger (the internal functionality of the algorithmic debugger
has been adapted from the DDJ debugger with some extensions that include the communication with
JPDA trough JDT Debug, and the perspective GUI), 8300 LOC correspond to the implementation of
the omniscient debugger that has been implemented from scratch, and 1700 LOC correspond to the
implementation of the own plugin and its integration and communication with Eclipse. The debugger
can make use of a database to store the information of the ET and the trace used in OD (if the database
is not activated, the ET and the trace are stored in main memory). Thanks to JDBC, HDJ can interact
with different databases. The current distribution includes both a MySQL and Access databases. The
last release of the debugger is distributed in English, Spanish and French.

All functionalities described in this section are completely implemented in the last stable release.
This version is open and publicly available at:

http://www.dsic.upv.es/~jsilva/HDJ/

On this website, the interested reader can find installation steps, examples, demonstration videos, and
other useful material.

In order to measure the scalability of our technique, we conducted a number of experiments to achieve
the time needed by the debugger to start the debugging session. The scalability of TrD is ensured by

156 Chapter 7. Implementations

the own nature of the technique that reexecutes the program up to a breakpoint, and then shows the
current state. In fact, we use the Eclipse’s standard trace debugger that is scalable no matter where the
breakpoint is placed. In the case of AD, scalability could be compromised if the debugger is forced to
generate the ET of the whole execution. Even in this case, we are able to ensure scalability:

1. The memory problem is solved with a database. Our debugger never stores the whole ET in main
memory. It uses a clustering mechanism to store and load from the database the subtrees of the
ET that are dynamically needed by the GUI.

2. The time problem is solved by allowing the debugger to start the debugging session even if the
ET is not completely generated (i.e, our debugger is able to debug incomplete ETs while they are
being generated) [47] (see Section 5.1).

In the case of OD, we cannot ensure scalability if it is applied to the whole program. For this reason,
we limit the application of OD to a single method. This is scalable as demonstrated by our empirical
evaluation whose results are shown in Table 7.5.

Benchmark Execution Omniscient

Statements Objects Time (ms) Time (ms)

0 - 9
0 - 1 (96) 5 2060

(294)
2 - 5 (97) 273 3265

6 - 18 (101) 27 4099

10 - 19
7 - 18 (10) 51 6527

(29)
19 - 24 (10) 739 7348
25 - 32 (9) 2062 12379

20 - 57
25 - 39 (3) 83 3999

(10)
40 - 54 (4) 117 6347
55 - 100 (3) 176 3757

Table 7.5: Benchmark results for OD

This table summarizes the results obtained for 333 benchmarks. Each benchmark measures the time
needed to generate all the information used in OD (the information stored in the database by the HDJ
thread in Figure 7.9). After this time, the debugger contains the state at any point in the method, and
thus, the user can make backwards steps, jump to any point in the method and show the values of the
variables at any point. These benchmarks correspond to all methods (333 different methods) executed
by the loops2recursion Java library [52] (see Section 5.3) applied over a collection of 25 Java projects.
This library automatically transforms all loops in the Java projects to equivalent recursive methods.

All benchmarks have been grouped into three categories according to the number of statements
executed in the method (0-9, 10-19, and 20-57). Inside each category, we indicate the number of
benchmarks that fall on this category between parentheses. The categories have been divided into
subcategories that indicate the number of objects that have changed during the execution of the method
(i.e., the number of objects that must be inspected and stored in the database). We have a total of
9 subcategories. Each of them indicates the average time needed to execute the methods in that
subcategory (Execution Time), and the time needed to generate the information of OD (Omniscient
Time). All the information is generated between 2 and 12 seconds. The variability between the rows is
dependent on the size of the objects that have been changed. Clearly, row 6 has less objects to store
than rows 7, 8 and 9, but these objects are bigger, and thus both the execution and omniscient times
are higher.

7.2. Hybrid Debugger for Java (HDJ) 157

7.2.5 Related work

While a trace debugger is always present in modern development environments, algorithmic debuggers
and omniscient debuggers are very unusual due to their previously discussed scalability problems. There
exist, however, a few attempts to implement algorithmic debuggers for Java such as the algorithmic
debugger JDD [38] and its more recently reimplemented version DDJ [46] (see Section 7.1). Other
debuggers exist that incorporate declarative aspects such as the Eclipse plugin JavaDD [36] or the Oracle
JDeveloper’s declarative debugger [35] however, they are not able to automatically produce questions
and to control the search to automatically find the bug. This means that they lack the common
search strategies for AD implemented in standard algorithmic debuggers of declarative languages such
as Haskell (Hat-Delta [24]) or Toy (DDT [10]). None of these debuggers can work with breakpoints as
our debugger does.

The situation is similar in the case of omniscient debuggers. To the best of our knowledge, OmniCore
CodeGuide [83] is the only development environment for Java that includes by default an omniscient
debugger. Nevertheless, for the sake of scalability, this debugger uses a trace limited to the last few
thousands events. Some ad-hoc implementations exist that can work stand-alone or be integrated in
commercial environments [45, 86, 60, 73, 61]. Almost all these works focus on how to make OD more
scalable [61, 86]. For instance, by reducing the overhead of trace capture as well as the amount of
information to store using partial traces that exclude certain trusted classes from the instrumentation
process [60]. Other works try to enhance OD, e.g., with causality links [73] that provide the ability to
jump from the point a value is observed in a given variable to the point in the past when the value was
assigned to that variable. This can certainly be very valuable to resolve the chain of causes and effects
that lead to a bug.

There have been several attempts to produce hybrid debuggers that combine different techniques.
The debugger ODB [60] combines TrD with OD. It allows the user to debug the program using TrD
and start recording the execution for OD when the user prefers. The debugger by Kouh et al. [59]
combines AD with TrD. Once the algorithmic debugger has found a buggy method, they continue the
search with a trace debugger to explore this method (forwards) step-by-step. This idea is also present
in our debugger, but we use OD instead of TrD, and thus we also permit backward steps. The debugger
JIVE [33] combines TrD, OD and dynamic slicing. It does not use AD, but allows the user to perform
queries to the trace.

To the best of our knowledge, JHyde [43] is the only previous technique that combines TrD, OD
and AD. Unfortunately, we have not been able to empirically evaluate this tool (it is not publicly
accessible); but considering its architecture, it is highly probable that it suffers from the same scalability
problems as any other omniscient debugger. Unlike our solution, their architecture is based on program
transformations that instrument the code to store the execution trace in a file as a side effect. First, this
instrumentation and the execution of the trace usually takes a lot of time with an industrial program,
so that the user has to wait a long time before starting to debug; and second, they store the trace of
the whole program, while our scheme only needs the trace of a single method. The common point is
that both techniques are implemented as an Eclipse plugin, and they both use the same data structure
for OD and AD. This is important to reuse the trace information collected by the debugger. Another
important feature implemented by both techniques is the use of a colour vocabulary used in the views.
This is very useful to allow the user to quickly see the changes in the state.

Chapter 8

Reformulation of Algorithmic Debugging

In this chapter, we propose a new redefinition [53] of Algorithmic Debugging (AD) in such a way that:

1. It is paradigm- and language-independent, and thus it is reusable by other researchers.

2. It is a conservative generalization of the traditional formulation of AD, in such a way that many
previous AD techniques are a particular case of this new formulation.

3. It is formulated in a way that definitions of the data structures, properties, search strategies, and
algorithms are specified separately, so that they can be reused and/or concretized in a particular
case.

4. It states that the output of an algorithmic debugger should contain dynamic information (i.e., it
should not include non-executed code), and,

5. it allows the debugger to ask questions about a code inside a method (and not only about the
whole method).

8.1 Some problems identified in current algorithmic debug-

gers

This chapter somehow summarizes and criticizes our own previous work to make a step forward. We
claim that almost all current algorithmic debuggers—at least all that we know, including the most ex-
tended, which we compared in [19], and including our own implementations—have fundamental problems
that were somehow inherited from the original formulation of AD [92].

In particular, we claim that the original formulation of AD, and most of the later definitions and
implementations are obsolete with respect to the last advances in the practical side of AD. For instance,
two important problems of the standard definitions of AD are the granularity and the static nature of
the located errors (AD reports a whole routine as buggy). We can illustrate these problems observing
again the debugging session of Example 3.0.1: The whole win method is pointed out as buggy. This
is very imprecise especially if win were a method with a lot of code. However, AD researchers and
developers are used to this behaviour, and they would argue that this is the normal output of any
algorithmic debugger. However, from an engineering perspective, this is quite surprising because the
analysis performed by the debugger is dynamic by definition (in fact, the whole program is actually

158

8.2. Paradigm-independent redefinition of Algorithmic Debugging 159

executed). Hence, the debugger should know that the last if in method win of Figure 3.1 is never
executed, and thus it should not be reported as buggy. This leads us to our first proposition: The
information reported by an algorithmic debugger should be dynamic instead of static. That is, the
output of the algorithmic debugger should be the part of the method that has been actually executed
to produce the bug, instead of the whole method.

We think that this problem comes from the first implementations of AD and it has been inherited
in later theoretical and practical developments. In fact, if we execute this program with the debuggers:
Buddha [85], DDT [10], Freja [78], Hat-Delta (and its predecessor Hat-Detect) [23], B.i.O. [8], Mercury’s
Algorithmic Debugger [68], Münster Curry Debugger [66], Nude [75], DDJ [46], and HDJ [37], they all
would output the whole win as buggy together with a counterexample that produces the bug (the
located buggy node). Unfortunately, none of these debuggers makes further use of the counterexample.
An option would be that the debuggers use dynamic program slicing (to be precise, dynamic chopping)
[98] to minimize the code shown as buggy.

Traditionally, AD reports a whole method as buggy. To reduce the granularity of the reported errors,
new techniques have appeared (see, e.g., [56, 14]) that allow for debugging inside a method. Unfortu-
nately, the standard definition of ET is not prepared for that. In fact, some of the recent transformations
defined for AD do not fit in the traditional definition of the data structures used in this discipline. For
instance, the Tree Balancing technique presented in [55], or the zooming technique presented in [14]
cannot be represented with standard AD data structures such as the Evaluation Dependence Tree [81].

This lack of a common theoretical framework with standard data structures that are powerful enough
as to represent recent developments makes researchers to reinvent the wheel once and again. In partic-
ular, we have observed that researchers (including ourselves) have produced local and partial formaliza-
tions to define their debuggers for a particular language and/or implementation (see, e.g., [16, 55, 56]).
These theoretical developments are hardly reusable in other languages, and thus, they only serve as a
formal description of their system, or as a means to prove results.

8.2 Paradigm-independent redefinition of Algorithmic Debug-

ging

Some of our last developments for AD cannot be formalized with the standard AD formulation. In a
few cases, we just skipped the formalization of our technique and provided an implementation. In other
cases we wanted to prove some properties, and thus we formalized (for one specific language, e.g., Java)
the part of the system affected by those properties. Other developments were done for other paradigms,
e.g., the functional paradigm, and we also formalized a different part of the system with different data
structures. We have observed the same behaviour in other researchers, and clearly, this is due to the
lack of a standard solution.

We want to provide a definition of AD that is paradigm-independent (i.e., it can be used by either
imperative- or declarative- languages). To the best of our knowledge, there does not exist such a formal
definition of AD. Hence, in this section we formulate AD in an abstract way. The main generalization of
our new formulation is to consider that ET nodes are not necessarily routines as in previous definitions
(see, e.g., [81]). Contrarily, we allow ET nodes to contain any piece of code. This permits AD to report
any code as buggy, and not only routines, thus potentially reducing the granularity of the reported
errors to single expressions.

In the following, we will only call Execution Tree to our new definition, and we will call Routine
Tree (RT) to the traditional definition (that we also formalize in the next sections). Because our new
definition is a conservative generalization, the RT is a particular case of the ET as it can be observed
in the UML model of Figure 8.1.

160 Chapter 8. Reformulation of Algorithmic Debugging

Figure 8.1: UML model representing the structure of the ET

Observe that an execution node can be specialized depending on the piece of code it represents.
In particular, we specialize three kinds of execution nodes named Routine Node, Projection Node, and
Collapse Node. They correspond to definitions that already exist in the literature (see [31, 55]), but
other kinds of nodes could appear in the future.

8.2.1 The Execution Tree

In this section we introduce some notation and formalize the notion of Execution Tree used in the rest
of the chapter. We want to keep the discussion and definitions in this section paradigm-independent.
Hence, we consider programs as state transition systems.

Definition 8.2.1 (Program) A program P = {W, I,R,C} consists of:

• W : A set of states.

• I: A set of starting states, such that I ⊆ W .

• R: A transition relation, such that R ⊆ W ×W .

• C: A source code, composed of a set of statements.

Definition 8.2.2 (Computation) A computation is a maximal sequence of states s1, s2, . . . such that:

• s1 is a starting state, i.e., s1 ∈ I.

• (si, si+1) ∈ R for all i ≥ 1 (and i ≤ n− 1, if the sequence is of the finite length n).

A finite segment si, si+1, . . . , sj where 1 ≤ i < j ≤ n is called a subcomputation.

In the source code of a program, we consider statements1 as the basic execution unit. Therefore, in
the following, the source code of a program P is a set of statements st1, st2, . . . , stn that produces the
computation s0, s1, . . . , sm for a given starting state s0. We cannot provide a specific model of compu-
tation if we want to be paradigm-independent, thus we do not define the relation between statements
and the transition relation R. This is possible (and convenient) thanks to the abstract nature of AD.
In particular, AD only needs an initial state, a code, and a final state to identify bugs. No matter how
the code makes the transition from the initial state to the final state. The user will decide whether this
transition is correct or not.

Because the considered execution unit is the statement, it is possible to identify a bug in a single
statement. This contrasts with traditional AD where routines are the execution units, and thus a whole
routine is always reported as buggy.

We also use the notion of code fragment of a program P , which refers to any subset of statements in
the source code C of P that produces a subcomputation si, . . . , sj with 0 ≤ i < j ≤ m. Code fragments

1Note the careful use of the word “statement” to refer to either imperative instructions, declarative expressions, etc.

8.2. Paradigm-independent redefinition of Algorithmic Debugging 161

often represent functions or loops in a program, but they can also represent blocks, single statements,
or even function calls together with the whole called function.

Intuitively, not all the statements in a given code c that produces a computation C are actually
executed. Some parts of the code are not needed to produce the computation (e.g., because they are
dead code, because some condition does not hold, etc.). The projection of c modulo C is a subset of
c where the unneeded code in c to produce C has been removed. Projections are often computed with
dynamic slicing [98].

Definition 8.2.3 (Code Projection) Given a code fragment c and a computation Cc = s0, . . . , sn
produced by c from a given initial state s0, a projection of c modulo Cc is a code fragment that contains
the minimum subset of c needed to produce the computation Cc.

We assume that each state in W is composed of pairs variable-value. The initial and final states, si and
sj, describe the effects of a given code fragment c. All three together form a code behaviour.

Definition 8.2.4 (Code Behaviour) Given a code fragment c and a computation Cc = s0, . . . , sn
produced by c from a given initial state s0, the code behaviour of Cc is a triple (s0,PCc(c), sn), where
PCc(c) is the projection of c modulo Cc.

Code behaviour corresponds to the questions asked by the debugger. These questions are along the
lines of Should the code c with the initial state s0 produce the final state sn?, or Code c produced sn from
s0, is that correct? Many previous definitions of AD (see, e.g., [79, 14]) define the code behaviour as
the triple (s0, c, sn), which corresponds to the execution of a routine c, and usually the debugger only
needs to show the call to c instead of showing both the call to c and the own routine c. Definition 8.2.4,
however, introduces two important novelties:

• It allows c to be any code fragment, and not only a routine.

• It substitutes c by a projection of c modulo Cc, thus the code associated with a code behaviour
only contains the code actually needed to produce that behaviour.

This dynamic notion is much more precise than the usual static notion that considers (the complete
code of) a routine.

Definition 8.2.5 (Intended Model) Given a program P = {W, I,R,C}, an intended model M for
P is a set of tuples (si,P(c), sj) where si, sj ∈ W and P(c) is a projection of a code fragment c ⊆ C.

Each tuple of the form (si,P(c), sj) specifies that the execution of code P(c) from state si leads to state
sj. Intuitively, an intended model of a program contains the set of code behaviours that are correct
with respect to what the programmer had in mind when they programmed these codes. It is used as a
reference point against which one can compare computations to determine whether they are correct or
wrong.
We are now in a position to define the nodes of an ET.

Definition 8.2.6 (Execution Node) Let P = {W, I,R,C} be a program. Let Cc be a computation
produced by a code fragment c ⊆ C. Let M be an intended model for P . The execution node induced
by Cc is a pair (B, S) where:

1. B is the code behaviour of Cc, and

2. S is the state of the node, which can be either:

162 Chapter 8. Reformulation of Algorithmic Debugging

• undefined, or

• the correctness of B with respect to M:

{
correct if B ∈M
wrong if B 6∈ M

Observe that an execution node contains (inside B) the source code PCc(c) responsible of the computation
it represents. Hence, if this node is eventually declared as buggy, its associated code is uniquely identified.
This definition of execution node is general enough as to represent previous nodes that are used in
different techniques. For instance, if the code of the node is a function, it can be represented as
a routine node. Similarly, projection nodes and collapse nodes, introduced in [55], are special nodes
that agglutinate the code of several other nodes. Clearly, they are also particular cases of our general
definition.

In order to properly define ET, we need to define first a relation between execution nodes that
specifies the parent-child relation.

Definition 8.2.7 (Execution Nodes Dependency) Let N be a set of execution nodes. Given an
execution node nc ∈ N induced by a computation Cc, and an execution node nc′ ∈ N induced by a

subcomputation Cc′ of Cc, we say that nc directly depends on nc′ (expressed as nc
N→ nc′) if and only if

there does not exist an execution node nc′′ ∈ N induced by a subcomputation Cc′′ of Cc, such that Cc′ is
a subcomputation of Cc′′.

Observe that this dependency relation is intransitive, which is needed to define the parent-child relation

in a tree. Hence, provided that we have three execution nodes, n1, n2, n3, if n1
N→ n2

N→ n3 then n1 6
N→ n3.

Example 8.2.8 Given the following program:

CODE:
x++; y++; x=x+y ;

and the initial state (x=1,y=2) we can generate the following execution nodes (among others):

ET NODES:
(i n i t i a l s t a t e) code (end s t a t e)

−−−
node 1 : (x=1,y=2) x++; y++; x=x+y ; (x=5,y=3)
node 2 : (x=1,y=2) x++; y++; (x=2,y=3)
node 3 : (x=2,y=3) x=x+y ; (x=5,y=3)
node 4 : (x=2,y=2) y++; (x=2,y=3)

with N = { node 1, node 2, node 3, node 4 }
we have node 1

N→ node 2
N→ node 4 and node 1

N→ node 3

Finally, we define an Execution Tree. It essentially represents the execution of a code in a structured
way where each node represents a sub-execution of its parent. Formally,

Definition 8.2.9 (Execution Tree) Let Cc be a computation produced by a code fragment c. An Ex-
ecution Tree (ET) of Cc is a tree T = (N,E) where:

• ∀n ∈ N , n is the execution node induced by a subcomputation of Cc,

• The root of the ET is the execution node induced by Cc,

• ∀(n1, n2) ∈ E . n1
N→ n2.

8.2. Paradigm-independent redefinition of Algorithmic Debugging 163

This definition is a generalization of the usual call tree (CT), which in turn comes from the refutation
trees initially defined for AD in [91, 92]. One important difference between them is that, given a
computation Cc produced by a code fragment c, the CT associated with Cc is unique because it is only
formed of routine nodes. In contrast, there exist different valid ETs associated with Cc due to the
flexibility introduced by the execution nodes (i.e., with routine nodes only one N set is possible, while
with execution nodes different N sets are possible). This flexibility of having several possible valid ETs
to represent one computation is interesting because it leaves room for transforming the ET and still
being an ET. Contrarily, the CT cannot be transformed because it would not be a CT anymore.

Once the ET is built, the debugger traverses the ET asking the oracle about the correctness of
the information stored in each node. Using the answers, the debugger identifies a buggy node that is
associated with a buggy code of the program. We can now formally define the notion of buggy node.

Definition 8.2.10 (Buggy Node) Let T = (N,E) be an ET. A buggy node of T is an execution node
n = (B,S) ∈ N where:

(i) S = wrong, and
(ii) ∀n′ = (B′,S ′) ∈ N , (n, n′) ∈ E . S ′ = correct.

Moreover, we say that a buggy node n is traceable if and only if:
(iii) ∀n′ = (B′,S ′) ∈ N , (n′, n) ∈ E∗ . S ′ = wrong.

We use E∗ to refer to the symmetric and transitive closure of E. This is the usual definition of buggy
node (see, e.g., [80]): a wrong node with all its children correct. We also introduce the notion of traceable.
Roughly, traceable buggy nodes are those buggy nodes that may be directly responsible of the wrong
behaviour of the program (their effects are visible in the root of the tree). This property makes them
debuggable by all AD search strategies that are variants of Top-Down (see [97]).

Lemma 8.2.11 (Buggy Code) Let T be an ET with a buggy node ((s, d, s′),S) whose children are
((s1, d1, s

′
1),S1), ((s2, d2, s

′
2),S2) . . . ((sn, dn, s

′
n),Sn). Then, d \

⋃
1≤i≤n

di contains a bug.

Note that we use (s, d, s′) meaning (s,PCc(c), s′) for some c, and \ is the set difference operator.
Proof. Trivial adaptation from the proof by Lloyd [63] for Prolog. 2

Lemma 8.2.11 illustrates what (buggy) code should be shown to the user. When a buggy node is
detected, the (buggy) code shown to the user is the code of the buggy node minus the code of its
children.

8.2.2 The Routine Tree

In this section we formalize the notion of RT used in most AD literature as a particular case of the ET.
We call routine tree to this specialization of the ET to make explicit its multi-paradigm nature, because
routines can refer to functions, procedures, methods, predicates, etc. We first define a routine node,
which is a specialization of an execution node.

Definition 8.2.12 (Routine Node) A routine node is an execution node ((s0,PCc(c), sn),S) where
code fragment c only contains:

• a routine call r, together with

• all the code of the routines directly or indirectly called from r.

Therefore, in a routine node, s0 and sn are, respectively, the states just before and after the execution
of the called routine. Almost all implementations reduce c to the routine call, and they skip the code of
the own routine.

Definition 8.2.13 (Routine Tree) A Routine Tree is an ET where all nodes are routine nodes.

164 Chapter 8. Reformulation of Algorithmic Debugging

8.2.3 Search strategies for Algorithmic Debugging

Once the ET is built, AD uses a search strategy to select one node. During many years, the main goal
of most AD researchers has been the definition of better search strategies to reduce the search space
after every answer, and to reduce the complexity of the questions. A survey of search strategies for AD
can be found in [97]. In our formalization, a search strategy is just a function that analyzes the ET and
returns an execution node (either the next node to ask or a buggy node).

Definition 8.2.14 (Search Strategy) A search strategy is a function whose input is an ET T =
(N,E) and whose output is an execution node n = (B,S) ∈ N such that:

1. S = undefined, or

2. n is a buggy node.

8.2.4 Algorithmic Debugging transformations

Some of the last research developments in AD have focussed on the definition of transformations of the
ET. The goal of these transformations is to improve the structure of the ET before the debugging session
starts, so that search strategies become more efficient. Some of these transformations cannot be applied
to a routine tree. For this reason, we include this section to classify the kinds of transformations that
have been defined so far, and establish a hierarchy so that future transformations can be also classified
in.

There exist three essential elements in the front-end of an algorithmic debugger. The modification
of any of them can lead to a different final output of the front-end (i.e., a different ET). Therefore, we
classify the transformations into three different levels:

• Transformations of the source code: Transformations of the source code such as inlining are used to
reduce the size of the ET by hiding routines. Contrarily, transformations such as Loop Expansion
[56] are used to augment the size of the ET to reduce the granularity of the reported buggy code
(a loop instead of a routine). In general, users should not be aware of the internal transformations
applied by the debugger, thus the code fragment shown to the user should be the original code.

• Transformations of the execution: Transforming the way in which the source code is executed can
change the generated ET. One example is changing eager evaluation by lazy evaluation. Another
example is passing arguments by value instead of passing them by reference. We are not aware of
any implementation that includes this kind of transformations.

• Transformations of the ET : Transforming the ET can significantly reduce the number of generated
questions. In general, the ET is transformed with the aim of making search strategies to behave as
a dichotomic search. Hence, they try to produce balanced ETs [55], or also deep trees that can be
cut in the middle. Other transformations such as Tree compression [24] try to avoid the repetition
of questions about the same routine, or try to improve the understandability of questions. This is
the case of the Node simplification transformation, which reduces all terms to normal form [16].

Given a computation Cc produced by a code fragment c, being T = (N,E) the ET of Cc, we represent
with T (T) either: (i) a transformation T ′ of T , (ii) the ET of a computation C ′c transformed from Cc, or
(iii) the ET of a computation Cc′ produced by a code fragment c′ transformed from c. Hence, T (T) is
the ET produced after applying one of the previously described transformations. Note that we use T to
refer to the ET that would have been generated without applying the transformation. A transformation
must have some specific properties to be useful, otherwise, we run the risk of improving the structure of

8.2. Paradigm-independent redefinition of Algorithmic Debugging 165

Figure 8.2: AD transformation hierarchy

the ET at the cost of losing buggy nodes. We propose four different properties to measure the impact
of a transformation on a given ET: Buggy Node Completeness, Buggy Code Completeness, Buggy Code
Reduction, and Bug Existence. The last one must be satisfied by any transformation to ensure that AD
is still able to find at least one bug. All of them are formally presented below.

Property 1 (Buggy Node Completeness) Given an ET T = (N,E), and its transformed version
T (T) = (N ′, E ′), ∀n ∈ N , if n is a buggy node in T then n is a buggy node in T (T).

Because fulfillment of Property 1 implies that all buggy nodes belong to both ETs, then, by Defini-
tion 8.2.9, the same buggy code behaviours are detectable. Hence, all bugs that can be localized in the
ET generated before applying the transformation are still detectable after applying the transformation.
Many transformations cannot satisfy Property 1, but they can satisfy a relaxed version:

Property 2 (Buggy Code Completeness) Given an ET T = (N,E), and its transformed version
T (T) = (N ′, E ′), ∀n = ((s0, d, sn), wrong) ∈ N , n is a buggy node in T . ∃n′ = ((s′0, d

′, s′n), wrong) ∈
N ′, n′ is a buggy node in T (T) and d = d′.

This property ensures that all the code that can be reported as buggy in the original ET, can be also
reported as buggy in the transformed ET. However, the specific context that produced the bug is not
necessarily the same in the original and in the transformed version. There exist transformations that
violate the last condition (d = d′). However, this is not a problem when d′ is a subset of d, because this
means that the code reported as buggy is smaller in the transformed code (i.e., precision is increased by
reducing the granularity of the located bug).

Property 3 (Buggy Code Reduction) Given an ET T = (N,E), and its transformed version T (T) =
(N ′, E ′), ∀n = ((s0, d, sn), wrong) ∈ N , n is a buggy node in T . ∃n′ = ((s′0, d

′, s′n), wrong) ∈ N ′, n′ is
a buggy node in T (T) and d′ ⊆ d.

Sometimes, these properties are further relaxed to a bug existence property.

Property 4 (Bug Existence) Given an ET T = (N,E), and its transformed version T (T) = (N ′, E ′),
If ∃n ∈ N , n is a buggy node in T , then ∃n′ ∈ N ′, n′ is a buggy node in T (T).

Property 4 is the minimum exigible requirement to ensure that the transformation has not hidden all
bugs. Thus, all transformations must satisfy at least Property 4.

In Figure 8.2 we classify four AD transformations already available in the state of the art. Two of
them, Tree balancing and Loop expansion produce ETs that are not routine trees. The Tree balancing
technique satisfies Property 1, except for collapse nodes that only satisfy Property 2, thus, all buggy

166 Chapter 8. Reformulation of Algorithmic Debugging

nodes (except those replaced by collapse nodes) are preserved. However buggy nodes can stop being
traceable after this transformation. The Loop expansion technique satisfies Property 3, but not Prop-
erty 2 (and thus, it does not satisfy Property 1 either). The reduction in the buggy code is obtained
by introducing the ability in the ET of detecting bugs inside loops. The Tree compression technique
satisfies Property 2, but not Property 1. The Node simplification technique satisfies Property 4, but not
Properties 1, 2 and 3, because some buggy nodes can disappear after the transformation.

8.2.5 An Algorithmic Debugging scheme

Finally, we describe Algorithm 28, a general schema of an algorithmic debugger that includes all phases,
from the generation of the ET to the reported bug. This algorithm gives an idea of how and when,
the ET, the transformations, the oracle, and the search strategies participate in the whole debugging
process.

Algorithm 28 Main algorithm of an Algorithmic Debugger

Input: A program P and its input i.
Output: A buggy code c in P , or ⊥ if no bug is detected in P .
Initializations: A = ∅ // Set of answers provided by the oracle

begin
1) T = getExecutionTree(P, i)
2) n = debugTree(T)
3) return getCode(n, T)

end

function debugTree(T = (N,E))
begin
1) while (∃(B′,S ′) ∈ N,S ′ = undef ∨ wrong)
2) (B,S) = selectNode(T) // Search strategy
3) if (S = wrong) then
4) return (B,S)
5) answer = askOracle(B)
6) A = A ∪ (B, answer)
7) updateStates(A, N)
8) T = executionTreeTransformations(T)
9) return ⊥

end

function getExecutionTree(P, i)
begin

1) P ′ = sourceCodeTransformations(P)
2) EP ′ = executeProgram(P ′, i)
3) E ′P ′ = executionTransformations(EP ′)
4) T = generateExecutionTree(E ′P ′)
5) T ′ = executionTreeTransformations(T)
6) return T ′

end

function getCode(n, T = (N,E))
begin

1) if (n = ((s0, d, sn),S)) then
2) return d \

⋃
(n,((s′0,di,s′n),S′))∈E

di

3) return ⊥
end

The main function performs the two phases of AD (Lines 1-2) and then returns a buggy code of
the program (Line 3). In the first phase (getExecutionTree function) the ET is created performing all
possible transformations in the source code (Line 1), in the execution (Line 3) and in the ET (Line
5). Once the ET is created, the second phase (debugTree function) starts. During this phase, the
debugger traverses the ET selecting nodes with a search strategy (Line 2). The selectNode function is
an implementation of one of the search strategies in the literature. There have been a lot of research
for more than a decade concerning which should be the node to ask about. A survey can be found in
[97]. No matter which search strategy is used, selectNode returns a node to ask about (the state of the
node is undefined), or a buggy node (the state of the node is wrong (Line 3)). Once a node has been
selected, the debugger asks the oracle about its correctness (Line 5). The oracle provides the intended
interpretation to the algorithm. With the oracle’s answer, the debugger updates the state of the nodes
of the ET (Lines 5-7). Note that the oracle’s answer can affect the state of several nodes. This effectively
changes the information of the ET, and thus, at this point, a new ET transformation could be used to
optimize the ET (Line 8). Then, the process is repeated selecting more nodes. When the search strategy
finds a buggy node (Lines 3-4) or it cannot select more nodes (Line 1) the second phase finishes and the

8.3. Related work 167

debugger returns (see getCode function) the buggy code associated with the located buggy node (see
Lemma 8.2.11), or it returns a message indicating that there does not exist a bug (it is indicated with
⊥ in Line 3), respectively. The last case happens, e.g., when all nodes are reported as correct .

8.3 Related work

AD has been applied to all mature languages. All current implementations use a sort of ET to represent
computations. Even in those lazy implementations of AD where the execution of the front-end and the
back-end is interleaved (see, e.g., [79]), the construction of the ET is needed before the program can
be debugged. Along the years, each paradigm has adopted a well-defined and studied data structure to
represent the ET.

8.3.1 A little bit of history

AD started in the seminal work by Shapiro with the notion of contradiction backtracking using “crucial
experiments” within Popper’s philosophical dictum of conjectures and refutations [91]. Hence, the first
notion of ET appeared in the context of the logic paradigm. Shapiro used refutation trees as ETs. Later
implementations of AD in the logic paradigm such as NU-Prolog [102, 4] also used refutation trees.

In the context of the functional paradigm, the ET data structure was proposed by Henrik Nilsson
and Jan Sparud: The Evaluation Dependence Tree (EDT). They first proposed this data structure as a
record of the execution [81], and then, as an appropriate ET for AD [82]. The EDT is particularly useful
to represent lazy computations by hiding non-computed terms. In fact, the own EDT can be computed
lazily as in [79]. The most successful implementations of AD for the functional paradigm are based on
the EDT. Notable cases are the Freja [78], Hat-Delta [23], and Buddha [85] debuggers.

In multi-paradigm languages such as Mercury, TOY, or Curry, the ET is also represented with either
a proof tree or an EDT. Examples of debuggers for these languages are the Mercury Debugger [68], the
Münster Curry Debugger [66], DDT [10], and B.i.O [8].

In the imperative paradigm, a redefinition of the EDT was used. It has been often called Execution
Tree [31, 46], but, conceptually, it is equivalent to the EDT, and it can be seen as a dynamic version of
the Call Graph where every single call generates a different node in the graph, and thus no cycles are
possible (i.e., it is a tree).

8.3.2 Modern implementations

All the debuggers mentioned in the previous sections are somehow “standard” in the sense that they
are based on the standard definition of the ET (either the refutation trees or the EDT). However, in
the last 5 years, there has been a new trend in AD tools: Researchers have implemented new techniques
that go beyond the standard definition of the ET. Contrarily to the previously described tools, modern
algorithmic debuggers are not standalone tools. They are plugins that can be integrated as part of an
IDE. Examples of these debuggers are JHyde [43] and HDJ [37], being both of them part of Eclipse.
Precisely because they are integrated into a development environment, they have direct access to dynamic
information—they can even manipulate the JVM at runtime—that can be used to enhance the debugging
sessions. In particular, the following techniques go beyond the standard ET: (i) Tree compression hides
nodes of the ET (it breaks the standard parent-child relation in the ET). (ii) Tree balancing introduces
new artificial nodes in the ET (it breaks the standard definition of ET node). (iii) Loop expansion and
(iv) ET zooming decompose ET nodes (they break the standard definition of ET node). We are not
aware of any definition of ET able to represent the previous four techniques.

Part IV

Conclusions and Future Work

168

Chapter 9

Conclusions

Software debugging includes the detection and the correction of syntactical as well as semantical errors
in the source code. There have been important advances in the debugging of syntactical errors and,
nowadays, the debugging of syntactical errors is one of the most advanced and automated software
development processes, tackled with the use of modern compilers that use grammars to completely
specify a programming language, and analyses such as LL(n), LALR, and LR(n). The situation is
very different with respect to the detection and correction of semantical errors (those that make the
system crash, not to do what it is expected, or do it in an inefficient way). In order to guaranty the
software quality, it is essential that the software production system incorporates effective and efficient
mechanisms for the debugging of semantical errors.

Given the complexity and the size of current software systems, debugging can become an arduous task
with an unpredictable difficulty and duration. However, surprisingly, debugging is one of the software
processes that has been less treated by the scientific community. In fact, the same debugging techniques
that were used twenty years ago, are still used nowadays [96]. The main problem of current techniques
is that they help the programmer to find information about the debugged program, but they do not
further use that information to help the programmer to guide the search for the own error. This is the
case, for example, of the breakpoints-based techniques.

There exist, however, several automatic or semi-automatic debugging techniques that guide the
search for the bug and, under some conditions, they are able to guaranty that they will eventually find a
bug in the code. Among these techniques, we can highlight Program Slicing [103] initially introduced in
the imperative paradigm, and Algorithmic Debugging (AD) [92] initially introduced in the declarative
paradigm.

AD was created 34 years ago, and many efforts have been made to enhance this technique. For
instance, the technique has been adapted to the logic, functional and imperative paradigms, as well as
several algorithmic debuggers have been created for each of them [75, 78, 23, 10, 68, 41, 85, 66, 46].
Moreover, there have emerged at least 17 different AD search strategies [95] and, in general, each of them
was proposed in the context of a different language (for instance, Top-Down [92] for Prolog, Subterm
Dependency Tracking [68] for Mercury, Hat-Delta [24] for Haskel, Divide by YES [95] and JHyde’s
strategy [43] for Java, etc.) and frequently their adaptation to other languages is not straightforward.
In addition, many techniques have been developed to increase the usability of the technique. This is the
case for example of: Tree Compression [24], which removes the nodes of the tree that are redundant; the
I don’t know and Inadmissible answers [84], which allows for directing the search for the bug in those
situations in which the original answers are useless; the Mercury debugger [68], which uses subexpression
information to enhance the search for the bug; and the JHyde debugger [43], which uses the own Eclipse’s

169

170 Chapter 9. Conclusions

views to show the AD information to the user.
Even so, AD still has several drawbacks that need to be achieved. One of the main problems of

the AD technique is its scalability. When the system to debug performs big computations, the data
structures that are generated to store those computations may occupy gigabytes, which makes most
current debuggers not support big programs. This is the case, for instance, of the DDT debugger [10],
the Buddha debugger [85] of Haskel, and the Curry language debugger, among others. An approximation
that has been carried out is to store these data structures that store the computation in secondary
memory (e.g., the redex trail of the Hat debugger of the Haskell language is stored in several files).
However, this solution solves the memory consumption problem at the cost of an answer time reduction,
which is unacceptable in many cases. In fact, the time needed to start the debugging session is still
far from being practical. The user has to wait until the whole data structure is stored in main (or
secondary) memory to start the debugging session. In addition, the amount of unnecessary questions
generated slow down the debugging session, and when the debugging session is finally concluded, the
algorithmic debugger only provides the method that contains the bug, forcing the user to start a new
debugging session with another debugger to find the bug inside this method.

All these problems have been tackled during the development of this thesis. In particular, there
have been advances with respect to the adaptation of the current AD techniques to other languages.
Concretely, it has been developed the first Declarative Debugger for Java (DDJ) (see Section 7.1) that
(1) incorporates 13 different search strategies, allowing for alternating between these strategies during
the same debugging sessions; and (2) incorporates four different techniques, allowing for reducing the
amount of questions performed by the debugger. The adaptation of AD techniques between different
paradigms opens a new and promising research field that consists in the combination of AD techniques
that have never coexisted in the same language. To complement DDJ, the Hybrid Debugger for Java
(HDJ) (see Section 7.2) has been developed, which allows the user to use either DDJ, a Trace Debugger
or an Omniscient Debugger depending on which type of debugger better helps the user at that point.

In this thesis we have solved some of the drawbacks of AD with the aim of producing a practical
and usable debugger. The main contributions of this thesis have been summarized below:

1. Scalability.
Since AD was proposed, a debugging session has been traditionally divided into two independent
and sequential phases: obtaining the execution tree, and debugging the program. During the
development of the DDJ debugger, we developed the Virtual Execution Trees technique (see Sec-
tion 5.1), which allows the debugger to overlap these two phases, permitting for reducing the time
that a user needs to start the debugging session from minutes to milliseconds. Moreover, the scal-
ability problem has been encompassed incorporating to the debugger a cache-based architecture.
This new architecture allows the debugger to be scalable in time and in memory. Moreover, in the
HDJ debugger, three different debuggers have been combined to increase the scalability, the first
of which is the own Trace Debugger of Eclipse. Its combination with DDJ improves the whole
debugging sessions. By using the Trace Debugger, the user can place breakpoints into the source
code to direct the search until a piece of code that contains the bug is found. Later, AD can be
used to debug this piece of code in an abstract way, which helps to debug complex algorithms be-
cause it is not needed to understand how they are implemented, but only what they are supposed
to do. This combination reduces the amount of information that AD has to store, because now,
the debugger only stores the part of the code in which the user thinks the error is. Thus, the
debugger only needs to store a suspicious subcomputation instead of the whole computation.

2. Usability.
The data structure used to store the computation of the debugged program (the execution tree)
is highly related with the usability of the technique. The more unbalanced it is, the more time is

171

needed to explore it and hence to find the bug. When it is completely unbalanced, the user may be
asked a linear number of questions with respect of the number of nodes of the tree, whereas when
the tree is completely balanced, the debugger may only ask a logarithmic number of questions.
Clearly, the structure of the tree is crucial for the technique. To improve the structure of the
ET, we have developed techniques that are now integrated into DDJ and we have also developed
some strategies that reduce the number of questions. In particular, DDJ implements the Tree
Balancing technique (see Section 5.2) that balances the tree by combining some nodes, and the
Tree Compression technique (see Section 5.5) that removes some nodes of the tree when this
change balances it. Moreover, Optimal Divide & Query (see Section 6.2) improves the best known
search strategy (D&Q), and hence it reduces the number of questions that the user is asked about.
Finally, the HDJ plugin for Eclipse has been developed allowing the user to combine DDJ with its
Trace Debugger, and to use DDJ in a more familiar context.

3. Granularity.
AD has the drawback of being only able to find which is the method that contains the bug, instead
of the expression. DDJ includes now a novel technique called Loop Expansion (see Section 5.4)
that increases the granularity by converting the loops presented in the source code into recursive
calls. This transformation produces a completely different data structure in which the own loops
and theirs iterations are represented, helping the user to also discard loops of causing the bug. In
addition, when DDJ has found the portion of code that contains the bug, the Omniscient Debugger
included in HDJ can be used to further explore it. This debugger complements DDJ by permitting
the user to find the expression that contains the bug.

4. Uniformity.
The original formulation of AD was oriented to the logic paradigm, but it was quickly adapted
to the functional and imperative paradigm respecting the basis of the formulation. However, this
formulation is obsolete nowadays, and frequently researchers need to redefine specific parts of the
formulation. In this thesis we have included a reformulation of the technique (see Chapter 8)
that is paradigm-independent, and that can be used as a formal representation of all current
existing techniques at the time of writing these lines. Moreover, it provides a classification of
transformation techniques that affect the data structure of AD, as well as the properties that
these transformations may fulfil. Researchers can use this classification to easily classify their
AD techniques. The classification of a technique is useful because it provides other researchers
with information about the properties that holds for this technique. In addition, an AD scheme
is presented to provide a general view of how all the components of AD interact, helping the
interested reader to better understand the technique.

As a result of this thesis, HDJ is the first algorithmic debugger that incorporates almost all search
strategies from different paradigms, that overlaps both AD phases, that incorporates new AD techniques
such as Virtual Execution Tree, Tree Balancing, Loop Expansion, and Tree Compression, and that
combines different debuggers that share their information and collaborate in a single debugging session.
In summary, HDJ can be considered as the most advanced algorithmic debugger that exists either in
the logic, functional or imperative paradigm (see [18]).

Chapter 10

Open Lines of Research

There exist several aspects in which Algorithmic Debugging can be improved. We list some of them in
the following points:

Techniques The Balancing technique shown in Section 5.2 is oriented to produce ETs that can be
quicker debugged using Top-Down strategies. ETs that are more suitable for Divide and Query
strategies are more difficult to produce due to the internal nature of the own search strategies.
They can “jump” from one node to another without any observable relationship. The nodes are
introduced by the technique because of one main objective: the introduced nodes will be more
likely to be selected by the strategy than other nodes. In presence of Divide and Query strategies
this objective is more difficult to achieve. During the first steps of the balancing technique, the
projection nodes can be easily added, but as the process requires to create more projection nodes,
the next introduced nodes can prevent the search strategy to select the first introduced ones.
A mechanism to properly produce balanced ETs to be used with Divide and Query strategies
is needed. With respect to the Tree Compression technique shown in Section 5.5, it produces
ETs that are better than the input ones. However, in order to produce a tree compression in a
reasonable time, the technique tries to find a local minimum. Obtaining a global minimum would
compress the ET in such a way that the debugger would ask less questions to the user.

Strategies Despite the Optimal Divide and Query strategy shown in Section 6.2 has been defined
and implemented into DDJ, the Divide by Queries strategy shown in Section 6.4 is not present.
The reason is that Optimal Divide and Query can be implemented with a linear cost whereas
the problem that we want to solve in the Divide by Queries strategy is a NP-hard problem as
demonstrated in [57]. In fact, in our experiments we need around half an hour to obtain which is
the optimal node in an ET with 20 nodes using a brute-force algorithm. In an initial research, we
have produced three properties that an optimal node must fulfill, and these properties have allow
us to obtain the same optimal nodes as the obtained by the brute-force algorithm but only in a
few seconds at the most. However, despite the computation time needed to solve the problem has
been considerably decreased, a scalable approximation able to obtain the optimal node in bigger
ETs is needed, or at least to obtain a set composed of a few nodes, one of which being the optimal
node.

Implementations DDJ has been evolved into HDJ, a debugger that mix DDJ with Trace Debugging
and Omniscient Debugging. With respect to the Trace Debugger, it is the default debugger of
Eclipse, hence it implements a lot of features that helps the user to find the bug. In contrast, the

172

173

Omniscient Debugger of HDJ has been implemented from scratch, and only the most important
features of the debugger are present. In order to provide the user with a complete and perfect
rapport among all debuggers, the Omniscient Debugger implemented in HDJ must be improved
to provide at least all the features present in its current state of the art.

Bibliography

[1] ActiveState Komodo. Available at URL: http://komodoide.com/. 2000.

[2] Evyatar Av-Ron. “Top-Down Diagnosis of Prolog Programs”. PhD thesis. Weizmanm Institute,
1984.

[3] Henry Givens Baker. Garbage Collection, Tail Recursion and First-Class Continuations in Stack-
Oriented Languages. Patent. US 5590332. 1996. url: http://www.patentlens.net/patentlens/
patent/US_5590332/en/.

[4] Tim Barbour and Lee Naish. Declarative Debugging of a Logical-Functional Language. Tech. rep.
University of Melbourne, 1994.

[5] Dominic Binks. “Declarative Debugging in Gödel”. PhD thesis. University of Bristol, 1995.

[6] Borland JBuilder. Available at URL: http://www.embarcadero.com/products/jbuilder/.
2008.

[7] Franois Bourdoncle. “Abstract Debugging of Higher-Order Imperative Languages”. In: ACM
SIGPLAN Notices 28.6 (1993), pp. 46–55. issn: 0362-1340.

[8] Bernd Braßel and Holger Siegel. “Debugging Lazy Functional Programs by Asking the Oracle”.
In: Proceedings of the 19th International Symposium on Implementation and Application of Func-
tional Languages. Ed. by Olaf Chitil, Zoltán Horváth, and Viktória Zsók. Vol. 5083. Lecture Notes
in Computer Science. Springer Berlin Heidelberg, 2007, pp. 183–200. isbn: 978-3-540-85372-5.

[9] J. Mark Bull, L. A. Smith, Martin D. Westhead, D. S. Henty, and R. A. Davey. “A Benchmark
Suite for High Performance Java”. In: Concurrency: Practice and Experience 12.6 (2000), pp. 375–
388. issn: 1096-9128. doi: 10.1002/1096-9128(200005)12:6<375::AID-CPE480>3.0.CO;2-M.
url: http://dx.doi.org/10.1002/1096-9128(200005)12:6<375::AID-CPE480>3.0.CO;2-M.

[10] Rafael Caballero. “A Declarative Debugger of Incorrect Answers for Constraint Functional-Logic
Programs”. In: Proceedings of the 2005 ACM-SIGPLAN Workshop on Curry and Functional Logic
Programming (WCFLP’05). Tallinn, Estonia: ACM Press, 2005, pp. 8–13. isbn: 1-59593-069-8.
doi: http://doi.acm.org/10.1145/1085099.1085102.

[11] Rafael Caballero, Yolanda Garćıa-Ruiz, and Fernando Sáenz-Pérez. “Declarative Debugging of
Wrong and Missing Answers for SQL Views”. In: Proceedings of the 11th International Symposium
on Functional and Logic Programming, FLOPS 2012. Ed. by Tom Schrijvers and Peter Thiemann.
Vol. 7294. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer Berlin Heidelberg,
2012, pp. 73–87. isbn: 978-3-642-29822-6.

[12] Rafael Caballero, Christian Hermanns, and Herbert Kuchen. “Algorithmic Debugging of Java
Programs”. In: Proceedings of the 2006 Workshop on Functional Logic Programming (WFLP’06).
Madrid, Spain: Electronic Notes in Theoretical Computer Science, 2006, pp. 63–76.

[13] Rafael Caballero, Narciso Mart́ı-Oliet, Adrián Riesco, and Alberto Verdejo. “A Declarative De-
bugger for Maude Functional Modules”. In: Electronic Notes Theoretical Computer Science 238.3
(3 2009), pp. 63–81. issn: 1571-0661. doi: http://dx.doi.org/10.1016/j.entcs.2009.05.013.

174

Bibliography 175

[14] Rafael Caballero, Enrique Martin-Martin, Adrián Riesco, and Salvador Tamarit. “EDD: A Declar-
ative Debugger for Sequential Erlang Programs”. In: 20th International Conference Tools and
Algorithms for the Construction and Analysis of Systems (TACAS 2014). Ed. by Erika Ábrahám
and Klaus Havelund. Vol. 8413. Lecture Notes in Computer Science. Springer, 2014, pp. 581–586.

[15] Rafael Caballero, Enrique Martin?Martin, Adrián Riesco, and Salvador Tamarit. “A Declarative
Debugger for Concurrent Erlang Programs”. In: Proceedings of the 15th Spanish Workshop on
Programming Languages (PROLE 15). Universidad de Cantabria, 2015.

[16] Rafael Caballero, Adrián Riesco, Alberto Verdejo, and Narciso Mart́ı-Oliet. “Simplifying Ques-
tions in Maude Declarative Debugger by Transforming Proof Trees”. In: 21st International Sym-
posium Logic-Based Program Synthesis and Transformation (LOPSTR 2011). Ed. by Germán
Vidal. Vol. 7225. Lecture Notes in Computer Science. Springer, 2011, pp. 73–89. isbn: 978-3-642-
32210-5.

[17] Miguel Calejo. “A Framework for Declarative Prolog Debugging”. PhD thesis. New University of
Lisbon, 1992.

[18] Diego Cheda and Josep Silva. “A Comparative of Algorithmic Debuggers”. In: Proceedings of
the 7th Spanish Workshop on Programming Languages (PROLE 07). 2007, pp. 171–180. isbn:
978-84-9732-599-8.

[19] Diego Cheda and Josep Silva. “State of the Practice in Algorithmic Debugging”. In: Electronic
Notes in Theoretical Computer Science 246 (2009), pp. 55–70.

[20] William Clinger. “Proper Tail Recursion and Space Efficiency”. In: ACM SIGPLAN Notices 33.5
(1998), pp. 174–185. issn: 0362-1340. doi: 10.1145/277652.277719. url: http://doi.acm.
org/10.1145/277652.277719.

[21] Marco Comini, Giorgio Levi, Maria Chiara Meo, and Giuliana Vitiello. “Abstract Diagnosis”.
In: The Journal of Logic Programming 39.1-3 (1999), pp. 43–93. issn: 0743-1066. doi: http:
//dx.doi.org/10.1016/S0743-1066(98)10033-X. url: http://www.sciencedirect.com/
science/article/pii/S074310669810033X.

[22] Patrick Cousot and Radhia Cousot. “Abstract Interpretation: A Unified Lattice Model for Static
Analysis of Programs by Construction or Approximation of Fixpoints”. In: Proceedings of the
4th ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages (POPL’77).
1977, pp. 238–252.

[23] Thomas Davie and Olaf Chitil. “Hat-delta: One Right Does Make a Wrong”. In: Proceedings of
the 17th International Workshop on Implementation and Application of Functional Languages
(IFL’05). Ed. by Andrew Butterfield. 2005, p. 11.

[24] Thomas Davie and Olaf Chitil. “Hat-delta: One Right Does Make a Wrong”. In: Proceedings of
the 7th Symposium on Trends in Functional Programming (TFP’06). 2006.

[25] Eclipse. Available at URL: http://www.eclipse.org/. 2003.

[26] Erik Elmroth and Fred Gehrung Gustavson. “Applying Recursion to Serial and Parallel QR
Factorization Leads to Better Performance”. In: IBM Journal of Research and Development 44.4
(2000), pp. 605–624. doi: 10.1147/rd.444.0605. url: http://dx.doi.org/10.1147/rd.444.
0605.

[27] Madalina Erascu and Tudor Jebelean. “A Purely Logical Approach to the Termination of Im-
perative Loops”. In: 13th International Symposium on Symbolic and Numeric Algorithms for
Scientific Computing 0 (2010), pp. 142–149. doi: http://doi.ieeecomputersociety.org/10.
1109/SYNASC.2010.64.

176 Bibliography

[28] Maarten Faddegon and Olaf Chitil. “Algorithmic Debugging of Real-World Haskell Programs:
Deriving Dependencies From the Cost Centre Stack”. In: Proceedings of the 36th ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI 2015). Vol. 50. 2015,
pp. 33–42.

[29] Andrzej Filinski. “Recursion From Iteration”. In: LISP and Symbolic Computation 7 (1 1994),
pp. 11–37. issn: 0892-4635. url: http://dx.doi.org/10.1007/BF01019943.

[30] Alcides Fonseca. AEminium/loops2recursion Java Library. Available at URL: https://github.
com/AEminium/loops2recursion/. 2012.

[31] Peter Fritzson, Nahid Shahmehri, Mariam Kamkar, and Tibor Gyimóthy. “Generalized Algorith-
mic Debugging and Testing”. In: ACM Letters on Programming Languages and Systems (LO-
PLAS) 1.4 (1992), pp. 303–322.

[32] Andy Georges, Dries Buytaert, and Lieven Eeckhout. “Statistically Rigorous Java Performance
Evaluation”. In: SIGPLAN Not. 42.10 (2007), pp. 57–76. issn: 0362-1340. doi: 10 . 1145 /

1297105.1297033. url: http://doi.acm.org/10.1145/1297105.1297033.

[33] Paul Gestwicki and Bharat Jayaraman. “JIVE: Java Interactive Visualization Environment”. In:
Companion to the 19th Annual ACM-SIGPLAN Conference on Object-Oriented Programming
Systems, Languages, and Applications (OOPSLA’04). Vancouver, BC, CANADA: ACM Press,
2004, pp. 226–228. isbn: 1-58113-833-4.

[34] Herman Geuvers. “Inductive and Coinductive Types with Iteration and Recursion”. In: Proceed-
ings of the Workshop on Types for Proofs and Programs. 1992, pp. 193–217.

[35] David Giammona. ORACLE ADF - Putting It Together. Tech. rep. ADF Declarative Debugger
Archives, 2009. url: http://blogs.oracle.com/DavidGiammona/adf_declarative_debugger.

[36] Hani Girgis and Bharat Jayaraman. JavaDD: a Declarative Debugger for Java. Tech. rep. Uni-
versity at Buffalo, 2006.

[37] Juan González, David Insa, and Josep Silva. “A New Hybrid Debugging Architecture for Eclipse”.
In: Proceedings of the 23rd International Symposium on Logic-based Program Synthesis and Trans-
formation (LOPSTR 2013). Vol. 8901. Lecture Notes in Computer Science (LNCS). Springer,
2014, pp. 183–201.

[38] Francisco González-Blanch, Reyes De Miguel, and Susana Serrano. “Depurador Declarativo de
Programas Java”. Available at URL: http://eprints.ucm.es/9114/. MA thesis. Universidad
Complutense de Madrid, 2006.

[39] Fred Gehrung Gustavson. “Recursion Leads to Automatic Variable Blocking for Dense Linear-
Algebra Algorithms”. In: IBM Journal of Research and Development 41.6 (1997), pp. 737–756.
doi: 10.1147/rd.416.0737. url: http://dx.doi.org/10.1147/rd.416.0737.

[40] Chris Hanson. “Efficient Stack Allocation for Tail-Recursive Languages”. In: Proceedings of the
1990 ACM conference on LISP and Functional Programming (LFP’90). Nice, France: ACM, 1990,
pp. 106–118. isbn: 0-89791-368-X. doi: 10.1145/91556.91603. url: http://doi.acm.org/10.
1145/91556.91603.

[41] Michael Hanus. Curry: An Integrated Functional Logic Language (Version 0.8.2 of March 28,
2006). Available at URL: http://www.informatik.uni-kiel.de/~curry/. 2006.

[42] Peter George Harrison and Hessam Khoshnevisan. “A New Approach to Recursion Removal”. In:
Electronic Notes in Theoretical Computer Science 93.1 (1992), pp. 91–113. issn: 0304-3975. doi:
10.1016/0304-3975(92)90213-Y. url: http://dx.doi.org/10.1016/0304-3975(92)90213-
Y.

Bibliography 177

[43] Christian Hermanns and Herbert Kuchen. “Hybrid Debugging of Java Programs”. In: Software
and Data Technologies. Ed. by Maŕıa José Escalona, José Cordeiro, and Boris Shishkov. Vol. 303.
Communications in Computer and Information Science. Springer Berlin Heidelberg, 2013, pp. 91–
107. isbn: 978-3-642-36176-0. doi: 10.1007/978-3-642-36177-7_6. url: http://dx.doi.org/
10.1007/978-3-642-36177-7_6.

[44] Visit Hirunkitti and Christopher John Hogger. “A Generalised Query Minimisation for Program
Debugging”. In: Proceedings of the 1st International Workshop of Automated and Algorithmic
Debugging (AADEBUG’93). Springer LNCS 749, 1993, pp. 153–170.

[45] Christoph Hofer, Marcus Denker, and Stéphane Ducasse. “Design and Implementation of a
Backward-In-Time Debugger”. In: Proceedings of NODe 2006. Vol. P-88. Erfurt, Germany: Lec-
ture Notes in Informatics, 2006, pp. 17–32.

[46] David Insa and Josep Silva. “An Algorithmic Debugger for Java”. In: Proceedings of the 26th
IEEE International Conference on Software Maintenance (ICSM 2010). 2010, pp. 1–6. isbn:
978-1-4244-8630-4.

[47] David Insa and Josep Silva. “Scaling Up Algorithmic Debugging with Virtual Execution Trees”.
In: Proceedings of the 20th International Symposium on Logic-based Program Synthesis and
Transformation (LOPSTR 2010). Vol. 6564. Lecture Notes in Computer Science. Springer, 2010,
pp. 149–163.

[48] David Insa and Josep Silva. “An Optimal Strategy for Algorithmic Debugging”. In: Proceedings
of the 26th International Conference on Automated Software Engineering (ASE 2011). Ed. by
Perry Alexander, Corina S. Pasareanu, and John G. Hosking. IEEE Computer Society, 2011,
pp. 203–212. isbn: 978-1-4577-1638-6.

[49] David Insa and Josep Silva. “Hacia una estrategia óptima para la Depuración Algoŕıtmica”. In:
Proceedings of the 11th Spanish Workshop on Programming Languages (PROLE 11). 2011.

[50] David Insa and Josep Silva. “Optimal Divide and Query (extended version)”. In: Computing
Research Repository (http: // arxiv. org/ abs/ 1107. 0350) (2011).

[51] David Insa and Josep Silva. “Implementation of an Optimal Strategy for Algorithmic Debugging”.
In: Electronic Notes in Theoretical Computer Science 282 (2012), pp. 47–60.

[52] David Insa and Josep Silva. loops2recursion Java Library. Available at URL: http://www.dsic.
upv.es/~jsilva/loops2recursion/. 2013.

[53] David Insa and Josep Silva. “A Generalized Model for Algorithmic Debugging”. In: Proceedings of
the 25th International Symposium on Logic-based Program Synthesis and Transformation (LOP-
STR 2015). Ed. by Moreno Falaschi. Vol. 9527. Lecture Notes in Computer Science (LNCS).
Springer, 2015, pp. 261–276.

[54] David Insa and Josep Silva. “Automatic Transformation of Iterative Loops into Recursive Meth-
ods”. In: Information and Software Technology 58 (2015), pp. 95–109.

[55] David Insa, Josep Silva, and Adrián Riesco. “Speeding up Algorithmic Debugging using Balanced
Execution Trees”. In: Proceedings of the 7th International Conference Tests and Proofs (TAP
2013). Ed. by Margus Veanes and Luca Viganò. Vol. 7942. Lecture Notes in Computer Science
(LNCS). Springer, 2013, pp. 133–151. isbn: 978-3-642-38915-3.

[56] David Insa, Josep Silva, and César Tomás. “Enhancing Declarative Debugging with Loop Expan-
sion and Tree Compression”. In: Proceedings of the 22nd International Symposium on Logic-based
Program Synthesis and Transformation (LOPSTR 2012). Ed. by Elvira Albert. Vol. 7844. Lec-
ture Notes in Computer Science (LNCS). Springer, 2012, pp. 71–88. isbn: 978-3-642-38196-6,
978-3-642-38197-3.

178 Bibliography

[57] Tobias Jacobs, Ferdinando Cicalese, Eduardo Sany Laber, and Marco Molinaro. “On the Com-
plexity of Searching in Trees: Average-Case Minimization”. In: Proceedings of the 36th Interna-
tional Colloquium on Automata, Languages and Programming (ICALP). Ed. by Samson Abram-
sky, Cyril Gavoille, Claude Kirchner, Friedhelm Meyer auf der Heide, and Paul G. Spirakis.
Vol. 6198. Lecture Notes in Computer Science (LNCS). Springer, 2010, pp. 527–539.

[58] Gabriella Kókai, Jörg Nilson, and Christian Niss. “GIDTS: A Graphical Programming Environ-
ment for Prolog”. In: Proceedings of the 2nd Workshop on Program Analysis for Software Tools
and Engineering (PASTE’99). Toulouse, France: ACM Press, 1999, pp. 95–104.

[59] Hoon-Joon Kouh and Weon-Hee Yoo. “The Efficient Debugging System for Locating Logical
Errors in Java Programs”. In: Proceedings of the 2003 Computational Science and Its Applications
(ICCSA 2003). Ed. by Vipin Kumar, Martina L. Gavrilova, Chih Jeng Kenneth Tan, and Pierre
L’Ecuyer. Vol. 2667. Lecture Notes in Computer Science. Montreal, Canada: Springer, 2003,
pp. 684–693. isbn: 3-540-40155-5.

[60] Bil Lewis. “Debugging Backwards in Time”. In: Available in the Computing Research Repository
(http: // arxiv. org/ abs/ cs. SE/ 0310016) cs.SE/0310016 (2003).

[61] Adrian Lienhard, Tudor Girba, and Oscar Nierstrasz. “Practical Object-Oriented Back-in-Time
Debugging”. In: Proceedings of the 22nd European Conference on Object-Oriented Programming
(ECOOP’08). Springer, 2008, pp. 592–615.

[62] Yanhong A. Liu and Scott D. Stoller. “From Recursion to Iteration: What Are the Optimiza-
tions?” In: Proceedings of the 2000 ACM-SIGPLAN Workshop on Partial Evaluation and semantics-
based Program Manipulation (PEPM’00). Boston, Massachusetts, United States: ACM, 2000,
pp. 73–82. isbn: 1-58113-201-8. doi: 10.1145/328690.328700. url: http://doi.acm.org/10.
1145/328690.328700.

[63] John Lloyd. “Declarative Error Diagnosis”. In: New Generation Computing 5.2 (1987), pp. 133–
154. issn: 0288-3635.

[64] Yong Luo and Olaf Chitil. “Proving the Correctness of Algorithmic Debugging for Functional
Programs”. In: 7th Symposium on Trends in Functional Programming (TFP 2006). Vol. 7. Intel-
lect, 2006, pp. 19–34.

[65] Yong Luo and Olaf Chitil. Algorithmic Debugging and Trusted Functions. Tech. rep. 10-07. UK:
University of Kent, 2007. url: http://www.cs.kent.ac.uk/pubs/2007/2642.

[66] Wolfgang Lux. Münster Curry User’s Guide. Available at URL: http://danae.uni-muenster.
de/~lux/curry/user.pdf. 2006.

[67] Wolfgang Lux. “Declarative Debugging Meets the World”. In: Electronic Notes in Theoretical
Computer Science 216 (2008), pp. 65–77. issn: 1571-0661. doi: 10 . 1016 / j . entcs . 2008 .

06.034. url: http://www.sciencedirect.com/science/article/B75H1-4SY6BJ7-5/2/
34f83f409e13b1ba40307e99b4d6567b.

[68] Ian Douglas MacLarty. “Practical Declarative Debugging of Mercury Programs”. PhD thesis.
University of Melbourne, 2005.

[69] Machi Maeji and Tadashi Kanamori. Top-Down Zooming Diagnosis of Logic Programs. Tech. rep.
TR-290. ICOT, Japan, 1987.

[70] Panagiotis Manolios and J Strother Moore. “Partial Functions in ACL2”. In: Journal of Auto-
mated Reasoning 31.2 (2003), pp. 107–127. issn: 0168-7433. doi: 10.1023/B:JARS.0000009505.
07087.34. url: http://dx.doi.org/10.1023/B:JARS.0000009505.07087.34.

Bibliography 179

[71] John McCarthy. “Towards a Mathematical Science of Computation”. In: Proceedings of the 2nd
International Federation for Information Processing Congress (IFIP’62). North-Holland, 1962,
pp. 21–28.

[72] Sun Microsystems. Java Platform Debugger Architecture - JPDA. Available at URL: http :

//java.sun.com/javase/technologies/core/toolsapis/jpda/. 2010.

[73] Salman Mirghasemi, John Barton, and Claude Petitpierre. Debugging by lastChange. Tech. rep.
http://people.epfl.ch/salman.mirghasemi, 2011.

[74] Magnus Myreen and Michael Gordon. “Transforming Programs into Recursive Functions”. In:
Electronic Notes in Theoretical Computer Science 240 (2009), pp. 185–200. issn: 1571-0661. doi:
10.1016/j.entcs.2009.05.052. url: http://dx.doi.org/10.1016/j.entcs.2009.05.052.

[75] Lee Naish, Philip Wayne Dart, and Justin Zobel. “The NU-Prolog Debugging Environment”.
In: Proceedings of the 6th International Conference on Logic Programming (ICLP’89). Ed. by
Antonio Porto. Lisboa, Portugal, 1989, pp. 521–536.

[76] NetBeans. Available at URL: http://www.netbeans.org/. 1999.

[77] Hanne Riis Nielson and Flemming Nielson. Semantics with Applications: A Formal Introduction.
New York, NY, USA: John Wiley & Sons, Inc., 1992. isbn: 0-471-92980-8.

[78] Henrik Nilsson. “Declarative Debugging for Lazy Functional Languages”. PhD thesis. Linköping,
Sweden, 1998.

[79] Henrik Nilsson. “How to Look Busy While Being as Lazy as Ever: the Implementation of a Lazy
Functional Debugger”. In: Journal of Functional Programming 11.6 (2001), pp. 629–671.

[80] Henrik Nilsson and Peter Fritzson. “Algorithmic Debugging for Lazy Functional Languages”. In:
Journal of Functional Programming 4.3 (1994), pp. 337–370.

[81] Henrik Nilsson and Jan Sparud. The Evaluation Dependence Tree: An Execution Record for Lazy
Functional Debugging. Tech. rep. Department of Computer and Information Science, Linköping,
1996.

[82] Henrik Nilsson and Jan Sparud. “The Evaluation Dependence Tree as a Basis for Lazy Functional
Debugging”. In: Automated Software Engineering 4.2 (1997), pp. 121–150.

[83] Omnicore CodeGuide. Available at URL: http://www.omnicore.com/en/codeguide.htm. 2007.

[84] Lus Moniz Pereira. “Rational Debugging in Logic Programming”. In: Proceedings of the Third
International Conference on Logic Programming. New York, NY, USA: Springer-Verlag LNCS
225, 1986, pp. 203–210. isbn: 0-387-16492-8.

[85] Bernie Pope. “A Declarative Debugger for Haskell”. PhD thesis. Australia: The University of
Melbourne, 2006.

[86] Guillaume Pothier. “Towards Practical Omniscient Debugging”. PhD thesis. University of Chile,
2011.

[87] Adrián Riesco. “Declarative Debugging and Heterogeneous Verification in Maude”. PhD thesis.
Universidad Complutense de Madrid, 2011.

[88] Adrián Riesco, Alberto Verdejo, and Narciso Mart́ı-Oliet. “A Complete Declarative Debugger for
Maude”. In: Proceedings of the 13th International Conference Algebraic Methodology and Software
Technology (AMAST 2010). Vol. 6486. Lecture Notes in Computer Science. Springer-Verlag, 2010,
pp. 216–225.

180 Bibliography

[89] Adrián Riesco, Alberto Verdejo, and Narciso Mart́ı-Oliet. “Declarative Debugging of Missing An-
swers for Maude”. In: Proceedings of the 21st International Conference on Rewriting Techniques
and Applications (RTA 2010). 2010, pp. 277–294.

[90] Adrián Riesco, Alberto Verdejo, Narciso Mart́ı-Oliet, and Rafael Caballero. “Declarative Debug-
ging of Rewriting Logic Specifications”. In: Journal of Logic and Algebraic Programming (JLAP)
(2011).

[91] Ehud Y. Shapiro. Inductive Inference of Theories from Facts. Tech. rep. RR 192. Yale University
(New Haven, CT US), 1981. url: http://opac.inria.fr/record=b1007525.

[92] Ehud Y. Shapiro. Algorithmic Program Debugging. MIT Press, 1982.

[93] SICStus Prolog SPIDER IDE. Available at URL: https://sicstus.sics.se/spider/. 2009.

[94] Josep Silva. “Three New Algorithmic Debugging Strategies”. In: Proceedings of the 6th Jornadas
de Programación y Lenguajes (PROLE’06). 2006, pp. 243–252.

[95] Josep Silva. “A Comparative Study of Algorithmic Debugging Strategies”. In: Proceedings of
the 16th International Symposium on Logic-based Program Synthesis and Transformation (LOP-
STR’06). Springer LNCS 4407, 2007, pp. 143–159.

[96] Josep Silva. “Debugging Techniques for Declarative Languages: Profiling, Program Slicing, and
Algorithmic Debugging”. PhD thesis. Universidad Politécnica de Valencia, 2007.

[97] Josep Silva. “A Survey on Algorithmic Debugging Strategies”. In: Advances in Engineering Soft-
ware 42.11 (2011), pp. 976–991. issn: 0965-9978. doi: 10.1016/j.advengsoft.2011.05.024.
url: http://dx.doi.org/10.1016/j.advengsoft.2011.05.024.

[98] Josep Silva. “A Vocabulary of Program Slicing-Based Techniques”. In: ACM Computing Surveys
44.3 (2012).

[99] Xinox software. JCreator. Available at URL: http://www.jcreator.com/. 2000.

[100] Sun. Sun Java Studio Creator. Available at URL: http://www.oracle.com/technetwork/
articles/java/jscoverview-135211.html. 2004.

[101] Gregory Tassey. The Economic Impacts of Inadequate Infrastructure for Software Testing. NIST
Planning Report 02-3. National Institute of Standards and Technology (NIST), 2002.

[102] Bert Thompson and Lee Naish. A Guide to The NU-Prolog Debugging Environment. Tech. rep.
University of Melbourne, 1997.

[103] Mark Weiser. “Program Slicing”. In: Proceedings of the 5th international conference on Software
engineering (ICSE ’81). San Diego, California, United States: IEEE Press, 1981, pp. 439–449.
isbn: 0-89791-146-6.

[104] Qing Yi, Vikram Adve, and Ken Kennedy. “Transforming Loops to Recursion for Multi-Level
Memory Hierarchies”. In: Proceedings of the 21st ACM-SIGPLAN Conference on Programming
Language Design and Implementation (PLDI’00). 2000, pp. 169–181.

[105] Andreas Zeller. “Yesterday, My Program Worked. Today, It Does Not. Why?” In: SIGSOFT
Softw. Eng. Notes 24.6 (1999), pp. 253–267. issn: 0163-5948. doi: 10.1145/318774.318946.
url: http://doi.acm.org/10.1145/318774.318946.

Appendices

181

Appendix A

Glossary of Acronyms

AD (Algorithmic Debugging): A technique to debug programs. It focuses on what is happening
instead of how it is happening. To do so, AD generates an ET and asks the user questions about
the information in the ET nodes. Each user’s answer determines whether a node is Correct (its
associated execution behaved as expected) or it is Wrong (it did not). A bug is found when a
buggy node is detected (i.e., a wrong node whose children, if any, are correct).

AD search strategy: An algorithm whose input is an ET and whose output is one node of the input
ET. The returned node can only be either a node whose question has not been answered yet or a
node detected as buggy (i.e., the related execution produces an error).

D&Q (Divide & Query): An AD search strategy. It selects the node that better divides the tree in
two parts with the same weight.

DbQ (Divide by Queries): An AD search strategy. It selects the node that better divides the tree
in two parts with the same amount of remaining questions.

DDJ (Declarative Debugger for Java) An algorithmic debugger that is written in and debugs Java
code.

EF (Execution Forest): A tree whose non-leaf nodes are ET nodes, and leaf nodes can be either ET
nodes or EFs.

ET (Execution Tree): A tree that represents the execution of a program with a given input. Each
node of the tree is associated with a concrete execution of a method of the whole execution. The
root node is associated with the main procedure of the program and it is normally marked as
Wrong by default.

GUI (Graphical User Interface): A type of user interface that allows users to interact with the
program through graphical icons and visual indicators (definition extracted from Wikipedia).

HD (Hat-Delta) An AD search strategy. It is a TD-based search strategy that takes into account the
oracle’s previous answers.

HDJ (Hybrid Debugger for Java) A debugger that combines three debugging techniques, namely:
Trace Debugging (TrD), Algorithmic Debugging (AD) and Omniscient Debugging (OD).

182

183

HF (Heaviest First): An AD search strategy. It is a TD-based search strategy that selects the heav-
iest node.

JDBC (Java Database Connectivity): This API is the industry standard for database-independent
connectivity between the Java programming language and a wide range of databases, SQL databases
and other tabular data sources, such as spreadsheets or flat files. The JDBC API provides a call-
level API for SQL-based database access (definition extracted from the official website).

JDD (Java Declarative Debugger): An algorithmic debugger that is written in and debugs Java
code. It is the predecessor of DDJ.

JPDA (Java Platform Debugger Architecture): It consists of three interfaces designed for use
by debuggers in development environments for desktop systems. The Java Virtual Machine Tools
Interface (JVM TI) defines the services a VM must provide for debugging. The Java Debug
Wire Protocol (JDWP) defines the format of information and requests transferred between the
process being debugged and the debugger front end, which implements the Java Debug Interface
(JDI). The Java Debug Interface defines information and requests at the user code level (definition
extracted from the official website).

JVM (Java Virtual Machine): It is the cornerstone of the Java platform. It is the component of the
technology responsible for its hardware- and operating system-independence, the small size of its
compiled code, and its ability to protect users from malicious programs. The JVM is an abstract
computing machine. Like a real computing machine, it has an instruction set and manipulates
various memory areas at run time (definition extracted from the official website).

LE (Loop Expansion): An AD technique that transforms the source code in order to allow AD to
obtain a more debuggable ET. The technique transforms loops into their respective equivalent
recursive methods.

MET (Marked Execution Tree): An ET that keeps the state of each node. The state of a node can
be, among others: Undefined, Wrong, Correct, Trusted, Unknown, Inadmissible.

OD (Omniscient Debugging): A debugging technique to debug programs. It allows for inspecting
the execution of the program in a forward way (as in TrD) as well as in a backward way.

OD&Q (Optimal Divide & Query): An AD search strategy. It is a D&Q-based search strategy
that improves the selection of the node that better divides the tree in two parts with the same
weight.

ODJ (Omniscient Debugger for Java): An omniscient debugger that is written in and debugs Java
code.

SS (Single Stepping): An AD search strategy. It selects the node following a post-order traversal of
the ET.

TB (Tree Balancing): An AD technique that transforms the ET in order to obtain a more debuggable
ET. The technique inserts new nodes in the ET that summarizes the behaviour of a set of sibling
nodes.

TC (Tree Compression): An AD technique that transforms the ET in order to obtain a more de-
buggable ET. The technique removes nodes related to recursive calls to avoid repeating similar
questions.

184 Appendix A. Glossary of Acronyms

TD (Top-Down): An AD search strategy. It selects the leftmost child node of the last node whose
associated answer was Wrong.

TrD (Trace Debugging): A debugging technique to debug programs. It allows for placing break-
points in the code, indicating the debugger must stop the execution of the program when they are
reached, and inspecting the value of the variables at that point.

VET (Virtual Execution Tree): An ET where some nodes are not included because their related
codes have not been executed yet.

