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A FINITE ELEMENT MODEL OF PERFORATED PANEL 

ABSORBERS INCLUDING VISCOTHERMAL EFFECTS 

 

ABSTRACT 

Most of the analytical models devoted to determine the acoustic properties of a rigid 

perforated panel consider the acoustic impedance of a single hole and then use the 

porosity to determine the impedance for the whole panel. However, in the case of 

not homogeneous hole distribution or more complex configurations this approach is 

no longer valid. This work explores some of these limitations and proposes a finite 

element methodology that implements the linearized Navier Stokes equations in the 

frequency domain to analyze the acoustic performance under normal incidence of 

perforated panel absorbers. Some preliminary results for a homogenous perforated 

panel show that the sound absorption coefficient derived from the Maa analytical 

model does not match those from the simulations. These differences are mainly 

attributed to the finite geometry effect and to the spatial distribution of the 

perforations for the numerical case. In order to confirm these statements, the 

acoustic field in the vicinities of the perforations is analyzed for a more complex 

configuration of perforated panel. Additionally, experimental studies are carried out 

in an impedance tube for the same configuration and then compared to previous 

methods. The proposed methodology is shown to be in better agreement with the 

laboratorial measurements than the analytical approach. 
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1. Introduction 

Perforated panels backed by an air cavity and a rigid wall are sound absorbers 

commonly used in noise control applications. The sound absorption is produced by 

viscous losses in their pores so that, when reduced in size, they provide high acoustic 

resistance and low mass reactance necessary for a wide-band sound absorber. These 

systems have become an environmentally friendly alternative to fibers and foams, 

providing higher durability and enhancing sound absorption at low frequencies.  

Numerous works have been dedicated to modeling the acoustic impedance of such 

devices [1-3], based on the model of sound propagation in narrow tubes studied by 

Crandall [4] and Rayleigh [5]. Most of these models determine the acoustic 

performance of this type of resonators from their orifice diameter, perforation rate, 

panel thickness and depth of the air gap. Although typically studied configurations 

consist of a flat rigid surface with periodically arranged circular holes or slits, some 

authors have proposed ways to model different perforation shapes or non-traditional 

designs of the perforated panel [6, 7]. Atalla and Sgard [8] have shown that a perforated 

plate or screen can be modeled as an equivalent fluid following the Johnson-Champoux-

Allard approach [9, 10, 11] with an equivalent tortuosity and that those classical models 

can be reobtained by using this simple approach. Even though most of these models 

have been experimentally validated through the years, some uncertainties related to 

more complex configurations arise.  

Some of the above analytical approaches are based on the assumption of no 

interaction effect between the perforations (widely separated holes). According to 

Rschevkin [12], Fok’s function can be used to correct the reactive effect for the case of 
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interacting perforations. Nevertheless, in some cases this effect is linked to the porosity 

effect and is difficult to estimate its contribution isolated. For example, Miasa et al. [13] 

investigated experimentally the use of multiple sizes of holes in perforated panels. They 

observed that the sound absorption characteristics were enhanced and attributed this fact 

to the interaction effect, but did not compare the results with any theoretical model. In a 

recent work by Tayong [14], the effects of hole interaction along with heterogeneity 

distribution are investigated. In doing so, an inverse method is used to obtain the 

geometrical tortuosity that accounts for both effects and which is integrated in the 

characteristic impedance expression following Atalla and Sgard model. Cobo et al. [15] 

proposed a slight modification of the Maa and equivalent fluid models to deal with 

perforated panel manufactured by infiltration. Unfortunately, the main drawback of 

these latter studies is the requirement of some type of fitting procedure for the 

characterization of samples. To overcome these and other limitations in the 

characterization process, complementary modeling techniques must be developed. 

Modeling the propagation of acoustic waves through narrow geometries such as 

orifices of perforated panels cannot neglect dissipative effects of viscous shear and heat 

conduction of the medium (air). Linearized Navier Stokes formulation, unlike 

isentropic/lossless acoustics governed by the Helmholtz equation, takes these 

viscothermal effects into account. The modeling of the behaviour of air in these 

situations requires the use of prediction methods that can handle this formulation. In this 

context, and given the progressive increase in the calculation speed of computers, the 

use of simulation techniques such as the Boundary Element Method (BEM) or the Finite 

Element Method (FEM) to approach these types of problems becomes feasible and can 
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be very useful.  

Craggs and Hildebrandt [16] presented a simplified finite element model to solve 

Navier-Stokes equations for one-directional sound propagation in tubes of various 

shapes. Afterwards, Christensen et al. [17] compared different analytical and numerical 

models using as references two test cases with circular geometry, obtaining similar 

results for all models. Later on, Kierkegaard et al. [18] developed a methodology with a 

linearized Navier-Stokes equations solver in the frequency domain to efficiently 

simulate two-dimensional acoustic wave propagation in duct systems. The simulated 

results were compared to experimental data using a frequency scaling and showed an 

excellent agreement. More recently, Herdtle et al. [19] performed CFD (Computational 

Fluid Dynamics) estimations of the acoustic impedance of microperforated panels for 

different hole designs using an axisymmetric model generated parametrically, but did 

not compare the results with any experimental work. 

The main disadvantage of the finite element discretization of the full viscothermal 

acoustic formulation is its high computational cost, since a large number of elements is 

needed to properly model thermal and viscous boundary layers. Notwithstanding this 

problem, and although other more efficient models as the Low Reduced Frequency 

(LRF) model have been used to describe viscothermal propagation in simple tube or 

layer geometries [20], the full model offers a wide applicability since no geometric 

restrictions are imposed for the calculations. So as to increase the computational 

efficiency compared to the full model, Kampinga et al. [21] presented an approximate 

model that can also be used for arbitrary geometries. Moreover, as the analytical models 

of perforated panel absorbers represent the extreme situation in which the resonant 
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system is infinitesimal, through the use of a finite element procedure the effect of the 

finite geometry on the absorption performance can be captured. Therefore, the finite 

element modeling of perforated panels with viscothermal acoustics represents an 

interesting alternative for those complex configurations in which no estimation models 

are available. 

The main aim of this work is to estimate the absorption performance of different 

perforated panel systems using a frequency domain finite element methodology for 

viscothermal acoustics. The study is focused on thin rigid panels with circular shaped 

holes and does not consider mean flow or any motion of the plate. In order to validate 

the proposed characterization methodology, the sound absorption coefficient under 

normal incidence is determined for the analysed configurations. The results are then 

compared to a well-established analytical model and to experimental measurements 

performed by means of an impedance tube. The experiments are performed in the range 

of sound pressure level where the linear impedance model is valid, showing a good 

agreement when compared to the model simulations. 

The structure of the paper is as follows; in section 2, the Maa impedance model for 

the case of perforated panels backed by an air cavity is reviewed; in section 3, the set of 

linearized Navier-Stokes equations in the frequency domain for viscothermal acoustics 

and their finite element implementation are briefly introduced, and in section 4 the 

numerical setup implemented for the simulations is described; then, in section 5, the 

proposed methodology is compared with the analytical model for a test case and 

validated through measurements in an impedance tube for different perforated panel 

configurations; finally, section 6 describes the main conclusions of this paper. 
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2. Acoustic impedance of a perforated panel absorber 

Fig. 1 shows a schematic representation of a rigid perforated panel excited by a plane 

wave and immersed in a fluid medium. The panel is assumed to be of infinite extent and 

composed by a periodic distribution of identical cylindrical perforations of circular 

cross-section.  

 

FIGURE 1 

 

The classical approaches to analyse such systems consist in evaluating the acoustic 

impedance of a single perforation and then use the porosity to determine the impedance 

for the whole panel. This complex impedance will depend mainly on the perforation rate 

 , perforation diameter d  and panel thickness t . Its resistive part is induced by the 

viscous boundary layers within the perforations and at the panel surface, and by the 

flow distortion effects generated at the edges of each hole, while the reactive part 

accounts for the inertia effects from the motion of air cylinders in the holes of the panel. 

The previously described phenomena are included in both real and imaginary parts of 

impedance as additive terms or multiplicative factors, depending on the analytical 

model. One common particularity of most of these models is that they consider small 

thickness and shape of the perforations so that thermal energy loss can be considered to 

be negligible compared to viscous loss. Moreover, they are based on the underlying 

assumption that no interaction exists between neighbouring holes. Such assumption may 

not be appropriate if the holes are fairly close, and so a modification of the impedance 

expression using Fok’s function may be used. These aspects are satisfied in the linear 
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regime, where the sound levels are low and the particle velocity is not so high. 

Maa proposed a well-known equation for the acoustic impedance Z  of perforated 

panels whose dimensions are small compared to the wavelength of a normal incident 

sound wave 

 

 
 

 
 

1

1
0

0

22 0.85
1 ,

J k jk d
Z j t

d k jJ k j



   

       
   
   

 (1) 

 

where 0  is the air density,   the angular frequency,   the dynamic viscosity of air, 

0 4  k d  the perforate constant, 0J  and 1J  are Bessel functions of the first kind 

and zeroth and first orders respectively, 1j    the imaginary unit, and     the 

Fok function, given by 

 

 
  



3 5

1
6 7 8

1 1.40925 0.33818 0.06793

0.02287 0.03015 0.01641 ... ,

    

  


   

   

 (2) 

 

with 0.88  d b , being b  the distance between perforations. 

Perforated panels require a rigid wall spaced a distance D  to create a resonant system 

with a relatively broadband absorption. The normal surface impedance SZ  of the 

perforated panel-air cavity combination can be written as 
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where 0c  is the sound propagation velocity in air.  

The sound absorption coefficient   of the perforated panel absorber for the case of 

normal incidence, defined by the ratio of the absorbed to the incident sound energies, 

can be expressed in terms of the normal surface impedance as follows 
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3. Viscothermal acoustics 

3.1 The linearized Navier Stokes equations 

The propagation of sound in narrow tubes, such as those that form a perforated panel, 

lead to significant boundary layer viscous and thermal effects that slow down acoustic 

waves and cause a strong damping for frequencies near the resonance of the absorber 

system. Even though viscous effects cause more damping than the thermal effects, both 

actively contribute to the acoustic damping. Nevertheless, for most viscothermal 

acoustic problems, thermal energy loss is negligible compared to viscous loss [20, 22]. 

These effects are typically neglected in the isotropic wave equation, which assumes 

adiabatic and inviscid behaviours. The Navier Stokes equations describe mathematically 

this viscothermal wave propagation and can be simplified to a time harmonic form that 

enables forward transformation to the frequency domain for a harmonic analysis.  
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The set of equations to be linearized consists of conservation of momentum, 

conservation of energy and conservation of mass together with the constitutive 

equations of state for an ideal gas. Although the linearized formulation is to be given 

without mathematical derivations, since it is beyond the scope of this work (see [22] for 

further details), some of the assumptions that must be highlighted are: density, 

temperature and pressure variations are considered small compared to their constant 

average values, the convective derivative is also small compared to all other variations 

and viscous dissipation does not contribute to the energy balance. On the other hand, no 

mean flow, small perturbations and a homogeneous medium are assumed. Wave 

propagation is therefore considered from a standard acoustical point of view and non-

linear effects are neglected. 

The resulting linearized governing equations for the case of an ideal gas not 

subjected to body forces and transformed to the frequency domain can be written as 
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where v  is the velocity vector, p  the pressure, T  the temperature; 0 , 0p  and 0T  are 

constant average values for density, pressure and temperature respectively;   is the 

second coefficient of viscosity,   is the coefficient of shear viscosity, pC  denotes the 

specific heat at constant pressure and   the coefficient of thermal conductivity. It 



 11 

should be noted that an additional identity known as the Gibbs relation is used to 

present these equations in a form with pressure, temperature and velocity as degrees of 

freedom. 

Moreover, appropriate viscothermal boundary conditions must be prescribed on each 

boundary location. In viscothermal acoustics these boundary conditions typically 

correspond to adiabatic (no heat flow) pressure sources,   0n T     , being n  the 

unit vector normal to that boundary, and rigid isothermal walls (null velocity and 

temperature) where the no-slip condition is applied over the fluid-rigid interface, 0v  , 

and temperature variations vanish, 0T  . 

 

3.2 Finite element implementation 

The Finite Element Method (FEM) is a widely used method to numerically solve 

partial differential equations. The present finite element implementation corresponds to 

an existing method [23] with a differently scaled energy equation that results in an 

unsymmetrical system matrix, but is reported here for completeness. A finite element 

model that implements a boundary value problem for Eqs. (5) - (7) requires writing 

those equations in a weak form. This can be accomplished by using a Galerkin 

approach: multiplication of these equations by the weighting functions vw
, 

wT  and 
wp  

respectively, and integration over the problem domain before application of Green’s 

theorem to reduce the order of the derivatives. Boundary conditions (velocity and 

temperature) must be prescribed explicitly. The resulting weak form reads 
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where   0.5


   v v  is the symmetric part of the velocity gradient , 
w  is defined like   

by replacing v  by vw
 and I  is the identity tensor. Eqs. (8) – (10) use the inner products over 

the domain   and its boundary  , which are given by 
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being z  a dummy vector. The overbar denotes the complex conjugate. For scalars and 

tensors, the dot product is replaced by the scalar and the double dot product, 

respectively. The weak form results in the system matrix 

 

  (13) 

 

where v , T  and p  are the vectors of the nodal values; the sub-matrices entries 
i,j

M  and 
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the right hand side of Eq. (13), which contains the natural boundary conditions, are 

derived from Eqs. (8 – 10). 

The resulting weak form is then discretized by using a linear combination of shape 

functions (typically Lagrangian) to approximate the solution, the boundary conditions 

and the weighting functions. The governing viscothermal acoustic equations together 

with the relevant boundary conditions are implemented in the finite element commercial 

software COMSOL Multiphysics
®
 and solved using the PARDISO direct solver.  

The use of a finite element model based on the full linearized Navier Stokes 

equations exhibits a series of advantages over approximate (often analytical) models as 

it can be used to any class of geometries and their accuracy is only limited by the 

discretization errors inherent to FEM. The use of the above so-called mixed formulation 

(it contains both velocity and pressure degrees of freedom) provides a more stable and 

robust behaviour of the method. Its main drawback is the very large amount of 

computing resources required for optimal convergence rate. The finite element model 

performance also depends on the element shape and the order of polynomial functions 

used, as well as on the mesh refinement and the boundary conditions that must be met. 

Some details regarding these aspects are given in the next section. 

 

4. Numerical setup 

The acoustic behaviour of perforated panel absorbers under normal incidence is 

investigated by using a finite element procedure that implements the linearized Navier 

Stokes equations in the frequency domain. The modeling procedure described below is 

based on a simple and easy to analyse configuration that consists of two cylindrical 
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volumes separated by the test specimen and which represent an impedance tube and a 

backing cavity, as shown schematically in Fig 2a. 

 

FIGURE 2 

 

The acoustic field inside the duct is coupled with that in the backing cavity via the air 

motion inside the orifices and is governed by the aforementioned equations. The duct 

length is L 1000 mm and both the duct and the cavity have a radius a 50 mm. The 

cavity depth D  and perforated panel parameters depend on the configuration under 

study. For all cases, symmetry can be used and only one eight of the geometry has to be 

modeled (Fig. 2b). The boundary condition to be enforced on the symmetry boundary 

planes is 0n v  . The perforated panel and the walls of the duct and the cavity are 

assumed to be rigid (no-slip condition) and isothermal. In this numerical scheme, the 

excitation is introduced by an adiabatic pressure source placed at the left hand boundary 

of the numerical setup, as a radiating plane surface. The simulations have been 

performed for frequencies up to 500 Hz with a 10 Hz frequency step, since this range 

can adequately describe the absorption range of the absorber system. The pressure 

responses at two points, placed at 235 mm and 150 mm away from the specimen under 

test, are registered to obtain the transfer function and calculate the sound absorption 

coefficient and impedance under normal incidence following the ISO 10534-2 standard 

[24].  

As the main purpose of this work is to check if the finite element methodology 

allows studying the acoustic performance of perforated panel absorbers for practical 
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design purposes, it is important to give some additional details concerning the finite 

element discretization. Since creating adequate boundary layer mesh in 3D geometries 

is not an easy task, tetrahedral Taylor-Hood-like elements have been used instead with a 

relatively higher element density near the outer and inner walls of the perforated panel, 

so as to capture its viscous and thermal boundary layer effects. The mesh used for the 

viscothermal finite element model is depicted in Fig. 3. The largest elements, located at 

the impedance tube and the cavity, were 6 cm long, and the wavelength of the highest 

computed frequency ( maxf = 500 Hz) was maxc f  = 341.2/500 = 68 cm, which 

yields an element per wavelength ratio of 68/6 ≈ 11, for the worst case. The smallest 

elements are located at the perforations and are 0.022 cm long, which gives more than 

3000 elements per wavelength for the highest frequency. The elements’ length was not 

small enough to resolve the viscous and thermal boundary layer thicknesses, but 

acceptable for the studied cases as will be shown in Section 5.  

 

FIGURE 3 

 

The whole computational domain consists of a total of around 80000 elements, 

yielding more than 500000 degrees of freedom. In the current implementation, a stable 

solution was obtained by using linear Lagrange shape functions for the pressure while 

the other variables were approximated by quadratic Lagrange shape functions. Using 

equal order shape functions for all degrees of degrees of freedom would result in an 

unstable element discretization [22].  

The highest time consumption for one frequency was around 284 s on a 16 core 2.26 
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GHz, 24 GByte RAM workstation. It should be noted that since the finite element code 

corresponds to a commercial package, it was not possible to accurately assess the 

memory used by the application for the calculation itself; and the solution time given 

was reported by the simulation software. Hence, though the frequency domain 

linearized Navier-Stokes formulation is immensely computationally demanding for very 

detailed simulations and needs to be performed with great care, fairly reliable results 

can be obtained using a relatively coarse mesh. 

 

5. Results and discussion 

5.1 Test case 

As a preliminary evaluation of the viscothermal finite element modeling procedure, 

the sound absorption characteristics of a perforated panel absorber are simulated. The 

test case consists of a flat rigid homogeneous perforated panel with periodically 

arranged circular holes whose properties are  0.79 %, d 4 mm, t  1 mm, b  40 

mm and with a constant air gap D 50 mm. The choice of these geometrical 

parameters is arbitrary but valid to demonstrate the distinct acoustic properties of the 

perforated panel absorber.  

A mesh study has been performed previously to determine the required mesh size 

such that the results become nearly mesh-independent. Despite using an unstructured 

mesh, the element size is decreased, especially close to the perforated panel inner 

boundaries, until the results converge to a stable value. Simulations were computed for 

different number of degrees of freedom and the absorption coefficient is obtained using 

the finite element procedure presented above. 



 17 

 

FIGURE 4 

 

The results depicted in Figure 4 show a relative convergence to the finest mesh with 

each mesh refinement. Thus, although a suitable choice of the mesh is required so as not 

to lead to unreliable results, the discretization herein used is shown to be acceptable. 

The numerical model is then compared with the analytical solution of Maa described 

in Section 2. For such configuration, the normal incidence sound absorption coefficient 

and surface impedance can be calculated analytically from Eqs. (1) – (4). Likewise, 

these parameters are obtained numerically. To highlight the different results produced 

by the numerical model and by the more classical analytical approach, the two 

perforated panel spatial arrangements shown in Fig. 5 are evaluated.  

 

FIGURE 5 

 

The effect of this change of the spatial arrangement of the perforated panel in the 

cross section of the tube is linked to the porosity but this issue is not taken into account 

in the theoretical model since it assumes the perforated panel to be immersed in a semi-

infinite fluid media. The predicted results of absorption coefficient and imaginary part 

of the normalized surface impedance for these configurations are compared in Fig. 6a 

and Fig. 6b, respectively. 

 

FIGURE 6 
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The presented results reveal that the finite element simulation is not in agreement 

with the analytical solution. Theoretical sound absorption coefficient calculated by 

using the Maa model yields an absorption peak of 0.34 at 336 Hz, whereas the 

numerical model yields a greater maximum sound absorption coefficient shifted to a 

lower frequency of 320 Hz for the PPSA1 and to 290 Hz for the PPSA2. Notice that the 

decreasing porosity of the PPSA2 from the PPSA1 forces the central frequency of the 

absorption coefficient band lower in frequency and the peak value to increase. 

Moreover, the shift of the peak towards the low frequency range is a result of the 

increase of the system added mass as observed in the imaginary part of the normalized 

surface impedance in Fig. 6b. 

Since small thickness of perforations makes thermal energy loss negligible, these 

differences can be mainly attributed to the finite geometry modeling effect of the 

proposed methodology when compared to the analytical model, which represents the 

extreme situation in which the perforated panel absorber is infinitesimal. In the next 

subsection, it will be shown that this factor poses a serious difficulty in obtaining a good 

estimation for more complex configurations and that the simulation results are more 

consistent than the analytical values when compared to experimental data from 

measurements in an impedance tube. 

 

5.2 Experimental validation 

In a following step and for verification purposes, experimental measurements of 

various methacrylate perforated panel absorbers are carried out in an impedance tube 
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following the ISO 10534-2 standard [24]. The calculated absorption coefficients are 

compared with those obtained from the viscothermal finite element model and the Maa 

analytical model. 

The specimens under study show a heterogeneous spatial pattern of the holes 

(unevenly distributed perforations) and are rigid enough to satisfy the rigid assumptions 

of the Maa model. This particular design is mainly intended to stand out the potential of 

the proposed numerical methodology for the case of complex configurations with 

respect to analytical solutions. The dimensions of three of the measured samples whose 

results are shown in this work are listed in Table 1 and a picture of one of the specimens 

is shown in Fig. 7. 

 

TABLE 1 

 

FIGURE 7 

 

The experimental setup for measuring the normal incidence absorption coefficient is 

the same as that described in Section 4 for the numerical models and consists of a 

circular cross section tube with a thickness of 6 mm. The cut-off frequency of the tube 

is around 1990 Hz. A loudspeaker is located at one end of the tube and the perforated 

panel system is attached at the other end. A random excitation is provided to the 

loudspeaker from the analyser (OR34 Compact Analyser) and the pressure transfer 

function is measured using two pressure microphones of 1/2 inch (B&K Type 4188) 

mounted flush with the inner surface of the tube at two locations. Since the acoustic 



 20 

analysis of the present study is based upon linear models, the incident sound pressure 

level in the impedance tube has been kept below 90 dB. The frequency range of analysis 

was chosen to ensure plane wave propagation and avoid excitations of higher modes. 

The resultant sound absorption coefficient of the perforated panel absorber system is 

then obtained.  

Fig. 8 compares the measured absorption coefficient to those calculated numerically 

and analytically. 

 

FIGURE 8 

 

The absorption curves on Fig. 8 show that the viscothermal finite element model can 

accurately describe the absorption performance for the analysed configurations. The 

results might be improved by using a finer mesh but both measurements and simulated 

results show a good agreement. On the other hand, the analytical model is not as 

accurate as expected and hardly matches the measured maximum absorption peak for 

these particular perforated panel absorbers. This is partly because the spatial pattern of 

the holes of the perforated panel is heterogeneous and the flange conditions are not 

equal for neighbouring holes.  

To illustrate this statement and to better understand the acoustic behaviour near the 

perforated panel, the acoustic field has been examined numerically with the aid of the 

finite element model for the perforated panel absorber PP1. Fig. 9 shows a cross-

sectional overview of the magnitude distribution and streamlines of the velocity field in 

the region of geometric discontinuities (the perforations) at the resonance frequency 
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f  350 Hz. 

 

FIGURE 9  

 

The complex distributions of both axial and transverse velocities at the 

discontinuities illustrate dominant dissipation mechanisms. As can be seen from Fig. 9a, 

the axial component in between the discontinuities has a constant velocity far from the 

rigid walls, increasing as it gets closer to the walls and decaying to zero on the walls. A 

close-up of the transversal velocity is shown in Fig. 9b, which reveals how the acoustic 

field is distorted in the near field of the perforated panel because of the inertia effects 

but distinctly for each hole since the flange conditions differ from an on axis perforation 

to one located near the contours of the impedance tube or the backing cavity. 

Hence, the prediction of the absorption characteristics of perforated panels using a 

general analytical approach might not be suitable when the spatial arrangement of the 

perforations makes the flange and interaction effects play a significant role. For these 

cases, a more detailed analysis should be carried out carefully. The use of a finite 

element methodology as proposed in this paper can be an interesting alternative to 

standard models, which is quite general and applicable to a wider range of geometry 

cases.  

 

6. Conclusions 

A viscothermal finite element modeling procedure that implements the linearized 

Navier Stokes equations in the frequency domain has been proposed to evaluate the 
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sound absorption performance under normal incidence of perforated panel absorbers as 

an alternative to analytical approaches. The presented model is necessary to predict 

wave propagation in fluids through narrow arbitrary geometries where viscous and 

thermal effects cannot be neglected. 

Initially, the absorption coefficient and acoustic impedance of a perforated panel 

absorber are simulated and compared with the analytical solution of the Maa model. In 

order to clarify the differences between the numerical model and the theory, several 

heterogeneous perforated panel samples have been manufactured and tested in an 

impedance tube. It was found that the experimental results are in better agreement with 

the numerical predictions that the analytical approach for these perforated panel designs. 

The resonance frequencies of the absorbers are also more precisely determined by the 

numerical model. The difference can be mainly attributed to the effect of the spatial 

arrangement of the perforations and their flange conditions in the absorption mechanism 

of the perforated panel absorber. Contour maps, at a frequency of interest, confirm this 

hypothesis and show that such models can be helpful for the analysis of the sound field 

in the vicinities of the perforated panel and to clearly understand the roles of finite size 

and interaction effect. 

The main advantage of the methodology is that it is generic and it can handle 

perforated panel systems of arbitrary geometry in a straightforward manner, without the 

need of fitting procedures or modified formulations. The mesh could be refined to give 

even more accurate predictions but the feasibility of such models is reasonably 

validated. However, further research must be carried out in this area to minimize the 

required computational resources and to reduce the problem size as much as possible 
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through more efficient models. Anyway, results show that the developed models give a 

good estimation of the acoustic behaviour of these resonator systems and can thus be 

applied in practice to optimize their design when no analytical solution exists. 
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Table 1 – Parameters of the perforated panel absorbers used in the experimental 

validation. 

   (%) d  (mm) t  (mm) b  (mm) D  (mm) 

PP1 1.77 1.6 3 5 70 

PP2 1.35 1.4 3 5 90 

PP3 0.99 1.2 3 5 110 

 

 

Figure 1 - Schematic diagram of a perforated panel excited by a plane wave and 

immersed in a fluid medium. 
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(a) 

 

(b) 

Figure 2 - Schematic representation of the numerical setup: (a) Impedance tube and 

backing cavity separated by the perforated panel, with a pressure source at the left 

side of the tube; (b) Detailed frontal view with the assumed symmetry boundaries. 
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(a) 

 

(b) 

Figure 3 – Mesh used for the viscothermal finite element model: (a) General and (b) 

detailed view. 

 

 

 

 

 



 29 

 

Figure 4 – Comparison of the simulation results for different mesh refinements of 

the normal incidence sound absorption coefficient for the test case of a perforated 

panel absorber. 

 

 

 

 

 

 

 

200 250 300 350 400 450 500
0

0.2

0.4

0.6

0.8

1

Frequency, Hz



 

 

25x10
3
 DOF

60x10
3
 DOF

108x10
3
 DOF



 30 

 

(a) 

 

(b) 

Figure 5 – Detailed frontal view of the perforated panel spatial arrangements 

simulated: (a) PPSA1 and (b) PPSA2. 
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(a) 

 

(b) 

Figure 6 – Comparison of the analytical and simulated results for the test case of a 

perforated panel absorber: (a) normal incidence sound absorption coefficient and 

(b) imaginary part of the normalized surface impedance. 
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Figure 7 – Photograph and close-up picture of specimen used for perforated panel 

absorber PP2. 
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(a) 

 

(b) 
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(c) 

Figure 8 – Normal incidence sound absorption coefficient of three perforated panel 

absorbers: (a) PP1; (b) PP2 and (c) PP3 (see Table 1). Dashed line: Maa model; 

dots: numerical results; continuous line: measured values in experimental setup. 
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(a) 

 

(b) 

Figure 9 – Cross-sectional overview of the magnitude distribution of the velocity 

axial (a) and transverse (b) components with streamlines, at 350 Hz, for the 

perforated panel absorber PP1. 

 

 

 


