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Abstract 

The corpus-based identification of those lexical units which serve to describe a given 

specialized domain usually becomes a complex task, where an analysis oriented to the 

frequency of words and the likelihood of lexical associations is often ineffective. The 

goal of this article is to demonstrate that a user-adjustable composite metric such as 

SRC can accommodate to the diversity of domain-specific glossaries to be constructed 

from small- and medium-sized specialized corpora of non-structured texts. Unlike for 

most of the research in automatic term extraction, where single metrics are usually 

combined indiscriminately to produce the best results, SRC is grounded on the 

theoretical principles of salience, relevance and cohesion, which have been rationally 

implemented in the three components of this metric. 
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1. Introduction 

 

The extraction of both single- and multi-word terminological units from domain-

specific corpora is fundamental not just for the construction of NLP resources (e.g. 

glossaries, thesauri, ontologies, etc.) but also as a stepping stone towards more complex 

computational tasks, such as information retrieval, text classification, document 

summarization or machine translation. The manual construction of specialized 



glossaries is not only labor-intensive and time-consuming but also tends to be 

inconsistent, so automatic term extraction (ATE) systems can help solve this problem. 

In this context, DEXTER (Discovering and Extracting TERminology) was developed as 

an online multilingual ATE workbench
1
 which is provided with a suite of tools to be 

used with non-structured text-based corpora. The contribution of DEXTER is to exploit 

advanced functionalities such as corpus compilation and management, document 

indexation and retrieval, query elaboration, textual exploration and terminological 

extraction within a framework where linguists, terminographers and knowledge 

engineers
2
 can develop their research.  

The goal of this article is to demonstrate the suitability of the metric devised for 

DEXTER, i.e. SRC (Salience, Relevance and Cohesion), from a theoretical and 

practical perspective. The remainder of this article is organized as follows: Section 2 

briefly describes the state of the art in ATE; Section 3 thoroughly examines the three 

terminological features integrated in DEXTER, i.e. salience, relevance and cohesion; 

Section 4 explores the evaluation procedure, where two experiments are described and 

their results are discussed; and finally, Section 5 highlights the main conclusions. 

 

2. An Overview of Automatic Term Extraction 

The first ATE systems appeared with the advent of large electronic corpora of written 

texts in the 90s. Since the release of TERMINO (Plante and Dumas 1989) to the 

present, many projects have implemented different methods to identify terminological 

                                                           
1
 DEXTER, which has been developed in C# with ASP.NET 4.0, is intended to be freely accessible from 

the FunGramKB website (www.fungramkb.com). English, Spanish, French and Italian are currently 

supported in DEXTER. 
2
 In fact, DEXTER enables data export to FunGramKB (Periñán-Pascual and Arcas-Túnez 2004; 2007; 

2010; Mairal-Usón and Periñán-Pascual 2009; Periñán-Pascual and Mairal-Usón 2009; Periñán-Pascual 

2013), a multipurpose lexico-conceptual knowledge base for natural language understanding systems. 



units. In fact, there have been three main approaches to ATE, i.e. linguistic, statistic and 

hybrid, as described in the next paragraphs. 

 The linguistic approach to term recognition is typically performed by means of 

three consecutive tasks. First, words are tagged with their part-of-speech. Second, 

morphosyntactic patterns are used to capture acceptable surface realizations as term 

candidates. Third, a stop list of functional and generic words is applied. However, the 

linguistic approach to ATE involves two main problems. On the one hand, this model is 

remarkably restrictive, since those terms which do not match a linguistic pattern will 

never be captured. On the other hand, the process of building linguistic filters is 

language-dependent, so it becomes a time-consuming and labor-intensive task. 

Furthermore, the linguistic forms returned by linguistic filters cannot be defined as real 

terms. Indeed, pre-defined linguistic patterns serve as an indicator of unithood, instead 

of termhood, so there is a need to implement some model able to capture the notion of 

termhood after this linguistic stage.
3
 

 The statistical approach to term recognition is based on two different types of 

measures. On the one hand, lexical association measures such as X
2
 (Nagao et al. 1976), 

Pointwise Mutual Information (Church and Hanks 1990), T-score (Church et al. 1991), 

Dice coefficient (Smadja 1993), Log-Likelihood Ratio (Dunning 1994) or Jaccard 

similarity (Grefenstette 1994), which serve to calculate the likelihood that two words 

can co-occur, have been frequently used in ATE. Indeed, although these unithood 

measures were not specifically devised for NLP, they have been employed for tasks 

                                                           
3
 Kageura and Umino (1996, 260-261) differentiated between unithood and termhood:  

 

‘Unithood’ refers to the degree of strength or stability of syntagmatic combinations or 

collocations. (…) On the other hand, termhood refers to the degree that a linguistic unit is 

related to (or more straightforwardly, represents) domain-specific concepts. 



such as collocation extraction, word sense disambiguation or the identification of 

translation equivalents.  

Today it is common to find corpus management applications which apply this 

type of measure; for example, Collins WordBanks Online (2013) employs mutual 

information and T-score to measure statistical significance in Collins' corpora. On the 

other hand, there are also some statistical measures for termhood, such as TF-IDF 

(Singhal et al. 1996), C-value (Frantzi and Ananiadou 1996; Barrón-Cedeño et al. 

2009), Weirdness (Ahmad et al. 2000), Domain-Specificity (Park et al. 2002), and 

Domain-Pertinence and Domain-Consensus (Sclano and Velardi 2007; Navigli and 

Velardi 2002), being most of them the major focus for my research, as discussed in the 

next section. 

Finally, it should be noted that few ATE systems adopt a purely statistical 

approach, since “the direct application of sole statistical measures to not-linguistically-

filtered expressions can lead to a terminology rich of unwished forms” (Pazienza et al. 

2005, 259). Therefore, there is a general tendency to consider both linguistic and 

statistical properties for the identification and extraction of term candidates. One of the 

most popular examples of hybrid model is found in C-value/*C-value (Frantzi et al. 

2000), where the NC-Value incorporates contextual information into the C-Value, 

which focuses on nested terms. 

Linguistic, statistic and hybrid approaches have traditionally relied on the 

processing of a single target corpus, i.e. the specialized corpus. However, ATE can also 

be grounded on the contrastive analysis between corpora, more particularly, on the 

differences in the distribution of lexical items between the target corpus and a reference 

corpus, i.e. general-language corpus (cf. Ahmad et al. 2000; Peñas et al.  2001; Park et 



al. 2002; Wong et al. 2007), or between the target corpus and other specialized corpora 

(cf. Sclano and Velardi 2007). 

 As noted by Conrado et al. (2014, 1), “although ATE has been researched for 

more than 20 years, there is still room for improvement.” This article focuses on the 

issue that any ATE system should be provided with an adequate statistical measure. But 

what does “adequate” mean in this context? Since the effectiveness of probabilistic 

measures is closely dependent on the characteristics of the corpus, the statistical 

adequacy of the metric implies that the system should be able to cope with a wide 

diversity of corpus designs by outperforming the results of other metrics. In this regard, 

I intend to increase the precision, as well as reducing the silence, and distribute false 

positive candidates as effectively as possible, trying to place most of them at the bottom 

of the list of extracted candidates. To this end, my research is based on two basic 

assumptions: (i) the metric should be composite (i.e. a metric whose components are 

defined by other metrics), so there is no need to devise new metrics but to combine 

existing ones on a rational basis; and (ii) the metric should be user-adjustable (i.e. a 

metric which contains parameters whose values can be adjusted by the user), so that it 

can accommodate to the configuration of the document collection. These terminological 

issues are examined in detail in the next section. 

 

3. Term Extraction Metric in Dexter 

Although there are still some studies that focus on the engineering of new measures for 

unithood and termhood, the recent trend is to combine statistical features effectively 

(Fedorenko et al. 2013). Throughout this section, and to illustrate the statistical 

measures involved in DEXTER, I examine a sample collection consisting of the extracts 



(2), (3) and (4), which are going to be treated as documents describing the domain of 

electronics for computer hardware. More realistic corpora are taken into account in 

Section 4, where the metric is evaluated. 

(2) A chip is an integrated circuit, which consists of transistors, capacitors and 

resistors. The transistor amplifies the electric current. The capacitor filters the 

electric current. The resistor reduces the flow of electric current. 

 

(3) The transistors, resistors, and capacitors are installed on a foundation of 

silicon, which is a semiconductor. 

 

(4) The benefits of miniaturization are that chips become smaller, faster and 

cheaper, but the problem is overheating. 

 

It is important to note that the smallest unit of analysis in this research is the stemmed 

ngram. My motivation of stemming is twofold. First, stemming can serve to convert 

various strings expressing the same meaning into a single form. For example, in 

Experiment 1 in Section 4, the same stemmed trigram was recognized for the linguistic 

realizations light dependent resistor and light dependant resistor. However, one of the 

consequences of this type of linguistic normalization is that recall usually becomes 

higher but precision is lower (Kraaij and Pohlmann 1996), i.e. the removal of surface 

variations often enables to find more similarities but at the expense of losing some 

semantic significance. This approach is particularly useful for the small- and medium-

sized corpora which can be built with DEXTER. However, if a large corpus is managed, 

then precision can be prioritized and consequently stemming should not be involved. 

Second, I opted for a stemmer rather than just a lemmatizer because the former 

dramatically reduces the number of candidates to inspect during validation, besides the 

fact that it is more effective to determine terminological prominence on stems instead of 

focusing on lexical forms or lemmas. 



The ngram in DEXTER is a sequence of n contiguous lexical tokens, where 0 < 

n ≤ 3. When the ngram is undergoing a validation process, I will call it “candidate”. 

Indeed, only after the validation and lemmatization of the ngram, the candidate can be 

really called “term”. Therefore, the term is a lexical unit (i.e. lexical variant or lexeme) 

which originated from an ngram. The traditional notion of term has been here adopted, 

that is, a lexical unit which corresponds to a conceptual unit, i.e. “terms are the 

linguistic representation of concepts” (Sager 1990, 57), which in turn is part of a given 

specialized-knowledge domain. 

 

3.1. Term Salience 

The task of automatic document indexation has a clear point in common with that of 

ATE, since the keywords employed to index a given document are usually perceived as 

terminological units (Pazienza et al. 2005). This idea is supported by the fact that 

indexation terms are words or sequences of words which have sufficient semantic load 

so as to provide information about the substance of the content in a document.
4
 

Therefore, one of the pillars of the DEXTER metric is the notion of salience, which is 

based on the termhood measure TF-IDF (Salton 1971; Salton and Yang 1973; Salton et 

al. 1975; Salton et al. 1975; Salton and Buckley 1988; Singhal et al. 1996), i.e. the 

weight of a term is determined by the relative frequency of the term in a certain 

document (or term frequency, i.e. TF) compared with the inverse proportion of that term 

in the entire document collection (or inverse document frequency, i.e. IDF). This 

measure has been frequently applied in the field of information retrieval, where the 

indexed documents in a repository (e.g. database) are ranked automatically on the basis 

                                                           
4
 Semiologically, Barthes (1964) defined the “substance of content” of the linguistic sign as that part 

which “includes, for instance, the emotional, ideological, or simply notional aspects of the signified, its 

'positive' meaning”. 



of the keywords present in a given query. Indeed, TF-IDF is one of the most popular 

AKE (Automatic Keyword Extraction) measures, which can derive lists of keywords 

from a collection of documents and where each one of these keywords is typically 

assigned a weight representing how salient the keyword is to the selected document. 

Therefore, TF-IDF can be used to weight how well the words and sequences of words in 

a corpus describe the contents of the documents, in such a way that if the keyword is 

given a high value, then it is more related to the topic of the document than a keyword 

with a low value. 

Thus, the TF-IDF of a stemmed ngram g can be calculated by applying different 

weighting schemes to the following formula:
5
 

 

(5)   ��-������ = ����� ∗ ������ ∗ ������ 
 

where *ORM is a normalization factor. Some of the most popular alternative equations 

for TF, IDF and *ORM are described as follows, where the SMART notation is placed 

on the right-hand side:
6
 

 

 

(6a)  ����� = f����      n [natural] 

(6b)  ����� = 1 + log�f�����     l [logarithm] 

 

(7a)  ������ = 1       n [none] 

(7b)  ������ = 1 + log � ��
df����� , where df���� > 0  t [idf] 

 

(8a)  ������ = 1      n [none] 

(8b)  ������ = �
 ∑ 	��#���	×	%&#����'(∈*

    c [cosine] 

 

                                                           
5
 Sabbah and Abuzir (2005) demonstrated that results from the TF-IDF technique are improved when 

stemming and stop-words removal are applied. 
6
 SMART (Salton 1971) is one of the first information retrieval systems based on the vector space model. 

Not all the notations of the SMART term-weighting schemata are consistent, since the system has been 

developed for over 40 years; in this article, I follow the notation suggested by Singhal, Salton, and 

Buckley (1996), which has become very popular thanks to Manning, Raghavan, and Schütze (2009). 



where d is a document in the specialized corpus CPT, *T is the number of documents in 

CPT, +���� is the number of occurrences of the ngram in d, and  ,+���� is the number 

of documents in which the ngram appears in CPT. The descriptions of the symbols used 

in all of the equations presented in this article are included in Appendix 1. 

 

 

The rationale for the three components of the equation (5) is described as 

follows. First, TF(g) serves to justify the fact that more weight is given to those ngrams 

that appear many times in a given document. Second, IDF(g) rewards those ngrams 

which are concentrated just in a few documents of the corpus. Thus, the value of a rare 

ngram in the corpus is high, whereas the value of a frequent ngram is low; in other 

words, less weight is given to ngrams that appear in many documents. Third, the 

document size is a parameter which can dramatically affect the calculation of weights, 

since (i) long documents usually use the same ngrams repeatedly, and (ii) long 

documents have numerous different ngrams (Singhal et al. 1996). Therefore, *ORM(g), 

i.e. document length normalization of ngram weights, is used to remove the advantage 

of long documents: less weight is given to documents that contain many ngrams. In 

other words, the normalization factor makes all documents be treated equally important 

regardless of their size. Moreover, when the cosine normalization is employed, the TF-

IDF value ranges from 0 to 1. This will make it easier to compare the weight of terms 

between corpora. 

In DEXTER, the document weighting scheme for TF-IDF is ntc,
7
 where the 

document vector has natural term frequency, idf and cosine normalization. This 

weighting scheme was actually chosen on the grounds that the effectiveness of a 

                                                           
7
 As explained in Singhal et al (1996, 153): 

 

In the Smart system, term weighting schemes are denoted by triples of letters. The first 

letter in a triple is a short hand for the function of the term frequency factor being used in 

the term weights, the second letter corresponds to the inverse document frequency function 

and the third letter corresponds to the normalization factor applied to the term weights. 

 



probabilistic measure is closely dependent on the characteristics of the document 

collection. Following some of the conclusions derived from experimental research (cf. 

Salton and Buckley 1988, 521; Singhal 1997, 9), here are some guidelines for choosing 

the most effective setting of the TF-IDF weighting scheme: 

 

(a) For the TF(g) component, function l is typically used for large full-text 

collections, and function n for other cases. 

(b) For the IDF(g) component, function n (i.e. no idf) is typically used for 

dynamic document collections with many changes in the collection makeup, 

and function t for other cases. 

(c) For the *ORM(g) component, function n (i.e. no normalization) is typically 

used for short documents of homogeneous length, and function c for other 

cases. 

 

DEXTER has been devised to build small- and medium-sized corpora, which are 

relatively static and whose documents can be of variable length, so I conclude that the 

most appropriate weighting scheme should be ntc. Therefore, the salience of the ngram 

g in the document d is calculated with the following formula, which results from 

combining equations (6a), (7b) and (8b): 

 

(9)   

-���� = +���� × �1 + log. � ��
df������

/∑ �+���� ×	�1 + log. � ��
df�������

.
�∈�

 

 

It should be noted that the cosine normalization (8b) is calculated in DEXTER on the 

basis of the type of ngram, i.e. unigram, bigram or trigram. For example, the weight of a 



certain bigram in a given document is normalized by calculating the weights of all and 

only the bigrams in the same document. 

But how should the -���� value be interpreted? To answer this question, you 
need to understand that a corpus in DEXTER is perceived as a “vector space model” 

(VSM). The principle behind the VSM is to use frequencies in a text corpus as a clue to 

discover semantic information.
8
 Thus, DEXTER allows every document in the corpus to 

be represented as a vector (or dot) in a common vector space: 

 

(10)  01,� = �-�3����, -�3��.�, -�3��4�,… , -�3��67��, -�3��6�� 
 

where k is the total number of ngrams in document d. Therefore, 01,� is the vector 
representation of the i-th document in CPT. For example, if 08,� and 09,� are perceived 
to be semantically similar, then the two dots are expected to be closer in the space. The 

representation (10) is mathematically known as a bag, since the exact order of the items 

is not relevant. Thus, vectors do not capture the structure of phrases in sentences, so the 

sequential order of words is lost. Nevertheless, “in spite of this crudeness, (…) vectors 

seem to capture an important aspect of semantics” (Turney and Pantel 2010, 147), since 

“it seems intuitive that two documents with similar bag of words representations are 

similar in content” (Manning et al. 2009, 117). In fact, this widely-held view in NLP has 

a close connection with the distributional hypothesis, which states that words occurring 

in similar contexts tend to have similar meanings (Harris 1954). 

                                                           
8
 VSMs were originally used in information retrieval, but they have currently inspired many researchers 

to extend them to other tasks in NLP, e.g. document classification, essay grading, thesaurus generation, or 

word sense disambiguation, among many others. See Turney and Pantel (2010) for a detailed survey of 

the applications of the VSM. 



 For the sake of greater precision, it should be said that DEXTER is provided 

with three separate vectors for a single document, i.e. one for each type of ngram, since 

the weight of an ngram in a given document is normalized with respect to all and only 

the ngrams of the same type in that document. Assuming that: 

:;� is the set of unique unigrams in CPT, so :;��,1� represents all the 
unigrams in the i-th document, <;� is the set of unique bigrams in CPT, so <;��,1� represents all the bigrams 

in the i-th document, and �;� is the set of unique trigrams in CPT, so �;��,1� represents all the trigrams 

in the i-th document, 

 

the vector representation of all the unigrams, bigrams and trigrams for the i-th document 

in CPT would be represented respectively as follows: 

(11) 01,=>� = �-�3����, -�3��.�, -�3��4�,… , -�3��|=>�|7��, -�3��|=>�|��, where �@ ∈ :;��,1� 
 

(12) 01,A>� = �-�3����, -�3��.�, -�3��4�,… , -�3��|A>�|7��, -�3��|A>�|��, where �@ ∈ <;��,1� 
 

(13) 01,�>� = �-�3����, -�3��.�, -�3��4�,… , -�3��|�>�|7��, -�3��|�>�|��, where �@ ∈ �;��,1� 
 

From this approach, the whole corpus in DEXTER would be represented as three 

ngram-document matrices, one for each type of ngram. For example, the unigram-

document matrix for our three-document collection has |UGT| rows, i.e. one for each g 

in UGT(di), and *T columns, i.e. one for each d in CPT. In particular, |UGT| = 25 and *T 

= 3. Each cell in this matrix represents -�3��B�, where C ≤ |:;�| and E ≤ ��, and if 
�B ∉ ,1, then -�3��B� = 0. Thus, :;��,1� contains all those unigrams in the first 

document (i.e. column ,�) whose weight is higher than zero.9 
                                                           
9
 Most of the documents generally employ a small fraction of the whole vocabulary, so ngram-document 

matrices usually become very sparse, that is, the weight assigned to most of the elements is zero. 

However, as noted by Turney and Pantel (2010), sparsity can be seen just as a temporary problem of lack 



 To illustrate, in the document (2) of our collection the weight of the stemmed 

unigram capacit, corresponding to the token capacitor, would be calculated as (13). 

 

(14)  -�G��8� = .	×�.IJ8KL√�.IJ8KL'N	..IJ8KL'N⋯N9.9I8JJ'	 = 4.�LKK.�8.�4�J� = 0.22431  

 

Here the unnormalized weights (i.e. TF(g) x IDF(g)) of the first unigram (i.e. chip) and 

the last unigram (i.e. current) in this document are 1.58496 and 7.75488 respectively. 

Recall that salience is based on TF-IDF, so -���� indicates how unique a term is 

within a document. For example, in :;��,�� the weights of unigrams such as flow and 

current are 0.18291 and 0.54875 respectively. This means that capacitor, whose weight 

is 0.22431, is more salient than flow but less than current for the content of the first 

document. This salience is calculated on the basis of the word stem, resulting more 

effective than taking the word form or the lexeme as the unit of analysis. Thus, the 

semantic burden of words such as capacitor, capacitors and capacitance is jointly 

measured. 

But how can the salience of ngrams be calculated with respect to the whole 

collection and not just to a single document? The salience of the ngram g in the whole 

corpus CPT is calculated as the normalized average of the weights of g in CPT: 

 

(15)   

-���� = ∑ -�����∈ST�
 ∑ �-���6��.�U∈ST�

 

   

                                                                                                                                                                          

of data: the more documents a collection has, and the larger the documents are, the fewer zeroes the 

matrix will have. 



Again, the normalization factor of this formula only takes into account ngrams of the 

same type. Thus, the salience index of a certain unigram in a corpus is normalized by 

calculating the average of the weights of all and only the unigrams in the same corpus. 

Therefore, the vector representation of the unigrams in CPT would be represented as 

follows: 

 

(16)  Δ=>� = �-�����, -���.�, -���4�,… , -���67��, -���6��, where � ∈ :;� 
 

In the example above, the averaged weight of the unigram capacit in our three-

document collection would be calculated as (17). 

 

(17)  -���8� = W...84�	NW..9W9L	N	W√W.WKKW4'N	W.�J9WL'N⋯NW..LJW.'	 = W.8KIW9�.J89�4 = 0.26802  

   

We can see that -����� (i.e. for the unigram amplifi) and -���6� (i.e. for the unigram 

transist) in the collection are 0.09903 and 0.26802 respectively. For example, the 

averaged weights of the unigrams flow and current are 0.09903 and 0.29708 

respectively, so we can infer that capacitor is more salient than flow but slightly less 

than current for the content of the collection. Although -���� is employed as the basis 

for -����, the ranking of ngrams in a given document cannot be extrapolated to the 

whole corpus. In fact, instal is more salient than capacit in the second document but it 

isn’t with respect to the whole collection. To end this section, it can be definitely 

concluded that the salience index becomes a powerful termhood measure. 

 

3.2. Term Relevance 



Another issue about termhood, however, is the difference between prevalence and 

tendency, as explained by Wong et al. (2008). Salience measures the prevalence of the 

term in a particular target domain, but it does not reflect the tendency of term usage 

across different domains. In other words, TF-IDF fails to comprehend that terms are 

also properties of domains, and not just of documents. For example, in the previous 

document collection, it can be stated that capacitor (i.e. ST(capacit) = 0.26802) is more 

salient than flow (i.e. ST(flow) = 0.09903). This implies that capacitor has high 

prevalence within that selection of documents which describe the domain of electronics 

for computer hardware. However, it is not possible to assure that this relation of 

prevalence will remain the same with respect to another collection of documents 

describing the same domain.  Consequently, I propose to combine the salience of TF-

IDF with a corpus-based termhood measure, quantifying the relevance of ngrams 

through the contrastive analysis between the target corpus and a reference corpus. It is 

important to keep in mind that there is a statistical feature behind every measure applied 

in DEXTER, in such a way that the combination of all the features enables us to get a 

more precise weight for the term. Indeed, a critical choice in this type of combinatorial 

method is the selection of features, where the criteria of redundancy and irrelevance 

should be taken into account (Fedorenko et al. 2013, 19): 

 

Having a lot of different features, the goal is to exclude redundant and irrelevant 

ones from the feature set. Redundant features provide no useful information as 

compared with the current feature set, while irrelevant features do not provide 

information in any context. 

 



The remainder of this section describes the reasons which led me to support or rule out 

some metrics oriented to measure the relevance of ngrams. 

One of the most influential studies on termhood measures based on contrastive 

corpora has been Ahmad et al. (2000), who proposed the index of the weirdness of 

specialised terms.
10
 By adapting this metric to our unit of analysis, i.e. stemmed ngrams, 

we could quantify the relevance of a given g in CPT as follows: 

 

(18)  

���� = Z����Z[��� 
 

Z���� = +����|\Z�| 
 

Z[��� = +[���|\Z[| 
 

where PT(g) is the probability of the ngram in CPT and PR(g) is the probability of the 

ngram in CPR, so fT(g) is the frequency of the ngram in CPT, where |CPT| is the total 

number of words in the target corpus, and fR(g) is the frequency of the ngram in CPR, 

where |CPR| is the total number of words in the reference corpus. In this setting, if an 

ngram is used more frequently in DT than in DR, then the relevance index of the ngram 

is greater than 1, and conversely. It should also be noticed that if the ngram does not 

occur in CPR, then fR(g) = 1. 

                                                           
10
 For example, the equation of Domain Specificity (Park et al. 2002) is very similar to that of weirdness. 



Some other corpus-based metrics were grounded on the comparative analysis 

across different specialized domains, e.g. Velardi et al.’s Domain Relevance (2001). 

However, they were not taken into account in my research, since I intended to minimize 

the linguistic resources provided to DEXTER, a crucial issue to facilitate the scalability 

of this multilingual ATE system. 

On the other hand, the metric of weirdness was extended to the index of 

relevance by Peñas et al. (2001) as follows: 

 

(19)  

���� = 1 −	 1
^_�.�2 +	Z���� 	× 	,+����Z[��� � 

 

where dfT(g) is the document frequency of g in CPT. Apart from normalizing the term 

weight, this new metric simply integrates the document frequency to the weirdness 

formula. Although there has been some experimental evaluation of the performance of 

TF-IDF together with the measure (19) (cf. Fedorenko et al. 2013), I conclude that these 

two statistical features become partially incompatible. You should recall that in TF-IDF 

ngrams which are concentrated just in a few documents of the corpus are considered to 

be more salient (i.e. inverse document frequency). In this measure of relevance, 

however, ngrams which appear in a very small fraction of the documents in the 

collection are considered to be less relevant (i.e. document frequency). Our strategy has 

been to remove the document frequency component from the previous equation, which 

is basically the same as normalizing the weirdness index: 

 



(20)  

���� = 1 −	 1
log. �2 +	Z����Z[����

,	iff	|�| = 1 

 

where |g| is the number of lexical items included in the ngram. 

It should also be recalled that the weirdness metric was originally devised for 

unigrams. In case of multi-word terms, I could have employed the frequencies of the 

bigrams and trigrams in CPR, but in a multilingual workbench such as DEXTER this 

requirement would have negatively impacted on the scalability of the system. 

Consequently, and like Knoth et al. (2009), I chose to calculate the relevance of 

complex candidates in CPT on the basis of the geometric mean of each lexical item 

within the candidate, that is: 

 

(21)  

Z���� =
 ∏ +��c1�63∈�

|(|

|\Z�| , iff |�| > 1 
 

Z[��� =  ∏ +[�c1�63∈�|(|

|\Z[| , iff |�| > 1 
 

where fT(k) and fR(k) represent the frequency of a given unigram in g with respect to 

CPT and CPR respectively. With the geometric mean, I can minimize the effects of 

extremely small or large values in a skewed frequency distribution of the items within 

the multi-word candidate. Moreover, this approach does not require you to build or 



search a whole corpus of reference for every language, but only to have the frequency 

list of the tokens in the general-language corpus. The current version of DEXTER uses 

the British *ational Corpus (BNC)
11
 and Corpus de Referencia del Español Actual 

(CREA)
12
 as the corpora of reference for English and Spanish respectively. The lexical 

inventories of both corpora actually required some pre-processing. First, those tokens 

containing a digit or any other non-alphabetical character were removed. Second, the 

remaining tokens were stemmed, so we added the frequencies of all those tokens whose 

stems were the same. After applying these two pre-processing techniques, the lexical 

inventory of the BNC was eventually reduced to 25% and that of CREA to 55%. 

Finally, those tokens whose frequency was 1 were removed; this amounts to 40% of the 

stems in the case of the BNC, and to 45% in the case of CREA. Thus, the frequency of 

any ngram which is not found in the list will finally be 1, avoiding the problem which 

arises when any of the frequency values in the dividend of the metric (21) is 0, where 

the geometric mean would have been 0. Therefore, when g does not occur in CPR, then 

fR(g) = 1, whose normalized frequency is 1	 ×	107J in the BNC and 6.6	 × 	107K in 
CREA. 

 Returning to our document collection, it can now be asserted that the degree of 

relevance of the ngram capacit with respect to CPT is 0.93023, being calculated as: 

 

(22)  

��capacit� = 1 −	 1
log. h2 +	 0.060.000002907k = 0.93023 

                                                           
11
 The unlemmatised frequency list of English words was downloaded on 23 June 2014 from 

http://www.kilgarriff.co.uk/bnc-readme.html. 
12
 The unlemmatised frequency list of Spanish words was downloaded on 23 June 2014 from 

http://corpus.rae.es/lfrecuencias.html. 



 

Since RT(amplifi) = 0.90955 and RT(flow) = 0.87381, I conclude that both capacitor and 

amplifier are more relevant than flow; however, it should be recalled that amplifier is as 

salient as flow. 

 

3.3. Term Cohesion 

In the case of bigrams and trigrams, I also introduced the notion of cohesion, serving to 

determine the unithood of complex ngrams. In the same vein as current ATE systems, 

DEXTER adopts a hybrid approach where termhood and unithood are combined to 

produce a unified weight. As Zhang et al. (2008, 2112) demonstrated, “hybrid methods 

work better than ‘termhood’ only methods”. Therefore, whereas salience and relevance 

serve to measure termhood, cohesion is aimed to quantify the degree of stability of 

multi-word terms. Although many standard association measures for unithood have 

been proposed in other works (cf. Section 2), Park et al. (2002, 5) reminded us that 

these measures have two major drawbacks: 

First, they evaluate the degree of association between two units and need to apply 

special techniques to calculate the association of terms with more than two words 

(…). Second, these measures tend to give higher values for low frequency terms, 

especially mutual information. 

 

Moreover, Korkontzelos et al. (2008, 249) showed that: 

Termhood-based approaches which take into consideration the nestedness of a 

candidate term into others (…) have in general superior performance over methods 

which measure the strength of association among the tokens of a multi-word 

candidate term. 



 

In this regard, one of our first options was to consider C-value (Frantzi and Ananiadou 

1996; Frantzi et al. 2000), which is described as “a method to improve the extraction of 

nested terms” (Frantzi et al. 2000, 122). From the perspective of combining several 

statistical features, it is important to keep in mind that this metric serves to measure 

termhood as well as unithood, i.e. “C-value measures ‘termhood’ by using term 

frequencies, and ‘unithood’ by examining frequencies of a term used as parts of longer 

terms” (Zhang et al. 2008, 2109). In fact, both components are clearly separated in the 

C-value formula, where unithood resides in the NST part and termhood in the remainder 

of the following equation: 

 

(23) 

\l��� = log.|�| ∗ +����, iff |-�| = 0 
 

\l��� = log.|�| ∗ �+���� − �-�����, iff |-�| > 0 
 

�-���� = ∑ +��m�n	∈	o(
|p�|  

 

where |g| is the number of unigrams within g, being |g| > 1, Hg represents the set of 

distinct complex ngrams that contain g and |Hg| is the number of ngrams in Hg. In case 

that g does not appear as nested, C-value assigns a value based on the number of tokens 

of the candidate and its frequency of occurrence in CPT. It should be noted that |g| is a 

key factor: a longer ngram appearing n times in a corpus is more important than a 



shorter ngram appearing n times in the same corpus, since it is less probable that the 

longer ngram will occur more frequently than the shorter one. 

When g is found as part of any other longer ngram, then the last formula in (23) 

serves to measure the nestedness of g. With respect to nestedness, the goal of C-value is 

not only to “avoid the extraction of substrings that are not terms”, but also to “extract 

those substrings that are terms” (Frantzi et al. 2000, 117). For example, in floating point 

constant, floating point is a term but this is not the case of point constant. Nestedness is 

here quantified as the degree of independence of a complex ngram; in other words, the 

greater the number of longer ngrams in which g appears as nested, the smaller the 

independence of g. 

There are two features of this method that attracted my attention. First, in the 

case of bigrams, C-value is proportional only to the frequency, since log2(2) = 1. This 

implies some serious consequences for small- or medium-sized corpora. For example, in 

our sample collection, the only complex terms which can be found are integrated circuit 

and electric current. Here their C-values are equal to their corresponding frequencies, 

i.e. 1 and 3 respectively. On the other hand, the candidate capacitor filters, which 

cannot be really considered a term, is also assigned 1. In all these cases, log2(|g|) = 1 and 

the NST component is not taken into account because |Hg| = 0. Therefore, in case of 

bigrams not being nested in longer ngrams, can we really assure that this metric serves 

to measure unithood? Second, only when the *ST value is equal to fT(g), then C-value = 

0. However, the interpretation of this zero value can be misleading on the premise that 

the higher the C-value, the higher the probability that a multi-word candidate can 

become an independent term. To illustrate, suppose that the bigram control circuit has 

appeared in only one longer candidate term (e.g. motor control circuit): 



 

(24) +��q_r_s	t_urs_^	tEstvEr� = 4 
 +��t_urs_^	tEstvEr� = 4 
 

\l�t_urs_^	tEstvEr� = 4 − 41 = 0 
 

and PC power is nested within several other candidates, as shown in (25): 

 

(25) 

 
The standard PC power supply unit has two safety mechanisms that prevent it from 

being switched "O*" without the motherboard attached. 

[…] 

An old PC power supply unit makes an excellent and cheap bench top power 

supply for the electronics constructor.
13
 

 +��wrxu,xs,	Z\	y_z{s� = 1 
 +��Z\	y_z{s	wvyy^|� = 2 
 +��_^,	Z\	y_z{s� = 1 
 +��Z\	y_z{s� = 2 
 

\l�Z\	y_z{s� = 2 − 43 = 0.67 
 

According to the C-value of control circuit and PC power, I could wrongly conclude 

that the latter is more independent than the former. However, this assumption does not 

provide a true view of reality. Whereas control circuit has become a stable term in the 

field of electronics, as shown in the following lexicographical entry: 

control- Also called a control circuit. 1. In a digital computer, those parts that carry 

out the instructions in proper sequence, interpret each instruction, and apply the 

proper signals to the arithmetic unit and other parts in accordance with the 

interpretation. (Graf 1999) 

 

                                                           
13
 Text extracted from http://www.electronics-tutorials.ws/blog/convert-atx-psu-to-bench-supply.html. 



PC power is more frequently found as part of compounds such as PC power 

consumption, PC power speed or PC power supply in the computer hardware domain. 

Therefore, these two features clearly demonstrate that C-value is not always an 

adequate method for any type of document collection. In fact, most of the research with 

C-value has focused on long candidate terms in the medical domain, where 4-gram and 

even 5-gram candidates are relatively frequent, e.g. adenoid cystic basal cell carcimona 

(cf. Frantzi et al. 2000). However, although it is usually agreed that there is a significant 

proportion of terminological noun phrases in specialized corpora, not all domains are 

described in the same degree of linguistic complexity. For example, Golik et al. (2013, 

159-160) concluded that, after the exploration of biomedical corpora as well as the 

consultation of domain experts, 5-grams structured linguistically as “** in **, ** for 

**, ** at ** and ** to ** are interesting and useful to consider”, but they also 

acknowledged that these patterns are certainly infrequent in other specialized domains. 

In the search for other unithood methods away from standard association 

measures, I also found Term Cohesion (Park et al. 2002), a metric which computes the 

degree of cohesion among the items that compose a multi-word candidate term. Again, 

taking the ngram as the unit of analysis, the Term Cohesion of a complex ngram (g) can 

be estimated as follows: 

(26)  

\���� = |�| 	× 	+���� 	× log.�+�����∑ +��c1�63∈� ,	iff	|�| > 1 
 

where fT(g) is the frequency of g in CPT and fT(k) is the frequency of a given unigram in 

g with respect to CPT. Like C-value, Term Cohesion is proportional to the length and 

the frequency of the complex ngram. However, Term Cohesion does not take into 



account the number of different candidates in which g appears as nested, but only the 

frequency of the items which compose g. More particularly, cohesion is high when the 

items which compose the ngram are more frequently found within the ngram than alone 

in texts. In this line, I propose that the logarithmic component should not be included 

when fT(g) = 1; otherwise, regardless of the values in the other components of this 

measure, cohesion will always be 0 in these cases. Therefore, cohesion can be 

calculated more accurately as follows, where F is the logarithmic factor: 

(27)  

\�(�) = |�| 	× 	+�(�)∑ +�(c1)63∈�
× �,	iff	|�| > 1 

 

� = } 1, iff	+�(�) = 1log.(+�(�)) , iff	+�(�) > 1~ 
 

Indeed, we can realize that the first component of this equation estimates a value which 

can also be calculated as the frequency of the ngram over the arithmetic mean of the 

frequency values of their nested unigrams, so: 

(28)  

\�(�) = +�(�)
�∑ +�(c1)63∈�|�| �

× � 

 

In this context, I chose to replace the arithmetic mean by a geometric mean. This minor 

change is motivated by two facts. On the one hand, since all frequency values are 

positive numbers, geometric mean is smaller than arithmetic mean, so cohesion scores 

will be higher. However, geometric mean remains exactly the same as arithmetic mean 



when all the frequency values involved in the complex candidate are equal, e.g. in the 

case that nested unigrams do not appear alone in CPT. On the other hand, and similarly 

to the relevance metric, geometric mean smoothes the result in a frequency distribution 

where extreme values are present. For example, in the case of trigrams of the type “N 

prep N”, the high frequency of prepositions makes distribution values be skewed right, 

resulting in a median which is closer to the geometric mean than the arithmetic mean. 

Consequently, cohesion is finally calculated as follows: 

(29)  

\�(�) = +�(�)
 ∏ +�(c1)63∈�

|(| × �,	iff	|�| > 1 

 

Returning to our example, the cohesion of integrated circuit, electric current and 

capacitor filters is calculated as (30), (31) and (32) respectively: 

(30)  

\�(integr	circuit� = 11 × 1 = 1 
 

(31)  

\��electr	current� = 33 × 	1.58496 = 1.58496 
 

(32)  

\��capacit	filter� = 11.73205 × 1 = 0.57735 
 



We can definitely see that this metric provides a more adequate ranking of the ngrams 

than C-value. Finally, cohesion values are normalized in a manner similar to those of 

relevance: 

(33)  

\���� = 1 − 1
log.

�
�2 +	 +����	

 ∏ +��c1�63∈�|(| × �
�
�
,	iff	|�| > 1 

 

3.4. SRC: A Composite Measure for Term Extraction 

Some studies (e.g. Zhang et al. 2008; Fedorenko et al. 2013) demonstrated that the 

combination of multiple term recognition algorithms tends to outperform most of the 

methods that consider only one statistical feature. On the other hand, a standard practice 

in the combination of measures (c.f. Frantzi et al. 2000; Park et al. 2002; Sclano and 

Velardi 2007; Lossio-Ventura et al. 2014) is to multiply each one of the weights derived 

from each algorithm by a different coefficient in order to provide a greater or lesser 

weight to the outcome of a given measure. Thus, the weighted composite measure for 

term extraction in DEXTER, which I call SRC, is as follows: 

(34)  

-\���� = r{sqℎ__,��� + 	vuErℎ__,��� 
 

r{sqℎ__,��� = -���� ∗ 	� +	���� ∗ 	� 
 

vuErℎ__,��� = } 0, iff	|�| = 1\���� ∗ 	�, iff	|�| > 1~ 
 



The fact that coefficients α, β and γ are user-adjustable constant values, providing that α 

+ β = 1 for unigrams and α + β + γ = 1 for complex ngrams, is motivated by the fact that 

“domains and quality of corpus do have an impact on the performance of ATR 

algorithms” (Zhang et al. 2008, 2111). In this way, and depending on the values 

assigned to these coefficients when extracting complex ngrams, you have the choice of 

giving a greater weight to unithood (i.e. cohesion) rather than to termhood (i.e. salience 

and relevance), thus minimizing the problem that “the significance of unithood 

measures are often overshadowed by the larger notion of termhood” (Wonget al. 2008, 

503). 

4. Evaluation Procedure 

Section 3 has revealed that the integration of the metrics related to the notions of 

salience, relevance and cohesion is theoretically well-grounded. Now it is time to 

evaluate empirically whether the composite measure SRC contributes to the 

performance of the ATE system. In this regard, it should be recalled that the goal of this 

article focuses on the suitability of the metric. In other words, if too much noise is found 

at the top of the candidate list, then the user will spend too much time removing false 

candidates, and this waste of time will definitely impact on the efficiency of the system. 

As stated in Section 2, term extraction tools usually consider both linguistic and 

statistical properties of words for the identification of term candidates. Therefore, the 

precision of the ATE system is not only affected by the metric itself but also by other 

factors such as the granularity of linguistic patterns or the length of the stop-word list. 

In the case of DEXTER, full POS tagging is not performed, which seems quite logical 

considering that traditional linguistic patterns are quite restrictive as well as being 

language dependent. Instead, a set of shallow lexical filters supported by a stop-word 



list is applied before term weighting. On the one hand, the system can filter out those 

candidates which match any of the following filters: 

(i) Ngrams containing one or more non-alphabetical characters 

(ii) One-character unigrams 

(iii) Unigrams matching a functional word 

(iv) Bigrams and trigrams containing a one-character word 

(v) Bigrams containing one or two functional words 

(vi) Trigrams containing a functional word at the beginning and/or at end of the ngram 

(vii) Trigrams containing a non-prepositional functional word in the mid-position 

 

On the other hand, DEXTER is provided with two stop-word lists for each language: (a) 

a pre-defined list of functional words, and (b) an automatically-generated list of other 

non-content bearing words which are derived on the basis of Luhn’s word frequency 

distribution in a general corpus of the given language (Luhn 1958; Sun et al. 1999). 

Therefore, it can be assumed that a comparative evaluation of DEXTER with other term 

extraction tools can only serve to assess the performance of the whole system but not 

the real impact of the metric on this process. For these reasons, verifying that the 

combined measure performs better than each of its components taken separately in the 

same work environment is sufficient to empirically evaluate the suitability of SRC. 

The experiments on SRC were performed with corpora of different sizes, 

domains and languages, and a hybrid procedure of evaluation was applied. The first 

stage of the evaluation was based on a reference list. First, those candidates extracted 

from the specialized corpora which were also present in their corresponding domains 

within the multilingual term database IATE (InterActive Terminology for Europe) were 

automatically tagged as positive candidates.
14
 Second, positive candidates were 

reviewed to detect those which had been ill-categorized by IATE contributors. Finally, 

the second stage of the evaluation consisted in validating manually those candidates 

                                                           
14
 The IATE database was downloaded on 25 June 2014 from http://iate.europa.eu/tbxPageDownload.do. 



which were not selected as terms in the previous stage. The experiments were aimed at 

comparing the performance of SRC, S, R and C in terms of precision from the top 200 

unigrams, bigrams and trigrams.  

4.1. Experiment 1 

Experiment 1 was performed with a medium-sized corpus of 499 English-written 

documents (520,383 tokens) about electronics, whose corresponding IATE domains 

were Electrical Industry [6621001] and Electronics and Electrical Engineering [6826, 

6826001, 6826002].
15
 The documents were obtained from a website

16
 whose aim is to 

provide beginners who study electronics with basic information to help them develop 

knowledge and understanding of this subject. DEXTER extracted 2,412 unigrams, 

2,968 bigrams and 892 trigrams. According to the equation (34), the overall precision of 

SRC was 0.72. 

Table 1 shows the results of the evaluation of unigrams, where SRC was 

calculated with α = 0.7 and β = 0.3. 

Table 1. Precision in the evaluation of unigrams 

 

#candidates SRC S R 

1-50 0.90 0.84 0.74 

1-100 0.82 0.82 0.71 

1-150 0.80 0.78 0.72 

1-200 0.78 0.77 0.72 

 

 

In the case of bigrams, the best precision of SRC was achieved with the values 0.4, 0.2 

and 0.4 for the coefficients α, β and γ respectively, as shown in Table 2. 

Table 2. Precision in the evaluation of bigrams 

 

                                                           
15
 IATE domain codes are given in brackets. 

16
 http://www.allaboutcircuits.com 



#candidates SRC S R C 

1-50 0.76 0.74 0.64 0.80 

1-100 0.68 0.73 0.64 0.69 

1-150 0.70 0.70 0.62 0.68 

1-200 0.71 0.70 0.59 0.67 

 

 

Finally, Table 3 illustrates the results of the evaluation of trigrams, where SRC had the 

values 0.6, 0.1 and 0.3 for the coefficients α, β and γ respectively. 

Table 3. Precision in the evaluation of trigrams 

 

#candidates SRC S R C 

1-50 0.74 0.68 0.46 0.74 

1-100 0.70 0.68 0.59 0.68 

1-150 0.66 0.65 0.59 0.64 

1-200 0.66 0.64 0.58 0.63 

 

4.2. Experiment 2 

Experiment 2 was performed with a small corpus of 137 Spanish texts (197,812 tokens) 

about medical procedures and surgery, whose corresponding IATE domains were 

Health [2841], Health Care Profession [2841001], Health Policy [2841002], Illness 

[2841003], and Medical Science [2841004]. The documents were obtained from 

Enciclopedia Ilustrada de Salud ADAM.
17
 DEXTER extracted 1,707 unigrams, 504 

bigrams and 278 trigrams. According to the equation (34), the overall precision of SRC 

was 0.89. 

Table 4 illustrates the results of the evaluation of unigrams, where SRC was 

calculated with α = 0.9 and β = 0.1. 

Table 4. Precision in the evaluation of unigrams 

                                                           
17
 http://www.nlm.nih.gov/medlineplus/spanish/encyclopedia.html 



 

#candidates SRC S R 

1-50 0.94 0.90 0.88 

1-100 0.95 0.89 0.90 

1-150 0.94 0.88 0.92 

1-200 0.94 0.87 0.86 

 

 

Table 5 shows the results of the evaluation of bigrams, where SRC was calculated with 

α = 0.4, β = 0.4 and γ = 0.2. 

 

Table 5. Precision in the evaluation of bigrams 

 

#candidates SRC S R C 

1-50 0.96 0.80 0.92 0.94 

1-100 0.93 0.78 0.89 0.89 

1-150 0.93 0.76 0.86 0.88 

1-200 0.93 0.74 0.85 0.88 

 

 

Finally, Table 6 illustrates the results of the evaluation of trigrams, where SRC has the 

values 0.8, 0 and 0.2 for the coefficients α, β and γ. 

Table 6. Precision in the evaluation of trigrams 

 

#candidates SRC S R C 

1-50 0.84 0.78 0.82 0.82 

1-100 0.84 0.79 0.81 0.78 

1-150 0.80 0.80 0.80 0.78 

1-200 0.79 0.77 0.74 0.76 

 

 

4.3. Discussion of Results 



Experiments 1 and 2 demonstrated that the best precision was obtained with SRC when 

the top 200 unigrams, bigrams and trigrams were retrieved. Indeed, if we analyze the 

above tables by rows, we can realize that on just two occasions single metrics improved 

the precision of SRC in the 24 different cut-off points along the top 200 ngrams, i.e. 

with the first 50 and 100 bigrams in Experiment 1. Therefore, it can be concluded that 

the combination of metrics can actually enhance the performance of the ATE system. 

The key feature for the success of SRC is undoubtedly centered on the values 

assigned to the three coefficients in the equation (34). Indeed, SRC can become the best 

or the worst metric depending on these values. For example, if I had been interested in 

extracting just the top 50 bigrams in Experiment 1, the most efficient metric would have 

been C, unless I had tuned the SRC formula by adjusting the three coefficients. In fact, 

many researchers agree that: 

(…) it is reasonable to expect that there will be no “best” ATR [Automatic Term 

Recognition] method which would outperform others on all data sets and in all 

circumstances. (Knoth et al. 2009, 84) 

 

However, on the basis of the theoretical underpinnings described in Section 3 and the 

experiments presented in this section, I can assert that, for ATE systems focusing on 

small- and medium-sized specialized corpora, SRC is one of the most efficient measures 

as far as precision is concerned. However, it is also reasonable to expect that there will 

be no pre-defined combination of constant values which would outperform others on all 

data sets and in all circumstances.  

Consequently, how can one determine automatically the coefficient values 

which are able to outcome the largest number of terms among the top-ranked candidates 

in a given corpus? This is actually a challenge that I intend to face in future 



experiments. At first sight, an attempt to manage this task would be based on the 

discriminating capacity of the S, R and C metrics compared to the distribution of the 

terms. This approach does not succeed, however, when looking at the distribution of 

bigrams in Experiment 2 (cf. Table 5); here the worst single metric was S and the best 

single metric was C, so it could be reasonably expected that their corresponding 

coefficients will be assigned a lower and higher value respectively in the SRC formula, 

but paradoxically α = 0.4 and γ = 0.2. Consequently, there is not always a direct 

correlation between the weights of the single metrics and the single coefficients of the 

combined metric.  

On the other hand, a more promising avenue of research is to discover the 

weights of the SRC parameters by automatically validating candidates with IATE and 

combining the different values of the single metrics to get the best distribution of terms 

in the different cut-off points along the top 200 ngrams. In this context, a given 

combination of the coefficients should be understood as an ordered selection of k 

elements from a set of n elements. It is important to note that the order of the selected 

elements matters, since an arrangement such as 0.8-0.2 is unlikely to provide the same 

outcome as 0.2-0.8 for α and β respectively. Therefore, mathematically speaking, these 

arrangements cannot be called combinations in stricto sensu but variations with 

repetition. However, these variations possess a special characteristic: the addition of the 

selected elements must be 1. Thus, being n the maximum number of values that each 

parameter can take (i.e. n = 11, since the range of values for any SRC parameter is from 

0.0 to 1.0) and k the number of parameters (i.e. k = 2 for unigrams and k = 3 for bigrams 

and trigrams), the equation to calculate the number of permutations is as follows: 

(35) 



l@,6 = u,	iff	c = 2 
 

l@,6 = u�u + 1�2 ,	iff	c = 3 
 

Therefore, the ATE system requires 11 variations of the coefficients to calculate the best 

distribution of unigrams; and in the case of bigrams or trigrams, the variations are 66. 

However, this method is not fully reliable, since IATE is not a fully-developed 

terminological database. The pending question is whether the best variations of 

coefficients will still provide the best distribution of terms after the manual validation of 

candidates. 

 

5. Conclusion 

In this article, I presented the suitability of the metric used in DEXTER, an online 

multilingual ATE workbench. This metric, which I called SRC, is based on three 

fundamental notions: (i) Salience, i.e. which indicates the uniqueness or prevalence of a 

term in the data collection, (ii) Relevance, i.e. which measures the tendency of term 

usage between a domain-specific corpus and a general-purpose one, and (iii) Cohesion, 

i.e. which quantifies the degree of stability of multi-word terms. SRC can be described 

as a hybrid method, not only because it combines the linguistic approach with the 

statistical one, but also because it combines an AKE measure (i.e. salience) with ATE 

measures (i.e. relevance and cohesion). Moreover, SRC enables varying degrees of 

unification between termhood and unithood: whereas the salience and relevance 

components of SRC serve to measure termhood, because terms are properties of both 

documents and domains, the unithood of complex terms is determined by cohesion. 



Unlike for most ATE research, where metrics are indiscriminately combined to produce 

the best results, the integration of DEXTER’s terminological features (i.e. salience, 

relevance and cohesion) was grounded on a rational basis before the evaluation of the 

metric. The evaluation of the experiments in Section 4 proved that SRC can outperform 

the results obtained by single metrics, and more particularly by those upon which SRC 

has been devised, i.e. TF-IDF (Salton and Buckley 1988), weirdness (Ahmad et al. 

2000) and cohesion (Park et al. 2002). The experiments also demonstrated that the 

distribution of term candidates in the different cut-off points along the top 200 ngrams 

becomes more adequate with SRC, suggesting the possibility of automatically fixing a 

minimum threshold below which domain-specific terms would be barely present. 

However, this issue will be addressed in future research. As stated by Conrado et al. 

(2014), one of the main challenges of ATE systems is precisely to determine a threshold 

in the candidate term ranking. 
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