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Abstract 1 

Defective interfering (DI) viruses are thought to cause oscillations in virus levels, known as 2 

the “Von Magnus effect”.  Interference by DI viruses has been proposed to underlie these 3 

dynamics, although experimental tests of this idea have not been forthcoming.  For the 4 

baculoviruses, insect viruses commonly used for the expression of heterologous proteins in 5 

insect cells, the molecular mechanisms underlying DI generation have been investigated.  6 

However, the dynamics of baculovirus populations harboring DIs have not been studied in 7 

detail.  In order to address this issue, we used quantitative real-time PCR to determine the 8 

levels of helper and DI viruses during 50 serial passages of Autographa californica multiple 9 

nucleopolyhedrovirus (AcMNPV) in Sf21 cells.  Unexpectedly, the helper and DI viruses 10 

changed levels largely in phase, and oscillations were highly irregular, suggesting the 11 

presence of chaos.  We therefore developed a simple mathematical model of baculovirus-DI 12 

dynamics. This theoretical model reproduced patterns qualitatively similar to the 13 

experimental data.  Although we cannot exclude that experimental variation (noise) plays an 14 

important role in generating the observed patterns, the presence of chaos in the model 15 

dynamics was confirmed with the computation of the maximal Lyapunov exponent, and a 16 

Ruelle-Takens-Newhouse route to chaos was identified at decreasing production of DI 17 

viruses, using mutation as a control parameter.  Our results contribute to a better 18 

understanding of the dynamics of DI baculoviruses, and suggest that changes in virus levels 19 

over passages may exhibit chaos. 20 

 21 

Keywords:  baculovirus, bifurcations, chaos, defective interfering virus, experimental 22 

evolution 23 

24 
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1  Introduction 25 

 26 

Defective interfering (DI) viruses were first reported by Von Magnus [1], who studied their 27 

development in Influenza A virus populations passaged in embryonated chicken eggs.  28 

Based on these serial passage experiments the existence of ‘incomplete’ virus variants 29 

which increase rapidly in frequency and cause drops in overall virus titers was proposed.  30 

The existence of virus variants with large genomic deletions has since been confirmed in 31 

many virus families [2], including the Alphabaculoviruses [3,4].  DI viruses are generated 32 

almost instantly and accumulate rapidly when baculoviruses are introduced into cultured 33 

insect cells [5,6], leading to problems with sustained expression of heterologous proteins [3] 34 

in this widely used expression system [7].  DI viruses are thought to replicate much faster 35 

than viruses with a full-length genome, due to their smaller genome sizes.  Moreover, DIs 36 

can evolve other strategies to better compete with helper viruses, such as the accumulation 37 

of origins of DNA replication within a single genome [8-10], a phenomenon that can be cell-38 

line dependent [11].  On the other hand, DI viruses cannot autonomously replicate because 39 

they lack essential genes.  DI viruses must therefore co-infect a cell with a helper virus in 40 

order to replicate, becoming obligate parasites of helper viruses, as they must co-opt gene 41 

products and cannot replicate on their own.  When the frequency of the DI virus is high, 42 

overall virus production is low because essential gene products – which must come from a 43 

helper virus – are no longer available (i.e., interference).  DI viruses can have implications for 44 

virus amplification in cultured cells, protein expression using viral vectors, and vaccination 45 

[12]. 46 

Co-existence of DI and helper viruses is thought to lead to regular cyclical changes in 47 

virus titer: there is a repeated decrease followed by an increase in virus titers over passages.  48 

These cyclical changes have been observed in many viral systems [2,13-16] and have been 49 

dubbed the “Von Magnus effect”.  The following mechanism [2] has been suggested to 50 
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account for these fluctuations in virus titer: (i) cells are infected with a virus population 51 

composed of a helper and a DI virus, or a DI virus is generated spontaneously by mutation, 52 

(ii) virus amplification leads to an increase in the cellular multiplicity of infection, the number 53 

of virions infecting each cell, (iii) the DI virus will eventually reach a higher frequency of 54 

occurrence than the helper virus, as it has a selective advantage over the helper virus during 55 

cellular co-infection, and (iv) when the frequency of the DI virus becomes high, interference 56 

occurs and the titers of both viruses drop.  The process then repeats itself, resulting in 57 

cyclical fluctuations in virus titers. 58 

There is some experimental evidence that this mechanism is important for generating 59 

cyclical changes in virus titer.  Palma and Huang [16] tracked the titer of helper and DI 60 

Vesicular stomatitis virus (VSV) variants and found that the two viruses evolved out of phase.  61 

Kawai et al. [14] showed that VSV plaque-forming units peak before viral capsid inclusions – 62 

an indicator of DI presence – accumulate in cells.  On the other hand, Stauffer Thompson 63 

and Yin [17] observed irregular fluctuations of VSV over passages in the presence of DI 64 

viruses, which were attributed to experimental variation in available cellular resources.  The 65 

idea that the dynamics of DI viruses could lead to irregular patterns had, however, already 66 

been made previously based on theoretical work, albeit for different reasons.  Deterministic 67 

mathematical models of defective viruses considering discrete dynamics were early studied, 68 

and the presence of deterministic chaos was suggested [18].  Later, detailed mathematical 69 

models of serial passage predicted irregular fluctuations in virus titer, claimed to be also 70 

representative of deterministic chaos [19,20].  Although these studies suggested the 71 

presence of chaos, the confirmation of chaotic dynamics in theoretical models of helper and 72 

DI viruses was not thoroughly provided.  All these observations suggest that the interactions 73 

between helper and DI viruses may in some cases lead to more complex interactions than 74 

those postulated by the ´Von Magnus´ model. 75 

For baculoviruses regular cyclical changes in virus titer have not been observed during 76 

passages in insect cells (e.g., [5]), although De Gooijer et al. [21] observed patterns likely 77 
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caused by the presence of DI viruses in bioreactors [22,23].  Moreover, few studies have 78 

tracked DI baculovirus levels over time [6,24].  In this study, we therefore first sought to 79 

observe experimentally and better understand the dynamics of DI baculoviruses.  We 80 

employed quantitative real-time PCR (qPCR) to consider how levels of helper and DI 81 

baculoviruses change over a high number of passages in insect cells.  Given that we 82 

observed irregular fluctuations in the titers of both helper and DI viruses, we then explored 83 

the characteristics of a simple mechanistic mathematical model that produced patterns 84 

qualitatively similar to the data.  Our experimental observations and theoretical results help 85 

shed light on the question of whether the dynamics of virus populations harboring DIs are 86 

chaotic. 87 

 88 

2  Methods 89 

 90 

2.1  Serial passage in insect cells 91 

 92 

For our experiments, bGFP was serially passaged in insect cells.  bGFP is a bacmid-derived 93 

[25] alphabaculovirus, Autographa californica multiple nucleopolyhedrovirus (AcMNPV), 94 

expressing GFP under the polyhedrin promoter [5].  One hundred minimal-dilution (e.g., 1:4 95 

dilution) serial passages were performed in a monolayer of approximately 106 Sf21 cells [26] 96 

in 25 ml flasks [5].  For the first passage, 20 median tissue culture infectious dose units per 97 

cell were added.  The cells were exposed to the virus for 2 h, followed by the refreshing of 98 

media and incubation of the cells for 72 h.  The media collected at the end of a passage was 99 

used for passaging and as samples for analysis. 100 

 101 

2.2  qPCR 102 

 103 
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We quantified the concentration of the ie1 and p94 genes in budded virus samples from the 104 

serially passaged baculovirus with a SYBR Green I based qPCR assay [24].  DNA was 105 

extracted from stored media and analyzed by qPCR as described elsewhere [27].  For ie1, 106 

the forward primer 5’- TCGGAATCCCTTGAGCAGCCTG-3’ and reverse primer 5’- 107 

TTGCCGATGGTTGGTTCACACC-3’ were used.  For p94, the forward primer 5’-108 

CCGAGACATACCACAAAGCCG-3’ and reverse primer 5’-109 

GCACATAAACGACGCAGAATACAT-3’ were used.  As an internal control, samples were 110 

spiked with 109 copies of a plasmid containing luciferase prior to DNA extraction (pGEM-luc; 111 

Promega).  The forward primer 5’-TGTTGGGCGCGTTATTTATC- 3’ and reverse primer 5’-112 

AGGCTGCGAAATGTTCATACT-3’ were used to amplify luciferase, as previously described 113 

[28].  DNA concentrations for all three templates were calculated from fluorescence levels 114 

using comparative analysis in RotorGene 6.0 Software (Corbett Research; Sydney, 115 

Australia).  The ie1 and p94 levels were divided by measured luciferase DNA concentration 116 

for normalization.  Five time points could not be analyzed for various technical reasons (i.e., 117 

sample volume available, low yields of DNA upon extraction). 118 

Statistical analyses were performed with the statistical software package R version 119 

2.14.2 (The R Foundation; Vienna, Austria) or SPSS 20.0 (IBM Corporation, Armonk, NY, 120 

USA). 121 

 122 

2.3  Simple probabilistic model of DI dynamics 123 

 124 

In order to model infection dynamics for our system, we assume that during infection of 125 

insect cells each virion acts independently, and that the dynamics of infection during serial 126 

passaging can be captured by only considering the first round of cellular infection during 127 

each passage.  Moreover, for simplicity we assume that each virion produced will infect a cell 128 

in the next round of passaging.  We can make this assumption because we are considering 129 

processes within the cell (i.e., replication), and we do not have to consider both virion 130 
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numbers produced and probabilities of infection in any detail.  As virions act independently, 131 

the number of infecting virions per cell follows a Poisson distribution for each virus.  These 132 

distributions will have means ψH = nH/c for the helper virus and ψD = nD/c for the DI virus, 133 

where nH is the number of helper virions, nD is the number of DI virions and c is the number 134 

of cells.  We then consider the frequency of cells infected only by the helper virus, α, or co-135 

infected by both viruses, β, since of all cells there will only be virus production in these two 136 

fractions.  Following [28], the infection probabilities are given by: 137 

𝛼 = Pr 𝐻 𝐷 = 𝑒!!! 1 − 𝑒!!! ,     (1) 138 

𝛽 = Pr 𝐻 𝐷 = 1 − 𝑒!!! 1 − 𝑒!!! ,     (2) 139 

where Pr 𝐻 𝐷  is the probability a cells will be infected by the helper virions but not by DI 140 

virions, and Pr 𝐻 𝐷  is the probability a cell will be infected by both helper and DI virions.  141 

Those cells infected by only the helper virus produce vα virions per cell.  However, the helper 142 

virus mutates into a DI with a probability µ.  In co-infected cells, mainly DIs are produced at a 143 

rate of vβ virions per cell.  However, we allow for the possibility that production of virions in 144 

co-infected cells is leaky, allowing a proportion ϕ of virions to be of the helper virus type.  145 

Hence the production of helper and DI virions during a passage, t, is: 146 

𝑛! 𝑡 + 1 = 𝑐 𝛼𝑣! 1 − 𝜇 + 𝛽𝑣!𝜙 ,      (3) 147 

𝑛! 𝑡 + 1 = 𝑐 𝛼𝑣!𝜇 + 𝛽𝑣! 1 − 𝜙
.     (4) 

148 

There are a number of other sources of variation during serial passage experiments 149 

besides the distribution of helper and DI viruses over cells.  Mutation from helper virus to DI 150 

virus is an inherently stochastic process and is therefore an unavoidable source of variation 151 

in experiments.  We assume these mutations occur in those cells infected only by the helper 152 

virus (cH = αc), and that the number of cells in which a mutation occurs follows a binomial 153 

distribution with a probability of success χ : 154 

Pr 𝛺 = 𝜔 = 𝑐!
𝜔 𝜒! 1 − 𝜒 !!!!,     (5) 155 
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where Ω is a random variable describing the number of cells in which a mutation occurs, and 156 

ω is a realization of Ω.  For each passage, one realization of this binomial process ω can 157 

then be divided by cH and substituted for µ in (3) and (4).  This addition renders a model 158 

incorporating the minimal conceivable stochastic variation due to mutations of helper virus to 159 

DI virus. 160 

Stauffer Thompson and Yin [17] considered the effects of various sources of 161 

experimental error on the dynamics of helper and DI virus, and concluded the most important 162 

source of variation was the number of available cells.  To consider what effects plausible 163 

sources of variation – other than mutation of helper virus to a DI virus – might have on the 164 

dynamics of virus population harboring DI viruses, we therefore allow the number of cells to 165 

follow a negative binomial distribution, such that: 166 

Pr 𝑋 = 𝑥 = ! !!!
! ! !!

𝑝! 1 − 𝑝 ! ,      (6) 167 

where X is a random variable describing the number of cells used in each passage, x is a 168 

realization of X and for each passage one realization is valid, p is the probability of success 169 

for a trial, r is the number of successful trials required and Γ() is the gamma function.  The 170 

negative binomial distribution was chosen because it is a discrete probability distribution for 171 

which we can change the variance without changing the mean [29], and can therefore 172 

consider variances higher than those of a Poisson distribution.  Note that we attach no 173 

significance to particular p and r values or their interpretation here, these were chosen simply 174 

to increase the variance of the distribution of the number of cells to levels likely to be seen in 175 

experiments, while keeping the mean constant. 176 

Finally, DI baculoviruses are known to accumulate multiple copies of particular loci, 177 

such as the non-HR origin of DNA replication in the p94 gene [8-10].  If the detection of DIs is 178 

sequence-based, the observed DI virus level, 𝑛!! 𝑡 , could diverge from the actual number of 179 

virions, nD(t), increasing over passages because multiple copies of the specific sequence 180 

used for detection accrue in DI genomes.  If the interactions between helper and DI viruses 181 
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remain otherwise identical, the observed DI virus level at passage t will be: 182 

𝑛!! 𝑡 = 1 + 𝑡𝜉 𝑛! 𝑡 ,       (7) 183 

where ξ is the rate of change in the mean number of DI detection sequences per DI genome 184 

per passage.  The model was implemented with the statistical software package R 2.14.2. 185 

 186 

2.4  Computation of the maximal Lyapunov exponent 187 

 188 

Here we describe the procedure to compute the maximal Lyapunov exponent (hereafter 189 

MLE) for a discrete dynamical system [30,31] that will be used for our mathematical model.  190 

The characteristic Lyapunov exponents are usually introduced to measure the rate of 191 

exponential divergence of nearby trajectories in the phase space, i.e., they give us 192 

information on the rate of growth of a very small error on the initial state of the system [32-193 

34].  We consider the discrete dynamical system of the following form: 194 

𝒙!!! =   𝑭! 𝒙! ,   i = 0, 1, ...       (8) 195 

with a given x0, xi ∈ ℝ!  and 𝑭!  being assumed to be continuously differentiable.  Small 196 

perturbations to the orbits {𝑥!} of (8) evolve according to the dynamics of the respective 197 

linear variational equations: 198 

𝒀!!! = 𝐷𝑭! 𝒙! 𝒀! = 𝑨!𝒀!, i = 0, 1, ... 199 

with 𝒀!   ∈   ℝ!"! and 𝒀! = 𝑰.  The matrix 𝑨𝒊 =   
𝝏!!(!)
𝝏𝒙 𝒙!  𝒙𝒊

∈ ℝ!"! is assumed to be full rank 200 

in order to obtain the n Lyapunov exponents.  Let 𝒀! = 𝑰 and 𝒀! = 𝐴!!!…   𝐴!; i = 0, 1, ..., be 201 

the fundamental solution of (8).  Then the following symmetric positive definite matrices exist: 202 

Δ =    lim!⟶! (𝒀!)!𝒀! !/(!!). 203 

The logarithms of their eigenvalues are called Lyapunov exponents of (8), and are denoted 204 

as 𝜆! > 𝜆! > ⋯ > 𝜆!; with 𝜆! being the MLE. 205 

We emphasize that Lyapunov exponents give us information on the typical behavior 206 

along a generic trajectory, followed for infinite time and keeping the initial perturbation 207 
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infinitesimally small.  The rate of separation can be different for different orientations of the 208 

initial separation vector.  Therefore, there is a spectrum of Lyapunov exponents – which is 209 

equal to the dimensionality of the phase space, 𝜆! > 𝜆! > ⋯ > 𝜆! .  A positive MLE is 210 

commonly taken as an indicator of chaotic behavior (provided some conditions are met, e. g., 211 

phase space compactness). 212 

 213 

3  Results and Discussion 214 

 215 

3.1  qPCR-determined ie1 and p94 levels indicate complex dynamics 216 

 217 

The AcMNPV-derived bGFP was passaged for 100 passages in Sf21 cells, and we then 218 

determined the level of the ie1 and p94 genes by qPCR for the ancestral virus and passages 219 

50-100 (Figure 1).  The analysis focused on a virus population with a high number of 220 

passages, as we wanted to focus on the dynamics of a population containing DIs rather than 221 

their de novo generation, which has already been documented [5,6,24,35].  The 222 

concentration of ie1 was used as a proxy for helper virus titers, because this gene encodes 223 

an essential transcriptional regulator [36].  All viruses capable of autonomous replication 224 

must therefore carry ie1.  As a proxy for DI virus titers, we used the concentration of p94 − 225 

ie1, which we subsequently refer to as p94*.  This value gives an approximation of DI levels 226 

because p94 contains a non-HR origin of DNA replication that is maintained and selected for 227 

in DI viruses [8-10,24], and by subtracting ie1 we consider only the concentration of those 228 

viruses missing this essential gene.  However, not all DI viruses need necessarily contain 229 

p94, and some DI viruses could in principle contain ie1.  Our measurement is therefore a 230 

proxy, although previous results suggest it is a good indicator of the frequency of DI viruses 231 

[24].  qPCR-measured ie1 levels were significantly lower than both p94 and p94* levels 232 

(Wilcoxon signed ranks test: z = −5.905, P < 0.001), in agreement with previous observations 233 
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[24]. 234 

Prima facie there appear to be no regular oscillations in ie1 and p94* levels.  Our 235 

results therefore contrast with previous findings for other viruses, where helper and DI 236 

viruses changed titers out of phase [14,16] and with evident regular periodicity [14].  There 237 

appears to be an increase over passages of p94* levels, whereas ie1 levels, although also 238 

showing a great deal of variation, appear to be stationary (Figure 1).  To test if this is indeed 239 

the case, we performed a non-parametric Spearman test to look for correlations between ie1 240 

or p94* levels and time.  There was no significant trend for ie1 (ρ = 0.277, 44 d.f., P = 0.062), 241 

suggesting that minimum helper virus frequencies had already been reached by passage 50.  242 

On the other hand, p94* increased significantly over passages (ρ = 0.654, 44 d.f., P < 0.001), 243 

suggesting that DI genomes accumulated multiple copies of the non-HR origin of DNA 244 

replication in their genomes [8-10].  This trend could, however, also result from an overall 245 

increase in the number of DI viruses present per helper virus, indicating the DI virus is 246 

optimizing its exploitation of the helper virus. 247 

The levels of ie1 and p94* varied greatly between passages, and the two levels of 248 

viruses appear to change in phase (Figure 1).  A Model II major-axis linear regression [37] on 249 

log-transformed ie1 and p94* concentrations rendered a slope significantly greater than zero 250 

(0.965 with a 95% confidence interval 0.713-1.301; P < 0.001), confirming a relationship 251 

between the two variables (Figure 2).  This relationship in turn is congruent with the 252 

observation that the two viruses change levels in phase: when the level of DI virus is high, 253 

the level of helper virus also tends to be high and vice-versa. 254 

 255 

3.2  Simple models of DI dynamics 256 

 257 

Measurements of ie1 and p94* levels by qPCR gave surprising results, as the helper and DI 258 

viruses changed levels in phase and the length of oscillations appeared to be irregular.  To 259 
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better understand these results, we built a simple probabilistic model describing the 260 

interactions between helper and DI virus infecting insect cells.  The model incorporates 261 

stochasticity in the number of cells in which helper viruses will mutate to DI viruses (see 262 

Methods section “Simple probabilistic model of DI dynamics”). 263 

For some parameter sets, the model leads to an equilibrium state or oscillatory 264 

dynamics.  Moreover, our model can also generate more complex behavior like quasi-265 

periodic or chaotic dynamics (Figures 3 and 4).  This behavior is more similar – in a 266 

qualitative sense – to our empirical observations (Figure 1).  In these cases, the oscillatory 267 

dynamics are not completely regular and the two viruses can oscillate at different levels (i.e., 268 

nD >> nH).  For instance, the dynamics represented in the (nH, nD) phase space shows a ring-269 

like attractor formed by a broad cloud of points due to stochasticity (Figure 3c).  In order for 270 

the model to generate behavior qualitatively similar to the data, we required values for the 271 

number of insect cells (c) one order of magnitude smaller than the estimated number of cells 272 

used in serial passage experiments.  As cH depends on c, stochastic effects will become 273 

stronger as the number of cells decrease [see (5)].  Hence, this disparity suggests that there 274 

are other sources of variation in our experiment, or alternatively that a small number of 275 

infected cells actually contribute to the viable virus progeny being passaged. 276 

 277 

3.3  Chaos in the dynamics of helper and DI viruses 278 

 279 

The time series in Figure 3 and the attractor in Figure 3d suggest the presence of complex 280 

dynamics.  In order to investigate the possible array of dynamical behaviors arising from our 281 

model, we built bifurcation diagrams using mutation rate as control parameter, and identified 282 

several parameter regions suggesting chaotic behavior.  The bifurcation diagram was first 283 

built considering a large population of insect cells to minimize stochastic effects (Figure 3e).  284 

Moreover, similar results were obtained for our model when the rate of mutation (µ) was fixed 285 

(Figure 4a).  Therefore, when we remove the stochastic component, our simple probabilistic 286 
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model appears to exhibit deterministic chaos, in agreement with previous theoretical studies 287 

suggesting this type of dynamics among helper and DI viruses [18,20]. 288 

In order to properly identify the presence of chaos in our model we computed the MLE  289 

(see section 2.4).  The Lyapunov exponents are used as a convenient indicator of the 290 

exponential divergence of close initial conditions, which is characteristic of chaotic dynamics 291 

[38,39].  The results of the MLE computation are shown in Figure 4.  We first show the same 292 

bifurcation diagram previously computed (Figure 3e), but now removing stochasticity (i.e., a 293 

variable rate of mutation).  The dynamics clearly show a pattern of a series of bifurcations at 294 

decreasing mutation rate.  Below the bifurcation diagram we show the MLE computed for the 295 

same range of mutation rates used in the bifurcation diagram (Figure 4b).  We notice that the 296 

MLE allows us to identify two interesting dynamical properties: (i) chaos and (ii) bifurcations.  297 

In this sense, chaotic dynamics arises when the MLE is positive.  For example, see the 298 

chaotic window in the parameter range 0.5   ≲ 𝜇   ≲ 0.57.  On the other hand, bifurcations 299 

occur when the MLE is zero.  At decreasing mutation there is a first bifurcation occurring 300 

when µ ≈ 0.9, and then there are a series of flip bifurcations that involve oscillatory (i.e., 301 

periodic and quasi-periodic), but not chaotic, dynamics within the range 0.7   ≲ 𝜇   ≲ 0.8.  Such 302 

a series of flip bifurcations suggest the presence of a Ruelle-Takens-Newhouse (or 303 

quasiperiodic) route to chaos [38].  The Ruelle-Takens-Newhouse transition to chaos 304 

involves that as the control parameter (mutation rate in our system) is changed, the 305 

dynamics undergoes a series of flip bifurcations giving place to periodic and toroidal or 306 

quasiperiodic attractors that then become unstabilized giving place to a strange attractor (i.e., 307 

with positive Lypunov exponents), as we show in Figure 4.  A further decrease of mutation 308 

can cause chaotic dynamics (see positive values of the MLE in Figure 4b).  Previous 309 

theoretical studies have suggested that DI virus dynamics could exhibit deterministic chaos 310 

[18,20].  However, these studies did not provide dynamical measures (e.g., Lyapunov 311 

exponents) confirming the presence of chaos.  Finally, we notice that chaotic windows using 312 
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µ as control parameter and tuning other model parameters were also found (results not 313 

shown). 314 

 315 

3.4  Predicted effects of experimental variation on dynamics of helper and DI viruses 316 

 317 

The analysis of MLE was performed on a deterministic model, which does not include the 318 

effects of experimental variation.  Although this analysis suggests the presence of 319 

deterministic chaos in the simple model presented (Figure 4), the apparently irregular and 320 

possibly chaotic patterns in the actual experimental data could conceivably arise because of 321 

experimental variation.  To assess what the impact of experimental variation may be, we 322 

included an important source of experimental variation in our model: variation in the number 323 

of cells over passages [17].  Using the same model parameters as in Figure 3, we 324 

considered two µ values: (i) 0.35, for which the MLE is −0.068, and (ii) 0.74, for which the 325 

MLE is −0.005.  These values were chosen to consider situations in which the deterministic 326 

model clearly predicts non-chaotic dynamics (µ = 0.35), and a situation in which the MLE 327 

approaches positive values (µ = 0.74).  We then ran simulations of the deterministic model 328 

(Figure 5a and 5b) and simulations incorporating variability in the number of cells (Figure 5c 329 

and 5d; see Methods section for details), and stochasticity in the occurrence of mutations 330 

(Figure 5e and 5f).  These simulations show that, for parameter values that the deterministic 331 

model predicts non-chaotic dynamics, stochasticity in mutation and variation in the number of 332 

cells can both generate time series with irregular fluctuations similar to our experimental 333 

observations.  However, for the given parameter values the effects of mutation were stronger 334 

than the effects of variation in the number of cells. 335 

These results suggest that our analysis of the deterministic model needs to be 336 

interpreted cautiously.  A simple deterministic model inspired by experimental data displays 337 

chaotic dynamics, but even for parameter values for which the model dynamics are not 338 

predicted to be chaotic, irregular patterns similar to the data can be observed if sources of 339 
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variation are included in the model.  Moreover, the stochasticity induced by mutation is 340 

inherent to the system.  In other words, even if a perfect experiment was conducted (there 341 

would be no experimental variation whatsoever; i.e., cell number was held constant over 342 

passages), mutation would still be a source of stochasticity.  We cannot, therefore, 343 

unequivocally attribute irregular changes in virus titer over passages to purely deterministic 344 

chaotic dynamics.  What we can conservatively conclude is that even a simple deterministic 345 

model, one that excludes a source of stochasticity inherent to the experimental system, 346 

generates chaotic dynamics.  Although we cannot exclude that stochastic processes are also 347 

responsible for the surprising experimental observations, our work helps bolster the case that 348 

deterministic chaos is a plausible hypothesis.  Moreover, the consideration of stochasticity is 349 

not incompatible with the result that standard-DIs dynamics may behave chaotically, leading 350 

to complex fluctuation patterns (see section 4). 351 

 352 

4  Conclusions 353 

 354 

By monitoring the dynamics of helper and DI baculovirus levels over passages in insect cells 355 

we observed that the titers of both viruses oscillated irregularly, suggesting the presence of 356 

chaos.  A simple stochastic model of DI dynamics illustrated how such irregular cyclical 357 

dynamics could be generated, a result similar to that obtained by others [17,18,20].  Early 358 

theoretical studies on helper and DI viruses predicted oscillations [18], and even suggested 359 

the possibility of chaotic attractors governing the dynamics of these types of systems [18,20].  360 

Our results demonstrate that the ´Von Magnus´ model may be too simple to explain the 361 

dynamics of DI baculoviruses in insect cells.  The observed dynamics hint that the evolution 362 

of virus levels over time may very well be chaotic, as suggested by Szathmáry [18] and 363 

Kirkwood and Bangham [20]. 364 

Our simple model without stochasticity generated chaos, and both bifurcation diagrams 365 
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and Lyapunov exponents analyses revealed a quasiperiodic (i.e., Ruelle-Takens-Newhouse) 366 

route to chaos at decreasing mutation rates generating defective particles.  Although 367 

previous studies [18,20] suggested the presence of chaos underlying the dynamics of helper 368 

and DI viruses, these authors did not provide quantitative measures of chaos.  By computing 369 

the MLE we have numerically shown that for some parameter regions chaos is found in this 370 

type of system.  Such a finding has important implications for the predictability of DI 371 

dynamics in insect cells, making it impossible to accurately predict dynamics in the long term 372 

even if the composition of a virus population (i.e., initial condition) is known.  On the other 373 

hand, we cannot discard the notion that experimental variation – especially stochasticity in 374 

the helper virus mutating to a DI virus – may play an important role in generating the 375 

dynamical patterns we have observed. However, noise may not be incompatible with chaotic 376 

behavior: it has been suggested that a system with negative Lyapunov exponent in the 377 

absence of noise can have a positive stochastic Lyapunov exponent when noise is 378 

introduced [40].  In this sense, possible sources of noise in our experiments such as 379 

stochastic mutation or variation in the number of insect cells could increase parameter 380 

regions displaying chaos (see Figs. 3e and 5).  Previous studies of the geometry of the 381 

attractors found in the driven anharmonic oscillator revealed that increased noise levels 382 

could induce a transition to chaotic behavior [41].  Hence, rather than destabilizing or 383 

eradicating chaotic motions in the phase space, noise can enhance chaos, while destroying 384 

periodic orbits.  Actually, local instabilities responsible for the deterministic chaos actually 385 

increased the observability of chaos in the presence of fluctuations [41,42]. 386 

We have presented a simple model of DI dynamics in order to better elucidate the 387 

mechanisms underlying the experimentally observed behavior.  The use of simple 388 

mathematical models makes it easier to identify mechanisms underlying different dynamics.  389 

On the other hand, we could only consider whether particular qualitative aspects of model 390 

behavior were supported by the data.  Furthermore, it was recently shown that 391 

alphabaculovirus populations passaged in insect cells accumulate multiple DI viruses [6], a 392 
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conclusion supported by the different qPCR-measured levels for 4 different loci in passaged 393 

baculovirus populations [24].  Here we only modeled one helper virus and one DI virus, a 394 

reasonable approach given that our qPCR-based proxies, ie1 and p94* levels, are also 395 

dichotomous. 396 
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Figure Legends 516 

 517 

Figure 1.  Experimental data with the passage number given on the abscissae, and the log 518 

concentration of ie1 (open triangles) and p94* (filled squares) given on the ordinate (error 519 

bars represent the standard error).  Consecutive data points are connected by solid lines, 520 

whereas a dotted line is used when there are missing data.  Ie1 is used as a proxy for helper 521 

virus concentration, and p94* as a proxy for DI virus concentration.  The concentration of 522 

p94* is much higher than ie1 for all passages.  There are large changes in concentration of 523 

both loci over passages, p94* concentration increases significantly over passages.  Note that 524 

the two loci appear to generally change concentration is phase.  qPCR was also performed 525 

on the ancestral virus rendering similar log concentrations of 6.582±0.044 for ie1 and 526 

6.587±0.038 for p94, the unadjusted level of the p94 gene.  The ancestral population 527 

therefore has a 1:1 ratio of the two templates, indicating DI viruses are not present. 528 

 529 

Figure 2.  Model II major-axis regression on the log ie1 titer (abscissae) vs. log p94* levels 530 

(ordinate). 531 

 532 

Figure 3.  Dynamical behavior of the DI mathematical model.  Panel (a) and (b) are time 533 

series generated by the model, with the black lines representing the level of the helper virus 534 

and the red line the observed level of the DI virus (𝑛!! ).  The model can generate a 535 

combination of irregular oscillations, much higher levels of DI (𝑛!! ) than helper virus (nH), and 536 

virus levels which change almost in phase (in the periodic and chaotic behaviors).  In all plots 537 

we used vα = 10, vβ = 25 and ϕ = 0.0002.  For panels (a-d) ξ = 0.01, whereas ξ = 0 for Panel 538 

(e).  In (a) c = 104 and µ = 0.78, and in (b) c = 5×105 and µ = 0.61.  Panel (c) shows a noisy, 539 

ring-like attractor in the phase space obtained by plotting the population numbers of the 540 

helper virus on the x-axis and the DI virus on the y-axis for c = 105 and µ = 0.78.  Panel (e) is 541 
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a bifurcation diagram, for which the model was run for 300 serial passages.  We increased µ 542 

(the mutation rate) from 0 to 1 by increments of 1×10-3 (abscissae), and then plotted the 543 

log10-transformed DI virus levels (nD) over the last 100 passages (ordinate).  The model was 544 

run with a large number of cells (c = 107) to minimize stochasticity and no differences in 545 

observed DI numbers [ξ = 0 in (7)] so that virus levels could be compared over passages 546 

(i.e., nD = 𝑛!! ). The results suggest a series of bifurcations although there is some variation in 547 

the dynamics for all µ values due to the stochasticity of the model.  We therefore performed 548 

the same analysis without stochastic effects (the mutation rate for each passage is µ, and not 549 

a realization of Ω), which makes it possible to observe clearly the structure of the chaotic 550 

attractor using c = 107 and µ = 0.61 (Panel d).  We also generated a bifurcation diagram 551 

without stochastic effects (Figure 4a). 552 

 553 

Figure 4.  (a) Bifurcation diagram computed using the same parameter values as in the 554 

Figure 3e.  However, here we show the dynamics as mutation is changed without 555 

considering stochastic effects (the mutation rate for each passage is µ, and not a realization 556 

of Ω).  The bifurcation diagram reveals a Ruelle-Takens-Newhouse (i.e., quasi-periodic) 557 

route to chaos at decreasing mutation rate, which is confirmed in the plot below.  (b) Maximal 558 

Lyapunov exponent (MLE) for the same range of mutation rates shown in the bifurcation 559 

diagram above (the MLE is zero when a bifurcation takes place and positive when the 560 

dynamics is chaotic).  After a first bifurcation (occurring at µ ≈ 0.9), a series of flip bifurcations 561 

(within the range 0.7   ≤   𝜇   ≤ 0.8) take place indicating the quasi-periodic route to chaos.  562 

Then, some chaotic windows are identified by means of positive MLE (see horizontal dotted 563 

line at zero MLE values). 564 

 565 

Figure 5.  Predicted effects of experimental variation on the dynamics of virus populations.  566 

For all panels passage number is given on the abscissae, the log of the virus number is 567 

given on the ordinate and the trajectories of helper and DI viruses are given in black and red, 568 
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respectively.  We considered the effects on model dynamics of two sources of stochasticity: 569 

(i) mutation, modeled as a binomially distributed number of cells in which the helper virus 570 

mutates to a DI virus, and (ii) variation in the number of cells over passages, modeled as a 571 

negative binomial distribution with p = 0.01 and r = 5050.5 resulting in a mean of 5×105 and 572 

variance 5×107.  We used the same model parameters as in Figure 3b (vα = 10, vβ = 25, ϕ = 573 

0.0002, c = 5×105), but set ξ = 0 for clarity.  For the left hand panels µ = 0.35, resulting in an 574 

MLE well below zero (−0.068; see Figure 4) and a two point cycle.  For the right hand panels 575 

µ = 0.74, resulting in an MLE near zero (−0.005) and a regular multipoint cycle.  In panels (a) 576 

and (b), the results of the deterministic model are given.  Here mutation has a fixed rate, and 577 

the number of cells is constant over passages.  In panels (c) and (d), the number of cells is 578 

variable, following a binomial distribution over passages as described above.  The effect is 579 

negligible when µ = 0.35 (c), but much stronger when µ = 0.74 (d).  In panels (e) and (f), 580 

mutation is stochastic.  The effects are stronger in panel (e) than in panel (f), because 581 

mutation follows a binomial distribution in which the number of trials is the number of cells 582 

infected only by the helper virus, and this number reaches lower levels in (e).  The combined 583 

effects of stochastic mutation and a variable frequency of cells rendered similar results to 584 

that in panels e and f.  These simulations reinforce the idea even if the deterministic model 585 

predicts non-chaotic dynamics for a particular set of parameters, experimental variation can 586 

generate time series with irregular fluctuations. 587 












