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Abstract 

The experimental data generated through the optimization of oxygen electrocatalysts 

based on the perovskite Ln0.58Sr0.4Fe0.8Co0.2O3-δ system (Ln=La1-x-y-zPrxSmyBaz) have 

been modeled following different approaches. The main application of these catalysts is 

as fuel cell (SOFC) cathodes and activation layers on oxygen-transport membranes. 

Among the different La, Pr and Sm combinations, those containing at a time Sm-La-Ba 

or alternatively Pr-La-Ba show the lowest polarization resistance values. Within the 

same substitution degree, Pr-Ba-based compositions have lower electrode resistance 

than samarium-based ones. The experimental datasets available for the series of 

materials can be divided into: composition data, structural data (X-ray diffraction 

patterns), and electrochemical characterization data (electrochemical impedance 

spectra). Electrochemical characterization was performed for each electrode 

composition as a function of the operating temperature and oxygen partial pressure. 

Different ways of reducing the dimensionality of the spectral descriptors (XRD patterns 

and impedance spectroscopy) were applied based on knowledge-guided and 

unsupervised approaches. Different material descriptors were studied as input variables 

in the modeling of the electrochemical properties. 
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1. Introduction 

 

High-temperature oxygen activation catalysts/electrocatalysts are multifunctional 

materials generally made of multimetallic crystalline mixed oxides with well-adjusted 

properties, i.e., solid state oxygen-ion and electronic conduction, adequate layer 

porosity, catalytic activity for oxygen reduction and oxygen-ion incorporation into the 

oxide bulk. Perovskite oxides based on manganese, iron and cobalt [1] have shown 

promising electrochemical activity for oxygen activation used in classical solid oxide 

fuel cell (SOFC) configurations [2,3,4]. The perovskite structure [5] presents a huge 

potential for the simultaneous optimization of the catalytic properties [6] since this 

structure can accommodate in the lattice a large number of non-precious metals in 

different oxidation states. Moreover, the variation of the operating temperature above 

400ºC and oxygen partial pressure results in the formation of new oxygen vacancies, 

which leads to structural changes (chemical expansion and evolution of the perovskite 

symmetry) and changes in the catalytic properties, which are related to changes of the 

redox state of surface cations and the increase in the population of surface vacancies 

(adsorption sites). The perovskite structure appears as an ideal catalytic piece for the 

systematic study of the lattice composition since this structure allows packing together 

different active metals and promoters in the crystal bulk and surface. 

 

Parallel physico-chemical characterization of libraries of materials allows identifying 

potential high-performing candidates for a given property and generally they should be 

confirmed and optimized in a further experimental step. Several spectroscopic 

techniques have been parallelized for the screening of solid materials as for instance, 

XRD systems [7,8], acidity determination by TPD-NH3 [9] and FTIR-pyridine 



 3

adsorption [10], thermo gravimetrical techniques [11], photoluminescence [12], Raman 

[13], impedance spectroscopy [14], EXAFS [15], etc. However, it is still a challenge the 

automated processing of the spectral data, which entails validation, fitting to 

knowledge-based [16] or empirical model and quantitative reporting [17].  

 

Different machine learning (ML) methods have been applied successfully to 

quantitative structure-property relationship (QSPR) modeling in materials science as for 

instance in ferromagnetism [18], bulk mechanical properties [19] and catalytic behavior 

[24, 20, 21] modeling of large libraries of solid materials produced by HTE techniques. 

Among the different modeling techniques it can be highlighted the use of this field of 

artificial neural networks [2222] and support vector machines [23]. The better modeling 

performance of ML methods with respect to conventional methods is due to several 

reasons, i.e., the complexity of each specific spectroscopy data and the associated fitting 

to theoretical data, the diversity among samples, deviations during the library 

preparation (compositional, structural, etc.), variation in the sample conditioning for the 

characterization process, etc.  

 

In the present case, two different spectroscopic techniques have been applied to the 

characterization of a well-defined library of crystalline materials. After sample 

preparation, the powders were characterized by X-ray diffraction. XRD data contains 

information about phase purity, perovskite phase symmetry, unit cell dimensions and 

crystallite size. For the given application of oxygen activation, electrochemical 

impedance spectroscopy (EIS) permits obtaining a rather complete picture of the 

performance in the range from 450 to 650ºC of the materials as catalytic layer on a pure 

ionic conductor electrolyte. EIS spectra can be fitted to a phenomenological model, 
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which includes the different steps or single mechanism contributing to the operation of 

the catalytic layer. A major drawback of this technique is the complexity of data 

modeling and the tremendous influence of experimental factors on the measurements, 

which leads to the occurrence of severe artifacts. This is especially critical when the 

total measured impedance is small, i.e., when the electrocatalytic activity is good. 

 

This work presents the data treatment and dimensional reduction of both spectroscopic 

datasets. The different classes of descriptors are employed to build relationships (QSPR 

/ QSAR). These models can be integrated in the optimization/discovery campaigns [24] 

by using fast characterization of libraries of catalysts, as multivariate spectral 

descriptors for catalytic QSPR modeling. This approach can find application in the field 

of heterogeneous combinatorial catalysis [25, 26, 27] and electrocatalysis [28]. 

Moreover, QSPR models could be used for assisting the design of new libraries as well 

as for extraction of rules and relationships, gaining knowledge about (electro-)catalysis. 

This approach can be of special interest when the experimental evaluation of the 

catalytic behavior is complex and time-consuming, as for instance for catalyst 

deactivation studies or dual-chamber testing of multilayered fuel cells. 
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2. Experimental 

Experimental data was drawn from a previous optimization study [29] of oxygen 

activation catalysts / electrocatalysts based on the system A.58Sr0.4Fe0.8Co0.2O3-δ. The 

catalysts were crystalline and their composition was varied following a quaternary 

mixture design. Specifically, only the A position of the perovskite structure was varied 

and the stoichiometry of the resting elements, i.e. Sr, Fe and Co, was kept constant. Up 

to four different elements were incorporated simultaneously in the A position. The 

mixture experimental design is depicted in Figure 1. The elements (La, Pr, Sm and Ba) 

were chosen considering their potential (electro)catalytic properties [30] (redox and 

basic sites) and the fact that they could accommodate properly in the A-position due to 

their ionic radius and oxidation state. 

 

The multimetallic crystalline solids corresponding to the mixture design were 

synthesized in parallel on a robotic system (Zinsser Sophas-Cat®) following a citrate-

complexation sol-gel route [31, 32] and finally sintered at 1000ºC for 3 hr in quartz 

vials. The obtained materials were characterized on 4x6 arrays by XRD using a Phillips 

X Pert diffractometer employing CuK radiation and the scanned 2 range was from 20º 

to 90º. The as-prepared powders were milled with 3YSZ balls in acetone for 15 h and 

screen-printing inks were prepared using terpineol and ethylcellulose. The electrodes 

were deposited by screen printing on both sizes of gastight Ce0.8Gd0.2O1.9 disk-shaped 

(16 mm OD) electrolytes. The electrochemical characterization was carried out by 

impedance spectroscopy (Solartron 1455A FRA) on two-point symmetrical 

configuration as a function of the operation temperature (450ºC-650ºC) and oxygen 

partial pressure under gas flow (100 ml/min). EIS spectrum was recorded in the 

frequency range 0.01-105 Hz for each material and temperature and the polarization 
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contributions were modeled as two contributions: (i) a high frequency arc related to 

transfer of active oxygen species to the electrolyte and electron-transfer process 

occurring at the current collector/electrode interface; and (ii) a low frequency arc 

(Gerischer element) ascribed to the solid state diffusion coupled to a chemical reaction 

on the electrode surface [33, 34]. 

 

Data mining (dimension reduction and modeling) was carried out using SPSS 

Clementine 9.0 Software. Neural network fitting was performed always using 80% of 

experimental data for training and the rest for validation to minimize overtraining issues 

as implemented in the neural network training tool of Clementine 9.0 [35]. Graphics 

were prepared using the software applications Mathcad 2000, Origin 8.1 and TeeChart 

(Steema Soft.) integrated in the hITeQ platform [36]. 

 

3. Methodology 

The experimental data employed can be therefore divided into three groups: (i) 

compositional data: La, Pr, Sm and Ba lattice stoichiometry; (ii) XRD measurements; 

and (iii) electrochemical results. Firstly, the raw data has been pretreated to detect and 

eliminate error and blanks, and achieve descriptor fields totally comparable within the 

library samples. Errors and blanks needed typically the reprocessing of impedance 

spectroscopy data in order to obtain consistent polarization resistance and activation 

energy values. Then, spectral data has been treated to reduce the dimensionality and 

summarize the contained information into a reduced number of descriptors by using 

knowledge-based and unsupervised methods. Finally, different modeling techniques, 

i.e., linear regression and artificial neural networks, have been employed in order to 

build predictive models and find quantitative relationships among the different 

descriptors and diverse combinations of them. Table 1 summarizes the different data 
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treatments and predictive models considered in this work, i.e., spectra analysis, 

dimension reduction and composition / structure / property relationships. 
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4. Analysis of XRD patterns and composition-structure relationships  

 

4.1. Knowledge-based XRD analysis 

The pseudo-cubic perovskite lattice parameter [37] was computed considering the 

squared root of the cell volume as calculated [38] for the XRD spectra recorded at room 

temperature. For a series of samples, minor impurities of a distinct perovskite symmetry 

phase (orthorhombic or hexagonal) from the cubic symmetry were detected. The 

abundance of those two impurities has been quantified for all samples. The 

orthorhombic abundance has been ranked in four levels (0 to 3) and the hexagonal only 

in 2 (0 and 2) and the value 0 means the absence of impurities, which is the most 

common case. 

 

The knowledge-derived structural parameter could be predicted by considering the 

nominal composition (synthesis descriptor) of the each perovskite lattice. In principle, 

one could expect that the pseudo-cubic lattice parameter (a’) is a linear combination of 

the ionic radii of the elements incorporated in the lattice (Vegard’s law) and this is 

partially true for several compounds, as can be observed in Figure 2a. This figure 

presents a parity plot of the experimental versus linear regression prediction of the 

lattice parameter. It seems that other non-linear factors are influencing the final unit cell 

dimension. Such factors are the occurrence of other perovskite symmetries, the 

alteration of the oxidation state of different cations, i.e., Fe, Co, Sm and Pr, and the 

subsequent variation of the oxygen vacancy concentration. Nevertheless, this non-linear 

behavior can be modeled very well using a relatively simple neural network (multilayer 

perceptron) achieving a prediction performance of 98.4%. The relative significance of 

the three ANN input variables is 0.53 for Ba%, 0.21 for La% and 0.13 for Pr% and 
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these values are proportional to the corresponding ionic radii in 12-fold coordination, 

i.e., 1.61 Ǻ (Ba+2), 1.36 Ǻ (La+3) and 140 Ǻ (Pr+3). Figure 3a shows a mapping 

simulated from best ANN (artificial neural network) model for the lattice parameter for 

Ba-free ternary section. 

 

The abundance of orthorhombic and hexagonal symmetry has been modeled utilizing a 

simple neural network and the prediction performances 98.0%. In this case, the relative 

input significance follows the same order (Ba (0.60) > La (0.32) > Pr (0.26)) although 

the interpretation is more difficult. Namely, the presence of the orthorhombic symmetry 

is ascribed to high contents of Sm and Pr, and the effect of Sm content is complex since 

it is a linear combination of the other input parameter (Sm= 1- Ba – La –Pr). Figure 3b 

presents a clear picture of the influence of the elements in the final occurrence of the 

orthorhombic symmetry. This compositional mapping has been generated using the 

ANN model for the Ba-free tetrahedron plane. The presence of the orthorhombic 

symmetry has been observed for compounds with considerable amounts of Sm (Sm+3 is 

the smallest A-site cation) and combinations with Pr. The case of hexagonal symmetry 

is simpler since it appears in compounds with high amounts of Ba, specifically Ba 

concentrations in the range 50-100% lead to the formation of the hexagonal phase. 
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4.2. Unsupervised analysis 

XRD characterization data consist of arrays of more than 3000 values, which could be 

hardly processed by correlation methods when using them directly as input variables for 

predictive modeling (QSPR). For this reason as well as for reduction of experimental 

noise, a previous dimension reduction of the abundant raw data is needed. In the present 

case, XRD data will be analyzed and projected to a discrete number of dimensions by 

applying different data mining techniques: (i) clustering analysis using K-means; and 

(ii) principal component analysis (PCA). The raw XRD data was normalized in intensity 

considering the most intense diffraction peak and PCA was performed directly on the 

normalized raw spectra matrix. Due to the systematic XRD analysis it was neither 

necessary to produced a similarity matrix nor to centered it. 

 

Figure 4 shows the complete spectral data ordered with increasing unit cell dimension. 

Figure 4a shows the whole spectral dataset (20-90º diffraction range) in two different 

projections, i.e., merged XRD patterns (top) and contour plot (bottom) on the sample vs. 

diffraction plane. Figure 4b shows the similar graphs for a selected angle range, in 

where details of the most intense diffraction peak and the occurrence of secondary 

symmetry diffractions can be observed. Figure 5 presents the distribution of the 

experimental data points in the PCA space (three dimensional) and the use of K-means 

clustering algorithm is used to illustrate the diversity across this space. Specifically, 

Figure 5 shows the cluster distribution obtained using K-means algorithm, when plotted 

using as coordinates the principal components obtained by PCA computation. The 

results show that apparently the clusters found are clearly separated one to each other, 

when displayed using the PCA projection.  
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After PCA computation using the whole available dataset, the XRD data was reduced to 

a vector with only three to five descriptors and the percentage of variance for the first 

principal components is 20.0%, 12.9 % and 13.0%, respectively. These simplified 

spectral descriptors provide an easy visualization of the distribution of the samples into 

the virtual three-dimensional structural space although rationalization of these 

components is not straightforward [39]. In fact, XRD data usually contains information 

about the type of crystalline phase as well as about the lattice parameters, crystallite 

size, crystalline phase distribution, etc. Consequently, these new structural descriptors 

contain the summarized information of XRD patterns describing the different structural 

and morphological changes in the whole of explored materials [24]. This information 

should be redundant with the parameters obtained by knowledge-guided analysis 

although the unsupervised (PC) descriptors may contain unexpected structural features 

that are skipped in the previous analysis based on human experience. 

 

The PC vectors were modeled using the material composition as model input. Firstly, a 

linear regression was obtained for each individual principal component. The regression 

coefficient for PC1 and PC2 was 0.735 and 0.697 and these values are in line with those 

obtained by the linear regression of the lattice parameter (a’). On the other hand, the 

regression coefficient for PC3 was very poor and this can be due to (i) high non-

linearity with regard to composition variables or (ii) low PC significance. The three 

principal components were subsequently modeled using neural networks. The best ANN 

model has a simple topology 3-3-3 and the relative input significance follows the order 

0.575 (Ba), 0.330 (La) and 0.235 (Pr). This order is similar to that observed for the 

ANN modeling of the lattice parameter and the steps between input variable 

significance are also similar (See Figures 2 and 6). The prediction performance was 
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improved substantially for all three components although the major improvement was 

achieved for the PC3. In principle, PC3 seems to be a relevant structural feature with a 

notable non-linearity with respect to the material composition. For the given design, it is 

possible to find accurate relationships between the structural descriptors derived from 

unsupervised treatment of XRD spectra and the nominal lattice composition. 

 

5. Analysis of impedance spectroscopy spectra and quantitative 

composition/structure-activity relationships  

Raw impedance spectroscopy spectra have been corrected by subtracting the inductive 

tail and the ohmic electrolyte contribution. Figure 7 shows an example of a corrected 

spectra in a Nyquist representation (imaginary impedance (Z’’) versus real impedance 

(Z’) values). Two arcs can be distinguished although these arcs appear more overlapped. 

The equivalent circuit model is shown in Figure 7, which consists of the set-up 

inductance, electrolyte resistance and two arcs. The higher frequency arc is a depressed 

semicircle which can be modeled as a parallel combination of a resistor with a constant 

phase element (designated as CPE or Q) described by  

 nCPE
jQ

Z
·

1

0


 (1) 

where Q0 can be compared to a capacitance value but with F sn-1 (S sn) units, and n 

being the frequency exponent, indicating the degree of depression of the semicircle. The 

low frequency arc can be modeled as a Gerischer element, which mathematical formula 

is described by: 

jk

Z
ZG 

 0

 (2) 

where Z0 is a resistance-like parameter with Ω s-0.5 units and k is a reaction rate 

constant [40] in s-1. This reaction rate constant (k) is an indicator of the limiting process 
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of the oxygen reduction reaction on mixed ionic-electronic conductors where a 

competition between bulk and surface diffusion take place at same time. 

 

An appropriate figure of merit for these catalytic layers is the sum of the real resistance 

value corresponding to both arcs. This value corresponds to the polarization resistance 

(Rp) and it can be computed for the whole range of temperatures. Rp followed an 

Arrhenius behavior and therefore it can be calculated the activation energy for each 

compound. Figure 8 shows an illustration of the data extracted from this analysis, i.e., 

activation energy (bubble color) and polarization resistance (bubble diameter) obtained 

at 500ºC and under undiluted air flow. It can be observed that high-performing materials 

with low polarization resistance could be identified within the experimental chosen 

space. It was possible to identify electrode compositions combining both low 

polarization resistance and low activation energy and the best formulations are ternary 

compounds (La-Pr-Ba , La-Sm-Ba and La-Pr-Sm), which join the best 

catalytic/conduction properties of the selected  single elements. The most promising 

compositions in terms of polarization resistance and oxygen activation are 

La0.2175Pr0.2175Ba0.145Sr0.4Fe0.8Co0.2O3-δ and Pr0.435Ba0.145Sr0.4Fe0.8Co0.2O3-δ.  

 

Quantitative composition-activity relationships 

Figure 9 presents the modeling results for the three selected electrochemical descriptors: 

polarization resistance (Rp) at 650 and 450ºC and activation energy. In the experimental 

space chosen, the polarization resistance varies up to two orders of magnitude and 

therefore a logarithmic scale (transformation) was applied for modeling and 

visualization purposes. The linear regression shows very poor results (see Figure 

legend) while the best fitted ANN can model properly the electrochemical descriptors. 
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Rp at 650ºC is particularly well modeled (R2 = 0.97) and the relative significance of the 

input variables is 0.69 (Ba), 0.55 (La) and 0.48 (Pr). The achieved prediction 

performance is high, especially considering the experimental error contained in the 

impedance experimental data. Slightly less accurate predictions (R2 = 0.88) are obtained 

for Rp at 450ºC while the input variable significance is quite similar, i.e., 0.61 (Ba), La 

(0.51) and 0.44 (Pr). On the other hand, the prediction performance for the activation 

energy is less accurate and the model principally allows distinguishing the class of 

activation energy (high level for Ba-free materials and low level for Ba-containing 

ones). See bottom chart in Figure 9. In this case, the relative significance of the input 

variables is Ba (0.66), Pr (0.52) and La (0.40). Figure 10 shows a simulated mapping for 

a specific composition plane (Ba-free). This picture illustrates how the built models 

allow visualizing the experimental space and how new candidates for further 

optimization could be suggested. Finally, it was proved that the simultaneous ANN 

modeling of different EIS-derived variables did not result in the improvement of the 

prediction capacity. 

 

Quantitative structure-activity relationships 

Figure 11 summarizes the modeling of the polarization resistance at 650ºC using as 

input three sets of descriptors: (1) uniquely the lattice parameter; (2) lattice parameter 

and the relative abundance of orthorhombic and hexagonal symmetry; (5) the five 

computed principal components derived from the analysis of XRD data. The ANN 

prediction performance obtained using the descriptors set (1) and (2) – see left-hand 

chart in Figure 11 – is poor and it is only possible to obtain a rough estimation of the 

material activity by using lattice parameter and symmetry information as input variable. 

In contrast, the use of the principal components as input variable makes possible to 
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achieve acceptable prediction performance. It was achieved a regression coefficient (R2) 

of 0.93 by using a quite simple neural network topology (5-3-1). The relative 

significance of the principal components was 0.71 (PC1), 0.69 (PC2), 0.53 (PC4) and 

0.38 (PC3 & 5). Consequently, a quantitative structure-property relationship has been 

constructed and would allow predicting the material performance within the explored 

experimental space when a new XRD pattern is available. The concrete meaning of the 

principal components and the reason of the correlation with the electrochemical 

performances deserves future investigations. On the other hand, the deviation of 

predicted values from the experimental data is not negligible and this might be related 

to the influence of other variables on the electrode performance apart from 

compositional and lattice parameters. These variables include for instance changes in 

the layer microstructure due to (i) the compositional variation; (ii) deviations while 

manufacturing and sintering, thickness, and (iii) in some cases due to the possible 

chemical reaction or interdiffusion between the cathode and the electrolyte [41, 42]. 

 

 

7. Conclusions 

 

Experimental data derived from the optimization of oxygen electrocatalysts based on 

the perovskite Ln0.58Sr0.4Fe0.8Co0.2O3-δ system (Ln=La1-x-y-zPrxSmyBaz) have been 

modeled following different approaches. The experimental datasets available for the 

series of materials can be divided into: composition data, structural data (X-ray 

diffraction patterns), and electrochemical characterization data (electrochemical 

impedance spectra). Dimensional reduction of powder X-ray diffraction data was 

conducted by using principal components analysis, clustering, whilst predictive models 
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were obtained using linear regression and artificial neural networks. Quantitative 

compositions-structure relationships and composition-property relationships have been 

successfully built, achieving a high prediction performance for some specific 

relationships. Moreover, quantitative structure-property relationships have been 

constructed for the prediction of the polarization resistance and this model would allow 

predicting the material performance within the explored experimental space when a new 

XRD pattern is available. 
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Figures caption: 

Figure 1: Quaternary mixture design. The A position in the perovskite formula 

A0.58Sr0.4Fe0.8Co0.2O3-δ is simultaneously occupied by four different elements. 

Figure 2: Modeling of the knowledge-based structural parameters as a function of the 

material composition. Parity plots corresponding to: (a) linear regression of lattice 

parameter (the regression equation is a’ = La·0.02889 + Pr·0.01502 + Ba·0.1061 + 

3.84); (b) neural network modeling of lattice parameter (Best ANN model has a 

topology including: 3 inputs, 3 neurons in a single hidden layer and a single output); 

and (c) neural network modeling of the occurrence of secondary phase symmetries (Best 

ANN model has a topology including: 3 inputs, 3 neurons in a single hidden layer and a 

two outputs). 

Figure 3: Mapping simulated from best ANN models for (a) the lattice parameter and 

(b) the orthorhombic symmetry abundance in the Ba-free plane. 

Figure 4: X-ray diffraction data corresponding to samples screened in the quaternary 

mixture design. The samples are ordered by increasing unit cell parameter and the 

intensity has been normalized taking the most intense peak as reference: (a) whole 

diffraction angle range; and (b) selected angle range for the most intense diffraction 

peak. 

Figure 5: K-Means clustering analysis represented in two-principal component 

projections (PC1-PC2 and PC1-PC-3) for the classification of the whole material 

library. The corresponding percentage of variance for each principal component (PC#) 

is 20.1%, 12.96%, 10.4%, 6.8% and 5.9%. 

Figure 6: Parity plots for the modeled PCA components using linear regression and 

ANNs. Best ANN model has a topology including 3 inputs, 3 neurons in a hidden layer 

and 3 outputs. 



 18

Figure 7: Example of a Nyquist plot for raw EIS data corresponding recorded at 650 ºC 

in air. Fitted data and separated electrode contributions obtained by the equivalent 

circuit model (Inset) are also plotted 

Figure 8: Electrochemical results derived from equivalent circuit analysis as a function 

of the operating temperature and sample composition. Polarization resistance at 500ºC 

(bubble diameter) and activation energy in the range 450-650ºC (bubble color) are 

represented in the corresponding ternary sections of the whole quaternary design. Dot 

circles remark the presence of an experimental point with small resistance or activation 

energy. 

Figure 9: Electrochemical descriptors modeling using compositional data as input. 

Parity plots for the polarization resistance at 650 and 450ºC and activation energy using 

linear regression and ANNs. The best ANN model for each parameter is 3-4-2-1 (Rp 

650ºC), 3-7-2-1 (Rp 450ºC) and 3-4-2-1 (activation energy 650ºC). Note the logarithmic 

scale for the polarization resistance (top and middle charts). 

Figure 10: Compositional mapping simulated from best ANN models for (left-hand) 

activation energy and (right-hand) polarization resistance at 650ºC for the Ba-free plane. 

Note the log scale in the resistance scale bar. 

Figure 11: Electrochemical descriptors modeling using structural data as input. Parity 

plots for the polarization resistance at 650 using (left-hand) knowledge-based structural 

parameters using ANN (both ANN have a topology using only 3 neurons in a single 

hidden layer) and (right-hand) XRD-data principal components as input variables. 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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Figure 7 
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Figure 8 
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Figure 9 
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Figure 10  
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Figure 11 
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Table 1: Spectral data treatment and considered relationships among the different 

descriptors: synthesis, structural and electrochemical (activity). Note *: proposed but 

not tackled in this work. 

 

Spectral Data Treatment 
 

Knowledge-based Analysis          
   Structural descriptors 

XRD patterns (Intensity, angle)      - Refinement: Unit cell parameter 
   - Crystalline phase distribution: perovskite symmetries 
 
   Activity descriptors 
Impedance data     - Parameters of the equivalent circuit elements 
(Real (Z), Imaginary(Z), frequency, T)     (depressed arc (R-CPE) and Gerischer element) = Rp 
   - Activation Energy 
 

Unsupervised Dimension Reduction         
   Structural descriptors 
XRD patterns (Intensity, angle)      - K-means clustering analysis 
   - Principal component analysis 
   - Kohonen Networks* 
 
 
Modeling & Synthesis / Structure / Properties Relationships 
 

Synthesis – Structure Relationships         
Input    Output 
Synthesis descriptors (composition)   - Unit cell parameter 
   - Crystalline phase distribution 
   - Principal components 
   - XRD patterns* 
 

Synthesis – Property Relationships         
Input    Output 
Synthesis descriptors (composition)   - Polarization resistance 
   - Activation Energy 
   - Impedance Spectra* 
 

 Structure – Property Relationships       
Input    Output 
Knowledge-based structural descriptors  - Polarization resistance  /  Activation Energy 
 
Unsupervised structural descriptors   - Polarization resistance  /  Activation Energy 
(Principal Components)  
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Supporting information: PXRD equipment and detail of the mixed oxide samples 

deposited over a glass flat substrate. 
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