

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

http://http://link.springer.com/chapter/10.1007/978-3-319-09873-9_46

http://hdl.handle.net/10251/70427

Springer

Romero Alcalde, E.; Tomás Domínguez, AE.; Soriano Asensi, A.; Blanquer Espert, I. (2014).
A fast sparse block circulant matrix vector product. En Euro-Par 2014 Parallel Processing.
Springer. 548-559. doi:10.1007/978-3-319-09873-9.

A Fast Sparse Block Circulant Matrix Vector
Product

Eloy Romero1, Andrés Tomás1, Antonio Soriano1, and Ignacio Blanquer1

Instituto de Instrumentación para Imagen Molecular (I3M),
Centro Mixto CSIC – Universitat Politècnica de València – CIEMAT

Camino de Vera s/n, 46022 Valencia (Spain)
{elroal,antodo,asoriano}@i3m.upv.es, iblanque@dsic.upv.es

Abstract. In the context of computed tomography (CT), iterative im-
age reconstruction techniques are gaining attention because high-quality
images are becoming computationally feasible. They involve the solution
of large systems of equations, whose cost is dominated by the sparse ma-
trix vector product (SpMV). Our work considers the case of the sparse
matrices being block circulant, which arises when taking advantage of the
rotational symmetry in the tomographic system. Besides the straight-
forward storage saving, we exploit the circulant structure to rewrite
the poor-performance SpMVs into a high-performance product between
sparse and dense matrices. This paper describes the implementations
developed for multi-core CPUs and GPUs, and presents experimental
results with typical CT matrices. The presented approach is up to ten
times faster than without exploiting the circulant structure.

Keywords: circulant matrix, sparse matrix, matrix vector product, GPU,
multi-core, computed tomography

1 Introduction

Iterative approaches to image reconstruction have cut down the radiation dose
delivered to the patient in computed tomography (CT) explorations [5], because
they are less sensitive to noisy acquisitions than filtered backprojection (FBP).
Iterative methods consider the reconstruction problem as a system of linear
equations y = Ax. The probability matrix A constitutes a mathematical model
of the tomographic system that links the reconstructed attenuation map x with
the estimation of the measurement y. The large number of projections and the
high spatial resolution (≈ 0.1 mm) in CT require the solution of huge systems.
This is the reason why CT image reconstruction has been dominated by analytic
methods like FBP [3]. However the availability of cheaper and more powerful
hardware has favoured a novel interest in the use of iterative methods in CT
image reconstruction [1, 18, 15].

Like in many other engineering and scientific applications, A is usually a
large, sparse matrix, i.e., with relatively few non-zeros. Operating with sparse
matrices is computationally efficient: the storage requirements and the time of

a product by a vector are almost linear to the number of non-zeros, instead
of quadratic to the matrix dimension for dense matrices. In spite of this good
asymptotic behavior, the performance shown by sparse matrices is far from ex-
hausting the computing throughput of modern processors, mainly because of low
count of operations per memory transaction. As an example, results testing the
matrix-vector (SpMV) product on several multi-core processors in [23] show dis-
parate peak performance between 3% and 40%. This has aimed the development
of optimizations techniques and enhanced formats specialized for matrices with
dense blocks [7, 22], dense triangles, diagonals, symmetry [12, 11] and general
patterns [10].

In the same way, this work addresses block circulant matrices, block matrices
where each row of blocks is rotated one element to the right relative to the
previous row. Examples of these matrices can be found in applications involving
discretization aware of cylindrical or cyclical symmetries in the domain [4, 9,
13, 20]. Particularly in the context of CT scanners, mathematical descriptions
based on polar coordinates take advantage of the rotational symmetries in the
tomographic system, because it is easy to find an ordering of the unknowns so
that projections share the same pattern of weights in the probability matrix,
although shifted by a fixed number of columns [19, 16]. The probability matrix
A constructed like this corresponds to a block circulant matrix, in which the rows
associated to a projection form a row of blocks with the displacement being the
number of columns in every block. Implicit representations of A can save storage
and speed up its construction by a factor of the number of projections, which is
around 100 in practice. Nevertheless, the cost of the associated SpMV product
remains the same, in terms of the number of floating-point operations.

In general the SpMV products dominate the time spent on the solution of the
system of linear equations by iterative methods such as the maximum likelihood
expectation maximization (MLEM) algorithm [17], one of the most used in CT.
In this paper, we propose to accelerate these products by rewriting them as
sparse matrix-dense matrix (SpMM) products. The results we obtained show a
reduction of time by a factor up to ten.

The remainder of this paper is organized as follows. In section 2 it is explained
the approach based on the SpMM product and possible implementations. Sec-
tions 3 and 4 detail several implementations for multi-core CPUs and GPUs,
respectively, and show performance results. And finally section 5 concludes.

Notation. We denote matrices with uppercase letters (A, B...) and vectors with
bold lowercase letters (x, y...). Indices in vectors and matrices start by zero. Xi,j

or X[i, j] refer to the element on row i and column j of the matrix X. We refer
to the BLAS-1 functions, AXPY as y ← y+α ·x, and MAXPY with cardinality
k as y ← y + α0 · x0 + α1 · x1 + · · ·+ αk−1 · xk−1.

2 Circulant Matrix Product Approach

Let C being a block circulant matrix of size mC × nC , made by k × k matrix
blocks Ai of size mB×nB . Then mC = k ·mB and nC = k ·nB . The matrix-vector

product y ← Cx takes the form
y0

y1

...
yk−2
yk−1

←

A0 A1 · · · Ak−2 Ak−1
Ak−1 A0 · · · Ak−3 Ak−2

...
...

...
...

A2 A3 · · · A0 A1

A1 A2 · · · Ak−1 A0

x0

x1

...
xk−2
xk−1

 , (1)

where xi are subvectors of length nB and yi are of lengthmB . The block circulant
matrix C is fully specified by the first block of rows, which we named A =
(A0 A1 . . . Ak−1). Basic implementations avoid storing explicitly the matrix C,
for instance by rewriting the whole product as products by the blocks Ai,

yi ←
k−1∑
j=0

A(j−i) mod k xj , for i from 0 to k − 1. (2)

This approach employs the SpMV product, which in practice has a perfor-
mance mostly limited by the memory bandwidth. Instead, we propose to rewrite
the block circulant matrix-vector product into a matrix-matrix product, which
offers better performance even in simple implementations, as we show further.
Then the product in (1) can be reformulated as Y ← AX̊, which is in detail

(
y0 y1 . . . yk−1

)
←
(
A0 A1 . . . Ak−1

)

x0 x1 · · · xk−2 xk−1
x1 x2 · · · xk−1 x0

...
...

...
...

xk−2 xk−1 · · · xk−4 xk−3
xk−1 x0 · · · xk−3 xk−2

 . (3)

Therefore, the circulant property has transfered from C to the vector x,
converting the latter in a kind of anti-circulant block matrix X̊, where the rows
of blocks rotate to the left instead. The matrix X̊ is of size nC×k and, as earlier, it
is fully specified by the first row of blocks, which we named X = (x0 x1 ... xk−1).
In the process, also the output vector y is transformed into the matrix form
Y = (y0 y1 ... yk−1).

An efficient (at least, in memory) implementation of the product needs to
maintain X̊ implicit. In a SpMM product code, a way to do so is by replacing
the X̊ accesses by accesses to X like this,

X̊i,j = Xi′,j′ , where i′ = i mod nB and j′ = (bi/nBc+ j) mod k. (4)

This solution can be useful if either the SpMM product routine allows to reim-
plement the behaviour of the operators (for instance, because matrices are im-
plemented as classes in an object oriented language like C++), or the source
code is available.

Nevertheless, we propose an alternative when it is not possible, for instance in
the case of using a commercial numerical library. If the routine requires the dense

Data: A : Rm×n sparse matrix; X : Rn×k, dense matrix
Result: Y : Rm×k, dense matrix with the product AX

1 Y ← 0
2 for i← 0 to m− 1 do (in parallel)
3 foreach nonzero with column index j and value v in row i of A do
4 for p← 0 to k − 1 do // Done as an AXPY

5 Y[i, p]← Y[i, p] + v · X[j, p]

Fig. 1. Generic sparse-dense matrix product, Y ← AX

matrix to be stored in column-major (i.e., elements in consecutive rows and in
the same column are contiguous in memory), then the next relation between X̊
and a vector x̂ that contains two contiguous copies of x can be useful,

X̊i,j = j′-th element in x̂, where j′ = i+ j · nB and x̂ =

(
x
x

)
. (5)

Then the routine is passed the sparse matrix A, and x̂ as the dense matrix,
indicating the leading dimension nB (the number of elements in between two
elements with consecutive indices in the dimension that is not contiguous in
memory).

Otherwise, if the dense matrix has to be stored in row-major (i.e., elements in
the same row are contiguous in memory) instead, column indices of the non-zeros
in the sparse matrix has to be updated in the next way,

Ai,j = Âi,j′ , where j′ = 2 · k · (j mod nB) + (bj/nBc) mod k. (6)

Then the routine is passed the modified sparse matrix Â (with size mB × 2 ·nC)
and the dense matrix X̂ = (X X) in row-major, indicating the leading dimension
1.

3 Multi-Core CPU Implementation

Earlier we discussed how to perform the block circulant SpMV product by using
a SpMM product. Although the SpMM product is algorithmically simple, it
admits several implementations. One of them consists on multiple calls to the
SpMV product kernel, but in the case of implementing (3) it is equivalent to do
the product in the original way of (1).

From the rest of implementations, we conveniently choose the one that for
every nonzero value in a sparse matrix A with row i and column j, an AXPY
operation is done involving the j-th row of the input matrix X and the i-th row
of the output matrix Y . The algorithm is illustrated in Fig. 1.

The product is not computationally heavy, then the performance is condi-
tioned to the capability of the machine’s cache system to take advantage of the
reference locality of the implementation. Considering the spatial locality (i.e.,
the use of data elements within relatively close address locations), the memory

Table 1. Description of tested matrices.

Matrix Rows Columns Blocks Nnz A Nnz/row At Nnz/row

CT small 19,600 1,284,000 150 7,029,618 358.7 821.2
CT medium 19,600 5,583,600 150 18,845,735 961.5 506.3
CT big 19,600 15,767,700 150 40,601,519 2,071.5 386.2
CT large 78,400 29,764,800 150 120,506,745 1,537.1 607.3
CT huge 78,400 116,660,700 150 304,228,353 3,880.5 391.2

Table 2. Description of the test machines.

CPU Name Freq. PUs Cores L1 L2 L3 Mem. Bandwidth

Intel Xeon X3450 2.7 GHz 8 4 32 KiB 256 KiB 8 MiB 4 GiB 21 GB/s
Intel i7 3930K 3.2 GHz 12 6 32 KiB 256 KiB 12 MiB 32 GiB 51 GB/s
NVIDIA GTX680 1.1 GHz 8 192 48 KiB 512 KiB – 4 GiB 192 GB/s

access pattern is efficient if the vectors involved in the AXPYs are contiguous.
This is the case of the input X and output Y dense matrices stored in row-major.
Considering the temporal locality (i.e., the use of the same data elements within
a relatively small time duration), per nonzero value in A read it is done k read
accesses of X, and k read and write accesses of Y . Along a row in the sparse
matrix A, all the accesses go to the same row of Y . Then it seems an optimal
strategy to visit the non-zeros on the sparse matrix by rows. A similar conclusion
is found on [7].

In addition, the straightforward parallelization is that every task carries on
the AXPYs of several rows of the sparse matrix A, which corresponds to dis-
tribute the iterations of the loop at line 2 in Fig. 1. This strategy prevents two
tasks accessing the same row of Y . The distribution of work will be balanced if
every task performs almost the same number of AXPYs, i.e., every task processes
almost the same number of non-zeros from A.

3.1 Custom Product for Circulant Block Sparse Matrices

We developed several kernels that implement the product for sparse circulant
matrices in CSR format. They are written in C++ and parallelized using threads
by means of OpenMP directives. We present performance results of the ker-
nels compiled with GNU GCC 4.8 and the options -Ofast -march=native

-mtune=native, running on two Intel multi-core processors detailed on Table 2.
The test set comprises five matrices from a CT scanner, whose characteristics
are detailed on Table 1. They come from reconstructions with different spatial
resolutions. Their patterns are quite similar and, as an example, Fig. 2.a shows
the pattern of the first rows for some blocks of the smaller matrix on the set.

Figure 3 summarizes the performance of the kernels grouped by processor and
matrix. In order to emulate the behavior of an iterative solver (like MLEM), it
is performed 20 products alternating the direct and the transposed matrix. The
results correspond to the shorter time of three attempts.

a) Original matrix

0

1500
A0 A1

ro
w

A25 A26 A47 A48 A97 A98

... 0

0.2

0.4

0.6

0.8

1

blocks

b) Transformed matrix

0

1500
Â0 Â2

ro
w

Â50 Â52 Â94 Â96 Â194 Â196

... 0

0.2

0.4

0.6

0.8

1

blocks

Fig. 2. Fragments of nonzero pattern in a) the matrix CT small and b) after applying
the transformation of (6).

The first kernel, tagged basic MV, uses the matrix-vector product approach
and it is parallelized by every thread computing a yi as (2) indicates.

The second kernel, tagged MM, uses the matrix-matrix product approach
(indicated in (3)) and the implicit circulant matrix formulas for X̊ (indicated
in (4)) over the input vector, stored as a row-major matrix. It corresponds to
the algorithm in Fig. 5 without the code under the while loop at line 4. The for
loop at line 9 is implemented as two calls to an AXPY kernel: one from p ← 0
to p0 − 1 and other from p ← p0 to k − 1, where p0 is k − bAj[j]/nBc mod k.
Otherwise GNU GCC fails to vectorize the loop. The results suggest a gain of
this kernel up to four times with respect to basic MV.

If the kernel is passed the matrix X̂ = (X X) instead of X, then the for loop
at line 9 can be implemented as a single call to an AXPY kernel with k-length
vectors. This variant, tagged MM-2, obtains an extra performance of up to 70%
respect to MM.

Finally, some memory transactions from the output matrix Y can be saved by
merging s AXPYs originated from the same row, in a single MAXPY operation,
as shown on Fig. 5. Although it can make worse the temporal locality of X
(because s different parts of X are being visited at a time), simple tests shown
in Fig. 4 suggest that in general the performance is improved with larger s,
while the compiler is able to vectorize the innermost loop of MAXPY, which
corresponds to for at line 5 in Fig. 5. Codes using MAXPYs with s > 8 vectors
fail to be vectorized by the tested compiler. The performance of this optimization
for s = 8, tagged as MM-2-8, is about 25% better than MM-2, and about 10
times better than the basic MV kernel.

0

5

10

15

20

25

C
T
sm
all

C
T
m
edium

C
T
big

C
T
large

G
F
L
O
P
S

Xeon

0

10

20

30

40

50

60

C
T
sm
all

C
T
m
edium

C
T
big

C
T
large

C
T
huge

G
F
L
O
P
S

i7

basic MV
MM

scsrmm
MM-2

MM-2-8

Fig. 3. Performance on CPU of several kernels computing the SpMV product with
circulant block sparse matrices of different sizes. (CT huge matrix cannot be tested on
Xeon machine due to memory limitations.)

0
2
4
6
8

10
12
14
16
18
20

A
X
P
Y

M
A
X
P
Y
2

M
A
X
P
Y
3

M
A
X
P
Y
4

M
A
X
P
Y
6

M
A
X
P
Y
8

M
A
X
P
Y
12

M
A
X
P
Y
16

G
F
L
O
P
S

Xeon

0
5

10
15
20
25
30
35
40
45
50

A
X
P
Y

M
A
X
P
Y
2

M
A
X
P
Y
3

M
A
X
P
Y
4

M
A
X
P
Y
6

M
A
X
P
Y
8

M
A
X
P
Y
12

M
A
X
P
Y
16

G
F
L
O
P
S

i7

Fig. 4. Performance on both processors of AXPY and MAXPY (with different cardi-
nalities) adding 50 vectors with 100 elements. GCC reports that it failed to vectorize
the loops in the routines MAXPY12 and MAXPY16.

3.2 Using a SpMM kernel in a numerical library software

We found two open source implementations of the SpMM product. One is in
the Scipy library (the core library of SciPy [8]), in which the input and output
matrices are stored in row-major. And other is in Epetra (a core linear algebra
package in Trilinos [6]), which merges multiple AXPYs in MAXPYs, but the
dense matrices are stored in column-major. We do not show results with any
of these libraries because none of them include both optimizations at the same
time. Other popular libraries, like OSKI [21] or CUSP [2], offer an interface to
perform the SpMM product but the implementation relies on multiple calls to
the SpMV product kernel.

Regarding commercial high-performance numerical libraries, only Intel R© Math
Kernel Library (Intel R© MKL) offers several routines for SpMM product. Con-
cretely we tested the function *csrmm, in which the sparse matrix is introduced
in CSR format and the input and the output dense matrices are stored in row-
major. For that, the original sparse matrix A has to be modified as indicated
in (6) (the new nonzero pattern is shown in Fig. 2.b), and the input dense matrix

Data: Ai : NmB+1, Aj : Nnnz, Av : Rnnz, CSR vectors of a mB × (nB · k), nnz
non-zeros sparse matrix representing the first block row of a k × k block
circulant matrix; X : RnB×k, dense matrix.

Result: Y : RmB×k dense matrix with the product of the sparse matrix by X.
1 Y ← 0
2 for i← 0 to mB − 1 do (in parallel)
3 j ← Ai[i]
4 while j + s ≤ Ai[i + 1] do // Optional: take s vector at a time

5 for p← 0 to k − 1 do // MAXPY

6 Y[i, p]← Y[i, p]+
j+s−1∑
l=j

Av[l] ·X[Aj[l] mod nB , (bAj[l]/nBc+ p) mod k]

7 j ← j + s

8 while j ≤ Ai[i + 1] do // Take the last vectors

9 for p← 0 to k − 1 do
10 Y[i, p]← Y[i, p] + Av[j] · X[Aj[j] mod nB , (bAj[j]/nBc+ p) mod k]

Fig. 5. Product of block circulant sparse matrix by dense matrix, taking s by s
vectors at a time (CPU).

introduced is the replicated X̂ in row-major. As Fig. 3 shows, its performance is
superior to the basic MV and MM kernels in few cases, and MM-2-8 can double
the performance of the MKL kernel.

4 Circulant Sparse Product Implementation on GPU

Current GPU accelerators provide a cost-effective platform for CT applications.
These applications require single precision arithmetic only, allowing to use low
cost graphics hardware. Furthermore, the sparse matrix vector product perfor-
mance is limited by memory bandwidth and GPU accelerators provide much
higher bandwidth than CPU main memory.

In this paper a NVIDIA Geforce GTX 680 is selected as the hardware plat-
form and CUDA as the software counterpart. The CUDA software package in-
cludes an implementation of the SpMM product in the CUSPARSE library [14].
However, this routine checks the input parameters and, unlike the MKL library,
forbids to set the leading dimension of the dense matrix to a value smaller than
its number of rows. Therefore, an implementation based on the CUSPARSE
SpMM routine cannot be tested, and we present only results performing several
calls to the SpMV routine from the same library.

We developed a custom CUDA kernel based on the SpMM approach from (3),
following many of the considerations detailed earlier on the CPU. In particular,
the data layout of the dense matrices X and Y is also row-major. However, these
matrices are stored without any redundancy, this is important as GPU memory
is not as large as CPU memory.

The work distribution among GPU processors is completely different from
the CPU implementation. The key to obtain high performance in a GPU is to

Data: Ai : Nm+1, Aj : Nnnz, Av : Rnnz, CSR vectors of a m× n, nnz nonzeros
sparse matrix representing the first block row of a k × k block circulant
matrix; X : RnB×k, dense matrix.

Result: Y : Rm×k dense matrix with the product of the sparse matrix by X.
1 for i← 0 to m− 1 do (in parallel) // block parallelism

2 for p← 0 to k − 1 do (in parallel) // thread parallelism

3 w ← 0
4 for j ← Ai[i] to Ai[i + 1] do
5 c← Aj[j]/nB + p
6 if c > nB then
7 c = c− nB

8 l← Aj[j] mod nB

9 w ← w + Av[j] · X[l, c];
10 Y[i, p]← w;

Fig. 6. Product of block circulant sparse matrix by dense matrix (GPU).

keep all of the computing elements busy with a minimum of communications
among them. Therefore, a straightforward work distribution is to assign to each
thread the computation of just one element from the product result vector Y .

Figure 6 contains the GPU implementation pseudocode for the circulant
sparse matrix product. The CUDA runtime environment provides blocks of
threads, that is, two levels of parallelism. The first level (blocks) is presented
in Fig. 6 as the first loop, while the second level (threads) corresponds to the
second loop. The actual implementation does not contain these two loops, they
are implicitly created by the kernel invocation parameters.

First, to obtain good performance in the GPU a large number of thread blocks
must be created, in this case one block per matrix row. The actual amount of
work per block is determined by the matrix pattern and could be quite different
from row to row. However, this is not an issue because there are enough blocks to
keep busy all GPU processors. If the execution time of a block is too short, the
hardware scheduler could easily select another block from the execution queue.

Second, the number of threads inside a block should be a small multiple of
32 (warp size) to obtain good performance on the GPU. In this implementation
there are as many threads as blocks has the circulant matrix. Although this
number might not be a multiple of 32 (150 in our tests), it is sufficiently large
to occupy several warps.

Last but not least, GPU performance is very dependent on memory access
patterns. In this case, all data is stored in device memory with a similar distri-
bution as presented before for the CPU implementation. The vector X is read in
coalesced form via a texture cache to further increase the effective bandwidth.
Each element of vectors Ai, Aj and Av is read simultaneously by all threads in a
block. This memory access is quite efficient and saturate most of the device mem-
ory bandwidth. Our tests show no tangible benefits in using shared or constant
memory for this access pattern.

0

10

20

30

40

50

60

C
T
sm
all

C
T
m
edium

C
T
big

C
T
large

C
T
huge

G
F
L
O
P
S

NVIDIA GTX680

CUSPARSE SpMV
SpMM kernel

Fig. 7. Performance on GPU of kernels based on the SpMV and SpMM approaches
with different matrix sizes.

One small optimization different to the CPU implementation is that Aj (col-
umn index) is stored in two separate vectors, one with values bAj[j]/nBc and
another with Aj[j] mod nB . Both operations have a low throughput on the GPU,
and precomputing them on the CPU improves performance of the whole circu-
lant sparse product.

Figure 7 compares the performance of two circulant sparse matrix product
implementations on the GTX680 GPU. The first is based on CUSPARSE SpMV
routines while the second is our custom SpMM kernel implementation, which is
several times faster than the SpMV implementation. The performance of SpMM
is almost constant (about 60 GFLOPS) for all matrix sizes, and up to two times
faster than our optimized SpMM on the CPU. The main advantage of the GPU
over the CPU is that performance does not decrease with large matrices.

5 Conclusions and Future Work

In this paper, we have described optimization techniques to improve the perfor-
mance of the sparse matrix vector product (SpMV) for block circulant matrices.
This matrix structure allows to rewrite the SpMV into a product of two matrices,
one sparse and other dense (SpMM). Moreover, we propose to replicate vector
data and to join several AXPY products into a MAXPY. Both optimizations
simplify data access and improve cache locality.

Our optimized SpMM kernel reduces execution time by 10 times on an Intel i7
CPU compared to a trivial SpMV implementation. We also tested alternative
implementations using the SpMV and SpMM products from high-performance
libraries (Intel MKL), but all of them obtain worse performance than our kernels.

On GPU, we propose a similar distribution of data which allows to fully
exploit the device raw bandwidth via coalesced and textured memory accesses.
This SpMM implementation is about 6 times faster than the SpMV from the
CUSPARSE library on a NVIDIA GTX680 graphics card. For very large matri-
ces, this GPU halves execution time with respect to our own optimized kernel
running on the Intel i7 CPU.

Furthermore the described optimizations are compatible with other enhance-
ments, especially on CPU, such as exploiting patterns in the blocks of the sparse
matrix and implementing explicit prefetch to improve performance with large
matrices. Beside them, as a future work we intend to develop a competitive
kernel for the transposed matrix product without explicitly transposing the ma-
trix. On GPU would be interesting to combine several graphics cards to increase
performance and memory capacity.

References

1. Bian, J., Siewerdsen, J.H., Han, X., Sidky, E.Y., Prince, J.L., Pelizzari, C.A., Pal,
X.: Evaluation of sparse-view reconstruction from flat-panel-detector cone-beam
ct. Physics in Medicine and Biology 55, 6575–6599 (2010)

2. Dalton, S., Bell, N.: CUSP: A C++ templated sparse matrix library (2014), http:
//cusplibrary.github.com/, version 0.4.0

3. Feldkamp, L., Davis, L., Kress, J.: Practical cone-beam algorithm. Journal of the
Optical Society of America 1, 612–619 (1984)

4. Ganine, V., Legrand, M., Michalska, H., Pierre, C.: A sparse preconditioned iter-
ative method for vibration analysis of geometrically mistuned bladed disks. Com-
puters & Structures 87(5-6), 342–354 (2009)

5. Hara, A.K., Paden, R.G., Silva, A.C., Kujak, J.L., Lawder, H.J., Pavlicek, W.: Iter-
ative reconstruction technique for reducing body radiation dose at CT: Feasibility
study. American Journal of Roentgenology 193, 764–771 (Sep 2009)

6. Heroux, M.A., Bartlett, R.A., Howle, V.E., Hoekstra, R.J., Hu, J.J., Kolda, T.G.,
Lehoucq, R.B., Long, K.R., Pawlowski, R.P., Phipps, E.T., Salinger, A.G., Thorn-
quist, H.K., Tuminaro, R.S., Willenbring, J.M., Williams, A., Stanley, K.S.: An
overview of the Trilinos project. ACM Trans. Math. Softw. 31(3), 397–423 (2005)

7. Im, E.J., Yelick, K., Vuduc, R.: Sparsity: Optimization framework for sparse matrix
kernels. International Journal of High Performance Computing Applications 18(1),
135–158 (2004)

8. Jones, E., Oliphant, T., Peterson, P., et al.: SciPy: Open source scientific tools for
Python (2001–), http://www.scipy.org/

9. Kaveh, A., Rahami, H.: Block circulant matrices and applications in free vibration
analysis of cyclically repetitive structures. Acta Mechanica 217(1-2), 51–62 (2011)

10. Kourtis, K., Goumas, G., Koziris, N.: Optimizing sparse matrix-vector multiplica-
tion using index and value compression. In: Proceedings of the 5th Conference on
Computing Frontiers. pp. 87–96. CF ’08, ACM, New York, NY, USA (2008)

11. Krotkiewski, M., Dabrowski, M.: Parallel symmetric sparse matrix–vector product
on scalar multi-core CPUs. Parallel Computing 36(4), 181–198 (2010)

12. Lee, B., Vuduc, R., Demmel, J., Yelick, K.: Performance models for evaluation and
automatic tuning of symmetric sparse matrix-vector multiply. In: International
Conference on Parallel Processing 2004 (ICPP 2004). pp. 169–176 vol.1 (2004)

13. Leroux, J.D., Selivanov, V., Fontaine, R., Lecomte, R.: Accelerated iterative im-
age reconstruction methods based on block-circulant system matrix derived from
a cylindrical image representation. In: Nuclear Science Symposium Conference
Record, 2007. NSS ’07. IEEE. vol. 4, pp. 2764–2771 (2007)

14. NVIDIA: CUSPARSE library (2014), https://developer.nvidia.com/cusparse

15. Pan, X., Sidky, E.Y., Vannier, M.: Why do commercial CT scanners still employ
traditional, filtered back-projection for image reconstruction? Inverse Problems 25,
123009 (2008)

16. Rodŕıguez-Alvarez, M.J., Soriano, A., Iborra, A., Sánchez, F., González, A.J.,
Conde, P., Hernández, L., Moliner, L., Orero, A., Vidal, L.F., Benlloch, J.M.:
Expectation maximization (EM) algorithms using polar symmetries for computed
tomography CT image reconstruction. Computers in Biology and Medicine 43(8),
1053–1061 (2013)

17. Sheep, L., Vardi, Y.: Maximum likelihood reconstruction for emmision tomography.
IEEE Transactions on Medical Imaging 1, 113–122 (1982)

18. Sidky, E.Y., Pan, X.: Image reconstruction in circular cone-beam computed to-
mography by constrained, total-variation minimization. Physics in Medicine and
Biology 53, 4777–4807 (2008)

19. Soriano, A., Rodŕıguez-Alvarez, M.J., Iborra, A., Sánchez, F., Carles, M., Conde,
P., González, A.J., Hernández, L., Moliner, L., Orero, A., Vidal, L.F., Benlloch,
J.M.: EM tomographic image reconstruction using polar voxels. Journal of Instru-
mentation 8, C01004 (2013)

20. Thibaudeau, C., Leroux, J.D., Pratte, J.F., Fontaine, R., Lecomte, R.: Cylindrical
and spherical ray-tracing for ct iterative reconstruction. In: Nuclear Science Sym-
posium and Medical Imaging Conference (NSS/MIC), 2011 IEEE. pp. 4378–4381
(2011)

21. Vuduc, R., Demmel, J.W., Yelick, K.A.: OSKI: A library of automatically tuned
sparse matrix kernels. Journal of Physics: Conference Series 16(1), 521 (2005)

22. Vuduc, R.W., Moon, H.J.: Fast sparse matrix-vector multiplication by exploiting
variable block structure. In: Yang, L.T., Rana, O.F., Martino, B., Dongarra, J.
(eds.) High Performance Computing and Communications, Lecture Notes in Com-
puter Science, vol. 3726, pp. 807–816. Springer Berlin Heidelberg (2005)

23. Williams, S., Oliker, L., Vuduc, R., Shalf, J., Yelick, K., Demmel, J.: Optimization
of sparse matrix-vector multiplication on emerging multicore platforms. Parallel
Computing 35(3), 178–194 (2009)

