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 12 

Abstract 13 

 14 

An analysis of morphological changes during the last six decades is presented for a 16.5 15 

km reach of the Rambla de Cervera, a Mediterranean ephemeral stream located in 16 

Eastern Spain. Channel changes were analysed through a range of techniques, 17 

specifically the analysis of aerial photographs with geographical information systems 18 

(GIS) and comparison of topographic surveys. The gravel channel underwent a general 19 

decline over the study period, losing width (68.5%) and surface area (45.7%) due to the 20 

development of established islands frequently attached to the floodplain. These 21 

morphological changes exhibit an interesting temporal variability, with a maximum 22 

decrease of the gravel channel in the period 1946-1956 and another narrowing stage 23 

between 1977-1991. There were also two periods (1956-1977 and 1991-2006) of mixed 24 

performance. In addition, incision processes occurred along the entire study reach at an 25 



  

average depth of 3.5 m. Natural and human-induced factors producing contradictory 26 

effects are considered responsible for changes in the Rambla de Cervera. 27 

 28 

Key words: Channel changes, island dynamics, land use changes, gravel mining, 29 

channel incision, channel narrowing. 30 

 31 

 32 

1. Introduction 33 

Over the last two centuries, Mediterranean rivers have undergone complex adjustments. 34 

Flow and sediment supply have both fluctuated through time, meaning that continuous 35 

adjustment have taken place through the erosion and deposition of sediment. Climatic 36 

changes and human activities have been associated to these adjustments influencing 37 

channel discharge and sediment supply. Much discussion has focused on the effects of 38 

human activities and its relative importance compared with climatic impacts in fluvial 39 

systems and several studies have analyzed the links between morphological changes and 40 

anthropogenic activity in the region (Hooke, 2006; Gurnell et al., 2009). In these works, 41 

channel narrowing and channel incision occurring throughout the 20th century have 42 

been interpreted as adjustments to the new environmental conditions. 43 

The decrease in flow discharge and sediment load (Garófano-Gómez et al., 2012; 44 

González et al., 2010; Cadol et al., 2011; Liébault and Piégay, 2001; Pont, et al., 2009) 45 

have been considered as the main causes of narrowing and incision in the Mediterranean 46 

rivers. These alterations of river basin conditions have been frequently caused by 47 

anthropogenic actions such as dam construction, reforestation, torrent control works or 48 

river channelization (Roux et al., 1989; Bravard et al. 1997; Rinaldi, 2003; Surian and 49 

Rinaldi, 2003; Surian and Cissotto, 2007; García-Ruiz and Lana-Renault, 2011). Gravel 50 



  

extraction has also had a profound impact on rivers in the region (Surian and Rinaldi, 51 

2003; Surian et al., 2009; Rinaldi et al. 2005; Liébault and Piégay, 2002; Wishart et al., 52 

2008), mainly upstream-and downstream-progressing river incision, lateral channel 53 

instability and bed armouring. The resultant incision alters the frequency of floodplain 54 

inundation along the river courses, lowers valley floor water tables and frequently leads 55 

to the destruction of bridges and channelization structures (Rovira et al. 2005; Batalla, 56 

2003). 57 

The observed changes in channel morphology are also linked to changes in river 58 

vegetation encroachment. The relation between plants and physical processes affect 59 

conditions for island and floodplain evolution. Vegetation traps and stabilises 60 

sediments, organic matter and the propagules, and they modify the local sedimentary 61 

and morphological environment by driving the development of landforms. 62 

Consequently, channel narrowing is frequently associated with vegetation development. 63 

The role of vegetation as a trigger for planform change and recovery is not yet well 64 

known, but it seems to be essential in river changes induced by human action (Gurnell 65 

et al., 2009). Linkages between the colonisation of vegetation and river morphology and 66 

morphodynamics of humid gravel-bed rivers have been recently established (Zanoni et 67 

al., 2008; Tal and Paola, 2007; Wyrick and Klingeman, 2011; Bertoldi et al. 2011; 68 

Gurnell et al., 2012). The interaction between vegetation and fluvial processes in 69 

ephemeral rivers has received relatively less attention.  Recent works have shown that 70 

the influence of vegetation on river changes is strongly dependent to the variations on 71 

the temporal sequence of flood events (Hooke and Mant, 2002; Sandercock et al. 2007).  72 

In the Mediterranean region of Europe, researchers have attempted to establish a 73 

chronology of recent historical changes in river morphology, linked to human actions 74 

and climatic changes. In French rivers, channel narrowing in the first half of the 20
th

 75 



  

century has been associated with decreased discharges and sediment supply at the end 76 

of the Little Ice Age. In contrast, channel reduction in the second half of the 20th 77 

century is considered a human-induced fluvial adjustment (Bravard, et al. 1997; 78 

Arnaud-Fassetta, 2003; Liébault and Piégay 2002). In Italy, Surian et al. (2009) detected 79 

small width changes during the 19
th

 century, but with no significant trend. From the end 80 

of the 19
th

 century to the 1980s/1990s, channel narrowing and incision occurred, with 81 

particular intensity after the 1950s. Finally, during the last two decades, widening 82 

sedimentation and bed-level stabilization predominate, although some river reaches are 83 

still narrowing.  84 

In Spanish rivers, discussion on the relative influence of human activities and climatic 85 

fluctuations are present in current works on palaeohydrology and flood frequencies. 86 

Several studies have indicated an increased frequency of floods in the Mediterranean 87 

region over the past centuries, with a particular rise in the 18
th

 and 19
th

 centuries, which 88 

they attribute primarily to climatic fluctuations during or at the end of the Little Age Ice 89 

(e.g., Benito et al., 2008; Barriendos and Martín-Vide, 1998; Barriendos and Rodrigo, 90 

2006; Glaser et al., 2010). López-Bermúdez et al. (2002) examined the occurrence of 91 

floods in ephemeral streams at the beginning of the 20th century in the Mediterranean 92 

region, which they attribute primarily to deforestation. Additionally, important changes 93 

occurred in the second part of the 20
th

 century dealing mainly with land use changes 94 

(Beguería et al., 2006; López-Moreno et al, 2006; García-Ruiz, 2010; Gallart et al., 95 

2011) and torrent control works (Boix-Fayos et al., 2007). The impact of gravel mining 96 

was particularly severe in the period 1950–1980, and it is a major contributor to river 97 

incision in Spanish rivers (Batalla, 2003; Martín-Vide et al., 2010). However, there are 98 

not enough studies to establish a common chronology or to identify regional contrasts 99 

among different basins and river conditions in Spain.  100 



  

Moreover, in the Mediterranean Europe, most of the research in this area has been 101 

developed in perennial rivers, where there is a permanent impact of flow on channel 102 

morphology. Less is known about river adjustments in ephemeral streams, where there 103 

are long periods of stability and a higher dependence of morphological changes on 104 

extreme or flash-flood events.  105 

For this reason, in this paper we focus the analysis on an ephemeral stream of the 106 

eastern region of Spain. This study-case has been selected after considering several 107 

examples in the region, in most cases refused due to the extreme artificialization of 108 

channel conditions for urban, agricultural or flood control works. The aim of this paper 109 

is to provide additional information to a better understanding of the narrowing and 110 

incision processes in Mediterranean ephemeral streams. Our work quantifies 111 

morphological changes in the channel of the Rambla de Cervera over the last six 112 

decades. To achieve this goal, aerial photographs dating from 1946 to 2006 were 113 

analysed to make the following specific research contributions: (a) the identification and 114 

quantification of trends in the active corridor, bar and island changes; (b) the 115 

measurement of spatiotemporal width changes and incision; and (c) the elaboration of a 116 

conceptual cause-effect framework to define the major factors and the timing of 117 

processes affecting recent historical changes in the Rambla de Cervera. 118 

 119 

2. Regional setting 120 

 121 

The Rambla de Cervera rises at 1,160 meters above sea level (m a.s.l.) in the Iberian 122 

mountain range and flows 44 km in an easterly direction to the Mediterranean Sea (Fig. 123 

1). The Cervera basin, located entirely in the Castelló Province, covers 339.6 km
2
 and is 124 

mainly composed of Mesozoic calcareous rocks. The Iberian mountain range was folded 125 



  

during the paroxysmal compressive phase in the Oligocene, when anticlinal and 126 

synclinal structures with a NW-SE direction were formed during the Alpine orogene. 127 

After this phase, a compressive Miocene phase generated a series of folds transverse to 128 

the Iberian trend. Later, two distensive phases occurred at the end of the Tertiary and 129 

the beginning of the Quaternary, generating horsts and grabens with a NE-SW direction, 130 

that is, transverse to the Iberic folds. 131 

The Rambla de Cervera crosses perpendicularly the mountains, being confined in horsts 132 

and expanded in grabens. The studied channel reach is 16.5 km long, 9 km in the 133 

confined sector and 7.5 km in the graben part (Figs. 1 and 2). In the mountainous area, 134 

the channel is constricted and the river adopts a wandering pattern; in the graben, lateral 135 

shift is important, and the river has a multi-thread braided pattern.  136 

The headwaters are composed of calcareous rocks, mainly limestone, dolomies and 137 

several marls. Limestones and dolomies are hardly karstified, so they are very 138 

permeable. Calcareous aquifers are thick but very deep, a fact that favours the formation 139 

of ephemeral streams. In the graben, the rambla formed an important alluvial fan during 140 

the Oligocene. Several quaternary terraces can be located along the studied reach, 141 

especially in the graben part. The river has a slope of 1.4 % and the channel bed is 142 

mainly composed by cobbles and gravels. The average size of the surface materials is 143 

25.8 mm, but the bed is armoured (Segura-Beltrán, 1990). The mean annual rainfall 144 

oscillates between 480 mm at the coast and 700 mm in the headwaters area. The 145 

maximum monthly rainfall typically occurs in autumn and spring, with the minimum 146 

monthly rainfall in July. The Rambla de Cervera only flows after heavy rains. In these 147 

ephemeral streams, runoff appears from two to four times a year on average and it is 148 

usually discontinuous along the channel. The combination of the basin physical 149 

characteristics (steep slopes, sparse vegetation, thin soils and permeable rock) and 150 



  

intense, heavy and irregularly distributed rainfall generates flash floods. Hydrographs 151 

have sharp rising limbs and short lag times (Segura-Beltrán, 1990).  152 

In the Rambla de Cervera drainage basin, human pressure was important in the past, but 153 

has decreased in the last decades as a result of rural depopulation. The population 154 

density is very low, and it decreased considerably in the analysed period (9.2 155 

inhabitants/km
2
 in 1946 and 3.7 inhabitants/km

2 
in 2006). 156 

 157 

3. Methods 158 

 159 

3.1. Changes in river planform 160 

 161 

We used aerial photographs and orthophotos from different dates to investigate recent 162 

changes in the study reach. The photographs range from 1946 to 1991 and their scale 163 

from 1/43,000 to 1/18,000. The orthophoto used was taken in 2006 at a 1/5,000 scale 164 

(Table 1). The photographs were scanned at a resolution of 400 dpi to obtain average 165 

pixel dimensions of approximately 1 m (or less in a more detailed scale). The 166 

photographs were georeferenced to orthophotos using ArcGIS TM version 9.3 (ESRI, 167 

Redlands, California, 2009). To georectify the images, ground control points (GCPs) 168 

were selected from the image (for approximately 10-12 points along the river corridor). 169 

The image distortion across the near-horizontal surface of the river corridor was 170 

assumed to be parabolic and, for this reason, a 2
nd

 order polynomial was employed for 171 

georectifying. We adopted bilinear interpolation resampling and admitted a maximum 172 

acceptable root mean square error (RMS) of less than 5 pixels. The georectified photos 173 

are affected by the georectifying error between adjacent photos, but it was impossible to 174 

correct it completely, especially in the older photographs. According to Mount et al. 175 



  

(2003), we estimated errors for channel width measurements based on the aerial 176 

photograph sources. Image distortion errors (θ) ranged between 3 (1946) and 6.4 (1956) 177 

meters, whereas the location errors (pR) ranged between 1.8 (1977) and 3.5 (1956) and 178 

the mean width error (ew) was 10.6. 179 

The images were then interpreted to identify changes in river corridor morphology. The 180 

margins of each form were manually digitised, and an attribute table was created for the 181 

resulting polygons, including their code, perimeter (m) and area (m
2
). The channel 182 

forms were classified following the conceptual model of Gurnell et al. (2001) and 183 

Zanoni et al. (2008), although some modifications were made. We identified gravel 184 

channel, incipient islands, established and floodplain-dissected islands. Gravel channel 185 

are the un-vegetated branches of the river bed, frequently affected by flow. Incipient 186 

islands are gravel or cobble patches covered by less than the 20% scattered bushes and 187 

sparse grass cover. The established islands are covered by more than the 20% scattered 188 

bushes or trees and completely covered by a dense grass layer or are occupied by crops 189 

(olive trees or vines). Dissected floodplain islands are the remaining parts of the 190 

floodplain incorporated to the active corridor by chute cutoff processes (Ashmore, 191 

1991). These islands differ from those established by the alignment of the crops and 192 

plots on either side of the chute cutoff, and they can be identified by comparing 193 

subsequent or previous photographs. Although they are underrepresented, the chute 194 

channels have been separated from the gravel channel category because they indicate 195 

processes of floodplain dissection. The outer limit of the active corridor was defined by 196 

the boundary between areas of gravel and any remaining, extended vegetated surface 197 

that had not been classified as island at any period (Zanoni et al., 2008). 198 

 199 

3.2. Assessment of changes in anthropogenic pressure on land  200 



  

3.2.1. Archives data of human and livestock densities and agricultural uses  201 

Historical land use changes play a major role in sediment balance and morphological 202 

channel evolution. Statistics on population and livestock densities can be used to 203 

examine anthropogenic pressure on the environment. Population data of Rambla de 204 

Cervera basin have been obtained from modern census. The first was conducted in 205 

1857, the second in 1877 and subsequently census have been published regularly at 206 

intervals of 10-11 years (www.ine.es). 207 

The evolution of cattle farming before 1950 for the whole Castellón Province, where the 208 

Rambla de Cervera is located, has been studied by Obiol (1989). This work was based 209 

on four surveys and statistics produced between 1850 and 1962. After this year, 210 

information was obtained from the National Agrarian Census of 1999 and 2009 211 

(www.ine.es) and Valencian Statistics Institute (www.ive.es).  Provincial historical data 212 

from agricultural or soil use have been obtained from the official survey of 1850 and the 213 

National Agrarian Census of 1961. We have also information from the historical 214 

evolution of cereal crops in the headwaters area from Sangüesa and Albiol (2010).   215 

 216 

3.2.2. Land use changes  217 

The land uses in the Rambla de Cervera basin between 1946 and 2006 were mapped and 218 

seven land use types were selected to classify the study area: (i) urban areas; (ii) 219 

forested areas, including holm oaks, coniferous and mixed forests; (iii) bush or shrub 220 

areas; (iv) rainfed annual crops, which are almost entirely cereals; (v) rainfed cultivated 221 

trees, mainly represented by olive groves; (vi) sparsely vegetated areas, also including 222 

small bare rock patches and recent burnt areas; and (vii) river beds. 223 

http://www.ine.es/


  

In most cases, the interpretation of land patterns was facilitated by relatively small pixel 224 

dimensions (between 1.15 and 0.5 m). The limit between the categories of bush and 225 

forest was established in the 50% of forest strata coverage. 226 

The basin was divided in two sectors to provide a better interpretation of the sequence 227 

of land use change linked to the geographical contrasts (Fig. 1). The upper sector 228 

encompasses the basin located upstream of the highest point of the Rambla de Cervera 229 

study reach, over the horst area. The central sector covers the basin area downstream of 230 

this point, providing lateral inputs to the river channel study area. 231 

 232 

3.2.3. Gravel mining data 233 

Two companies have been extracting gravel from the Rambla de Cervera during the last 234 

decades, but only one of them has exploited the study reach. Extractions started in 1972 235 

in this area. Gravel mining data are difficult to obtain because the administration did not 236 

register continuous and standardised information on mining concessions in recent 237 

decades, and they did not control extractions rigorously. We have obtained different 238 

information from the administration: (a) annual data between 1980 and 1988 (Pardo, 239 

1991); (b) total data of the periods 2000-2005 and 2006-2007 (information obtained 240 

from the Confederación Hidrográfica del Júcar)  and (c) no data between 1972 and 241 

1979, and between 1989 and 1999. These data reflect the amount of gravel extracted by 242 

the two companies working in the river, impeding the quantification of the amount 243 

extracted in the study area. Photo-interpretation and local interviews were conducted to 244 

contrast official data. 245 

 246 

3.3. Channel elevation and channel width measurement assessed by topographic survey 247 

and aerial photographs 248 



  

 249 

Channel width can be defined in different ways in a braided network, but in this study 250 

width is the result of measuring the total un-vegetated width. That is, channel width has 251 

been considered the sum of the single channel branches widths, plus the un-vegetated 252 

gravel bars (Bertoldi et al., 2009; Michalková et al., 2010). It was measured on the 253 

aerial photographs every 500 m along the entire study reach (16.5 km).  254 

The incision was measured indirectly from a survey conducted in 2011 on the first 10 255 

km of the study area. The measurements were made using GPS-RTK (accuracy of 15 256 

cm), and they covered an area of 314,400 m
2
 with 9,242 points (0.029 points/m

2
). A 257 

DEM of 1 m resolution generated from survey data was used to make cross sections. 258 

The active corridor of 1946, 1956, 1977, 1991 and 2006 was used to define the external 259 

limit of channel courses during the last 60 years. Using ArcGis Spatial Analyst tools, 260 

we calculated numerous profiles, selecting eleven of them considered optimal for 261 

incision estimation (Fig. 2).  The distance between them is variable and different for 262 

those sections were width was calculated. The necessary conditions for selection were:  263 

a) sections where the corridor has narrowed in all the periods; b) clear channel 264 

boundaries; c) boundaries coincident with microterraces, identified trough 265 

photointerpretation and field works (Fig.2). The incision was calculated in each section 266 

measuring the height of the boundary channel each year (1946, 1956, 1977, 1999 and 267 

2006). Stereoscopic analysis and fieldwork contributed to corroborate the information 268 

provided by cross sections analysis. The topographic survey took place in 2011 but we 269 

assume that incision has not increased since 2006, because no significant flow event 270 

occurred during the last six years.  271 

 272 

3.4. Flood estimation and rainfall data 273 



  

 274 

The Rambla de Cervera is an ungauged ephemeral stream. The flow is scarce, and the 275 

circulation is mainly local due to the high infiltration of the calcareous substrata and the 276 

transmission losses. Adjoining catchments, such as the Cervol River (349 km
2
) and the 277 

Bergantes River (1,201 km
2
), has been gauged in the past and it is possible to define 278 

their hydrological characteristics. We assume that these hydrological parameters are 279 

similar to the Rambla de Cervera basin:   280 

- The Cervol gauging station was active between 1911-1929, with ten complete 281 

years and nine incomplete. It has been used to analyse floods in previous works 282 

in the region (Segura-Beltrán, 1990; Camarasa-Belmonte and Segura-Beltrán, 283 

2001).  The runoff production in this calcareous catchment is not higher than 284 

17% of the rainfall.  In this area, the average runoff threshold for the drainage 285 

basin is 65 mm, but it varies significantly between different rainfall events in the 286 

same basin (35 to 65 mm) depending on factors such as lithology, type of soil, 287 

vegetation cover and rain intensity and duration. Flash floods occur when 288 

rainfall exceeds this threshold, although in many cases they only have a local 289 

effect due to the transmission losses. Bankfull floods are scarce, but they can 290 

produce significant modifications to the channel forms.  291 

- According to the geographical conditions, the Bergantes gauging station (active 292 

forty years between 1931 and 2007) is representative of the hydrological 293 

behaviour of the Rambla de Cervera headwaters. It has been used to analyse 294 

historical flow discharges evolution.  295 

 296 

Moreover, the most relevant floods of the Cervol River and Rambla de Cervera have 297 

been reconstructed using three data sources: archives and newspapers, rainfall data and 298 



  

stream flow gauging data.  In addition to this, in order to investigate whether the 299 

morphological changes of the river channel were correlated with a reduction in channel 300 

flow, we have analysed possible changes of the rainfall regime. We have considered 301 

rainfall series from three weather stations (Table 2).  302 

 303 

- Morella (1920-2010) (1.010 m a.s.l.) is representative of the climatic conditions of the 304 

headwaters sector, with mixed continental and Mediterranean rainfall pattern.  305 

- Sant Mateu and Sant Mateu HS (322 m a.s.l., both located at the same village and 306 

complementary), representative of the climatic conditions of the study reach. Closer to 307 

the sea, they present a rainfall Mediterranean regime, with a clear autumn rainfall peak.   308 

Climatic series were studied in different ways: (i) annual rainfall trends for the whole 309 

record of each weather station; (ii) total rainfall events higher than 65 mm, assuming 310 

that this threshold establishes the minimum rainfall for runoff production in the region. 311 

Climatic series were studied in several time windows: a) 1920-1935 and 1936-1945, to 312 

define the rainfall regime previous to 1946; b)1947-1956, 1957-1977, 1978-1991, 1992-313 

2006, to analyse the intervals between the aerial photographs.  The existence of trends 314 

in the climatic variables was tested using the Mann–Kendall test (Yue et al., 2002; 315 

Boix-Fayos et al., 2007) applied on average annual rainfall for the whole time interval 316 

of each rain gauge data set. 317 

 318 

4. Results 319 

 320 

4.1. Channel morphological changes 321 

 322 



  

The analysis of surface percentage occupied by different active corridor units presents 323 

different morphological trajectories (Fig.3). The gravel channel area underwent the most 324 

important changes along the period, presenting a decline.  In contrast, the established 325 

islands had growth in the total period, whereas the incipient islands maintained a similar 326 

percentage in the different periods, acting as a transitional stage between the previous 327 

units. The islands attached to the floodplain fluctuated but reached their maximum 328 

development at the end of the period. Finally, chute channels and floodplain dissection 329 

islands were represented until 1977 but disappeared in recent years. They were not 330 

significant along the studied period, but their evolution is relevant because they are 331 

indicators of lateral mobility processes and channel widening.  332 

The most commonly observed trend began when incipient islands were formed in some 333 

gravel patches covered by grass and scattered bushes. Further accumulation and growth 334 

of vegetation, woody debris and sediment around these incipient islands supported their 335 

enlargement and coalescence, culminating in the formation of larger established islands. 336 

In some cases, early occupation by crops helped to fix the established islands. These 337 

trajectories reflect floodplain construction processes, through the progressive reduction 338 

of the gravel channel by the lateral growth and the relative elevation of islands.  339 

Reverse processes have also been found locally. In some areas and periods, floodplain 340 

destruction is produced as a consequence of avulsion processes. Chute channels develop 341 

and dissect the floodplain, producing established islands. In other cases, these islands 342 

are partially eroded and transformed into incipient islands, which in turn can become 343 

channels because of lateral shift, losing vegetation.  344 

According to these observed trajectories, the changes were classified as constructive or 345 

destructive in order to analyse the turnover between the different forms. Surfaces were 346 

calculated for each category, and the most significant values (> 4%) are shown in Fig. 4.  347 



  

The constructive and destructive changes occurring in the active corridor are mapped in 348 

Fig. 5.  Floodplain constructive processes predominate over the whole period, but four 349 

stages have been identified:  350 

- 1946-1956. Floodplain constructive trajectory prevailed. The most notable processes 351 

were the turnover of the gravel channel in the incipient and established islands.  352 

 - 1956-1977. Period with a mixed evolution that nearly equals the constructive and 353 

destructive trends. The channel grew at the expense of islands and bars in some areas, 354 

whereas in others it turned into incipient islands or became established islands.  355 

- 1977-1991. Clearly constructive period.  The channel evolved into incipient islands 356 

and these to established islands. Stability mainly affected the established islands, which 357 

for the first time exceed the gravel channel. 358 

- 1991-2006. Period with mixed trends. Destructive processes affected a larger surface, 359 

but numerous incipient islands were transformed into established islands, and these 360 

were attached to the floodplain.  361 

 362 

4.2. Width change trend 363 

 364 

The measure of the channel width shows a progressive reduction through time, from the 365 

first available measurements in 1946 until 2006, when the channel width reached a 366 

minimum (Fig. 6). During this period, the mean width of this reach decreased from 367 

214.6 m to 67.6 m, a reduction of 68.5%. The most important width reduction (46%) 368 

took place between 1946 and 1956. This trend was interrupted in the period 1956-1977, 369 

when the channel width slightly increased by 2.9% and gravel channel area by 2.3%. 370 

Between 1977 and 1991, the channel area decreased by 19.9% and width channel by 371 

39.8%, and in the last period there was a small channel area loss of 2.4%. 372 



  

The spatiotemporal distribution of changes is shown in Fig. 6. The reduction of the first 373 

period affects the whole study reach. A similar behaviour is observed during the other 374 

decreasing period (1977-1991). However, between 1956 and 1977 there was a 375 

narrowing process in the horst sector and a marked widening process in the graben 376 

reach. A similar behaviour was observed, though to a lesser degree, in the period 1991-377 

2006. 378 

 379 

4.3. Channel incision 380 

 381 

The channel incision analysis indicates marked streambed degradation (Fig. 7). The 382 

average bed incision of the study reach is 3.5 m. The annual incision ratio between 1946 383 

and 2011 is 0.054 m/year, although there are important differences between the four 384 

periods. The highest incision rates took place after 1977: 0.088 m/year (1977-1991) and 385 

0.081 m/year (1991-2011). During the two first stages incision was less intense 0.028 386 

m/year (1946-56) and 0.021 m/year (1956-1977). A deeper view shows that incision 387 

between 1946 and 1956, despite the mean values, was exclusively detected in two 388 

sections, P4 (0.5 m) and P7 (2.4 m), as it has been confirmed through a stereoscopic 389 

analysis. During the whole study period, the highest incision occurred in these sections, 390 

where general processes overlap some local factors. The first one (P4) was located in 391 

the narrowest section of the study reach. At this point, the hydraulic radius is high, 392 

enhancing incision during floods. The second (P7) presents the maximum streambed 393 

degradation (6.44 m), reflecting incision in all the studied periods. At this point, located 394 

immediately downstream of a 250-m-long bridge built in 1933, a knickpoint has been 395 

detected (between P6 and P7, fig. 2 and longitudinal profile, figure 7a). The incision 396 

was probably partially previous to 1946 and it was mainly caused by local scour of the 397 



  

CV-312 bridge (longitudinal profile, figure 7a). The concrete footing of the bridge acted 398 

as a dyke, stopping the headwater erosion and hindering knickpoint regularisation. In 399 

fact, the lowest values are found at 5.5 km (P6), located upstream of the bridge, where 400 

the bed lowering is 1.75 m. The flood of 2000 destroyed this bridge (Fig.8) and other 401 

located downstream, by undermining, despite having been reinforced many times 402 

during the study period. 403 

 404 

5. Causes of channel changes  405 

 406 

5.1. Climatic and hydrological changes 407 

 408 

The analysis of rainfall series detected no significant variations in mean annual rainfall 409 

in the Rambla de Cervera basin and no trend in daily rainfall (Fig. 9 a and b). The test of 410 

Mann-Kendall has no trend for annual rainfall for the whole of the period in Morella  411 

(Zk= -0.011, p= 0,990) and Sant Mateu-Sant Mateu HS (Zk = 1.207; p =  0,227) in any 412 

time window. The analysis of the Bergantes River discharge, shows a smooth negative 413 

trend, but with low significance (Zk= -2.274, p = 0.0229). This indicates that, although 414 

the rainfall remains stable (Morella), river discharge has slightly decreased, influenced 415 

by other factors. 416 

The analysis of rainfall events higher than 65 mm shows important spatio-temporal 417 

differences in both weather stations. In Morella, representing the headwaters area (Fig. 418 

10 a), there was a high frequency of events (17) exceeding 100 mm in the period 1920-419 

1935, whereas in the following period there were only 4 events and 6 events between 420 

1946-1956. Between 1956 and 1991 rainfall events between 100 and 200 mm increased, 421 

and several events between 200 and 400 mm were recorded. In the last period (1991-422 



  

2006) events between 100 and 200 mm have increased. In Sant Mateu-Sant Mateu HS, 423 

located beside the study reach (Fig 10 b), there is a higher frequency of events for the 424 

overlapping period, particularly important between 1956 and 1991. The most frequent 425 

events are those between 100 and 200 mm, but there are also some events between 200 426 

and 400 mm, mainly in the central period.   427 

Flow data from the adjoining gauged rivers, although partial and without statistical 428 

representation, has helped us to reconstruct the recent hydroclimatic variability. 429 

The historical floods of the Cervol River (Table 3) were frequent during the last quarter 430 

of the 19
th

 century and the first quarter of the 20
th

 century (Borrás, 1928). When the 431 

river was gauged, between 1911 and 1929, the year 1920-1921 was particularly 432 

significant. The river flowed almost during the whole year and important flow peaks 433 

were registered. After 1920, we have also information from the Rambla de Cervera, 434 

whose floods have coincided with similar events in the Cervol River.  435 

Thus, for the whole basin, a strong variability of large floods is inferred from the 436 

available historical and rainfall data:   a) between 1919 and 1956, there is a period of 437 

high flood recurrence (1919-1929), followed by a period of scarce events (1935 and 438 

1945) (Morella); b) an increase of floods between 1956 and 1991, particularly in the 439 

period 1956-1977 (Sant Mateu-Sant Mateu HS); c) a smooth decrease between 1991 440 

and 2006.  441 

 442 

5.2. Population and livestock density 443 

Historical changes in population and livestock were analysed as indirect indicators of 444 

land use change before 1946. The Rambla de Cervera basin is located within a rural 445 

district that was seriously affected by depopulation and a traditional dry-farming crisis. 446 

The historical maximum population of the basin was in 1900, with 18,112 inhabitants 447 



  

(Fig. 11). The population decreased by 25% in 1950 and 50% in 1991. In 2001, this 448 

trend has slowed down and the total population has reached 8,323 inhabitants. 449 

Ovine and caprine breeding, characteristic of this region, fluctuated through time linked 450 

to economic and political events (Fig. 11). Experts have detected a peak of ovine 451 

breeding after the Philloxera crisis of 1902 in the whole Province of Castelló, when 452 

numerous farmers abandoned grape production (Obiol, 1989). Since then, the livestock 453 

decreased markedly until the 1960s. Only after the 1990s there is a smooth recovery of 454 

this activity due to farming subsidies, but during the last decades grazing has been 455 

replaced by on-farm feeding practices, with no direct impact on hillslope vegetation. 456 

Agrarian statistics follow a similar evolutionary trend. In the municipality of Morella, 457 

the area of cereals reached a maximum in 1917 (7,215 hectares), over the less 458 

productive high lands, through terraces construction (Sangüesa and Albiol, 2010). Land 459 

abandonment was particularly intense between 1950 and 1970, during the depopulation 460 

crisis of the region (from 6,018 hectares in 1953 to 1,889 in 1975). In 2011, the area 461 

decreased to 1,171 hectares (www.ive.es).   462 

 463 

5.3. Land use changes from aerial photographs 464 

 465 

Depopulation processes lead to the abandonment of agriculture and the natural 466 

regeneration of vegetation. Consequently, forested areas have increased considerably, 467 

doubling in the period 1946-2006 from 3,847 to 8,154 hectares (from 15.3 to 33.1%). 468 

Most of this increase took place in the headwater area, where the progressive 469 

abandonment of extensive mountain exploitation practices (grazing and fuel wood 470 

collection) led to the regeneration of holm oaks (Quercus rotundifolia) and coniferous 471 

(Pinus halepensis) forests (Figs. 12 and 13, and table 4). 472 



  

Bush presents an apparent stability, with 9,305 hectares in 1946 and 9,719 hectares in 473 

2006. However, a detailed analysis shows important changes in this category, which 474 

behaves as a transitional stage between the cultivated plots and the forest cover. The 475 

separate analyses of both basin sectors reflect these changes. In the headwater area, 476 

bush decreased from 6,726 to 4,535 hectares between 1946 and 2006 (from 55.6 to 477 

35.6%), whereas forest increased from 3,211 to 6,346 hectares (from 26.6 to 52.6%). In 478 

contrast, in the same period and in the graben sector, bush increased from 2,589 to 479 

5,184 hectares. Arable lands, including rainfed trees and cereals, decreased from 42.1% 480 

to 24.3%, boosting afforestation processes. Thus, land use change trends suggest a 481 

change in runoff and sediment balance, reducing the impact of rainfall on flow and 482 

sediment generation. Opposite pattern changes, such as the small increase of urban area 483 

(from 43 to 97 hectares between 1946 and 2006), are not relevant.  484 

 485 

5.4 Gravel mining instream 486 

According to the official data (Table 5), corresponding to the whole Rambla de Cervera 487 

Channel extractions between 1980 and 2007 total 358,040 m
3
, with a ratio of 7,984 488 

m
3
/km of length. Gravel mining was intense between 1980 and 1988, reaching an 489 

average of 36,600 m
3
/year, whereas during the period 2000-2007 extractions decreased 490 

to 3,500 m
3
/year.  As we have stated above, these data are partial and incomplete, but 491 

interviews and photo-interpretation enable to corroborate the observed general trend. 492 

Gravel mining started in 1972 and reached maximum values during the decade of 493 

1980s, when the administration did not establish restrictions. After this decade, the 494 

gravel extracted from the river has decreased progressively (to a tenth part in the period 495 

2000-2007), because the administration has intended to reduce the impact of gravel 496 



  

mining on rivers and the companies have started exploiting former agricultural plots in 497 

the floodplain.  498 

 499 

6. Discussion 500 

6.1. Conceptual model of evolution 501 

 According to the available hydro-climatic references and the information about human-502 

induced changes, we attempted to conceptualize the evolution of the channel of the 503 

Rambla de Cervera: 504 

 505 

- Prior to 1946. The lack of aerial photographs from the first part of the 20th century 506 

makes it difficult to assess the evolution. However, some evidences prove that the 507 

environmental and climatic context was different to present conditions (Fig. 13). The 508 

maximum population density and the maximum agrarian land use took place at the 509 

beginning of the 20
th

 century. Therefore, the mountains had scarce and sparse 510 

vegetation, and were exposed to heavy rains, increasing runoff and sediment supply. 511 

Moreover, historical floods registered between 1919 and 1930 suggest a trend of high 512 

recurrence, such as in other Mediterranean rivers after the end of the Little Ice Age 513 

(Benito et al., 2008; Barriendos and Martín-Vide, 1998; López-Bermúdez et al. 2002; 514 

Barriendos and Rodrigo, 2006; Glaser et al., 2010). As a result of this, channel 515 

aggradation processes most likely took place.  516 

In the 1930s, population and cattle farming decreased and hillside conditions should 517 

started to change due to vegetation recovery, reducing runoff and sediment availability, 518 

as it has been observed in other Mediterranean rivers (Hooke, 2006; Piégay et al., 2004, 519 

2009; García-Ruiz and López-Bermúdez, 2009; García-Ruiz, 2010). Nevertheless, after 520 

the large floods of 1935 and 1945 the river could maintain an aggradational 521 



  

morphology, which is still reflected in the 1946 aerial photographs (Fig. 14). In these 522 

images, taken in the winter of 1946, the sediments from the recent 20
th

 of November of 523 

1945 flood cover former established islands, occupied by agricultural plots. This 524 

aggradational behaviour suggests that: a) the reversion of land use trend was still 525 

insufficient to alter significantly the sediment availability and, b) the channel 526 

adjustment period to watershed land-use changes is long.  527 

- 1946-1956. The most important changes in the river planform took place in this 528 

period.  Channel width and area decreased (46% and 26% respectively) and the 529 

incipient and established islands area was tripled (Fig. 14). Incision was not significant 530 

(0,028 m/year), and only was detected in two points (P4 and P7), caused by local 531 

factors.  532 

The narrowing process took place in a context of radical decrease of agriculture and 533 

overgrazing, which stimulated natural hillslope reforestation. Similar changes have been 534 

also identified in French, Italian and Spanish rivers as a response to spontaneous or 535 

man-made reforestation processes (Liébault et al. 2005; Boix-Fayos et al., 2007; Piégay 536 

et al. 2009; Preciso, et al. 2011; García-Ruiz and Lana-Renault, 2011). Rozin and 537 

Schick (1996) also documented significant narrowing in this period in Nahal Hoga, an 538 

ephemeral stream of the southern coastal plain of Israel. However, in this study case, the 539 

lack of large floods between 1946 and 1962 appears to be the major factor inducing 540 

channel narrowing processes. In the Rambla de Cervera, the absence of flow over the 541 

river bars facilitated terrestrial vegetation colonization and incipient islands 542 

development, reducing progressively the gravel channel. The aerial photograph of 1956 543 

clearly reflects this process, which probably continued until 1962, due to the lack of 544 

floods.  545 



  

-1956-1977. In this period, there was a smooth inversion of previous trends. The 546 

channel width and surface increased 2.9% and 2.3% respectively to the detriment of 547 

incipient and established bars, and the floodplain dissected islands. Incision was still 548 

moderate (0.021 m/year).  549 

The local newspapers and the analysis of rainfall have documented a period with an 550 

important increase of flood events (1962, 1964, 1965, 1967 and 1971). Crop 551 

abandonment and natural reforestation progressed. Gravel mining in stream started in 552 

1972, just after the last flood event of this period. For this reason, this activity had no 553 

significant impact on the river during this stage.  554 

The action of recurrent large floods over a not incised channel facilitated the destruction 555 

of consolidated islands, and also the avulsion and formation of dissected floodplain 556 

islands, causing a small enlargement of the gravel channel (Fig. 14), especially in the 557 

graben area. Partial reversals of temporal trends have been related to the occurrence of 558 

high magnitude floods or to periods within which are a relatively high frequency of 559 

significant flow events, in French rivers during the 1990s (Piégay, et al., 2009) and in 560 

Italian rivers (Rinaldi et al, 2009; Surian et al., 2009; Zanoni et al., 2008). 561 

- 1977-1991. This period represents a second stage of channel area decreasing (19.9%), 562 

gravel channel width narrowing (39.8%) and, especially, of maximum channel incision 563 

(0.088 m/year). Headwaters vegetation recovery progressed, due to land abandonment 564 

and natural regeneration processes. Livestock stopped decreasing, but grazing was 565 

replaced by on-farm feeding practices, with no impact on natural revegetation 566 

processes. The sediment deficit increased due to the impact of gravel mining, which 567 

severely affected the channel dynamics and boosted previous natural and human-568 

induced changes. The sequence of important floods was not capable of modifying the 569 

narrowing trend.  570 



  

- 1991-2006. In this last period, channel narrowing slowed down and even a small 571 

enlargement is detected in some points (Fig. 14). Incision reached high values (0.081 572 

m/year). The environmental conditions were similar to the previous stage, and hillslope 573 

reforestation reached maximum values. Gravel mining decreased considerably, 574 

disappearing in part of the study reach.  575 

The high-magnitude rainfall events decreased, but one of the most important floods of 576 

the last century was registered in October of 2000 (Table 3). The dual 577 

behaviour observed in the period most likely corresponds to two overlapping processes. 578 

On one hand, the extraordinary flood of October 2000 was most likely responsible for 579 

the smooth growth and widening of the gravel channel in some sectors. On the other, 580 

the lack of sediment supply, induced by both hillside reforestation and the intense 581 

previous gravel mining activity, enhanced incision, leaving the bars and the floodplain 582 

as a raised surface.  583 

 584 

The previous periods’ division is obviously conditioned by the availability of aerial 585 

photographs and does not represent real milestones in the development of the river. 586 

Considering this fact, it is possible to distinguish four stages summarizing the previous 587 

model: a) prior to 1946, the river had a clear aggradational behaviour, clearly reflected 588 

in the aerial photographs; b) between 1946 and 1962, there is a narrowing stage. The 589 

Rambla de Cervera underwent the longest period without floods in the century, fact that 590 

boosted the vegetation colonization of a large part of the river, reducing drastically the 591 

channel width, as it is reflected in the 1956 aerial photograph; c) between 1962 and 592 

1972, the high recurrence of floods contributed to a smooth readjustment of the channel 593 

width and generated a slight incision; d) after 1972, there was a clear incision stage and 594 

a moderate width narrowing. The intense gravel mining, which took place in a context 595 



  

of advanced hillside reforestation, boosted severe incision in the Rambla Cervera, due to 596 

a drastic reduction of sediment supply.    597 

  598 

6.2. Magnitude of river adjustment 599 

Channel adjustment values in the Rambla de Cervera are comparable to those observed 600 

in other Mediterranean rivers. Mean incision values (3.5 m) are similar in Italian 601 

perennial rivers (3-4 m) (Surian and Rinaldi, 2003; Gurnell et al, 2012; Preciso et al. 602 

2011; Rinaldi et al, 2009; Surian and Cisotto, 2007; and Surian et al., 2009), French 603 

rivers (1-5 m) (Liébault et Piégay, 2002; Bravard et al., 1997; and Arnaud-Fasseta 604 

2003), and Spanish rivers (0.6-5.5 m) (Boix-Fayos et al., 2007; Martín-Vide et al, 605 

2010). These values range in the same order of magnitude that those observed in 606 

ephemeral streams in the USA (Rinaldi et al., 2005; Cadol et al., 2011) and Israel 607 

(Rozin and Schick, 1996). The time sequence is in most cases similar: incision is 608 

detected in the 1940’ and increases later, especially in those rivers where gravel mining 609 

progresses (Rinaldi et al., 2005).   610 

The Rambla de Cervera narrowing values are also similar to other Mediterranean areas 611 

(Boix-Fayos, et al., 2007; Liébault et Piégay, 2002) and present an analogous trend, 612 

with higher levels before the 1970s (Surian et al., 2009).  In general terms, the Rambla 613 

de Cervera results are particularly similar to those obtained by Rozin and Schick (1996) 614 

in Nahal Hoga, a small Mediterranean-semiarid ephemeral stream. Despite the different 615 

causal factors, both cases share an initial aggradational stage previous to 1946, a marked 616 

narrowing period between 1945 and 1956, and a slight readjustment in the subsequent 617 

flooding periods, parallel to severe incision.  618 

 619 

6.3. Spatio-temporal variability of adjustments in ephemeral streams 620 



  

River adjustment presents several particularities in ephemeral streams, which arise from 621 

the discrete nature of flow events. Moisture antecedent conditions, land use changes and 622 

soil properties, spatial and temporal variability in rainfall intensities, totals and annual 623 

number of events (Camarasa-Belmonte and Segura-Beltrán, 2001) and transmission 624 

losses (Thornes, 1976; Shanon et al. 2002) result in high spatio-temporal variability of 625 

discharge and sediment supply.  Adjustments are caused by limited and infrequent flow 626 

events and little changes take place in between events (Wolman and Gerson, 1978). 627 

These facts may contribute to produce adjustments with high spatio-temporal 628 

variability, longer reaction and relaxation times, and higher asynchrony between causal 629 

factors and channel adjustments. Channel adjustments of the Rambla de Cervera 630 

respond to these conditions, and present certain particularities concerning the temporal 631 

variability of narrowing adjustments, the different impact of flood events and the role of 632 

vegetation in channel adjustment. 633 

  634 

6.3.1. Temporal variability of width adjustments 635 

Changes in the channel width are related to the contrasted effects caused by large and 636 

minor events in ephemeral streams. Large floods exceed the critical shear stress for 637 

erosion, transport larger amounts of sediment through the system and produce channel 638 

changes whose effects may persist for many years. Minor events not always exhibit the 639 

shear stress required to mobilize the channel-bed material, and therefore, could 640 

contribute to narrowing and stabilisation by vegetation (Hooke and Mant, 2002). Thus, 641 

during the dry periods, vegetation can easily colonize bars and islands, boosting 642 

narrowing processes. This could be the main cause of the radical narrowing documented 643 

in the Rambla de Cervera between 1946-1956, similar to the Nahal Hoga case study 644 



  

(Rozin and Schick, 1996), attributed to a decrease of 9% in the ratio rainfall-runoff 645 

between 1940 and 1960. 646 

On the other hand, large floods or intense sequences of large floods, such as the period 647 

1962-1971 or the flood of 2000 in the Rambla Cervera, slowed or stopped the 648 

narrowing trend, due to the erosional work carried out in some areas of the river bed.  649 

These large events are responsible for the major channel changes, and in many 650 

occasions only mobilize material from the river bed (Hooke and Mant, 2002).  651 

 652 

6.3.2. Different impact of flood events 653 

With very similar rainfall inputs and opposed environmental conditions, the effects of 654 

the floods of 1935 (474 mm) and 2000 (511 mm) (Table 3) were very different. The 655 

1935 flood caused streambed aggradation (still observed in the 1946 aerial photographs) 656 

(Fig. 14), whereas the 2000 flood provoked a marked incision and the undermining of 657 

two bridges.  The first flood took place over a river basin barely vegetated, with a high 658 

sediment supply and an aggradational river bed, whereas in the second one there was an 659 

important sediment supply deficit (Fig. 13). It was generated in a forested headwater, 660 

with densely vegetated hillslopes and a river channel seriously affected by gravel 661 

mining extractions.  662 

Despite the evident importance of changes in the environmental conditions, induced by 663 

revegetation processes or gravel mining, some of the observed incision and narrowing 664 

could also be attributed to a hydraulic adjustment to channel pattern changes. In the 665 

study reach, floods were particularly intense in 1962-1971 and 1982-1988 (table 3). 666 

However, the obtained results show the first ones widened the corridor while the second 667 

ones did not. The efficiency of these processes depends on the elevation of the islands 668 

(Gurnell et al, 2012). With similar flow values, some floods could easily generate bank-669 



  

full flow whereas others, due to channel incision, only caused sub-bank-full flow. Thus, 670 

the 1962-1971 floods occurred on a river bed slightly incised, so the flow could pass 671 

through consolidated bars, opening new channels (Fig. 14). Nevertheless, during the 672 

1980’s, as incision progressed, the islands were relatively elevated, and then, the river 673 

flow was concentrated in a major hydraulic radius, increasing incision and reducing the 674 

impacts on the established islands. Only the large flood of 2000 was capable to combine 675 

incision impacts with some local enlargement of the river channel, due to its higher 676 

magnitude.  677 

 678 

6.3.3. Vegetation and variability in adjustment changes.  679 

In ephemeral streams, the interaction of floods sequence and vegetation development 680 

proves to be a major factor in channel morphology changes. The evolution of vegetation 681 

depends on the regime of the spatio-temporal sequence of flood events, rather than the 682 

statistical frequency, whereas changes in channel morphology are partially determined 683 

by the distribution of vegetation (Hooke and Mant, 2002). Thus, in ephemeral streams, 684 

the lack of flow for long periods preserves vegetation development, boosting 685 

colonisation and channel narrowing processes, as it has been detected in the Rambla 686 

Cervera between 1946 and 1956. 687 

The evolution of the Rambla de Cervera is similar to the model proposed by Mant 688 

(2002). The colonisation of vegetation in a high-energy environment begins with herbs, 689 

most frequently found in mid-channel areas. Herbs and terrestrial bushes initiate the 690 

island’s colonisation (Rosmarinus officinalis, Thymus vulgaris, Ulex parviflorus), 691 

whereas Salix or Pinus only appear in the second stage, especially when the islands are 692 

attached to the floodplain. As a result of this process, incipient islands comprise a 693 

mixture of shrubs and large grasses, and higher species diversity is found on 694 



  

consolidated islands and flooplain, where flow events are less frequent and plants are 695 

also associated with agricultural land.  696 

The agricultural use of islands plays an important role. Farmers fix the islands with 697 

vineyards, olive groves and dry-stone walls, usually perpendicular to flow direction. 698 

After the floods, if the flow has covered the fields, farmers restore their plots. Figure 14 699 

shows an example of island restoration and expansion caused by agricultural uses, 700 

frequently repeated along the study reach. This process is particularly frequent and 701 

successful in those islands attached to the floodplain, probably because farmers have a 702 

lesser perception of risk in the river side.  703 

Variation in channel confinement and their effect on stream power can also have a 704 

strong influence on vegetation distribution. Confined reaches have higher unit stream 705 

powers, and the vegetation is more likely to suffer flood damage than less confined 706 

reaches (Sandercock et al., 2007). In the Rambla de Cervera, where there is a contrast in 707 

channel confinement between the graben and the horst area, we have observed a 708 

different development of vegetation colonization. The non-confined areas of the horst 709 

sector exhibit higher vegetation colonization advances and, consequently, more marked 710 

narrowing than the confined areas.  711 

 712 

7. Conclusions 713 

 714 

In this paper, we have analysed the morphological evolution of the Rambla de Cervera 715 

during the last six decades. In some sectors, the Rambla de Cervera has changed from a 716 

braiding pattern to a wandering one. A growing number of established islands have 717 

emerged, some of which are attached to the floodplain, considerably reducing channel 718 

width between 1946 and 2006 (68.5%). Channel shrinkage was particularly significant 719 



  

between 1946 and 1956. Moreover, incision processes took place along the whole study 720 

reach, with an average of 3.5 m, and it was particularly important after 1977, with a 721 

ratio of 0.08 m/year. 722 

Both climate and human activities underwent important fluctuations since the beginning 723 

of the 20
th

 century, although it is impossible to exactly determine the influence of each 724 

of these factors on the river’s morphological evolution. Some of these factors produce 725 

contradictory effects, affecting flow, sediment dynamics and vegetation cover.  726 

Short- term channel adjustments are mainly depending on magnitude, frequency and 727 

timing of the floods. Long-term changes are influenced by sediment fluxes, flow and 728 

flood characteristics and interaction of sediment and vegetation. In general terms, the 729 

alteration of sediment fluxes has been a major factor driving such channel adjustments, 730 

and it was mainly caused by land use changes and gravel mining. The absence of flow 731 

and the randomness of floods have determined the rhythm of river adjustment 732 

processes, mainly through the active corridor vegetation encroachment.  Irregularity of 733 

flow and the randomness of large flood cause long periods of stability and very long 734 

reaction times, whereas disturbance take place in very short time lapses. As a 735 

consequence, these processes are more discontinuous and irregular than in perennial 736 

rivers.   737 

 738 

Acknowledgements 739 

 740 

This study was funded by the Ministry of Science and Innovation with the project 741 

‘Recent environmental changes in fluvial systems: morphological and sedimentary 742 

consequences’ (CGL2009-14220-C02-02-BTE) and is financed with FEDER funds. 743 

Comments from anonymous reviewers greatly improved this manuscript. 744 



  

 745 

References 746 

Arnaud-Fassetta, G., 2003. River channel changes in the Rhone Delta (France) since the 747 

end of the Little Ice Age: geomorphologic adjustment to hydroclimatic change and 748 

natural resource management. Catena. 51(2), 141-172.  749 

Ashmore, P.E., 1991. How do gravel-bed rivers braid?. Canadian Journal of Earth 750 

Sciences. 28(3), 326-341.  751 

Barriendos, M., Martin-Vide, J., 1998. Secular climatic oscillations as indicated by 752 

catastrophic floods in the Spanish Mediterranean coastal area (14th–19th centuries). 753 

Clim.Change. 38(4), 473-491.  754 

Barriendos, M., Rodrigo, F.S., 2006. Study of historical flood events on Spanish rivers 755 

using documentary data. Hydrological sciences journal. 51(5), 765-783.  756 

Batalla, R.J., 2003. Sediment deficit in rivers caused by dams and instream gravel 757 

mining: A review with examples from NE Spain. Cuaternario y Geomorfología. 17(3), 758 

79-91. 759 

Beguería, S., Lopez-Moreno, J.I., Gomez-Villar, A., Rubio, V., Lana-Renault, N., 760 

Garcia-Ruiz, J.M., 2006. Fluvial adjustments to soil erosion and plant cover changes in 761 

the Central Spanish Pyrenees RID A-7269-2010. Geografiska Annaler Series A-762 

Physical Geography. 88A(3), 177-186.  763 

Benito, G., Thorndycraft, V.R., Rico, M., Sanchez-Moya, Y., Sopena, A., 2008. 764 

Palaeoflood and floodplain records from Spain: Evidence for long-term climate 765 

variability and environmental changes. Geomorphology. 101(1-2), 68-77.  766 



  

Bertoldi, W., Gurnell, A., Surian, N., Tockner, K., Zanoni, L., Ziliani, L., Zolezzi, G., 767 

2009. Understanding reference processes: linkages between river flows, sediment 768 

dynamics and vegetated landforms along the Tagliamento River, Italy. River Research 769 

and Applications. 25(5), 501-516.  770 

Bertoldi, W., Drake, N.A., Gurnell, A.M., 2011. Interactions between river flows and 771 

colonizing vegetation on a braided river: exploring spatial and temporal dynamics in 772 

riparian vegetation cover using satellite data. Earth Surf.Process.Landforms. 36(11), 773 

1474-1486.  774 

Boix-Fayos, C., Barbera, G.G., Lopez-Bermudez, F., Castillo, V.M., 2007. Effects of 775 

check dams, reforestation and land-use changes on river channel morphology: Case 776 

study of the Rogativa catchment (Murcia, Spain). Geomorphology. 91(1-2), 103-123. 777 

Borrás, J. M. (1928): Història de Vinaròs. Tortosa, Associació Amics de Vinaròs (ed. 778 

1979), 653 pp. 779 

Bravard, J.P., Amoros, C., Pautou, G., Bornette, G., Bournaud, M., Creuzé des 780 

Châtelliers, M., Gibert, J., Peiry, J.L., Perrin, J.F., Tachet, H., 1997. River incision in 781 

south-east France: morphological phenomena and ecological effects. Regul.Rivers: 782 

Res.Manage. 13(1), 75-90. 783 

Cadol, D., Rathburn, S., Cooper, D., 2011. Aerial photographic analysis of channel 784 

narrowing and vegetation expansion in Canyon de Chelly National Monument, Arizona, 785 

USA, 1935–2004. River Research and Applications. 27(7), 841-856.  786 

Camarasa-Belmonte, A.M., Segura-Beltrán, F., 2001. Flood events in Mediterranean 787 

ephemeral streams (ramblas) in Valencia region, Spain. Catena. 45(3), 229-249. 788 



  

Gallart, F., Delgado, J., Beatson, S.J.V., Posner, H., Llorens, P., Marcé, R. 2011. 789 

Analysing the effect of global change on the historical trends of water resources in the 790 

headwaters of the Llobregat and Ter river basins (Catalonia, Spain). Physics and 791 

Chemistry of the Earth. 36, 655-661. 792 

García-Ruíz, J.M., 2010. The effects of land uses on soil erosion in Spain: A review. 793 

Catena. 81(1), 1-11.  794 

García-Ruíz, J.M., Lana-Renault, N. (2011): Hydrological and erosive consequences of 795 

farmland abandonment in Europe, with special reference to the Mediterranean region - 796 

A review. Agriculture, Ecosystems and Environment.140, 317-338. 797 

García-Ruíz, J.M., López-Bermúdez, F., 2009. La erosión del suelo en España. 798 

Sociedad Española de Geomorfología, Zaragoza, 441 pp. 799 

Garófano-Gómez, V., Martínez-Capel, F., Bertoldi, W., Gurnell, A., Estornell, J. and 800 

Segura-Beltrán, F. (2012), Six decades of changes in the riparian corridor of a 801 

Mediterranean river: a synthetic analysis based on historical data sources. Ecohydrol.. 802 

doi: 10.1002/eco.1330 803 

Glaser, R., Riemann, D., Schoenbein, J., Barriendos, M., Brazdil, R., Bertolin, C., 804 

Camuffo, D., Deutsch, M., Dobrovolny, P., van Engelen, A., Enzi, S., Halickova, M., 805 

Koenig, S.J., Kotyza, O., Limanowka, D., Mackova, J., Sghedoni, M., Martin, B., 806 

Himmelsbach, I., 2010. The variability of European floods since AD 1500. 807 

Clim.Change. 101(1-2), 235-256.  808 



  

González, E., González-Sanchis, M., Cabezas, Á., Comín, F.A., Muller, E., 2010. 809 

Recent changes in the riparian forest of a large regulated Mediterranean river: 810 

implications for management. Environ. Manage. 45(4), 669-681.  811 

Gurnell, A.M., Petts, G.E., Hannah, D.M., Smith, B.P.G., Edwards, P.J., Kollmann, J., 812 

Ward, J.V., Tockner, K., 2001. Riparian vegetation and island formation along the 813 

gravel-bed Fiume Tagliamento, Italy. Earth Surf.Process.Landforms. 26(1), 31-62.  814 

Gurnell, A., Surian, N., Zanoni, L., 2009. Multi-thread river channels: A perspective on 815 

changing European alpine river systems. Aquatic Sciences-Research Across 816 

Boundaries. 71(3), 253-265.  817 

Gurnell, A.M., Bertoldi, W., Corenblit, D., 2012. Changing river channels: The roles of 818 

hydrological processes, plants and pioneer fluvial landforms in humid temperate, mixed 819 

load, gravel bed rivers. Earth- Science Reviews. 111(1-2), 129.  820 

Hooke, J.M., 2006. Human impacts on fluvial systems in the Mediterranean region. 821 

Geomorphology. 79(3-4), 311-335.  822 

Hooke, J.M., Mant, J., 2002. Morpho-dynamics of ephemeral streams. In: Bull, L., 823 

Kirkby, M. (Eds.), Dryland Rivers: Hydrology and Geomorphology of Semi-arid 824 

Channels. John Wiley & Sons, Chichester, pp. 173–204. 825 

Liébault, F., Piégay, H., 2001. Assessment of channel changes due to long-term bedload 826 

supply decrease, Roubion River, France. Geomorphology. 36(3), 167-186.  827 

Liébault, F., Piégay, H., 2002. Causes of 20th century channel narrowing in mountain 828 

and piedmont rivers of southeastern France. Earth Surf.Process.Landforms. 27(4), 425-829 

444.  830 



  

Liébault, F., Gomez, B., Page, M., Marden, M., Peacock, D., Richard, D., Trotter, C., 831 

2005. Land-use change, sediment production and channel response in upland regions. 832 

River Research and Applications. 21(7), 739-756.  833 

López-Bermúdez, F., Conesa-García, C., Alonso-Sarria, F., 2002. Floods: magnitude 834 

and frequency in ephemeral streams of the Spanish Mediterranean region. In: Bull, L., 835 

Kirkby, M. (Eds.), Dryland Rivers: Hydrology and Geomorphology of Semi-arid 836 

Channels. John Wiley & Sons, Chichester, pp. 229–350. 837 

López-Moreno, J.I., Beguería, S., García-Ruiz, J.M., 2006. Trends in high flows in the 838 

Central Spanish Pyrenees: Response to climatic factors or to land use change? 839 

Hydrolog. Sci. J. 51, 1039–1050. 840 

Mant, J. 2002. Vegetation in the ephemeral channels of southeast Spain: its impact on 841 

and response to morphological change. PhD thesis, University of Portsmouth.  842 

Martín-Vide, J.P., Ferrer-Boix, C., Ollero, A., 2010. Incision due to gravel mining: 843 

Modeling a case study from the Gallego River, Spain. Geomorphology. 117(3-4), 261-844 

271.  845 

Mount, N.J., Louis, J., Teeuw, R.M., Zukowski, P.M., Stott, T. 2003. 846 

Estimation of error in bankfull width comparisons from temporally sequenced raw and 847 

corrected aerial photographs. Geomorphology 56: 65–77.  848 

Michalková, M., Piégay, H., Kondolf, G.M., Greco, S.E. 2010. Lateral erosion of the 849 

Sacramento River, California, (1942-1999), and responses of cannel and floodplain lake 850 

to human influences, Earth Surface Processes and Landforms 36: 257-272. 851 



  

Obiol, E. 1989. La ganadería en el norte del País Valenciano. Publicaciones del Excmo. 852 

Ayuntamiento de Castellón de la Plana. 853 

Pardo, J. E. (1991): La erosion antrópica en el litoral valenciano. Generalitat 854 

Valenciana. Conselleria d’Obres Públiques, Urbanisme i Transports, 240 pp. 855 

Piégay, H., Alber, A., Slater, L., Bourdin, L., 2009. Census and typology of braided 856 

rivers in the French Alps. Aquatic Sciences-Research Across Boundaries. 71(3), 371-857 

388.  858 

Piégay, H., Walling, D.E., Landon, N., He, Q., Liébault, F., Petiot, R., 2004. 859 

Contemporary changes in sediment yield in an alpine mountain basin due to 860 

afforestation (the upper Drôme in France). Catena. 55(2), 183-212.  861 

Pont, D., Piégay, H., Farinetti, A., Allain, S., Landon, N., Liébault, F., Dumont, B., 862 

Richard-Mazet, A., 2009. Conceptual framework and interdisciplinary approach for the 863 

sustainable management of gravel-bed rivers: The case of the Drôme River basin (SE 864 

France). Aquatic Sciences-Research Across Boundaries. 71(3), 356-370.  865 

Preciso, E., Salemi, E., Billi, P., 2011. Land use changes, torrent control works and 866 

sediment mining: effects on channel morphology and sediment flux, case study of the 867 

Reno River (Northern Italy). Hydrol.Process., DOI: 10.1002/hyp.8202 868 

Rinaldi, M., 2003. Recent channel adjustments in alluvial rivers of Tuscany, central 869 

Italy. Earth Surf.Process.Landforms. 28(6), 587-608.  870 

Rinaldi, M., Wyżga, B., Surian, N., 2005. Sediment mining in alluvial channels: 871 

physical effects and management perspectives. River Research and Applications. 21(7), 872 

805-828.  873 



  

Rinaldi, M., Simoncini, C., Piégay, H., 2009. Scientific design strategy for promoting 874 

sustainable sediment management: the case of the Magra River (Central‐Northern 875 

Italy). River Research and Applications. 25(5), 607-625.  876 

Roux, A. L., J. P. Bravard, C. Amoros and G. Pautou, 1989. Ecological changes of the 877 

French upper Rhone River since 1750. In: Petts G. E. with Müller H. and Roux A. L. 878 

(Eds.), Historical Change of Large Alluvial Rivers: Western Europe, Wiley, Chichester, 879 

pp. 323–350. 880 

Rovira, A., Batalla, R. J. Sala, M. 2005. Response of a river sediment budget after 881 

historical gravel mining (the Lower Tordera, NE Spain). River Res. Applic. 21, 829–882 

847. 883 

Rozin, U., Schick, A. P. (1996): Land use change, conservation measures and stream 884 

channel response in the Mediterranean/semiarid transition zone: Nahal Hoga, southern 885 

Coastal Plain, Israel. In: Erosion and Sediment Yield: Global and Regional Perspectives 886 

(Proceedings of the Exeter Symposium). IAHS pub. nº 236, 427-444. 887 

Sangüesa Ortí, C., Albiol Vidal, C. 2010. Morella, 1910. Una sociedad  industrial y 888 

ganadera en el camino de Aragón al mar. Ajuntament de Morella , 157 pp. 889 

Sandercock, P.J., Hooke, J.M.  and Mant, J.M. 2007. Vegetation in dryland river 890 

channels and its interaction with fluvial processes. Progress in Physical Geography. 31, 891 

107-129 892 

Segura-Beltrán, F., Universitat de València, 1990. Las ramblas valencianas: algunos 893 

aspectos de hidrología, geomorfología y sedimentología. Universitat de València, 894 

Secció de Geografia, València.  895 



  

Surian, N., Rinaldi, M., 2003. Morphological response to river engineering and 896 

management in alluvial channels in Italy RID A-9603-2010. Geomorphology. 50(4), 897 

307-326.  898 

Surian, N., Cisotto, A., 2007. Channel adjustments, bedload transport and sediment 899 

sources in a gravel-bed river, Brenta River, Italy. Earth Surf. Process. Landforms. 900 

32(11), 1641-1656.  901 

Surian, N., Ziliani, L., Comiti, F., Lenzi, M.A., Mao, L., 2009. Channel adjustments and 902 

alteration of sediment fluxes in gravel‐bed rivers of North‐Eastern Italy: potentials 903 

and limitations for channel recovery. River Research and Applications. 25(5), 551-567.  904 

Tal, M., Paola, C., 2007. Dynamic single-thread channels maintained by the interaction 905 

of flow and vegetation. Geology. 35(4), 347-350.  906 

Wishart, D., Warburton, J., Bracken, L., 2008. Gravel extraction and planform change 907 

in a wandering gravel-bed river: The River Wear, Northern England. Geomorphology. 908 

94(1-2), 131-152.  909 

Wolman, H.G., Gerson, R., 1978. Relatives scales of time and effectiveness of climate 910 

in watershed geomorphology. Earth Surf.Process.Landforms. 3(2), 189-208. 911 

Wyrick, J.R., Klingeman, P.C., 2011. Proposed fluvial island classification scheme and 912 

its use for river restoration. River Research and Applications. 27(7), 814-825.  913 

Yue, S., Pilon, P., Cavadias, G., 2002. Power of the Mann–Kendall and Spearman’s rho 914 

tests for detecting monotonic trends in hydrological series. Journal of Hydrology 259, 915 

254–271. 916 



  

Zanoni, L., Gurnell, A., Drake, N., Surian, N., 2008. Island dynamics in a braided river 917 

from analysis of historical maps and air photographs. River Research and Applications. 918 

24(8), 1141-1159.  919 

 920 

Figure captions 921 

 922 

Fig. 1. Sketch of location: a) Rambla de Cervera, Cervol River and Bergantes River 923 

basins and gauging stations; b) DEM of the basin, Rambla de Cervera (dashed white 924 

line), study reach (continuous white), and weather stations located in Morella and Sant 925 

Mateu. Dashed black lines subdivide the Rambla de Cervera basin in three sectors, 926 

upper, middle and lower basin.  927 

Fig. 2. Sections where incision and width were measured. The channel width (the sum 928 

of the single branches widths) has been measured each 500 m. Eleven sections were 929 

selected in order to measure incision processes. The hillshade map shows the contrast 930 

between the horst and the graben area. Above, river section number 10 is shown to 931 

present the methodology for river incision calculation. Several microterraces have been 932 

identified, through photointerpretation and field works, to quantify incision. 933 

Fig. 3. Evolution of the corridor forms in the Rambla de Cervera study reach (1946-934 

2006). Gravel channel significantly decreases, whereas established islands increase.  935 

Fig. 4. Evolutionary trends of corridor morphological units. The numbers express 936 

percentages of the fluvial corridor surface (>4%) moving from one category to another 937 

or remaining stable. Floodplain construction trajectories reflect gravel channel evolving 938 

to incipient islands and these to established islands. Floodplain destruction trends are 939 



  

the inverse processes. There are two floodplain construction periods (1946-1956 and 940 

1977-1991), and two periods with mixed performance (1957-1977 and 1991-2006). 941 

Fig. 5. Spatial distribution of changes in the active corridor. Floodplain construction 942 

trajectories are those contributing to reduce the active corridor and floodplain 943 

destruction trajectories, those enlarging the active corridor. 944 

Fig. 6. Accumulated channel width change. Above, presented in box plots (a) and below 945 

(b), reflecting spatiotemporal variability. Most significant changes took place in the 946 

graben area, where the lateral shift of the Rambla de Cervera was higher. Channel width 947 

change was particularly marked in the period 1946-1956. 948 

Fig. 7. Incision (m) estimated in eleven selected sections of the study reach. Above (a) 949 

longitudinal profile. Below (b) accumulated incision in different cross-sections. The 950 

highest incision (p7) is located downstream of the only bridge across the study reach.  951 

Fig. 8. Picture taken immediately after the 2000 year flood at the CV-312 Bridge, 952 

reflecting undermining and incision processes in p7. 953 

Fig. 9. Rainfall series (24 hours) of a) Morella and b) San Mateu weather stations. No 954 

trend is observed in annual mean rainfall. 955 

Fig. 10. Temporal distribution of rainfall events classified per total rainfall (mm) in a) 956 

Morella (upper basin), and b) Sant Mateu-Sant Mateu HS (middle basin). The number 957 

over the bars is the number of events higher than 65 mm, regional threshold to produce 958 

runoff. Graphic a (Morella) shows a scarce number of events between 1935-1946 and an 959 

increasing number of events in 1991-2006. Graphic b (Sant Mateu) shows a high 960 

number of events throughout the whole period, particularly between 1956 and 1977. 961 

Fig. 11. Evolution of population in the Rambla de Cervera basin and ovine-caprine 962 

cattle in the Castellón Province. 963 

Fig. 12. Land use changes in the Rambla de Cervera basin between 1946 and 2006. 964 



  

Fig 13. Spontaneous reforestation processes are also reflected in historical pictures. The 965 

above two pictures were taken by J. Martínez Sánchez between 1865 and 1867. Below, 966 

the same area in 2011. The arrows join common points.  967 

Fig. 14. Evolution of corridor forms in a representative reach of the study site. The 1946 968 

image shows how the flood of 1945 covered an agricultural consolidated island with 969 

gravels. In 1956, the crops had been restored and there were new plots exploited. In 970 

1977, floods had divided the island in two, destroying partially the fields. Only after 971 

2006, the island seems to be lifted enough to avoid the impact of new floods. This 972 

island elevation has been, in this and other cases, stimulated by gravel mining on the 973 

river channels. Sketch (a) shows recent incision processes eroding red Pleistocene 974 

conglomerates, below the Holocene and historical gravels. Reforestation processes can 975 

be observed in the lower part of the images, where agricultural plots are progressively 976 

colonised by bush and Pinus halepensis. 977 

Fig. 15. Trends of river adjustments, main human disturbance factors and natural 978 

reforestation causing bed river changes. 979 
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 982 

Table 1. Summary of data sources used for the analysis of channel and basin changes. 983 

 984 

Table 2. Rainfall series characteristics in the weather stations of the study area. 985 

 986 

Table 3. Historical floods registered in Cervol River and Rambla de Cervera. Total 987 

rainfall events (mm) has been obtained from Morella weather station and Qmax from 988 

Cervol gauging station.  989 



  

 990 

Table 4. Land use evolution in the basin of the Rambla Cervera study reach (hectares). 991 

 992 

Table 5. Gravel extracted from the Rambla de Cervera according to the official data. 993 

Data between 1980 and 1988 has been obtained from Pardo (1991).  Nd = no data. Data 994 

between 2000 and 2007 has been obtained from information of the Confederación 995 

Hidrográfica del Júcar. 996 


