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Abstract

This thesis gathers some contributions to statistical pattern recognition and, more specifically,
to several natural language processing (NLP) tasks. Several well-known statistical techniques
are revisited in this thesis: parameter estimation, loss function design and probability mod-
elling. The former techniques are applied to several NLP tasks such as text classification
(TC), language modelling (LM) and statistical machine translation (SMT).

In parameter estimation, we tackle the smoothing problem byproposing a constrained
domain maximum likelihood estimation (CDMLE) technique. The CDMLE avoids the need
of the smoothing stage that makes the maximum likelihood estimation (MLE) to lose its good
theoretical properties. This technique is applied to text classification by mean of the Naive
Bayes classifier. Afterwards, the CDMLE technique is extended to leaving-one-out MLE
and, then, applied to LM smoothing. The results obtained in several LM tasks reported an
improvement in terms of perplexity compared with the standard smoothing techniques.

Concerning the loss function, we carefully study the designof loss functions different
from the0–1 loss. We focus our study on those loss functions that while retaining a similar
decoding complexity than the0–1 loss function, provide more flexibility. Many candidate
loss functions are presented and analysed in several statistical machine translation tasks and
for several translation models. We also analyse some outstanding translations rules such as
the direct translation rule; and we give a further insight into thelog-linear models, which
are, in fact, particular cases of loss functions.

Finally, several monotone translation models are proposedbased on well-known mod-
elling techniques. Firstly, an extension to the GIATI technique is proposed to infer finite
state transducers (FST). Afterwards, a phrased-based monotone translation model inspired in
hidden Markov models is proposed. Lastly, a phrased-based hidden semi-Markov model is
introduced. The latter model produces slightly improvements over the baseline under some
circumstances.
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Resumen

Esta tesis reune algunas contribuciones al reconocimientode formas estadístico y, más especí-
ficamente, a varias tareas del procesamiento del lenguaje natural. Varias técnicas estadísticas
bien conocidas se revisan en esta tesis, a saber: estimaciónparamétrica, diseño de la función
de pérdida y modelado estadístico. Estas técnicas se aplican a varias tareas del procesamiento
del lenguajes natural tales como clasificación de documentos, modelado del lenguaje natural
y traducción automática estadística.

En relación con la estimación paramétrica, abordamos el problema del suavizado pro-
poniendo una nueva técnica de estimación por máxima verosimilitud con dominio restringido
(CDMLEa). La técnica CDMLE evita la necesidad de la etapa de suavizado que propicia la
pérdida de las propiedades del estimador máximo verosímil.Esta técnica se aplica a clasifi-
cación de documentos mediante el clasificador Naive Bayes. Más tarde, la técnica CDMLE
se extiende a la estimación por máxima verosimilitud por “leaving-one-out” aplicandola al
suavizado de modelos de lenguaje. Los resultados obtenidosen varias tareas de modelado
del lenguaje natural, muestran una mejora en términos de perplejidad.

En cuanto a la función de pérdida, se estudia cuidadosamenteel diseño de funciones de
pérdida diferentes a la0–1. El estudio se centra en aquellas funciones de pérdida que rete-
niendo una complejidad de decodificación similar a la función 0–1, proporcionan una mayor
flexibilidad. Analizamos y presentamos varias funciones depérdida en varias tareas de tra-
ducción automática y con varios modelos de traducción. También, analizamos algunas reglas
de traducción que destacan por causas prácticas como, por ejemplo, la regla de traducción
directa; y, así mismo, profundizamos en la comprensión de los modelos log-lineares, que son
de hecho, casos particulares de funciones de pérdida.

Finalmente, se proponen varios modelos de traducción monótonos basados en técnicas de
modelado estadístico bien conocidas. En primer lugar, se propone una extensión a la técnica
de GIATI, para inferir trasductores de estados finitos. Más tarde, se propone un modelo de
traducción basado en secuencias de palabras e inspirado en los modelos ocultos de Markov.
En último lugar, se presenta un modelo de traducción basado en secuencias de palabras y
semi-modelos de Markov. Este último modelo produce mejorassobre la referencia en ciertas
circunstancias.

aDel inglés “Constrained Domain Maximum Likelihood Estimation”
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Resum

Aquesta tesi reuneix algunes contribucions al reconeiximent de formes estadístic i més es-
pecíficament a diverses tasques del processament del llenguatge natural. Diverses tècniques
estadístiques ben conegudes són revisades en aquesta tesi:estimació paramètrica, disseny
de la funció de pèrdua i modelatge estadístic. Les tècniquesanteriors s’apliquen a diverses
tasques del processament del llenguatge natural com ara classificació de documents, mode-
latge estadístic del llenguatge i traducció automàtica estadística.

En relació amb l’estimació paramètrica, portem a cap el problema del suavitzat proposant
una tècnica d’estimació per màxima versemblança amb dominirestringit (CDMLEb). La
tècnica CDMLE evita la necessitat de l’etapa de suavitzat que afavoreix la pèrdua de les
bones propietats de l’estimador per màxima versemblança. Aquesta tècnica s’aplica a classi-
ficació de documents mitjançant el classificador Naive Bayes. Més tard, la tècnica CDMLE
s’exten a l’estimació per màxima versemblança amb “leaving-one-out”, i aleshores, s’aplica
al suavitzat de models de llenguatge. Els resultats obtinguts en diverses tasques de modelat
del llenguatge mostren una millora en perplexitat.

En el diseny de la funció de pèrdua, s’estudia cuidadosamentel diseny de funcions de
pèrdua diferents a la0–1. L’estudi es centra en aquelles funcions de pèrdua que retenen
una complexitat de decodificació semblant a la funció0–1 però proporcionant una major
flexibilitat. Analitzem i presentem diverses funcions de pèrdua en diverses tasques de tra-
ducció automàtica amb diversos models de traducció. Tambè analitzem algunes regles de
traducció que destaquen per causes pràctiques com ara la regla de traducció directa; i axí
mateixa, s’aprofundeix en la comprensió dels models log-linear, que son de fet casos partic-
ulars d’aquestes funcions de pèrdua.

Finalment, es proposen diversos models de traducció monòtons basats en tècniques del
modelatge estadístic ben conegudes. En primer lloc, es proposa una extensió a la tècnida de
GIATI per a inferir transductors d’estats finits. Més tard, es proposa un model de traducció
basat en sequències de paraules i inspirat en els models ocults de Markov. En darrer lloc, es
presenta un model de traducció basat en sequències de paraules i en semi-models de Markov.
Aquest darrer model produiex millores en certes circumstàncies.

bDe l’anglés “Constrained Domain Maximum Likelihood Estimation”
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Preface

Natural language processing (NLP) is a dynamic research field that aims at developing com-
puter systems that are able to automatically generate and understand natural human language,
both written and spoken. NLP is a subsoiled of artificial intelligence and linguistics, and as
such it combines theories, methodologies, and experts fromboth worlds in order to address
challenging problems.

Current technology in NLP is mainly based on inductive statistical pattern recognition
approaches. These approaches define one or several statistical models that have to be esti-
mated from a training dataset or corpus. There are several inferring criteria to perform such
tasks; however, the maximum likelihood estimation (MLE) isone of the most wide-spread
techniques.

The MLE verifies several desirable properties; however, a proper generalisation is con-
spicuous for its absence. Actually, the MLE tends to overfit the models to the training dataset,
and, hence, to produce the corresponding lack of generalisation. To amend this problem, a
common approach is to apply several heuristics in an additionalsmoothing step.

Once the training criterion is chosen and a proper probability model is designed for the
task that is of interest, the best rule for building the system must be determined. Decision
theory (DT) properly deals with this question by introducing the loss function. The loss
function assesses the mistakes that a given system can produce. Typically, in many of the
NLP tasks, a0–1 loss function is assumed. Roughly speaking, this function accounts for the
intuitive idea of minimising the number of errors that the system produces. This loss function
yields the optimal Bayes’ rule, which is the best rule that can be built in order to minimise this
loss. However, this simple and intuitive loss does not take full advantage of this framework.

This statistical framework is applied to several NLP tasks.Specifically, this thesis is
focused on exploring three of these NLP tasks: text classification (TC), machine translation
(MT), and language modelling (LM).

Given a repository of documents, the purpose of TC is to automatically structure the
documents by assigning a label to each one. The label can be automatically generated in the
case of clustering or defined by an expert. In this way, the tasks of searching and browsing
documents in the repository is eased. The TC technology seems to have reached a mature
stage of research; nevertheless, there is still room for improvement.

The objective of MT is to make the computer automatically translate texts or utterances
from one language into another language, without changing the underlying meaning. The
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MT community is mainly focused on three main applications: fully-automatic MT, computer-
assisted MT and understandable rough translation. The current MT technology is based on
statistical methods in general and on the statistical pattern recognition theory in particular.

Fully-automatic statistical MT consists in the development of statistical models that are
automatically inferred from bilingual parallel texts. In this respect, there have been different
proposals for statistical translation models ranging fromword-alignment translation models,
such as the IBM models, the HMM word-alignment model, etc; tophrase-based and syntax-
based translation models. These last models are usually based on byproducts of the word-
alignment model training process. The most widespread and commonly used models are the
phrased-based models; however, these models do not usuallytake into account the bilingual
segmentation process, and are consequently heuristicallytrained.

The last topic of this thesis is LM itself. This problem is a very demanding and interesting
problem since language models are used in a vast range of NLP problems such as speech
recognition and machine translation among many others. Themost widely used models, not
only for their simplicity but also for their outstanding performance, are the so-calledn-gram
models. Similar to most of the statistical models in patternrecognition,n-gram language
models suffer from overfitting. Several smoothing techniques have been proposed in the
literature to deal with this problem.

The main objectives of this thesis are the followings: to present a new smoothing ap-
proach applied to TC and LM; to introduce new models in the paradigm of MT for monotone
languages; and to study the loss function. The contributions of this thesis can be divided into
three groups:

1. Constrained-Domain Maximum likelihood estimation. By reviewing the MLE de-
ficiencies and the smoothing techniques used to alleviate them, we propose a modified
version of the MLE that avoids the smoothing step. This new proposal is applied to two
different modelling problems and tasks: text classification and language modelling. In
text classification, we show how the constrained-domain maximum likelihood estima-
tion (CDMLE), is applied to multinomial distribution avoiding the additional smooth-
ing step. In language modelling, we use the CDMLE technique to smooth the leaving-
one-out (LOO) estimation of then-gram models since it is the milestone of the most
successfuln-gram smoothing techniques. This approach yields several novel smooth-
ing techniques some of which slightly improve the standard smoothing techniques.

2. Fundamental equation of statistical machine translation.The optimal Bayes’ rule
is the basis of all statistical machine translation systems. However, this rule is ob-
tained with the assumption of a0–1 loss, i.e. assuming the CER as the error measure.
We review classical statistical decision theory, and by changing this loss function, we
boost the system performance. We apply these ideas to SMT andprove that the log-
linear models are actually optimising a loss function, which resembles the actual error
measure, such as the BLEU or the WER.

3. Monotone statistical machine translation: One of the deficiencies of the phrase-
based models is that they are not “properly” modelled from a purely statistical point of
view. This implies several problems in practise, since mostof the systems use heuristics
to estimate those models. For instance, several statistical modifications or estimation
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techniques cannot be properly applied without several practical problems. We start
by defining a purely statistical phrase-based finite transducer model. Once we have
outlined the deficiencies of this model, we propose ahidden Markov model (HMM)
that solves some of these deficiencies. However, forcing a HMM to take into account
the bilingual segmentation process of a phrase-based modelis not easy, and it yields
highly demanding training algorithms. Finally, we proposean improved model that is
based onhidden semi-Markov models (HSMM). This latter HSMM takes into account
the segmentation process smoothly, without producing highly demanding training al-
gorithms.

The above contributions are sequentially organised in8 chapters that cover most of the
work developed in this thesis. We recommend a sequential reading of the document. How-
ever, should readers be interested in a specific research area, they can opt to read those specific
chapters taking into account the following graph:

1. Preliminaries

2. Constrained-domain
maximum likelihood estimation

3. Constrained leaving-one-out
for language modelling

4. The loss function in
statistical pattern recognition

5. Statistical stochastic
finite state transducers

6. A phrase-based
hidden Markov model
for monotone machine
translation

7.A phrase-based hidden
semi-Markov model for
monotone machine
translation

8. Conclusions

The constrained-domain MLE approach is proposed in Chapter2. The experimental prop-
erties of this new approach are compared with classical smoothing methods in the task of TC.
Later, in Chapter 3, this approach is extended to then-gram models that are estimated and
smoothed by leaving-one-out (LOO). If readers are not familiar with leaving-one-out smooth-
ing methods for language modelling, then Section 1.2 would be helpful to them.

JAF-DSIC-UPV xv



The optimal Bayes’ decision rule obtained when a0–1 loss function is used is one of
the bases of most statistical pattern recognition systems.Specifically, when it is applied to
statistical MT, it is called the fundamental equation of statistical machine translation and it is
a milestone of the current MT systems. This optimal rule is revisited and studied in detail in
Chapter 4.

The final part of this thesis is concerned with the definition of an efficient monotone ma-
chine translation model. Chapter 5 summarises the first incursion in this area. Inspired from
Chapter 5, the following chapter tackles the monotone MT problem by defining a phrased-
based hidden Markov model (PBHMM). Unfortunately, this model also had some important
drawbacks. From the experience acquired with these two models, in Chapter 7, we introduce
a phrased-based hidden semi-Markov model (PBHSMM) that achieves our objective: good
performance, efficient training algorithms, and a properlydefined statistic framework that
would allow us to further improve the proposed model. This model is based on the hidden
semi-Markov models (HSMMs). In Section 1.1.6 Chapter 1, we reformulate the HSMM fol-
lowing a new notation, that to our knowledge, has not been proposed elsewhere. Moreover,
Section 1.1.6 paves the way towards the novel model proposedin Chapter 7. Should readers
be unfamiliar with the HSMM, we encourage them to read Section 1.1.6 in Chapter 1.
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Notation

Symbol Meaning
const(x) is a constant function onx, i.e., a function thatdoes notdepend onx
pr(· · · ) is the actual unknown probability distribution
pθ(· · · ) it is used to outline the fact that the probability is not the actual probability

but a model that depends on a parametric vectorθ

p(e) or pe the probabilities depicted in this way are already a model parameter for the
evente

A := B is used to stress that A ismodelledby B, and also to stress that A isdefined
as B

δ(a, b) is the Kronecker delta function, i.e.,1 if and only if a = b, and0 otherwise
x

j
1 is used to denote the (sub)stringx1 . . . xj

N is the natural number set, i.e.N = {0, 1, 2, 3, . . .}
〈f(x)〉y is used to denote the expectation off(x) over the probability distribution

pr(y)
〈f(x)〉q(y) is used to denote the expectation off(x) using the functionq(y) as the

probability distribution
D(p||q) is the Kullback-Leibler divergence betweenp andq

suf n−1(x) stands for then−1 ending elements ofx or the full stringx if |x| < n−1

For denoting probability distributions throughout the thesis, we identify values and ran-
dom variables whenever this entails no confusion. For instance, instead of

pr(Ω = ω) (1)

we use

pr(ω) (2)

In the case of summations and products, we will omit the limits or set in which the index
variable varies whenever this entails no confusion. For instance,

∑

x

f(x) =
∑

x∈X⋆

f(x) , (3)
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or
∏

t

f(t) =

T∏

t=0

f(t) . (4)

Moreover, we use here the notation for which a summation on a void set is equal to0,

∑

x∈∅

f(x) = 0 , (5)

and where a void product is equal to1,

∏

x∈∅

f(x) = 1 . (6)

In this thesis several conditional probabilities will be used. For instance,

p(u |v) , (7)

where we have used the symbol “| ” to divide the random variables into the given part,v,
and the random variable for which the probability function is defined,u. However, in order
to avoid cumbersome notation, the conditional probabilities will sometimes be written as
follows

p(u/v) , (8)

where “/” plays the role of “| ”. This ambiguity in the notation, is better understood withthe
following example

p(u / v, |v| , |u|) , (9)

where if we had used “| ” instead of “/”, the equation would have been awkward and unclear:

p(u |v, |v| , |u|) . (10)
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Chapter 1. Preliminaries

1.1 Statistical Pattern Recognition

A pattern recognition problem consists in classifying eachpossible input or object, sayx ∈ X , in
one class, sayω, from the set of all possible classes, sayΩ. Examples of pattern recognition prob-
lems include text classification, speech recognition, image classification, face recognition, and machine
translation, among others. A classification system is, then, characterised by theclassification function
or rule

c : X −→ Ω (1.1)

In the eighties, the most popular approaches to most of the pattern recognition problems were
rule-based. Rule-based approaches define a huge set of rulesbased on the knowledge engineers and
domain experts in order to build the classification system. The main problem of these approaches is
the definition of hand-crafted rules and their maintenance.In the nineties, the rule-based approach was
replaced by inductive approaches, which manly involvedstatistical methods. These approaches have
numerous advantages:

• The classification function is learnt from the observation of a set of preclassified documents by
an inductive process.

• The same inductive process can be applied to generate different classifiers for different domains
and applications. This fact introduces an important degreeof automation in the construction of
ad-hoc classifiers.

• The maintenance task is significantly simplified, since it only requires to retrain the classifier
with the new working conditions.

• The existence of off-the-self software to train classifiersrequires less skilled man power than for
constructing expert systems.

• The accuracy of classifiers based on inductive techniques competes with that of human beings
and supersedes that of knowledge engineering methods in several tasks such as text classification,
and speech recognition.

Several methodologies can be applied to define the classification function. Therefore, it is needed
to find a measure for comparing among different classification systems. In order to quantify systems,
theclassification error rate (CER)is defined as the percentage of misclassifications performedby the
system.

The classification system performance is usually measured as a function of the classification error.
However, there are problems in which all the classification errors do not have the same consequences.
Therefore, a function that ranks each kind of error should beprovided. Theloss function,l(ωp|x, ωc),
evaluates thelossin which the classification system incurs when classifying the objectx into the class
ωp, knowing that the correct class isωc. An outstanding loss function is the0–1 loss function

l(ωp|x, ωc) =

(
0 ωp = ωc

1 otherwise
. (1.2)

If a 0–1 loss function is provided, then the optimal system minimises the classification error rate.
Taking into account the loss function definition, we define the risk when classifying an objectx, the

so-calledconditional risk givenx, as the expected value of the loss function according to the posterior
class probability distribution, i.e.

R(ωp|x) =
X

ωc∈Ω

l(ωp|x, ωc) pr(ωc|x) , (1.3)

2 JAF-DSIC-UPV



1.1. Statistical Pattern Recognition

wherepr(ωc|x) stands for the actual class posterior probability distribution. Note that bypr(. . .) we
will henceforth denote the actual probability distributions.

Usually, we want to compare system risks independently of any specific objectx. Using the con-
ditional risk, we define thethe global risk[Duda et al., 2001] as the contribution of all objects to the
classifier performance, i.e.

R(c) = Ex [R(c(x)|x)] =

Z

X

R(c(x)|x) pr(x)dx , (1.4)

whereR(c(x)|x) is the conditional risk givenx, as defined in 1.4.
In practise, the global risk is approximated by the law of great numbers for a given test setT =

(xn, ωn)N

n=1 i.i.d. according topr(ω, x),

R̄T (c) =
1

N

NX

n=1

l(c(xn)|xn, ωn) . (1.5)

The approximation of the global risk using a test setT is calledempirical riskon the test setT . If we
use the0–1 loss function, then the empirical risk simplifies to the formerly defined classification error
rate

R̄T (c) =
1

N

NX

n=1

δ(c(xn), ωn) , (1.6)

whereδ stands for the Kronecker delta function.
Our aspiration is to design the classification function thatminimises the global risk. Since minimis-

ing the conditional risk for each objectx is a sufficient condition to minimise the global risk, without
any loss of generality, the optimal classification rule, namely minimum Bayes’ risk, is the one that
minimises the conditional risk for each object

ĉ(x) = arg min
ω∈Ω

R(ω |x) . (1.7)

If 0–1 loss function is assumed, then the conditional risk is simplified to

R(ωp|x) = 1 − pr(ωp|x) , (1.8)

and then the optimal classification rule is given by

ĉ(x) = arg max
ω∈Ω

pr(ω |x) . (1.9)

This equation is well-known and often assumed to be optimal for all pattern recognition problems,
although, the assumption of a0-1 loss function is always taken, either consciously or unconsciously.

1.1.1 Statistical modelling
In Eq. (1.9) theclass-posterior probabilityis used in order to find the optimal class, although this
probability is unknown. If we knew such probability, then wecould define the best classifier for this
framework, the so-calledBayes classifier, and its CER would be the minimum possible CER, the so-
calledBayes classification error rate.

Since the posterior probability in Eq. (1.9) has to be approximated with a model, a common pre-
liminary approach is to use the Bayes’ theorem in Eq. (1.9) yielding

c(x) = arg max
ω


pr(x |ω)pr(ω)

pr(x)

ff
= arg max

ω

{pr(ω)pr(x |ω)} , (1.10)
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where the posterior probability is substituted by two probabilities: the class priorpr(ω), and the object
posteriorpr(x |ω). If actual probabilities are known, then both Eqs. (1.10) and (1.9) are equivalent.
However, the latter Eq. (1.10) typically yield better approximations on real systems provided that actual
probabilities are unknown, and it is needed to model them.

It is particularly worthy of note that from Eq. (1.10) and knowing thatpr(A,B) = pr(A)pr(B |A)
the following equation is obtained

c(x) = arg max
ω

{pr(x, ω)} . (1.11)

Provided that we are focused on approximations to actual probabilities, most of the modelling
techniques are based on statistics. Typically, classical or frequentist statistics are applied, producing a
classification of the models in two categories

• Parametric models:where the actual probabilities are modelled according to any statistical dis-
tribution, such as, the normal distribution, or the beta distribution.

• Non-parametric models:where the actual probability is decomposed using statistical equiva-
lences and afterwards modelled directly.

Another emerging modelling technique that has successfully been applied to several tasks such as
text classification [Sutton and McCallum, 2006], or speech recognition [Heigold et al., 2007] is the
discriminative models[Berger et al., 1996] or thelog-linear models. A log-linear model is defined as
an approximation to a probability distribution parametrised in the following way

pθ(ω|x) =
1

Zθ(x)
exp(

KX

k=1

θkfk(x, ω)) , (1.12)

with the set of parametersθ, and wheref (x, ω) is a vector offeatures, defined a priory as a part of
the modelling process. Finally,Zθ(x) is the normalisation constant that ensures that the posterior-class
probability sums up to one,

Zθ(x) =
X

ω∈Ω

exp(
KX

k=1

θkfk(x, ω)) . (1.13)

The feature vectorf (x, ω) is whatever vectorial function that obtainsK real values from the objectx
and its classω. Anyway, the features are often count events, such as whether a certain word appears or
not; or such as the number of occurrences of a given word.

1.1.2 Training criterion

In order to train the model parameters, theoptimalset of parameters, saŷθ must be found. The prob-
lem of the training criterion rises up because of the word “optimal”. Appropriateness depends upon a
criterion, which is summarised by thecriterion function (C). Given a criterion function, the optimal set
of parameters,̂θ, is determined by

θ̂ = arg max
θ∈Θ

{C(θ)} . (1.14)

Often the criterionC(θ) cannot be mathematically calculated, and then, it is necessary a sample to
approximate it,D = {x1, . . . , xn},

θ̂ = arg max
θ∈Θ

{C(θ; D)} . (1.15)
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Nevertheless the expression in Eq. (1.14) is used indistinctly of whether a sample is needed or not.
It is important to remark the difference between the loss function defined in Section 1.1 and the

training criterion defined in the Eq. (1.14). The former defines the best way to build a system for given
probability functions, whereas the latter determines the best way to obtain the optimal parameters,
which would be used to approximate those probabilities.

There are several well-known and studied criteria such as maximum likelihood estimation (MLE),
maximum a posteriori probability (MAP) or minimum mean energy (MME). We focus on the former,
the wide-spread MLE.

1.1.3 Maximum likelihood estimation (MLE)
The maximum likelihood estimation (MLE) criterion is one ofthe most wide-spread criteria which
has a well-founded motivation. It can be argued that since weare interested in the actual probability
distribution, we should minimise the “distance” (in terms of the Kullback-Leibler divergence) between
the model and the actual distribution, that is

θ̂ = arg min
θ∈Θ

{KL(pr||pθ)} , (1.16)

whereKL(pr|| pθ) is the Kullback-Leibler distance between the model and the actual probability, de-
fined as follows

KL(pr||pθ) =

Z

X

pr(x) log pr(x)dx −

Z

X

pr(x) log pθ(x)dx . (1.17)

Plugging previous Eq. (1.17) into Eq. (1.16) yields

θ̂ = arg max
θ∈Θ

Z

X

pr(x) log pθ(x)dx

ff
. (1.18)

Since Eq. (1.18) is typically unfeasible to solve, it can be approximated by the law of great numbers.
For a given sampleD = {x1, . . . , xn} i.i.d. according topr(x), Eq. (1.18) is approximated by

θ̂ = arg max
θ∈Θ

(
X

n

log pθ(xn)

)
(1.19)

If we define thelog-likelihood function (LL) as follows

LL(θ) =
X

n

log pθ(xn) , (1.20)

then Eq. (1.19) is expressed as
θ̂ = arg max

θ∈Θ

{LL(θ)} .

Therefore, minimising the divergence between the actual probability distribution and the model
yields the log-likelihood function as the criterion function, i.e. C(θ) = LL(θ). This criterion is
named after the log-likelihood function and is so-calledmaximum likelihood (ML)criterion. Maximum
likelihood criterion typically leads to the intuitive solution of the relative frequencies. Note that since
the logarithmic is an increasing function, maximising the log-likelihood function depicted in Eq. (1.20)
is the same that maximising the likelihood function defined as follows,

L(θ) =
Y

n

pθ(xn) . (1.21)
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In summary, given an independent and interchangeable sample D = {x1, . . . , xN}, the MLE
consists in solving the following maximisation

θ̂ = arg max
θ∈Θ

{
X

n

log pθ(xn)} . (1.22)

The maximum likelihood estimation has been a core techniquein pattern recognition. However,
there is a little confusion in the bibliography around the MLE term. The term ML criterion is understood
in statistics as the statistical criterion that we have presented here which is used to estimate the optimal
set of parameters for any given probability distribution. In the pattern recognition literature, MLE refers
to the estimation of the probabilitypr(x, ω) using “statistical MLE”, i.e. maximising the following
expression

θ̂ = arg max
θ∈Θ

{
X

n

log pθ(xn |ωn) + log pθ(ωn)} . (1.23)

The MLE has several desirable properties:

• The MLE is asymptotically unbiased

• The MLE is asymptotically efficient, i.e., asymptotically,no unbiased estimator has lower mean
squared error than the MLE

• The MLE is asymptotically normal. As the number of samples increases, the distribution of the
MLE tends to the Gaussian distribution with the actual valueas a mean and covariance matrix
equal to the inverse of the Fisher information matrix

• The maximum likelihood estimator is consistent

There are some regularity conditions which must be satisfiedto ensure this behaviour:

• The first and second order derivatives of the log-likelihoodfunction must be defined

• The Fisher information matrix must be continuous and not zero-valued

Although, the MLE is asymptotically unbiased, the MLE is biased in practice for “small” datasets.
The term small depends on the ratio of the dataset size to the number of parameters. In pattern recogni-
tion, this problem is very common and it is known as the overfitting problem. The overfitting problem
is understood in pattern recognition as the fact that the learnt set of parameters is very specialised for
the training data, and hence, a small amount of probability remains to be distributed among the unseen
data.

A typical approach to alleviate this problem is to resort to asmoothing technique. A smoothing
technique distorts the optimal set of parameters,θ̂, in order to obtain a “smoothed” version of them,θ̃.
Several of the smoothing techniques are heuristically inspired and make the optimal solution to lose all
its theoretical properties.

1.1.4 Maximum likelihood estimation for hidden variable models

Maximum likelihood estimation usually leads to simple convex optimisation problems. However, if
some variables were unobserved, finding the optimal parameter set is not a simple problem any more.
Many useful models arehidden variable models, i.e. part of the random variables are not observed in
practice. Fortunately, theExpectation-Maximisation (EM)algorithm [Dempster et al., 1977a, Neal and
Hinton, 1998, Wu, 1983] finds the maximum likelihood parameters estimates in such problems. In this
section, we briefly review the EM algorithm according to [Neal and Hinton, 1998].

A model is said to be a hidden variable model if part of the model variable is not seen in our training
data. Therefore, it is diffuse whether hidden refers to the model or to the sample. In such a case, we
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1.1. Statistical Pattern Recognition

split the observationx into two random variables,x = (y, z): the hidden party and the visible partz.
Therefore, the model probability is given by

pr(x) := pθ(y, z) . (1.24)

The model in Eq.(1.24) is referred to asthe complete model.
Suppose that the joint probabilityy andz is parametrised usingθ, then the marginal probability of

z, the so-calledincomplete model, is given by

pθ(z) =
X

y

pθ(y, z) , (1.25)

where, for simplicity, we have assumed thaty has a discrete domain, as is often the case; anyway the
results can be generalised.

Given the observed dataz, we wish to find the maximum likelihood estimate for the modelparam-
eters, that is to say the value ofθ that maximises the incomplete log-likelihood function given by

LL(θ) = log pθ(z) = log
X

y

pθ(z, y) . (1.26)

The EM algorithm starts with some initial pointθ(0), and then it proceeds to iteratively generate
successive estimates,θ(1), θ(2), . . . by repeatedly applying two steps: the Expectation (E) step and the
Maximisation (M) step. On the one hand, the E step consists infinding the (best) distribution for the
unobserved variables, given the observed variables and thecurrent estimate of the parameters. On the
other hand, the M step re-estimates the parameters to be those with maximum likelihood, under the
assumption that the distribution found in the E step is the actual distribution for the latent or unobserved
variables.

It can be shown that each EM iteration improves the log-likelihood or leaves it unchanged. Note
that this implies that the EM algorithm is able to find a local maximum but not a global one. This is both
the most important property and also the most important drawback of this technique. Broadly speaking,
the main drawback of the EM is that it delegates to the initialisation the responsibility of finding a global
maximum, and, hence, a bad initialisation of the parameterscan ruin the system performance.

The basis of the EM algorithm relay on defining an alternativeobjective functionL(· · · ) to the log-
likelihood function in Eq. (1.26), and then maximise this alternative criterion. This alternative objective
function is a variation and hence, one of its parameters is a probability function. Therefore, given a
parameter setθ and a probability functionq(y), the variationL(q, θ) is defined as follows

L(q, θ) = LL(θ) − D(q ||pθ) , (1.27)

where bypθ we denotepθ(y | z) andD(·||·) is the Kullback-Leibler divergence. It can be proved [Neal
and Hinton, 1998] that if a local (or global) maximum ofL occurs at̂θ andq̂, thenLL(θ) has a local
(global) maximum at̂θ.

An iteration of the standard EM algorithm can be expressed interms of the functionL, since each
steps corresponds to the maximisation of one of its parameters while retaining the other fixed, i.e.,

E step Setq(k)(· · · ) to theq(y) thatmaximisesL(q, θ(k−1)).

M Step Setθ(k) to theθ thatmaximisesL(q(k), θ).

It has been proved [Neal and Hinton, 1998] that the E step is maximised whenq(k) = pθ(y | z). Then
the EM algorithm can be expressed in its conventional way [Dempster et al., 1977a]

E step Compute the distributionq(k) over the domain ofya such thatq(y) = pθ(k−1)(y | z)

aActually over the domain of the random variableY , that accordingly to our notation is identified with its value
y.

JAF-DSIC-UPV 7
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M Step Setθ(k) to theθ that maximises expected value oflog pθ(y, z) with respect toq(k), that is to
say,〈log pθ(y, z)〉q(k) .

Moreover, the M step of the EM algorithm may be only partiallyimplemented; and then the new
estimates for the parametersθ(k) improve the functionL(q(k), θ) given the distribution found in the
E stepq(k), but do not maximise it. This partial M step always produces an improvement of the true
likelihood. This variant is known as theGeneralised Expectation-Maximisation (GEM)[Dempster
et al., 1977a]. On the other hand, the E step may also be only partially implemented, with the new
estimate for the hidden probability distribution,q(k), only improving the functionL(q, θ(k−1)) given
the optimal parameter set in previous iteration, instead ofmaximising it. In summary, the EM algorithm
can be expressed as follows

E step Find aq that improvesL(q, θ(k−1)) with respect toL(q(k−1), θ(k−1)), and setq(k) to it.

M Step Find aθ that improvesL(q(k), θ) with respect toL(q(k), θ(k−1)), and setθ(k) to it.

These two steps are repeated until convergence. The convergence is typically achieved when the
relative increment of log-likelihood from iterationk to k + 1 goes below a given threshold or when a
maximum number of iterations is achieved.

The so-calledViterbi EM, is an outstanding version of the EM algorithm. In this version, the
hidden probability distributionq obtained in the E step is assumed to be a Dirac’s delta function at the
maximum point̂y according topθ(k−1)(y | z). This assumption restates the E step as follows

y
(k) = arg max

y∈Y

pθ(k−1) (y | z) , (1.28)

and yields the hidden probability distributionq

q(k)(y) =

(
1 y = y(k)

0 otherwise
. (1.29)

The maximisation step is, then, reduced to a usual MLE without latent variables but with the sample
completed with they(k) estimates.

Since the Viterbi algorithm constrains the family of functions to optimise in the E-step, i.e.q(k)(y) =
δ(y, y(k)); the parameter set that is obtained by the Viterbi approximation is typically worse than that
of the actual EM without any constraint in the E-step.

In the remaining subsections, we will analyse two outstanding hidden variable models: the hidden
Markov models (HMMS) and the hidden semi-Markov models (HSMMs).

1.1.5 Hidden Markov models (HMMs)
Although initially introduced and studied in the late 1960sand early 1970s, statistical methods of
Markov source orHidden Markov modelling (HMM)have become an increasingly field of interest
in the last few decades. There are two strong reason because these HMMs have become so popular.
First, the models are very rich in mathematical structure. Second, the models obtain very good results
in practise when applied properly. The applications of HMM range from several pattern recognition
problems such as speech recognition to the field of bio-informatics [Rabiner, 1989]. In this section, we
briefly introduce the model in a generic way.

Given a vectorxJ
1 , we want to model its probability distribution,pr(x). For simplicity reasons,

we assume through this section that all the inputs have a known and fixed lengthJ , that is to say, when
we writepr(x), we are actually referring topr(x | J). In order to model the previous probability, we
assume that each elementxj of the vectorx has been produced oremittedin a different stateqj ∈ Q

and, hence, the same elementxj can have different probability distribution depending on the state in
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q0 q1 q2 q3 q4 q5 q6 q7 q8 q9

x1 x2 x3 x4 x5 x6 x7 x8 x9

Figure 1.1: A graphical representation of the emission of a sequence of outputsx9
1 by

a HMM. Note that this is not a graphical representation of a HMM topology.

which it was emitted, i.e.,p(xj | qj). Since we do not observe the vector of statesq in the training data,
we need to model the emission probability with a hidden variable model. Mathematically,

pr(x) =
X

q

pr(x | q)pr(q) , (1.30)

where, as discussed above,
pr(x | q) :=

Y

j

pθ(xj | qj) . (1.31)

A left-to-right decomposition is taken to model the state probabilitypr(q) under a first order Markovian
assumption, i.e.,

pr(q) =
Y

j

pr(qj | q
j−1
0 ) := p(q0)

Y

j

p(qj | qj−1) . (1.32)

So far, no special model for the emission probabilitiespθ(xj | q) is assumed.
Each stateqj ∈ Q can represent either an indexQ = {0, 1, . . . , Q}, or something relevant. It is

also valuable to highlight that there is one special stateq0, the so-calledinitial state, which does not
emit any dimension ofx. This special state models the chances that any of the remaining states has to
be the state to emit the first output element. Note that although we have add here our notation to the
initial state notation, the initial state event is also modelled by using an initial state distribution [Rabiner,
1989].

Given a set of parametersγ, which comprises the transition probabilitiesp(q | q′) and the emission
parametersθ; the HMM is given by

pγ (x) =
X

q

p(q0)
Y

j

p(qj | qj−1) pθ(xj | q) , (1.33)

wherep(q0) = 1 since this “phantom” state is is always present (it is a sure event); wherep(q | q′) are
the model parameters for the transition probabilities and wherepθ(xj | q) is the emission probability
modelled with the parameter setθ.

There are many interesting questions to solve when dealing with HMM, however we focus here on
3 of them:

1. How to compute the probabilitypγ (x) for a given set of parametersγ and a given objectx.

2. How to obtain the (most probable) sequence of statesq̂ that has emitted a specific objectx.

3. How to estimate the optimal set of parametersθ for a given training setD = {x1, . . . , xN}.

The first question is typically solved by defining the so-called forward recursion. This recursion is
obtained by reordering the sums of the probability in Eq. (1.33), i.e.,

pγ (xJ
1 ) =

X

q0

X

q1

· · ·
X

qJ

Y

j

pθ(xj | qj) p(qj | qj−1) , (1.34)
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is equal to

pγ (xJ
1 ) =

X

q0

p(q0) · · ·
X

qj

pθ(xj | qj) p(qj | qj−1) · · ·
X

qJ

pθ(xJ | qJ ) p(qJ | qJ−1) . (1.35)

In this way, the forward recursionαj(q) is defined as the joint probability of emitting the prefixx
j
1 and

emitting the last elementxj in the stateq, i.e.

αj(q) := pθ(xj
1,Qj = q) = pθ(xj | q)

X

q′

p(q | q′)αj−1(q
′) , (1.36)

with the base caseα0(q0) = 1. The forward recurrence requires a time complexity ofO(Q2J) to fill
in a table ofO(QJ) elements.

Finally, the probability of a given sequencexJ
1 is computed as follows

pθ(xJ
1 ) =

X

q

αJ (q) . (1.37)

A similar recursion can be defined using a post-fix arrangement of the sums instead of a prefix one.
The so-calledbackward recursionis defined as follows

βj(q) = pθ(xJ
j+1 | Qj = q) =

X

q′

pθ(xj+1 | q
′) p(q′ | q)βj+1(q

′) , (1.38)

with the base caseβJ (q) = 1. The computational requirements for computing the backward recurrence
are the same of that of the forward recursion.

The second question is answered by defining theViterbi recurrence. Given an emitted objectx we
want to obtain the state vectorq that maximises the probability of emitting such an object, i.e.

q̂ = arg max
q0

(
arg max

q1

(
· · · arg max

qJ

(
Y

j

pθ(xj | qj) p(qj | qj−1)

)
· · ·

))
(1.39)

By reordering the maximisations and the products, the Viterbi recurrence is defined as follows

δj(q) = arg max
q′

˘
δj−1(q

′) p(q | q′)
¯

pθ(xj | q) , (1.40)

with the base caseδ0 = q0. Note that, by backtracking frommaxq δJ (q) , the optimal̂q is obtained in
a time complexity ofO(Q2J) with the aid of a recursion table ofO(QJ) elements.

Since the HMM is a hidden or latent model, some approximate inference algorithm is needed, and
hence the third question has as many answers as approximate algorithms. The classical algorithms are
obtained as the result of applying the EM. There are two main algorithms: Viterbi based training and
Baum-Welch training. The former is theViterbi EM training (see Section 1.1.4) applied to HMM, in
which the Viterbi recursion is used in the E step.

The latter is the instantiation of the conventional EM training to the HMM case. The re-estimation
equation in the M step for the transition probabilities in that case are given by

p(q | q′) =

P
n

P
j
ξnj(q, q

′)
P

n

P
j
γnj(q′)

(1.41)

whereγnj(q) is the probability of using the stateq in thej-th emission independently of which is the
previous state

γnj(q) =
X

q′

ξnj(q, q
′) (1.42)
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q0 q1 q4 q6 q9

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

Figure 1.2: An instance of the generative segmentation process carriedout by a HSMM
for an output sequencex of 10 elements.

and whereξnj(q, q
′) stands for the probability of using the stateq for emitting thej-element having

used the stateq′ for the previous emission, i.e.

ξnj(q, q
′) = pθ(Qj = q,Qj−1 = q′ |xn) =

αj(q
′) pθ(xj | q) p(q | q′)βj+1(q)

pθ(x)
(1.43)

We omit the estimation equations for the emission probability pθ(xj | q) since no assumption is
made in its modelling. It should be noted that this is the mostimportant part of the model, and if it
is modelled incorrectly, then it can ruin the system performance. However, for our interest, it is not
needed to further assume any specific emission distribution.

The main advantage of the Viterbi training with respect to the Baum-Welch is its speed. The
Baum-Welch training is slower than the Viterbi training. However, it is also expected that Baum-Welch
training obtains better practical results than the Viterbitraining since the Viterbi training only takes into
account the most probable path for each sample instead of allthe possible paths. Recall that this topic
has already been addressed in Section 1.1.4.

Throughout all the section we have assumed that all the output objectsx had the very same length
J . In order to make the same model able to manage different lengths, a usual approximation is to add
a non-emitting final stateqF or output symbol$, and hence, the transition probabilityp(qF | q) or the
emission probabilityp($ | qJ+1) is used for modelling the length. For instance in the case of the final
state the parametrised model is given by:

pγ (x) =
X

q

p(q0)
Y

j

p(qj | qj−1) pθ(xj | q) p(qF | qJ ) . (1.44)

Note that a further subtle assumption is hidden in this modelsince each transition probability and emis-
sion probability does not depend on the lengthJ , and, hence, the emission and transition probabilities
have been merged for all the lengths [Rabiner, 1989].

1.1.6 Hidden semi-Markov models (HSMMs)
Given a sequence of observationsxJ

1 , a hidden semi-Markov model (HSMM) [Ostendorf et al., 1996]
is a modification of HMM. A HSMM emits a segmentx

j+l−1
j at each state instead of constraining

the emission to one elementxj as the (conventional) HMM. This way, the probability of emitting a
sequence of observationsx

j+l−1
j in any state depends on the segment lengthl and the state itself. The

figure 1.2 depicts an instance of the emission process carried out by a HSMM.
In a hidden Markov model (HMM), the probability of emitting asegment of lengthl while remain-

ing in the same stateq, can only be simulated by transitions to the same stateq. This approximation
yields a exponential decaying length probability model

p(l | q) = [p(q | q)]l−1 , (1.45)
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Figure 1.3: The “simulated” length probability in a HMM for several values of loop
probabilitiesp(q | q). Note that we have used a continuous plot instead of a histogram
plot for clarity’s sake.

which is depicted in Fig. 1.3. This exponential decaying length probability model is not a good approx-
imation for many cases.

Even if the decaying length probability is not an important issue for a given problem, the simula-
tion of a HSMM using a HMM also constrains the segment emission probability to be a naive Bayes
decomposition, i.e.

pθ(x
j+lj−1

j | q, l) =

j+lj−1Y

k=j

pθ(xk | q) , (1.46)

which again is not the best choice for many cases.
These two differences between an HMM and a HSMM, i.e., the exponential length distribution and

the naive Bayes posterior emitting probability; introducethe HSMM as a very interesting, appealing
and powerful extension to the conventional HMM.

There are several ways to formalise the HSMM extension. Here, we advocate for a similar formal-
isation of that found in Murhpy [2007]. The HSMMs are based ona hidden state sequenceq, which is
a property inherited from HMM. Additionally, HSMMs also need to define a length random variable,
l, which stores the length of the segments emitted at each state. Oppositely to traditional HMM, the
state sequence and the length vector can show different dimension to that of the emitted objectxJ

1 (see
Fig. 1.2 for an example). However, in order to clearly specify the semi-Markov modelling technique, a
special representation of the state sequence and length vector is needed. Under this representation, both
state and length random variables share the length with the output object, i.e.,J .

We define the length vectorl = (l1, l2, · · · , lJ ) as a random variable that stores the length of
each segment at the position at which the segment begins. Allthe remaining positions, which are not
segment beginnings, are set to0. For instance, in the example given in Fig. 1.2 the length vector l

is l101 = (3, 0, 0, 2, 0, 3, 0, 0, 2, 0). The vectorl can be extended with an additional elementl0 = 0
whenever it is necessary, yieldinglJ

0 = (l0, l1, l2, · · · , lJ ).
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Given a length emission vectorl, we define its prefix counterpartl̄ as

l̄j =

jX

k=1

lk, j = 0, 1, · · · , J (1.47)

as well as its previous segment prefix length

πj = 1 +

i(j)X

k=1

lk, j = 0, 1, · · · , J (1.48)

with i(j) equal to the starting of the previous segment. For instance,in Fig. 1.2, the prefix segment
length is l̄ = l̄

10
0 = (0, 3, 3, 3, 5, 5, 8, 8, 8, 10, 10) and the previous prefix segment length is given

by π = π10
0 = (1, 1, 1, 1, 4, 4, 6, 6, 6, 9, 9). Note that if we know a prefix ofl, say l

j
1, then the

corresponding prefixes of̄l andπ, sayl̄
j
0 andπ

j
0, are known as well.

A similar definition to that of the length vectorl would be handful for dealing with the state se-
quence vector. LetQ be the set of all possible states in which the model can emit anoutput segment,
and let⊙ 6∈ Q be an extra null state. The state sequence vectorqJ

0 stores the state in which each
segment has been emitted at the starting position of the segment. Hence, the remaining positions not
corresponding to the starting of any segment are set to the null state,⊙. For instance in the example in
Fig. 1.2 the state vectorq is defined asq10

0 = (q0, q1,⊙,⊙, q4,⊙, q6,⊙,⊙, q9,⊙). Given a pair made
of a state vector and a length vector(q, l), they must verify that the null states⊙ and the0 lengths
co-occur at the very same positions with the exception ofq0 which can never be⊙, in other words,
qj = ⊙ if and only if lj = 0, for j = 1, 2, . . . , J .

Note that we assume no specific parametrisation for the segment emission probability distribution
pθ(x

j+lj−1

j | qj , lj) through the remaining of the current section.
Finally, in order to model the output emission probability for a given sequence of observationsx

we unhide the state vectorq and the length vectorl

pr(x
J
1 ) =

X

l

X

q

pr(q, l)pr(x | q, l) , (1.49)

where we have introduced two probabilities: the state and length probabilitypr(q, l) and the emission
probabilitypr(x | q, l).

The first probability in Eq. (1.49) is decomposed from left toright as follows

pr(q, l) =

JY

j=1

pr(qj , lj | q
j−1
0 , lj−1

1 ) . (1.50)

The state transition probability in Eq. (1.50), is modelledonly in the segment boundaries. Let say
that j is one of these boundaries, thenl̄j−1 + 1 = j and thereby, the current state cannot be null,
qj 6= ⊙. Note also that if there is a segment boundary atj, then the previous segment length cannot
be 0 and the previous state cannot be null; that is to saylπj−1 > 0 andqπj−1

6= ⊙. Finally, note
that all the segment lengthsl (and statesq), must be0 (and null), betweenπj−1 andj − 1; that is
to sayl

j−1
πj−1+1 = 0 (andqj−1

πj−1
= ⊙). Although many of those conditions are redundant, we have

specified them for clarity’s sake. In order to simplify notation, we useC(j) to denote the predicate that
corresponds to all the previous conditions, i.e.,

C(j) ≡ l̄j−1 + 1 = j, l
j−1
πj−1+1 = 0, lπj−1 > 0, qj 6= ⊙, q

j−1
πj−1

= ⊙, qπj−1 6= ⊙ . (1.51)
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Using the previous definition, the state transition probability pr(qj , lj | q
j−1
0 , lj−1

1 ) is, finally, modelled
as follows

pr(qj , lj | q
j−1
0 , lj−1

1 ) :=

8
><
>:

p(qj , lj | qπj−1 ) C(j)

1 ll̄j−1+1 6= j, lj = 0, qj = ⊙

0 otherwise

(1.52)

Note that the latter casepr(qj , lj | q
j−1
0 , lj−1

1 ) = 0, is only possible if a segment length vector or state
vector is out of the domain.

In this way, the state path probability in Eq. (1.52) is simplified to

pr(q, l) :=
Y

j∈Z(q)

1
Y

j 6∈Z(q)

p(qj , lj | qπj−1) , (1.53)

whereZ(q) or simplyZ stands for the set of positionsj for whichqj is the null state⊙, or alternatively
the positions for whichl is 0, i.e. lj = 0. For instance, in Fig. 1.2 we haveZ = {2, 3, 5, 7, 8, 10}.

Since one of the two products in Eq. (1.52) simplifies to1, the state path probability in Eq. (1.53)
is equal to

pr(q, l) :=
Y

j 6∈Z

p(qj , lj | qπj−1 ) , (1.54)

or, in order to simplify notation, to

pr(q, l) :=
Y

t

p(qt, lt | qπt−1 ) , (1.55)

where we have explicitly omitted thatt ∈ Z, but we use the indext instead ofj to keep in mind the
whole simplification process without the need of specifyingany part of it.

Note that although we have modelled the transition and length probabilities with the same parameter
p(qj , lj | qi), these parameters are typically modelled with the following two parameters

p(qj , lj | qi) := p(qj | qi) p(lj | qj) . (1.56)

Since this does not affect to the algorithms significantly, we keep the more general notationp(qj , lj | qi).
The emission probability in Eq. (1.49) can be decomposed in asimilar way to the state transition

probability as follows

pθ(x | q, l) :=
Y

t

pθ(x(t) | qt, lt) , (1.57)

wherex(t) stands forxt+lt−1
t .

Plugging Eqs. (1.55) and (1.57) into Eq. (1.49) the emissionprobability for HSMM is defined as
follows

pθ(xJ
1 ) :=

X

l

X

q

Y

t

p(qt, lt | qπt−1) pθ(x(t) | qt, lt) . (1.58)

Similarly to the HMMs discussed in Section 1.1.5, we should answer to the same questions such
as how to compute the probability for a given outputx. The answer to these questions is very similar
to the HMM case, but taking into account an extra sum on the state emission lengths. For instance, the
forward recursionfor this model is defined by

αt(q) = pθ(xt
1,Qt = q) =

X

l

X

q′

pθ(xt
t−l+1 | q, l) p(q, l | q′)αt−l(q

′) . (1.59)
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The time complexity for computing such a recurrence isO(Q2J2), which isJ times slower than the
HMM counterpart. However, the segment length is often constrained to a maximum lengthM yielding
a time complexity ofO(Q2JM); which is justM times slower anddoes not scale with the sentence
lengthJ .

The analogousViterbi and backward recursions to the ones defined for HMM are easilydefined in
a similar way. On the one hand, the backward recursion exploits the following equation

βt(q) = pθ(xJ
t+1 | Qt = q) =

X

l

X

q′

pθ(xt+l
t+1 | q

′, l) p(q′, l | q)βt+l(q
′) . (1.60)

On the other hand, the Viterbi recursion needs an additionalmaximisation for the emitted segment
length in order to exploit the recursion, i.e.,

δt(q) = max
l


max

q′

˘
δt−l(q

′) p(q, l | q′)
¯

pθ(xt
t−l+1 | q, l)

ff
. (1.61)

Finally, the estimation of the model parameters is performed in a similar way to the HMM but using
the re-defined recurrences.

1.2 Language Modelling

Language modelling is a core task in several natural language processing problems such as statistical
machine translation (see Section 1.3) or speech recognition [Nadas, 1984] among others. The language
modelling (LM) task is stated as the problem of designing appropriate models that approximate the
probability of a given text,pr(w). Therefore, given a sentence or textw made up ofT words chosen
from a lexiconW with replacement, our aim is to model the probabilitypr(w) with an “appropriate”
modelpθ(w).

There are several models for approximating the actual language probability distribution. For in-
stance, hierarchical models use context-free grammars to capture long term dependencies [Benedí and
Sánchez, 2005]. However, one of the most widespread models is then-gram model [Goodman, 2001],
which obtains surprisingly good performance although it only captures short term dependencies. The
main advantage of this model is the simplicity and good performance compared with other more com-
plex models.

Then-gram model decomposes the language probability from left to right as follows

pr(w) =
TY

t=1

pr(wt|w
t−1
1 ) . (1.62)

In theory we could turn each product term in Eq. (1.62) into a parameter. In practice, however, this
would lead to a huge set of parameters that would be unfeasible to train. Therefore, an-Markovian
assumption is made in order to keep a manageable amount of parameters. That is the same to say that,
the probability of thet-th word is assumed to depend only on then − 1 previous words, yielding the
n-gram model

pr(w) :=
TY

t=1

p(wt|hn(wt−1
1 )) , (1.63)

wherehn(wt−1
1 ) or simplyh, stands for the(n − 1) words previous to the current positiont, i.e.

hn(wt−1
1 ) := w

t−1
max{t−n+1,1} . (1.64)

JAF-DSIC-UPV 15



Chapter 1. Preliminaries

We will henceforth usēh to denote then − 2 previous words

h̄ = hn−1(w
t−1
1 ) , (1.65)

¯̄h to denote then − 3 previous words, and so on.
Note that in the Eq. (1.63), we have abused of notation since,for instance, the first term in the prod-

uct isp(w1), which is not a unigram but the probability ofw1 to be in thefirst position of the sentence.
Hence, if there are notn − 1 previous positions in the historyh, then the probabilityp(wt |w

t−1
1 ) is

not at-gram probability, but the probability forwt to be thet-th word knowing thatwt−1
1 are at the

t − 1 first positions. This fact is usually made explicit in practice by concatenating at the beginning of
the sentence a special symbol, say “<s>”.

1.2.1 Evaluation
In order to compare between different language models the(conditional) perplexity[Bahl et al., 1983]
on a test set,S = {s1, . . . , sM} is defined as

PP(S) = 2
1
N

PM
m=1 log2 pLM (sm) , (1.66)

for a givenlanguage model (LM)pLM (· · · ); and whereN stands for the total number of words in the
test set. If the LM is an-gram model, then

PP(S) = 2
1
N

PM
m=1

PTm
l=1

log2 p(sml | hn(sm
l−1
1 )) , (1.67)

whereTm stands for the length of them-th outcome,sm.
Note that the(conditional) perplexityis a geometric average of the log-likelihood,

PP(S) = 2
1
N

LLLM (S) . (1.68)

The perplexity can be understood as the average number of possible words that can come after a
given prefix. The perplexity depends on two factors: the model efficiency and the task complexity.
Under the same circumstances, the less the perplexity is thebetter. Therefore, if we compare two
different smoothing techniques or models, the one with the smallest perplexity is the best one. However,
the criticism to this measure lies on the fact that an improvement in perplexity is not always related to
an improvement on the system performance.

1.2.2 Maximum Likelihood Estimation
Once then-gram model is simplified by then − 1 previous words assumption, its parameter set is
still large enough to annihilate our chances for obtaining areliable estimation from the training data.
Specifically, then-gram parameter set isb

{p(w |h)} ∀w ∈ W,∀h ∈ Wn−1 , (1.69)

with the following normalisation constraints
X

w

p(w |h) = 1 ∀h ∈ Wn−1 , (1.70)

whereW denotes the vocabulary.

bWe have intentionally omitted the parameters that initialise the history for simplicity sake, for instancep(w1).
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Due to the large number of free parameters and the always scarce data, it is a common approach
to resort to smoothing techniques. For instance, for a trigram language model, the events that occur
only once or not at all typically represent a huge percentageof the total occurrences. Therefore, the
probabilities of these events are difficult to estimate withconventional methods.

For better understand the overfitting problem in then-gram LM context, we must bare in mind
the (conventional) MLE estimation. Given a training corpus, w1 . . . wn . . . wN ; we know in each text
position, n, the observed wordwn and its conditional historyhn. In this case, the log-likelihood
function is given by:

LL({p(w|h)}) =
PN

n=1 log p(wn |hn) (1.71)

=
P

wh
N(w, h) log p(w |h) , (1.72)

where in the last line we have changed the summation index by grouping the occurrences for the same
word w and historyh. We will henceforth denote byN(w, h) to all the occurrences in the training set
of a givenn-gram,hw.

In order to obtain the MLE for then-gram model, we must maximiseLL({p(w|h)}) constrained
by Eq. (1.70). Applying some convex optimisation techniques [Ney et al., 1997], the MLE is computed
as follows

p̂(w|h) =
N(w, h)

N(h)
, (1.73)

whereN(h) stands for the occurrences of the historyh in the training corpus, that is to say

N(h) =
X

w

N(w, h) . (1.74)

It is seen that then-gram parameter set is very sparse, leading to poorly estimated MLE probabili-
ties. For instance, in Eq. (1.73), it is observed that for theunseenn-grams the probability is estimated
as0 even if all the words of then-gram occur in the training data. This overfitting problem derived
from the scarce training data, is one of the most important drawbacks of then-gram model.

1.2.3 Leaving-one-out smoothing techniques

The smoothing techniques forn-gram models [Goodman, 2001] range from adding a pseudo-count to
each occurrence count, to discounting a probability massBh from the seenn-grams for each history
h and redistribute it according to a smoothing distribution,β(· | h̄). For instance, the linear interpola-
tion [Chen and Goodman, 1998] distributes the gained probability massBh among all words according
to the smoothing distribution. On the other hand, the backing-off redistributes the probability only
among unseen events.

The most successful smoothing techniques are based on theTuring-Good (TG) counts[Good, 1953,
Nadas, 1984] which are obtained byleaving-one-out (LOO). Specifically, the modified Kneser-Ney,
which obviously is a modified version of the Kneser-Ney smoothing [Kneser and Ney, 1995], obtains
the best results [Goodman, 2001].

The main idea of the LOO-based smoothing models is to discount a probability mass from all
the seenn-grams by means of a discounting parameterλr for countsr < R beingR the maximum
count. Then, the gained probability mass,Bh, is redistributed among the unseen events according to
a smoothing probability distributionβ(w | h̄). No probability is discounted from the most frequent
n-gram, R. Therefore, in order to smooth then-gram language model, we smooth the probability
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estimatesp(w|h) with the following smoothing model

p̃λ(w|h) :=

8
><
>:

R
N(h)

N(w, h) = R

(1 − λr)
r

N(h)
0 < N(w, h) = r < R

Bhβ(w|h̄) N(w, h) = 0

, (1.75)

whereBh is the discounted probability mass defined as follows

Bh =
R−1X

r=1

λrnr(h)
r

N(h)
, (1.76)

so that the probability defined in Eq. (1.75) sums up to1, and wherenr(h) are the counts-of-counts
conditional to the previous historyh, i.e.

nr(h) =
X

w

δ(r, N(w, h)) . (1.77)

The discounting probability mass,β(w|h̄), is a lower order smoothing probability distribution defined
over the unseen words, i.e. X

w:N(w,h)=0

β(w|h̄) = 1 . (1.78)

The leaving-one-out (LOO)criterion [Katz, 1987] is based on the MLE criterion, where each sam-
ple plays the role of both training and testing. We summarisethe basis of the formalisation found
in [Ney et al., 1997, Sec. 4]. Firstly, equivalence classes are formed by gathering alln-gramshw which
share the very same countr = N(w, h) and historyh, into the same equivalence class. Note that these
equivalence classes simulate the result of the conventional MLE in Eq. (1.73), where all then-grams
with the same count share the same probabilityp̂(w |h). Secondly, we count the number of differ-
ent n-grams in each class labelled with the countr, r = 0, 1, ..., R; and denote them bynr(h) (see
Eq. (1.77)). Finally, by leaving-one-out ann-gram observation in the class with countr for testing, it is
moved into the class with countr − 1. Thus, the associated probability is replaced with the probability
of the classr − 1, obtaining in this way the LOO probabilities̃ploo(w | h)

p̃loo(w|h) :=

(
(1 − λr−1)

r−1
N(h)

1 < N(w, h) = r ≤ R

Bhβ(w|h̄) N(w, h) = 1
. (1.79)

If this process is repeated for all occurrences and for all equivalence classesr = 1, ..., R; then, the
LOO log-likelihood criterion is obtained

F({λR−1
1 }) =

X

wh

N(w, h) log p̃loo(w |h) (1.80)

=

RX

r=2

rnr log(1 − λr−1) +
X

h

n1(h) log

 
R−1X

r=1

λrnr(h)r

!
+ const(λR−1

1 ) ,

(1.81)

wherenr stands for the the counts-of-counts unconditional to any previous history, i.e.,

nr =
X

h

nr(h) =
X

wh

δ(r,N(w, h)) . (1.82)
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However, Eq. (1.81) is very difficult to deal with; furthermore, no close solution forλr is known.
Therefore, we make the following assumption [Ney et al., 1997, pag. 186]

R−1X

r=1

λrnr(h)r = φh

R−1X

r=1

λrnrr , (1.83)

whereφh is a constant value depending on the previous historyh but not in the countsr.
After taking assumption in Eq. (1.83) into Eq. (1.81), the function to maximise is given by

F(λR−1
1 ) =

RX

r=2

rnr log(1 − λr−1) + n1 log

 
R−1X

r=1

λrnrr

!
+ const(λR−1

1 ) , (1.84)

for which the solution is given by [Ney et al., 1997, pag. 186]

λ̂r = 1 −
r⋆

r
(1 − nRR/N) , (1.85)

wherer⋆ stands for the Good-Turing count [Good, 1953, Nadas, 1984, Ney et al., 1997]

r⋆ =
nr+1(r + 1)

nr

, r = 1, 2, . . . , R − 1 , (1.86)

and abusing of notation,R⋆ = R. If we further assume thatnRR/N ≪ 1, then Eq. (1.85) simplifies to

λ̂r = 1 −
r⋆

r
. (1.87)

Finally, the solution to the smoothed model is given by plugging Eq. (1.87) into Eq. (1.75), i.e.,

p̃(w|h) :=

(
r⋆

N(h)
0 < N(w, h) = r ≤ R

Bhβ(w|h̄) N(w, h) = 0
, (1.88)

where the smoothing distributionβ(w | h̄) is also estimated by LOO [Ney et al., 1997].
It is very illustrative to define the discounted probabilitymassBh in terms of the TG counts. Using

the smoothing model solution in Eq. (1.88), and the definition of the discounting probability mass in
Eq. (1.76); the formerBh is computed as follows

Bh = 1 −
RX

r=1

nr(h)
r⋆

N(h)
(1.89)

=
1

N(h)

 
N(h) −

RX

r=1

nr(h)r⋆

!
,

where taking into account the following property

N(h) =

RX

r=1

rnr(h) , (1.90)

Bh is expressed as

Bh =
1

N(h)

 
RX

r=1

rnr(h) −
RX

r=1

r⋆nr(h)

!
, (1.91)
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and grouping common terms

Bh =
1

N(h)

RX

r=1

(r − r⋆)nr(h) . (1.92)

Note that the question of whether the normalisation constraints in Eq. (1.70) are satisfied depends on
Bh and, hence, on the TG countsr⋆. This is due to the assumption in Eq. (1.83), since the definition of
our model ensured these normalisation constraint to be verified.

It may be said that the conditional dependence of the counts on h is dropped when the assumption in
Eq. (1.83) is taken; resembling, in this way, the solution ofa joint smoothing model [Ney et al., 1997].
Consequently, we should analyse a joint smoothing model to see whether this statement is true or not.
The joint smoothing model approximates the joint probabilities p̃λ(w, h) instead of the conditional
ones,p̃λ(w|h), as follows

p̃λ(w, h) :=

8
><
>:

R
N

N(w, h) = R

(1 − λr)
r
N

0 < N(w, h) = r < R

Bβ(w, h̄) N(w, h) = 0

(1.93)

with the gained probabilityB independent from the previous history as follows

B =
1

N

R−1X

r=1

λrnrr . (1.94)

Note that both Eqs. (1.93) and (1.94) are analogous to Eqs. (1.75) and (1.76), except for the normalisa-
tion constant that isN(h) in the latter and has been replaced forN in the former.

If we apply LOO to the joint smoothing model in Eq. (1.93), then the solution in Eq. (1.85) is
obtained without any assumption. Therefore, we conclude that taking assumption in Eq. (1.83) with
the conditional model in Eq. (1.75) is equivalent to taking the assumption of optimising the parameters
λR−1

1 for maximising the joint LOO log-likelihood function in Eq.(1.81) and, then, use them as if
they were the optimal parameters for the conditional model in Eq. (1.75). In theory, this assumption
can degenerate the probabilities as commented above, not ensuring the normalisation constraints in
Eq. (1.70). Moreover, in practice, we are interested in maximising the conditional model, since it
would produce smaller perplexities and eventually, this should improve the system performance. The
magnitude of this assumption mainly depends on the finally behaviour of these smoothing models.

It is worth noting that we have broadly reviewed the standardformulation given in [Ney et al., 1997]
for introducing the Turing-Good counts. Furthermore, the Kneser-Ney (KN) smoothing [Kneser and
Ney, 1995] is a special case of the model defined in Eq. (1.75) that ties all the parametersλR−1

1 with
one discounting parameterb, i.e.,

λr(b) =
b

r
, (1.95)

leaving just one free parameter to estimate: the former discounting parameter,b. Furthermore, an upper
and lower bound to this parameter is obtained by LOO [Ney et al., 1997]

n1

n1 + 2n2 +
P

r≥3 nr

< b <
n1

n1 + 2n2
. (1.96)

In this case, similarly to other smoothing techniques, bothjoint and conditional smoothing models lead
to the same solution, without degrading the probabilities by not verifying the normalisation constraints
in Eq. (1.70).
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1.2.4 Language modelling for text classification
The unigram language model is a special case of then-gram language model, forn = 1. In such case,
the probability for a given sentence or textwT

1 is given by

pr(w) :=
TY

t=1

p(wt) , (1.97)

where we have assumed that the occurrence probability of each word is independent of its position and
other words, the so-calledNaive Bayes assumption. Note that if the probability of a text is given by
Eq.(1.97), then the count vector of words,x, such thatxd = Nw (vd) is the number of occurrences of
the wordvd in the textw, follows a multinomial distribution, i.e.,

pθ(x|L) =

„
L
x

« DY

d=1

θxd

d , (1.98)

whereθd stands for the probability of the wordvd to occur and, hence, they must sum up to one

DX

d=1

θd = 1 , (1.99)

with the definition „
L
x

«
=

L!QD

d=1 xd!
. (1.100)

Thenaive Bayeslanguage model has long been a core technique in informationretrieval and, more
recently, it has attracted significant interest in pattern recognition and machine learning [Lewis, 1998].
This technique is specially outstanding in text classification [Juan and Ney, 2002, Vilar et al., 2004]. In
Chapter 2, the naive Bayes language model is further analysed.

1.3 Statistical Machine Translation
In this Section we review state-of-the-art applications and approaches in the field ofmachine translation
(MT), focusing on the statistical approach. The goal of MT is the automatic translation of a source
sentencex into a target sentencey,

x = x1 . . . xj . . . xJ , xj ∈ X , j = 1, . . . , J

y = y1 . . . yi . . . yI , yi ∈ Y , i = 1, . . . , I

wherexj andyi denote source and target words; andX andY , the source and target vocabularies
respectively.

On the one hand, current MT technology is focused on three main applications:

• Fully-automatic MT in limited domains like weather forecast [Langlais et al., 2005], hotel re-
ception desk [Amengual et al., 2000b], appointment scheduling, etc.

• Post-editing for CAT, i.e., post-editing the human amendment of automatic translations produced
by an MT system.

• Understandable rough translation in which the aim is to allow a human to decide whether the
translated text includes relevant information. For instance, this is used for document finding
purposes or user assistance in software troubleshooting.
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• Interactive machine translation where a synergy between the user and the system is achieved by
restating the user interaction as an iterative process in which the user corrects the translations
given by the system which proposes a new hypothesis for the unvalidated part of the translation
in its turn.

On the other hand, state-of-the-art MT approaches can be classified according to the level of anal-
ysis of the source sentence before translating:

• The interlingua approach [Arnold et al., 1993, Nirenburg etal., 1992, Nyberg and Mitamura,
1992].

• The transfer approach decomposes the translation process into three steps: analysis, transfer and
generation. A review of transfer-based systems is presented in [Hutchins and Somers, 1992].

• The direct approach refers to the word-by-word translationfrom the source sentence into the
target sentence. Under this approach we find example-based MT and statistical MT.

In statistical machine translation (SMT), this translation process is usually presented as a statistical
pattern recognition problem in which for a given source sentencex, the optimal target sentencêy is
searched according to

ŷ = arg max
y

pr(y |x) , (1.101)

wherepr(y |x) is the probability fory to be the actual translation ofx. Note that Eq. (1.101) is simply
the adoption of the Bayes’ optimal classification rule in Eq.(1.9) into the machine translation scope.

The so-calledsearch problemis to compute a target sentenceŷ for which this probability is maxi-
mum. Applying Bayes’ theorem we can reformulate Eq. (1.101)as follows

ŷ = arg max
y

pr(x |y)pr(y) , (1.102)

where the termp(y |x) has been decomposed into atranslation modelpr(x | y) and alanguage model
pr(y). Intuitively, the translation model is responsible for modelling the correlation between source
and target sentence, but it can also be understood as a mapping function from target to source words.
Whereas the language modelpr(y) represents the well-formedness of the candidate translationy [Stol-
cke, 2002].

The application of Eq. (1.101), minimises the CER which in MTscope corresponds tothe sentence
error rate (SER). However, the SER measure provides a rough and superficial evaluation of the system
translation quality and it is rarely used in favour of other more popular evaluation measures described
in Section 1.3.3.

The search problem presented in Eq. (1.102) was proved to be an NP-complete problem [Knight,
1999, Udupa and Maji, 2006]. However various research groups have developed efficient search al-
gorithms by using suitable simplifications and applying optimisation methods. Starting from the IBM
work based on a stack-decoding algorithm [Berger et al., 1996], greedy [Berger et al., 1994, Germann
et al., 2001, Wang and Waibel, 1998] and integer-programming [Germann et al., 2001] approaches to
dynamic-programming search [García-Varea and Casacuberta, 2001, Tillmann and Ney, 2003].

Nevertheless, most of the current statistical MT systems present an alternative modelling of the
translation process different from that presented in Eq. (1.101). The posterior probability is modelled
as a log-linear combination of feature functions [Och and Ney, 2004] under the framework of maximum
entropy [Berger et al., 1996]

ŷ = arg max
y

MX

m=1

λmhm(x, y) , (1.103)

whereλm is the interpolation weight andhm(x, y) is a function that assigns a score to the sentence
pair (x, y). Examples of features range fromhm(x, y) = log pr(x |y) or hm(x, y) = log pr(y), to
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hm(x, y) = exp(1). Note that under this framework, Eq. (1.102) is a particularcase where

h1(x, y) = log pr(x |y) (1.104)

h2(x, y) = log pr(y) , (1.105)

andλ1 = λ2 = 1.
It is particularly worthy of note that Eq. (1.103) is quite similar to a log-linear model depicted in

Eq. (1.12) without the normalisation coefficientZθ(x). For this reason, these models are commonly
refereed to as log-linear models [Och and Ney, 2004]. However, note that the ellipsis of the normal-
isation constant plays an interesting role in these translations models since its omission is conserved
through the training process as well, in contrast to the standard log-linear models. We will further
analyse these differences in Chapter 4.

1.3.1 Statistical word-based translation systems
A great variety of statistical translation models have beenproposed since the word alignment models
were proposed [Brown et al., 1993a, 1990]. Most of state-of-the-art statistical MT systems are based on
bilingual phrases [Callison-Burch et al., 2007]. These bilingual phrases are sequences of words in the
two languages and not necessarily phrases in the linguisticsense. The phrase-based approach to MT is
further explored in Section 1.3.2.

Another approach which has become popular in recent years isgrounded on the integration of
syntactic knowledge into statistical MT systems [Ding and Palmer, 2005, Graehl and Knight, 2004,
Lin, 2004, Wu, 1996, Yamada and Knight, 2001]. This approachparses the sentence in one or both of
the involved languages, defining then, the translation operations on parts of the parse tree. In [Chiang,
2007], Chiang constructs hierarchical transducers for translation. The model is a syntax-free grammar
which is learnt from a bilingual corpus without any syntactic information. It consists of phrases which
can contain sub-phrases, so that a hierarchical structure is induced.

The third main approach, which is currently investigated instatistical MT, is the modelling of the
translation process as a finite-state transducer [Alshawi et al., 2000, Bangalore and Riccardi, 1995,
Casacuberta and Vidal, 2004, Kanthak and Ney, 2004, Mariño et al., 2006]. This approach solves the
translation problem by estimating a language model on sentences of extended symbols derived from the
association of source and target words coming from the same bilingual pair. The translation transducer
is basically an acceptor for this language of extended symbols.

In this section we briefly review the word based models presented in Brown et al. [1993a]. In this
work, the models were presented in its inverse way, i.e.,pr(x |y). However, since in Chapter 4 we
make use of direct translation models, we present here the IBM models in its corresponding direct way,
i.e.,pr(y |x). In the direct version of IBM models, the translation of a source sentencex into a target
sentencey, is carried out usingalignmentsbetween words, i.e. a target wordyi is aligned to the set
of source word positionsai = {j1, . . . , jl}, if the target word is directly generated as translation of
the source word groupxj1 , . . . , xjl

. This model requires the use of a hidden variable model sincethe
alignments are typically never seen in training

pr(y |x) = pr(I |x)
X

a1

· · ·
X

aI

pr(y, aI
1 |x, I) , (1.106)

whereai is the alignment vector that indicates which source words are aligned with thei-th target word
yi, i.e.

ai ⊆ {1, . . . , J} , (1.107)

and wherepr(I |x) is a length distribution which is usually uniformly modelled, and consequently
ignored.
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Some constraints are usually added to the alignment setsaI
1, due to practical restrictions. For

instance, thecoverage constraintrequires all the source words to be in at least one alignment set.
The complete probability model in Eq. (1.106),pr(y, aI

1 |x), can be decomposed left to right as
follows

pr(y, aI
1 |x, I) =

Y

i

pr(ai |x, ai−1
1 , yi−1

1 , I)pr(yi |x, ai
1, y

i−1
1 , I) , (1.108)

where two probabilities are used:

• The alignment probabilitypr(ai |x, ai−1
1 , yi−1

1 , I)

• The translation dictionary probabilitypr(yi |x, ai
1, y

i−1
1 , I)

Different alignment models were proposed in [Brown et al., 1993b] (in its inverse form) based on
this idea, although only2 models where directly modelled constraining the probabilities in Eq. (1.108)
directly. These two models constrain the alignment sets cardinality to 1 or 0, that is to say each target
word can be aligned to either one word or no word at all. In order to simplify notation, we redefine the
alignment variables since each alignment is composed of oneword. Therefore, we say thatai = j if
the target wordyi is “aligned” to the source wordxj , wherej can be any source position ({1, . . . , J})
or 0 indicating thatyi is not aligned to any word. In order to represent the “non-alignment” event, a
NULL word is introduced at the beginning ofx, i.e. x = x0x1 · · · xJ . If a target wordyi is aligned to
x0 (ai = 0), the so-called NULL word, then it is equivalent to say that this target wordyi is not aligned
to any source word.

IBM model 1

The first of the IBM models, the so-called IBM model 1, is essentially defined as a statistical bilingual
dictionary.

The IBM model 1 [Brown et al., 1993b] makes the following assumptions

• The alignment probability is uniform, i.e.

pr(ai |x, ai−1
1 , yi−1

1 , I) :=
1

J + 1
. (1.109)

• The dictionary probability depends only on the aligned word, i.e.

pr(yi |x, ai
1, y

i−1
1 , I) := p(yi |xai

) , (1.110)

where note that we have introduced the notationp to refer to parameters, and where the following
normalisation constraint must be verified

X

b

p(b | a) = 1 ∀a ∈ X . (1.111)

Taking into account the assumptions in Eqs. (1.109), and (1.110), the model probability is given by

pr(y |x) :=

„
1

J + 1

«I Y

i

JX

j=0

p(yi |xj) . (1.112)

Since the model is a hidden variable model, the EM algorithm [Dempster et al., 1977b] is used to
estimate the parameter set:Θ = {p(b | a) | b ∈ Y , a ∈ X}.

The aim of the IBM model 1 typically is to initialise the training of superior IBM models. Another
interesting property of the IBM model 1 is the concavity of its log-likelihood function, and therefore the
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uniqueness of a maximum value under non-degeneratedc initialisation. However, the IBM model 1 has
been widely applied to different tasks of statistical MT, cross-lingual information retrieval and bilingual
TC due to its simplicity and applicability of its parameter values.

In statistical MT, the IBM model 1 has traditionally been an important ingredient in applications
such as the alignment of bilingual sentences [Moore, 2002],the alignment of syntactic tree frag-
ments [Ding et al., 2003], the segmentation of bilingual long sentences for improved word align-
ment [Nevado et al., 2003], the extraction of parallel sentences from comparable corpora [Munteanu
et al., 2004], the estimation of word-level confidence measures [Ueffing and Ney, 2007] and serves as
inspiration for lexicalised phrase scoring in phrase-based systems [Koehn, 2005, Koehn et al., 2003].
Furthermore, it has also received attention to improve non-structural problems [Moore, 2004].

IBM model 2

The IBM model 2 is an extension of the IBM model 1 where the alignment probability is not uniformly
modelled. Specifically, the IBM model 2 parametrises the alignment probability as follows

pr(ai |x, ai−1
1 , yi−1

1 , I) := p(ai | i, I, J) (1.113)

where the following normalisation constraint must be verified

X

j

p(j | i, I, J) = 1 (1.114)

Taking into account the assumptions in Eqs. (1.110), and (1.113), the model probability is given by

pr(y |x) :=
Y

i

X

j

p(j | i, I, J) p(yi |xj) . (1.115)

Since the model is a hidden variable model, the EM algorithm is used to estimate the parameter
set,{p(b | a),p(j | i, I, J)}. In order to train this model, firstly, some iterations of theIBM model 1 are
performed in order to obtain good dictionary estimates. Afterwards a retraining is performed using the
EM update equations for the IBM model 2.

1.3.2 Statistical phrase-based translation systems

The basis of the mainstream and better statistical machine translation models are based on the so-called
phrase-based models. The idea of modelling the translationprocess using phrase dictionaries was firstly
introduced in the alignment template approach [Och and Ney,2004]. In this section we review several
proposed phrase-based models.

Generative phrase-based models

We outline here an example of generative phrase-based modelthat will serve us to present the problems
faced by this approach, and to motivate the introduction of heuristically estimated phrase-based systems.
We follow the model presented in Zens et al. [2002].

Let (x, y) be a pair of source-target sentences, we introduce the conventional conditional probabil-
ity p(y |x) for the translation model. Let assume thatx has been divided intoT phrases or segments;
and so hasy. We further assume that each source phrase has been generated by just one target phrase.
We unhidde the hidden variableB which is a segmentation of the bilingual segmentation pair(x, y)

cStarting point in which none of the initial parameter valuesis zero.
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into T phrases(x̃T
1 , ỹT

1 ). Note that, the source segments,x̃1, . . . , x̃T , are not required to be in the
same source order, i.e.,x could be different from̃xT

1 = x̃1 · · · x̃T although it must be a reordering of
it. Finally, a generative model can be seen asa full exploration of all possible bilingual segmentation of
x andy and all possible alignments between them,

pr(y |x) =
P

B pr(y, B |x) (1.116)

=
P

B
pr(B |x)pr(y |B, x) , (1.117)

wherepr(y |B, x) is modelled using a phrase-table

pr(y |B, x) :=
TY

t=1

p(ỹk | x̃k) , (1.118)

whereas the remaining probability in Eq. (1.117), usually ignored, i.e., uniformly modelled for all
possible target phrase reordering.

The estimation of a phrase-based model as that presented above is a cumbersome problem that pos-
sess not only computational efficiency challenges, but alsooverwhelming data requirements. One of the
main difficulties that phrase-based models have to cope withis the problem of the bilingual segmenta-
tion and reordering. In the model proposed above, this segmentation is modelled by the hidden variable
B, which leads us to a large combinatorial number of possible segmentations to explore. As can be
guessed, these problems are further aggravated with the length of the source and target sentence. De-
spite this obstacle, there have been several proposals for phrase-based models, from the joint probability
model [Birch et al., 2006, Marcu and Wong, 2002], over the HMMphrase-based models [Andrés-Ferrer
and Juan, 2007, Deng and Byrne, 2005] to the statistical GIATI model [Andrés-Ferrer et al., 2008].

However, the most popular approach to the development of phrase-based systems has been the
log-linear combination of heuristically estimated phrase-based models [Koehn et al., 2003, Och and
Ney, 2004], since these systems offer better performance than those based on generative phrase-based
models [DeNero et al., 2006].

Heuristic phrase-based models

The heuristic estimation of phrase-based models is grounded on the Viterbi alignments computed as
a byproduct of word-based alignment models. The Viterbi alignment is defined as the most probable
alignment given the source and target sentences and an estimation of the model parametersθ,

â = arg max
a

pθ(a |x, y) , (1.119)

can also be rewritten
â = arg max

a

pθ(x, a |y) , (1.120)

or
â = arg max

a

pθ(y, a |x) . (1.121)

For instance, the conventional alignments, those providedby IBM models, disallow the connection
of a source word with more than one target word. This unrealistic limitation negates the common
linguistic phenomenon in which a word in one language is translated into more than one word in another
language. To circumvent this problem, alignments are not only computed from the source language to
the target language, but also from the target language to thesource language. Doing so, we can reflect
the fact that a single word is connected to more than one word.
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Once the Viterbi alignments have been computed in both directions, there exist different heuristic
algorithms to combined them [Koehn et al., 2003, Och and Ney, 2003]. These algorithms range from
the intersection of both alignments in which we have high precision, but low recall alignments, to
the union in which we have low precision, but high recall. In between, there are algorithms like the
refined method [Och and Ney, 2003] and thegrow-diag-final[Koehn et al., 2003] that starting from the
intersection, heuristically add additional alignment points taken from the union. This is a previous step,
before extracting bilingual phrases, to construct a phrase-based system.

Bilingual phrase extraction is based on the concept ofconsistencyof a bilingual phrase(x, y)
(derived from a bilingual segmentation) with a word alignment a. Formally,

(x, y) consistent witha ⇔ ∀xj ∈ x : (xj , yi) ∈ a −→ yi ∈ y ∧

∀yi ∈ y : (xj , yi) ∈ a −→ xj ∈ x ∧

∃xj ∈ x, yi ∈ y : (xj , yi) ∈ a (1.122)

basically Eq. (1.122) means that a bilingual phrase is consistent if and only if all the words in the source
phrase are aligned to words in the target phrase, and there isat least one word in the source phrase
aligned to a word in the target phrase.

Given the definition of consistency, all bilingual phrases (up to a maximum phrase length) that are
consistent with the alignment resulting from the symmetrisation process are extracted.

The next step is to define functions that assign a score or a probability to a bilingual phrase in
isolation or as part of a sequence of bilingual phrases in a given segmentation. These score functions
are integrated in a log-linear fashion under the maximum entropy framework.

The most commonly used score functions are the direct and inverse phrase translation probability
estimated as a relative frequency

pd(u |v) =
count(u, v)P

u′

count(u′, v)
pi(v |u) =

count(u, v)P
v′

count(u, v′)
(1.123)

whereu stands for a source phrase, andv for a target phrase. A direct and inverse lexical translation
probability inspired in the IBM model 1 [Cohn and Lapata, 2007, Koehn et al., 2003] are also used in
the log-linear model. Other score functions are related to reordering capabilities, such as the distance-
based reordering model [Och and Ney, 2004] and the lexicalised reordering model [Koehn et al., 2005].
Additional score functions are the phrase and the word penalty to control the length of the translated
sentence.

The weight of each score function in the log-linear combination is adjusted on a development set
with respect to a predefined criterion, usually BLEU. There are two popular techniques in statistical MT
to carry out this process, minimum error rate training [Och,2003] and minimum Bayes risk [Kumar and
Byrne, 2004]. Furthermore, the most common approach to the decoding process in log-linear models is
the well-known multi-stack decoding algorithm [Koehn, 2004, Och and Ney, 2004, Ortiz et al., 2006].
The Moses toolkit [Koehn et al., 2007], that implements an instantiation of this type of multi-stack
decoding algorithms, will be used throughout this thesis todefine a baseline reference.

1.3.3 Automatic MT evaluation metrics

In MT, the use of automatic evaluation metrics is imperativedue to the high cost of human made
evaluations. Also the need of rapid assessment of the translation quality of an MT system during its
development and tuning phases is another reason for the usage of automatic metrics. These metrics are

dThis process is also known as symmetrisation.
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used under the assumption that they correlate well with human judgements of translation quality. This
arguable statement must be considered bearing in mind the low inter-annotator agreement on translation
quality [Callison-Burch et al., 2007]. This fact makes automatic evaluation an open challenge in MT.

In this thesis, we mainly use two conventional translation evaluation metrics, WER and BLEU, al-
though other measures like METEOR [Banerjee and Lavie, 2005] and translation edit rate (TER) [Snover
et al., 2006] are becoming more and more popular.

The WER metric [Amengual et al., 2000a, Casacuberta et al., 2004] is defined as the minimum
number of word substitution, deletion and insertion operations required to convert the target sentence
provided by the translation system into the reference translation, divided by the number of words of the
reference translation. It can also be seen as the ratio of theedit distance between the system and the
reference translation, and the number of words of the reference translation. This metric will allow us to
compare our results to previous work on the same task. Even though the WER metric can value more
than100, it will be expressed as a percentage as it is commonly presented in the SMT literature. The
WER metric can also be evaluated with respect to multiple references, however, in this thesis, we have
a single reference translation at our disposal.

The BLEU score [Papineni et al., 2001] is the geometric mean of the modifiede precision for dif-
ferent order ofn-grams (usually from unigram up to4-grams) between the target sentence and the
reference translation, multiplied by an exponential brevity penalty (BP) factor that penalises those trans-
lations that are shorter than the reference translation. Although some voices have been raised against
BLEU as the dominant evaluation methodology over the past years [Callison-Burch et al., 2006], it
is still a reference error measure for the evaluation of translation quality in MT systems. The BLEU
ranges from0.0 (worst case) to1.00 (best case), however, it is a common practice referred as a percent-
age ranging from0.0 (worst score) to100.0 (best score).

eThe number of occurrences of a word in a target sentence is limited to that of this word in the reference transla-
tion.
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Constrained-Domain Maximum Likelihood Estimation
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Chapter 2. Constrained-Domain Maximum Likelihood Estimation

2.1 Introduction

Most pattern recognition systems are based on the optimal Bayes’ rule (see Section 1.1 and Section 4.2).
This rule highly depends on the posterior class probabilitypr(ω|x). Provided that the actual posterior
probability is not available in real tasks, it is approximated by a modelpθ(ω|x) which is characterised
by a parameter set,θ ∈ Θ.

The selection of the optimal parameter setθ depends on the function criterion. As reviewed in
Section 1.1.3 Chapter 1, maximum likelihood estimation (MLE) is one of the most widespread crite-
ria. This criterion finds the parameter setθ̂ that maximises the likelihood function which is defined in
Section 1.1.3. One of the most important flaws concerning to MLE is that it tends to overfit the param-
eters to the training data at the expense of reserving small probabilities or even zero probability to the
remaining non-training data. This overfitting problem is often a straight consequence of the ratio of the
number of parameters to the training size; roughly speaking, the data is scarce for what the model needs
to learn.

In order to alleviate the overfitting problem, it is a common approach to distort the optimal param-
eter set̂θ obtaining a non-overfitted version of the optimal parameterset,θ̃. However, on the one hand,
several smoothing techniques are heuristic techniques based on practical observation. For instance,
such is the case of the interpolate smoothing in which the optimal vectorθ̂ is usually interpolated with
a uniform distribution. On the other hand, some of the smoothing techniques are based on statistical
methods. The maximum a posteriori estimation or the leaving-one-out estimation are examples of such
smoothing methods.

In this chapter, we propose a method to avoid the scarce data derived problems such as overfitting.
Instead of smoothing the optimal solution obtained by MLE, we introduce the idea of constraining the
parametric domain,Θ, before searching for the optimal parameter set. Since, in this way, there is no
possible overfitted parameter set in the domain; the optimalparameter set is smoothed in the parametric
optimisation. Even more, the optimal parameter set obtained from the constrained domain retains the
properties of the MLE whilst the classical smoothed parameter set does not.

We apply the idea ofconstrained-domain maximum likelihood estimation(CDMLE) [Andrés-Ferrer
and Juan, 2006, Andrés-Ferrer and Juan, 2009] to thenaive Bayestext classifier [Juan and Ney, 2002,
McCallum and Nigam, 1998, Vilar et al., 2004]. Thenaive Bayesclassifier [Andrés-Ferrer and Juan,
2006, Andrés-Ferrer and Juan, 2009] has long been a core technique in information retrieval and, more
recently, it has attracted significant interest in pattern recognition and machine learning [Lewis, 1998].
Given the document class and length, this classifier makes the naive Bayesassumption that the prob-
ability of occurrence of a word does not depend on its position or other words in the document. In
spite of being completely unrealistic, this assumption hasthe advantage of greatly simplifying clas-
sifier training. In particular, conventional, maximum likelihood estimation of class-conditional word
occurrence probabilities reduces to a simple normalisation of word counts. However, due to data spare-
ness, these estimates suffer from overfitting; i.e. the estimated probabilities memorise the training data
and are unable to explain unseen events. Overfitting is usually alleviated usingparameter smoothing,
which is simply a heuristic modification of maximum likelihood estimates to avoid null values [Vilar
et al., 2004]. Unfortunately, the resultingsmoothed parametersare no longeroptimal in terms of max-
imum likelihood and thus we cannot attribute to them the desirable properties of maximum likelihood
estimators.

The proposed algorithm is described in Section 2.4, after a brief review of the naive Bayes model
and its conventional maximum likelihood estimation in the following two Sections. Empirical results
and concluding remarks are given in Sections 2.5 and 2.6, respectively.

34 JAF-DSIC-UPV



2.2. Naive Bayes model

2.2 Naive Bayes model
We denote the class variable byc = 1, . . . , C in the remaining of this chapter; the word variable by
d = 1, . . . , D; and a document of lengthL by wL

1 = w1w2 · · ·wL. The joint probability of occurrence
of c, L andwL

1 may be written as

pr(c, L, wL
1 ) := p(c) p(L) pθ(wL

1 | c, L) , (2.1)

where we have assumed that document length does not depend onthe class.
Given the classc and the document lengthL, the probability of occurrence of any particular docu-

mentwL
1 can be greatly simplified by making the so-callednaive Bayesor independence assumption:

the probability of occurrence of a wordwl in wL
1 does not depend on its positionl or other wordswl′ ,

l′ 6= l,

pθ(wL
1 | c, L) =

QL

i=1 p(wi | c) . (2.2)

Using the above assumptions, we may write theposteriorprobability of a document belonging to a
classc as:

pπ,θ(c | L, wL
1 ) =

pπ,θ(c, L, wL
1 )P

c′
pπ,θ(c′, L, wL

1 )
(2.3)

=
πc

QD

d=1 θxd

cdP
c′ πc′

QD

d=1 θ
xd

c′d

(2.4)

:= pπ,θ(c | x) (2.5)

wherexd is the count of wordd in wL
1 , x = (x1, . . . , xD)t, andΘ is the set of unknown parameters,

which includesπc for the classc prior andθcd for the probability of occurrence of wordd in a document
from classc. Clearly, these parameters must be non-negative and satisfy the normalisation constraints:

P
c
πc = 1 (2.6)

PD

d=1 θcd = 1 (c = 1, . . . , C) (2.7)

The Bayes’ decision rule associated with model (2.5) is a log-linear classifier:

cπ,θ(x) = arg max
c

pπ,θ(c | x) (2.8)

= arg max
c

(
log πc +

X

d

xd log θcd

)
(2.9)

2.3 Conventional naive Bayes training
Naive Bayes training refers to the problem of deciding (a criterion and) a method to compute an appro-
priate estimate for{π, θ} from a given collection ofN labelled training samples(x1, c1), . . . , (xN , cN ).
A conventional training criterion is thejoint log-likelihood function:

LL(π, θ) =
P

c
Nc log πc +

P
d
Ncd log θcd . (2.10)

whereNc is the number of documents in classc andNcd is the number of occurrences of wordd in
training data from classc. It is well-known that the global maximum of this criterion under constraints
(2.6)-(2.7) can be computed in closed-form:

π̂c =
Nc

N
(2.11)
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and

θ̂cd =
NcdP
d′ Ncd′

. (2.12)

Despite the optimality of the estimates (2.12), they are usually smoothed(modified) to avoid null
estimates originated by data spareness. For instance, in one of the experiments reported in Section 2.5,
we face the problem of estimating1.87M class-conditional word probabilities and only14.3% of them
are non-zero according to (2.12). Thus, without smoothing,the sole occurrence of a rare word in a
test document is likely to introduce dominant and underestimated terms in the decision rule (2.8) and,
hence, it may certainly be the cause of a classification error.

A popular smoothing method for (2.12) consists of simply adding a “pseudo-count”δ > 0 to every
Ncd count:

θ̃cd =
Ncd + δP

d′(Ncd′ + δ)
, (2.13)

with δ = 1 as the default value. This method is sometimes referred to asLaplace smoothing[McCallum
and Nigam, 1998].

Alternatively, as done in the context ofstatistical language modellingfor speech recognition, we
may use the idea ofabsolute discountingto avoid null estimates [Juan and Ney, 2002, Vilar et al.,
2004]. Instead of using artificial pseudo-counts, we gain “free” probability mass by discounting a small
constant to every count associated with aseenevent (positive count). The gained probability mass
is then distributed among events in accordance with ageneralised distributionsuch as theuniform
distribution,

βd =
1

D
, (2.14)

theunigramdistribution,

βd =

P
c
NcdP

d′

P
c
Ncd′

, (2.15)

or whatever distribution providing a reliable estimation of class-independent word probabilities. De-
pending on the set of events that receives the gained probability mass, we distinguish betweenback-off
andinterpolation. Back-off only considers unseen events:

θ̃cd =

8
>>>><
>>>>:

Ncd − bP
d′ Ncd′

if Ncd > 0

Mc
βdP

d′:Ncd′=0 βd′
if Ncd = 0

(2.16)

where the probability mass gained in classc is:

Mc =
b |{d′ ≥ 1 : Ncd′ > 0}|P

d′≥1 Ncd′
, (2.17)

and the discountb is restricted to the interval(0, 1). In contrast, interpolation distributes the gained
probability mass among all events:

θ̃cd = max


0,

Ncd − bP
d′ Ncd′

ff
+ Mc βd , (2.18)

where0 < b ≤ 1.
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2.4 Constrained-domain maximum likelihood estimation
As it is said in the introduction, smoothed parameters are nolonger optimal in terms of maximum like-
lihood and thus we cannot attribute to them the desirable properties of maximum likelihood estimators.
In this Chapter, we advocate the reduction of the set of feasible parameter estimates, that is, the use of
additional constraints on it. In particular, we focus our interest in conventional naive Bayes training,
without smoothing, but constrained to class-conditional word probability estimates not smaller than a
predefined non-negative constantǫ. That is to say that we are interested in the maximisation of (2.10)
subject to constraints (2.6), (2.7) and

θcd ≥ ǫ (c = 1, . . . , C; d = 1, . . . , D) (2.19)

whereǫ is the minimum probability of occurrence of a word in a document from any class (0 ≤ ǫ ≤ 1
D

).
Obviously, this is not a value we intend to learn from the data, but a meta-parameter to restrict the set
of feasible estimates to “conservative” values. If we choose ǫ = 0, we do not move from conventional
naive Bayes training. On the contrary, ifǫ = 1

D
, the only solution is to set all word probabilities toǫ.

In general, the more training data, the smallerǫ should be chosen.

2.4.1 Characterisation of the solution
Maximisation of (2.10) subject to constraints (2.6), (2.7)and (2.19) is a convex (concave maximisation)
problem with differentiable objective and constraint functions, for which we can find a global maximum
using theKarush-Kuhn-Tucker(KKT) conditions (see Appendix A). The Lagrangian functionis

L(π, θ, λ, µ) = −LL(π, θ) + Λ(π, θ, λ) + Γ(θ, µ) , (2.20)

whereΛ(π, θ, λ) stands for Lagrangian part corresponding to the equality constraints, i.e.,

Λ(π, θ, λ) = λ0

"
X

c

πc − 1

#
+
X

c

λc

"
X

d

θcd − 1

#
, (2.21)

whereλ0 andλc are Lagrange multipliers associated with constraints (2.6) and (2.7), respectively(c =
1, . . . , C). Conversely, theΓ(θ, µ) function in Eq. (2.20) stands for the Lagrangian part corresponding
to the inequality constraint, i.e.,

Γ(θ, µ) =
X

c,d

µcd (ǫ − θcd) , (2.22)

whereµcd are Lagrange multipliers associated with constraints (2.19), (c = 1, . . . , C; d = 1, . . . , D).
The KKT conditions for a point̂π, θ̂, λ̂, µ̂ to be a global maximum are

∇π,θL(π, θ,λ, µ)
˛̨
π̂,θ̂,λ̂,µ̂

= 0 (2.23)
X

c

π̂c = 1 (2.24)

X

d

θ̂cd = 1 (c = 1, . . . , C) (2.25)

θ̂cd ≥ ǫ (c = 1, . . . , C; d = 1, . . . , D) (2.26)

µ̂cd(ǫ − θ̂cd) = 0 (c = 1, . . . , C; d = 1, . . . , D) (2.27)

µ̂cd ≥ 0 (c = 1, . . . , C; d = 1, . . . , D) (2.28)
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From (2.23) and (2.24) immediately follows that, as in the conventional case, the optimal class priors
can be computed in closed-form using (2.11). However, this is not the case of the class-conditional
word occurrence probabilities. From (2.23), we have

θ̂cd =
1

λ̂c + µ̂cd

Ncd (c = 1, . . . , C; d = 1, . . . , D) (2.29)

but now we cannot rewritêλc + µ̂cd in terms of word counts to arrive at a closed-form solution
like (2.12). Instead, by some straightforward manipulations, we arrive at the following characterisa-
tion for each classc:

θ̂cd =

(
ǫ if ϑcd ≤ ǫ

ϑcd if ϑcd > ǫ
(d = 1, . . . , D) (2.30)

where

ϑcd =
NcdP

d′:ϑcd′>ǫ

Ncd′
(1 − Mc) (d = 1, . . . , D) (2.31)

with
Mc = |{d′ : ϑcd′ ≤ ǫ}| ǫ (2.32)

The idea behind this characterisation is as follows. First note that we distinguish between “rare” words,
in the sense that we assign a probability of exactlyǫ to them (d : ϑcd ≤ ǫ), and “frequent” words, which
have probability greater thanǫ (d : ϑcd > ǫ). The probability mass allotted to rare words is simply their
number timesǫ and is denoted byMc in (2.32). The remaining probability mass,1−Mc, is distributed
among frequent words in accordance with (2.31), which is simply a normalisation of word counts as
in the conventional case (2.12). Thus, generally speaking,we proceed as in the conventional case, but
using only the probability mass not assigned to words that donot cross the threshold ofǫ.

2.4.2 The algorithm
The above characterisation does not tell us how to partitionwords into rare and frequent, not even if
such a partition exists. Nevertheless, it can be easily shown that a solution exists and can be found
iteratively for each class separately. Letc be the current class. The basic algorithm consists in first
assuming that the set of rare words is empty,R

(0)
c = ∅; then, in iterationk (k = 1, 2, . . .), the new set

of rare words,R(k)
c , is obtained fromR

(k−1)
c by addition of each wordd,

R(k)
c = R(k−1)

c ∪ {d} (2.33)

which is not inR(k−1)
c but it is actually rare according to our criterion of not having a probability greater

thanǫ,
ϑ

(k−1)
cd ≤ ǫ (2.34)

where

ϑ
(k−1)
cd =

NcdP

d′ 6∈R
(k−1)
c

Ncd′
(1 − M (k−1)

c ) (2.35)

with
M (k−1)

c = |R(k−1)
c | ǫ (2.36)

At the end of iterationk, the algorithm assures that condition (2.34) is satisfied for all words inR
(k)
c .

This condition may be also satisfied by words not inR
(k)
c though, in general, it will not be satisfied by

most of them.
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1 Algorithm: CDMLE

2 Input:
3 C, D // number of classes and words

4 (x1, c1), . . . , (xN , cN ) // N labelled training samples

5 ǫ : 0 ≤ ǫ ≤ 1
D

// minimum word occurrence probability

6 Output:
7 {θ̂cd} // solution as characterised by Eqs. (2.30)- (2.32)

8 Variables:
9 {Ncd} // word counts for each class

10 R′, R // previous and current set of rare words

11 S′, S // previous and current sum of non-rare word counts

12 M ′, M // previous and current rare words probability mass

13 Method:
14 for c := 1 to C do // each class c is processed separately

15 for d := 1 to D do Ncd := 0 endfor
16 for n := 1 to N do
17 if cn = c then
18 for d := 1 to D do Ncd := Ncd + xnd endfor
19 endif
20 endfor // word counts for class c computed

21 R := ∅; S := 0; M := 0

22 for d := 1 to D do S := S + Ncd endfor
23 repeat // main loop for class c

24 R′ := R; S′ := S; M ′ := M

25 transfers := false

26 for d := 1 to D do if d 6∈ R′ then
27 θ̂cd := Ncd

S′ · (1 − M ′)

28 if θ̂cd ≤ ǫ then
29 θ̂cd:=ǫ // d has minimum probability in c

30 R := R ∪ {d} // d is a new rare word

31 S := S − Ncd

32 M := M + ǫ

33 transfers := true

34 endif endif
35 endfor
36 until not transfers

37 endfor

Figure 2.1: The Constrained-Domain Maximum Likelihood Estimation (CDMLE) al-
gorithm.
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AsR0
c is empty,M (0)

c is zero and the initial probability estimates,ϑ
(0)
cd , are exactly those obtained in

the conventional case (2.12). Therefore, in the first iteration, we use conventional probability estimates
to distinguish between rare and frequent words. Part of the probability mass assigned to frequent words
is transferred to rare words for them to arrive atǫ. The remaining probability mass is redistributed
according to (2.35) and, as it is smaller than that distributed before the transference, it may well happen
that a frequent word become a new rare word. If it happens, a new iteration is carried out; otherwise,
the algorithm stops and returns the desiredθ̂cd, as characterised by (2.30).

A detailed description of the basic algorithm described above is given in Fig. 2.1. GivenC, D, the
training data andǫ, it returnsθ̂cd for all c andd, as characterised by Eqs.(2.30)-(2.32). The main loop
processes each classc at a time (lines14–37). After computation of word counts (lines15–20), the
optimal CDMLE solution is obtained iteratively (lines21–36). Initially, no words are considered rare
(R := ∅) andθ̂cd is computed for all words as in the conventional case (duringthe first iteration of the
loop in lines23–36). If a wordd is found such that̂θcd ≤ ǫ (line 28), thend is added toR and a new
iteration is executed; otherwise, no transfers toR are carried out and the algorithm stops.

2.4.3 Algorithm correctness and complexity

Let c be the current class and letd be a non-rare word in iterationk − 1 (d 6∈ R
(k−1)
c ) for which (2.34)

holds. Then, it follows that

1 −
ǫ

1 − M
(k−1)
c

≤ 1 −
NcdP

d′ 6∈R
(k−1)
c

Ncd′
(2.37)

and, rearranging terms,

1 − M
(k−1)
c − ǫP

d′ 6∈R
(k−1)
c

Ncd′ − Ncd

≤
1 − M

(k−1)
cP

d′ 6∈R
(k−1)
c

Ncd′
(2.38)

As d 6∈ R
(k−1)
c but satisfies Eq. (2.34), the algorithm addsd to the set of rare words in iterationk,

R
(k)
c = R

(k−1)
c ∪ {d}. Using this updated set of rare words, Eq. (2.38) can be rewritten as

1 − M
(k)
cP

d′ 6∈R
(k)
c

Ncd′
≤

1 − M
(k−1)
cP

d′ 6∈R
(k−1)
c

Ncd′
(2.39)

from which we have, for any wordd′′ ∈ R
(k)
c ,

ϑ
(k)

cd′′ ≤ ϑ
(k−1)

cd′′ (2.40)

by multiplying each side of Eq. (2.39) byNcd′′ . From Eq. (2.40) and the fact thatϑ
(k−1)
cd′′ ≤ ǫ for all

d′′ ∈ R
(k)
c , it follows thatϑ(k)

cd′′ ≤ ǫ for all d′′ ∈ R
(k)
c . This means that, in iterationk, wordd becomes

rare while all rare words in the previous iteration remain rare. Algorithm correctness follows from this
result.

The time complexity of the CDMLE algorithm depends on the case. In the best case, no word
transfers are done in the repeat-until loop and the algorithm works exactly as the conventional naive
Bayes training (without parameter smoothing). More precisely, after the first repeat-until iteration, a
second iteration is needed for the algorithm to check that notransfers to the set of rare words are carried
out. Then, in the best case, its time complexity isΩ(CND). On the other hand, the repeat-until loop
is executedD times in the worst case, and thus the algorithm hasO(CND + CD2) time complexity.
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However, in practice, the repeat-until loop is expected to iterate only a few times. Therefore, the com-
putational behaviour of the CDMLE algorithm is expected to not differ significantly from conventional
naive Bayes training.

The previous discussion about the complexity of the CDMLE algorithm only applies to a direct
implementation of it, such as that given in Fig. 2.1. However, it is straightforward to derive a refined
implementation ofO(CND + CD log D) time complexity. The idea behind this refinement is to ap-
ply Eq. (2.33) in non-decreasing order of occurrence probability, as estimated in the conventional case.
That is, in iterationk, the next wordd to be considered in Eq. (2.33) must have minimum occurrence
probability, as given in Eq. (2.12), among all non-rare words. It can be easily checked that, if condi-
tion (2.34) does not hold ford, then it will not hold for any other non-rare word and, therefore, the
optimal CDMLE solution will have been found.

2.5 Experiments

The proposed approach was empirically compared to the usualpractice of simply smoothing relative
counts, as described in Section 2.3. This comparison was carried on four text classification data sets
(tasks):Traveller, 20 Newsgroups, Industry SectorandJob Category.

TheTravellerdata set comes from alimited-domainSpanish-English machine translation applica-
tion for human-to-human communication situations in the front-desk of a hotel. It was semi-automatically
built from a small “seed” data set of sentence pairs collected from traveller-oriented booklets by four
persons; A, F, J and P, each of whom had to cater for a (non-disjoint) subset of subdomains. The20
Newsgroupscorpus is a collection of approximately20, 000 newsgroup documents, partitioned (nearly)
evenly across 20 different newsgroups. We used the originalversion of this data set as provided by [Ren-
nie, 2001], in which document headers are discarded but the "From:" and "Subject:" header fields are
retained. TheIndustry Sectoris a collection of web pages from different companies, divided into a
hierarchy of classes. In our experiments, however, we "flattened" this structure, assigning each docu-
ment a class consisting of the whole path to the document in the hierarchy tree. TheJob Categorydata
set consist of job titles and descriptions, also organised in a hierarchy of classes. This corpus contains
labelled and unlabelled samples and only the former were used in our experiments. Table 2.1 contains
a summary with the basic information on these data sets. For further details on them, see [McCallum,
2002, Rennie, 2001, Vidal et al., 2000, Vilar et al., 2004].

Table 2.1: Basic information on the data sets used in the experiments. (Singletonsare
words that occur once;Class n-tonsrefers to words that occur inn classes exactly.)

Job Industry 20 Traveller
Category Sector Newsgroups (English)

Type of documents job titles web pages newsgroups sentences
Number of documents 131 643 9 629 19 974 8 000
Running words 11 221K 1 834K 2 549K 79K
Avg. document length 85 191 128 10
Vocabulary size 84 212 64 551 102 752 391
Singletons (Vocab %) 34.9 41.4 36.0 4
Classes 65 105 20 23.0
Class 1-tons (Vocab %) 49.2 58.7 61.1 74.9
Class 2-tons (Vocab %) 14.0 11.6 12.9 18.3
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Therainbowtoolkit [McCallum, 1998] was used for the preprocessing of all data sets butTraveller.
We used html skip for web pages and elimination of UU-encodedsegments for newsgroup messages.
We did not use stop-list removal, stemming or vocabulary pruning by occurrence count.

Figure 2.2 shows the results obtained in each data set. The proposed CDMLE algorithm is compared
to:

1. Laplace:conventional training and Laplace smoothing,

2. AD+1gBO:conventional training and absolute discounting with unigram back-off, and

3. AD+1gI: as (2) with unigram interpolation.

Each classification technique considered has its own test-set error rate curve as a function of the discount
b:

1. Laplace:b refers toδ in Eq. (2.13),

2. AD+1gBO or 1gI:b has its usual meaning, as defined in Eq. (2.16), and

3. CDMLE: ǫ is defined fromb asǫ = 10−10 b · 1
D

in the Traveller data set andǫ = b · 1
D

in the
other data sets.

Each plotted point corresponds to an average error rate obtained from30 random splits in which80%
documents were used for training while the remaining20% were held out for testing. Error rate esti-
mates have an approximate95% confidence interval of[E% ± 1%] ([E% ± 0.4%] for Job Category).

Table 2.2: Summary of the best results.

Job Industry 20 Traveller
Category Sector News (English)

Laplace 33.2 38.9 15.0 3.3
AD+1gBO 34.0 38.0 14.9 3.3
AD+1gI 34.2 37.8 14.8 3.3
CDMLE 33.0 38.6 15.3 3.1

From the results in Fig. 2.2, it is clear that the CDMLE algorithm performs similarly to the other
techniques. In comparison with Laplace, CDMLE provides slightly better results and more stable (flat)
error curves in all data sets but 20 Newsgroups. In these datasets, it is indeed much better than Laplace
when, as usual with Laplace, the discount factor is simply set to one. In the case of 20 Newsgroups,
however, Laplace seems to be a bit better than CDMLE.

In comparison with absolute discounting (AD+1gBO and AD+1gI), it can be said that there is
no superiority of one over the other. In Traveller and Job category, the CDMLE algorithm provides
better rates than absolute discounting, but the contrary can be observed in the other two data sets. All
in all, this is a comparatively good result for CDMLE since, in contrast to absolute discounting with
unigram back-off/interpolation, CDMLE does not take advantage of the unigram distribution (2.15)
to obtain reliable class-independent word probability estimates. Clearly, this estimates can be used to
replace (2.19) by better, word-dependent domain constraints.

A summary of the best results obtained in the experiments is given in Table 2.2. The CDMLE
algorithm obtains better results than Laplace and absolutediscounting in Job Category and Traveller.
However, absolute discounting is better than Laplace and the CDMLE algorithm in Industry Sector and
20 Newsgroups. Note that these differences are significant only to a limited extent.

As said in Section 2.4.3, the time complexity of the CDMLE algorithm is Ω(CND) in the best
case andO(CND + CD2) in the worst case. More precisely, the difference between these two cases
arises from the number of repeat-until iterations executed(lines 23–36 in Fig. 2.1), which may vary
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from 2 to D. To study this in the average case, the number of repeat-until iterations was recorded in
each CDMLE algorithm execution. On average, it was exactly2 in the Traveller and 20 Newsgroups
data sets, that is, as in the best case. On the other hand, it was only of2.5 iterations for Industry Sectors
and3.2 for Job category. Therefore, as expected, the repeat-untilloop iterates only a few times. That
is, in practice, the computational behaviour of the CDMLE algorithm might be considered almost the
same as that of conventional naive Bayes training.

2.6 Conclusions
In this chapter, conventional naive Bayes training with parameter smoothing has been restated as a
constrained-domain maximum likelihood estimation problem for which an optimal, iterative algorithm
has been proposed. The general idea behind our contributionis to avoid parameter estimates that can
cause over-fitting while retaining the properties of maximum likelihood estimators. Empirical results
on four real text classification tasks have shown that the proposed algorithm provides results similar to
those of conventional training and parameter smoothing, with almost the same practical computational
requirements.

It is worth noting, however, that smoothing methods have been continuously improved over the
years, while our proposal is completely new and thus, there is still room for significant improvements.
For instance, the parameter domain might be better adjustedby redefining the constantǫ introduced in
Eq. (2.19) and making it dependent on both the classc and the wordd.

We think that the proposed approach is very promising. In general, the idea behind of the proposed
approach can be applied to many maximum likelihood estimation problems in pattern recognition. For
instance, it can be easily applied to EM-based maximum likelihood estimation of finite mixture models.
For these models, it is unclear how to use parameter smoothing in the M step without affecting the
EM behaviour. Instead, constrained-domain maximum likelihood estimation can be used without any
side effect. Also, this constrained approach might be useful in the case of training criterion other than
maximum likelihood such as discriminative training [Juan et al., 2007].

The naive Bayes model follows a Multinomial distribution [Juan and Ney, 2002]; and, hence, the
proposed algorithm can be applied for Multinomial estimation. Finally, since the naive Bayes model
is also a special case to then-gram language models, this technique can be extended to higher order
n-grams. Specifically, this idea is covered in following chapter.
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Figure 2.2: Results obtained in theTraveller, 20 Newsgroups, Industry sectorand
Job categorydata sets. Each plot shows the classification error rate as a function of
the discount parameterb, for the four classification techniques considered (Laplace,
AD+1gBO, AD+1gI andCDMLE).
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Chapter 3
Constrained leaving-one-out for language modelling

“ In mathematics the art of asking questions is more valuable than solving problems”
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Chapter 3. Constrained leaving-one-out for language modelling

3.1 Introduction

I N the previous chapter, we introduced the idea of “smoothing the parametric domain” instead of
smoothing the optimal set of parameters. In this way, the optimisation of the training criterion
provides an optimal smoothed solution, avoiding the additional training smoothing stage. For

introducing this idea we analysed as case of study the naive Bayes classifier for which simple threshold
constraints were applied.

In this chapter we further explore the idea of constraining the parametric domain. Specifically, we
study two aspects: the estimation criterion (see Section 1.1.2 Chapter 1) and the probabilistic model.
On the one hand, the starting point of this chapter is theleaving-one-out maximum likelihood criterion
(LOO) instead of the (conventional) maximum likelihood criterion (see Section 1.2.3 Chapter 1 ). On
the other hand, we apply the estimation techniques to the most widespread language model, the so
calledn-gram model (see Section 1.2 Chapter 1).

Unfortunately, due to the large number of free parameters with respect to the training data, the
n-gram model needs to resort to smoothing techniques. For instance, for a trigram language model,
the events that occur only once or not at all in the training data typically represent a huge percentage
of all events. The probabilities of these events are difficult to estimate with conventional methods
because they occur few times in the training data. These probabilities are usually referred to assmall
probabilities.

As discussed earlier in Section 1.2 Chapter 1, the best smoothing methods, modified and original
Kneser-Ney [Goodman, 2001, Ney et al., 1997], are based on the Turing-Good (TG) counts [Good,
1953, Nadas, 1984]. The back-off parametrisations of thesediscounts gain a probability massB and
re-distribute it among all the unseen events. The discounted probability mass is obtained subtracting to
the actual countr the Turing-Good countr⋆ for each seen event (see Eq. (1.92) in Chapter 1).

An outstanding property of the Turing-Good (TG) countsr⋆ is that their sparseness is inverse to
the (conventional) countsr. The smaller the countr is, the larger the count-of-countsnr is, and, then,
the more confident the estimation ofr⋆ is. On the one hand, there is the unseenn-grams,r = 0; for
which the TG counts are well estimated sincen0 andn1 typically comprise a large amount of events.
On the other hand, there isR − 1, for whichnR−1 andnR are typically equal to1, leading to a poorly
estimated TG counts, and consequently, smoothed probabilities.

Unfortunately, the previous property of the leaving-one-out (LOO) smoothed probabilities is also
one of their most important weakness, since the LOO probabilities are noisy or badly estimated for
larger countsr. Typically, we want the LOO smoothed probabilitiesp̃(w |h) to be “close” to the relative
frequencies (the MLE estimates,p̂(w | h)); or, in other words, we want the TG counts to be close to
the (conventional) counts. At least, we want the LOO probabilities to retain the same monotonic order
that the (conventional) MLE verify; that is to say, if an-gramhw has occurred more timesa than other
n-gramh′w′, N(w, h) > N(w′, h′), then the probability of the former̃p(w |h) should be larger than
the latter,p̃(w′ |h′). Note that the ML estimates fulfil this requirement whereas the LOO estimates do
not ensure it.

The first proposed smoothing based on LOO, Turing-Good method, defines a smoothed language
model as a function of unconstrained LOO probability estimates. This method is very noisy since for
large values ofr, the TG countr⋆ is poorly estimated. On the other hand, the Kneser-Ney [Kneser
and Ney, 1995] smoothing solved that problem approximatingall the probabilities with one parameter,
as depicted in Eq. (1.95) in Section 1.2 Chapter 1. Thus, the Turing-Good method and the absolute
discounting method represent two extremes, namely either no constraints at all or a heavily constrained
model with only a single parameter. We focus, however, on finding a trade-off between the number of

aUnder the assumptionN(h′) = N(h); or alternatively comparing the joint probabilities̃p(w, h) andp̃(w′, h′).
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free parameters and suitable constraints in order to avoid noisy estimates and achieve optimum perfor-
mance.

Bare in mind that because of the assumption made when computing the LOO estimates of the dis-
counting parametersλR−1

1 (see Eq. (1.83) in Section 1.2 Chapter 1); the probability estimates,̃p(w |h)

in Eq. (1.88), obtained with the optimal discounting parametersλ̂
R−1

1 , do not necessary fulfil the con-
ditional normalisation constraints,

X

w

p̃(w |h) = 1, ∀h ∈ Wn−1 , (3.1)

although they verify a joint normalisation constraint
X

w

X

h

p̃(w, h) = 1, . (3.2)

At this point is important to recall the equivalence betweenthe joint model,p̃(w, h), and the condi-
tional model,p̃(w |h), which is depicted in Section 1.2 Chapter 1, when some assumption is taken
(see Eq. (1.83) in Section 1.2 Chapter 1).

Moreover, due to the way in which we use the parametersλR−1
1 when defining the smoothing

model as depicted in Eq. (1.88), the discounted probabilityBh can be0 or even negative ifr < r⋆. In
such cases, the heuristic approaches renormalise those parameters adding the negative probability mass
plus1, i.e.−Bh + 1, to the total probability amount; or deactivate the smoothing for thatn-gram, as it
is done in the SRILM toolkit [Stolcke, 2002]. In this chapter, we also try to avoid such problems.

In summary, since the TG countsr⋆ are obtained from data, they suffer from similar sparsity prob-
lems than that of the original countsr. In this chapter, we present some novel estimation algorithms to
avoid the sparsity problems for the LOO estimates while trying to retain an optimal trade-off between
the number of parameters and their sparsity. We tackle this problem by constraining the domain, like-
wise to Chapter 2, in order to force the optimal value to fulfildesirable properties that a not overfitted
solution must satisfy. This idea was previously outlined in[Kneser and Ney, 1995], where monotonic
and interval constrains were suggested but not applied. Specifically, in this chapter, we present4 meth-
ods that seek to optimise LOO while ensuring monotonicity:

• Interval constraints [Andrés-Ferrer and Ney, 2009]:in Section 3.3, we highly constrain the
LOO probability estimates ensuring monotonicity.

• Quasi-monotonic constraints:this method computes the LOO estimates so that they are mono-
tonic except for probability of the two most frequent probabilities.This exception allow us to find
a simpler algorithm in Section 3.4 that paves the way for the following proposed algorithms in
Section 3.5.

• Monotonic constraints with upper bounds:this method computes the LOO estimates so that they
are monotonic and never larger than the MLE estimates. In this way, in Section 3.5, we avoid
negative or zero discounted probability massBh.

• Monotonic constraints:in subsection 3.5.1, we compute the LOO estimates so that they all are
monotonic by modifying the algorithm presented in Section 3.5.

Additionally to these4 methods, we present theextended and exact Kneser-Ney (eeKN)[Andrés-Ferrer
and Ney, 2009] algorithm in Section 3.6 that computes an exact estimation of the Kenser-Ney (KN)
discount and the modified Kneser-Ney (mKN) discount while defining a parameter to fix the number of
free probability estimates.

In particular, all the methods except for the exact extendedKneser-Ney (eeKN) enforce the mono-
tonicity of (almost) all the probability estimates. Although the eeKN does not ensures the monotonicity,
this method provides a meta-parameter that is used to practically enforce this monotonicity.
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The remaining of this chapter is organised as follows. In Section 3.2, we propose a more comfort-
able formulation for the application of leaving-one-out estimates to smooth an-gram language model.
In Section 3.8 we analyse the proposed methods experimentally, drawing conclusions when possible;
and finally, future work and concluding remarks are gatheredin the last Section.

3.2 Leaving-one-out for language modelling
Recall from Section 1.2 in Chapter 1 that some smoothings models forn-gram modelling are obtained
by computing the smoothing parameters of the model in Eq. (1.93) by leaving-one-out (LOO) . The
solution to this model is reviewed in Section 1.2 and is depicted in Eq. (1.85).

However, in order to apply the constraints, there is a more suitable parametrisation for the model de-
fined in Eq. (1.93). There, we presented the smoothing model using the standarddiscountingparametri-
sation in which a probability mass is subtracted to the conventional ML estimates. In the new parametri-
sation, the whole discounted probability is regarded as a parameterpr. Recall that optimising the con-
ditional model under the assumption in Eq. (1.83) is equivalent to directly optimising the joint model,
and, hence, we re-parametrise the joint model as follows,

p̃(w, h) :=

8
><
>:

R
N

N(w, h) = R

pr 0 < N(w, h) = r < R

n0 p0 β(w|h̄) N(w, h) = 0

(3.3)

wherepR−1
0 or p is subject to thejoint normalisation constraint

RX

r=0

nr pr = 1 . (3.4)

Note that this model is equivalent to the joint model in Eq. (1.93). For instance, the discounted proba-
bility for a given historyh is given by

Bh = n0(h) p0 , (3.5)

whereas the total amount of discounted probability mass independent of any history, is

B =
X

h

Bh = n0 p0 . (3.6)

Note that there is a direct conversion between the model parametrised as a function ofpR−1
0 and as

a function ofλR−1
1 ; and vice-versa. This conversion is given by the following expression

pr = (1 − λr)
r

N
, r = 1, . . . , R − 1 . (3.7)

In this new model parametrised withpR−1
0 , the LOO log-likelihood function is given by

F(pR−1
0 ) =

R−1X

r=0

(r + 1)nr+1 log pr + const(pR−1
0 ) . (3.8)

In order to obtain the new optimal parameter setpR−1
0 , the log-likelihood in Eq. (3.8) is maximised

subject to the normalisation constraint in Eq. (3.4). For doing so, we define the Lagrangian function

F(pR−1
0 , γ) =

R−1X

r=0

(r + 1)nr+1 log pr −γ

 
RX

r=0

nr pr −1

!
, (3.9)
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and take the partial derivative with respect topr andγ

∂ F(pR−1
0 , γ)

∂ pr

=
(r + 1)nr+1

pr

− γnr , r = 0, 1, . . . , R − 1 (3.10)

∂ F(pR−1
0 , γ)

∂γ
=

RX

r=0

nr pr −1 . (3.11)

The optimal set of parameters must verify that the former partial derivatives are equal to0, from where
the optimal solution is obtained

p̂r =
1

N

(r + 1)nr+1

nr

„
1 − nR

R

N

«
, r = 0, 1, . . . , R − 1 . (3.12)

Since typicallynR
R
N

≪ 1, it can be approximated as

p̂r =
1

N

(r + 1)nr+1

nr

, r = 0, 1, . . . , R − 1 . (3.13)

Note that Turing-Good counts aregeneralisedunder this parametrisation as

r⋆ = pr N , (3.14)

for joint models; and as
r⋆(h) = pr N(h) , (3.15)

for conditional ones.
The result in Eq. (3.12) is totally equivalent to Eq. (1.85),since if we plug the optimal parameters

λ̂
R−1

1 into the Eq. (3.7), then the same optimal parameterspR−1
1 are obtained

p̂r = (1 − λ̂r)
r

N
r = 1, . . . , R − 1 ,

p̂r =

„
1 − 1 +

nr+1(r + 1)

rnr

„
1 −

nRR

N

««
r

N
, r = 1, . . . , R − 1

p̂r =
1

N

(r + 1)nr+1

nr

„
1 −

nRR

N

«
, r = 1, . . . , R − 1 .

Note thatn0 p0 is the probability mass reserved to the unseen events, i.e.B, and hence,p0 is the
most important probability when LOO is used for smoothing, since it gives probability for the unseen
events. However, it is important to highlight that we obtainthe probability mass to the unseen events at
the expense of reducing the probability mass of the seen events. The question tackled in this chapter is
how to discount the probability mass from the seen events so that the probabilities are still monotonic
and optimal for the LOO criterion.

The discounting idea in the new parametrisation given in Eq.(3.3) is less obvious than in the
parametrisation given in Eq. (1.93). However, since we havethat all the probabilities must sum up
to 1 (constraint in Eq. (3.1))

B = n0 p0 (3.16)

B = 1 −
RX

r=1

nr pr

B =
1

N

 
N −

RX

r=1

nr pr N

!
,
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where taking into account the following property

N =
RX

r=1

rnr , (3.17)

B is expressed as

B =
1

N

 
RX

r=1

rnr −
RX

r=1

nr pr N

!
, (3.18)

and grouping common terms

B =
1

N

RX

r=1

nr (r − pr N) . (3.19)

Finally, by using the definition of the TG counts in Eq. (3.14), the following discounting equation is
obtained

B =
1

N

RX

r=1

nr (r − r⋆) , (3.20)

from where the discounting process is depicted asr − r⋆. It is worth noting that a similar expression
can be obtained for the conditional normalisation constraint in case of using a conditional smoothing
model

Bh =
1

N(h)

RX

r=1

nr(h) (r − r⋆(h)) ∀h ∈ Wn−1 . (3.21)

3.2.1 The smoothing distributionβ(w|h̄)

The smoothing distributionβ(w|h̄) can also be estimated by LOO. The result of applying LOO to the
estimation ofβ(w|h̄) yields the following result [Ney et al., 1997]:

β̂(w|h̄) =
N1(w|h̄)

N1(h̄)
, (3.22)

which resembles the (conventional) MLE(n−1)-gram distribution but defined with the especial counts
{N1(w, h̄)} instead of the conventional counts{N(w, h̄)}. These especial counts are defined as fol-
lows

N1(w|h̄) =
X

h∈h̄:N(w,h)=1

1 , (3.23)

whereh ∈ h̄ stands for all then-gram contextsh, that share the same prefix(n − 1)-gram history,̄h;
i.e., if h̄ = wn−1

2 , thenh ∈ h̄ comprises allh such thath = wwn−1
2 for any wordw ∈ W. Finally,

theN1(h̄) is the sum over all words ofN1(w|h̄)

N1(h̄) =
X

w

N1(w|h̄) . (3.24)

The smoothing distribution in Eq. (3.22), captures the ideaof word coupling. For instance, “New
York” is a coupled bi-gram, that means that if “York” is a frequent word so would it be “New” and vice-
versa. However, the smoothing distribution should give high probabilities to words that have rarely been
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observed in the context. Therefore, if instead of usingN1(w, h̄) to estimate the smoothing distribution,
we useN(w, h̄), the smoothing distribution are over-estimated.

Several works reported [Chen and Goodman, 1998, Ney et al., 1997] that changing the singleton
countsN1(· · · ) by positive countsN+(· · · )

N+(w|h̄) =
X

h∈h̄:N(w,h)≥1

1 , (3.25)

incur in better perplexities. Therefore, to counteract theword coupling effect, we recompute counts by
the number of different contexts in which the smoothedn-gram occurs. High orders of this smoothing
distribution are often recursively smoothed with LOO untilthe uni-gram distribution following the
smoothing scheme presented for the language model.

3.2.2 The interpolated smoothing model

All the previous discussion is focused on the back-off model. This model redistributes the gained
probability massB among the unseen events. Oppositely, the interpolation model redistributes this
gained probability mass among all the events, both seen and unseen. Therefore, our joint interpolation
model is given by

p̃(w, h) :=

8
><
>:

R
N

+ iβ(w, h̄) N(w, h) = R

pr +iβ(w, h̄) 0 < N(w, h) = r < R

iβ(w, h̄) N(w, h) = 0

(3.26)

with the discounted probabilitiespR−1
1 and the interpolation factori comprising the parameter set. Note

that the smoothing probability distributionβ(w, h̄) must sum up to1 for all n-grams, and not just the
unseen ones, i.e., X

h

X

w

β(w, h) = 1 , (3.27)

and, finally, the probabilities must sum1,

RX

r=1

nr pr +i = 1 . (3.28)

Usually this interpolation parameter is estimated in the backing-off model and afterwards assumed
to be the same in the interpolation model. That is to say, it isoften assumed that

i = n0 p0 . (3.29)

It is worth highlighting that this assumption is actually true if the optimal smoothing probabilityβ(w, h̄)
is known. Although, we focus on this chapter on the backing-off models, we take the previous assump-
tion to compute interpolated smoothing models in the experimental Section 3.8.

3.3 Interval Constraints

The goal of this method is to modify the original MLE probabilities, pr = r/N , only a little bit.
Therefore, we introduce what we call the interval constraints

r − 1

N
≤ pr ≤

r

N
, r = 1, . . . , R − 1 , (3.30)
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and

p0 ≤
1

N
. (3.31)

Recall that the upper bound in Eq. (3.30) is the MLE estimate.

As presented in the model in Eq. (3.3), the probabilitypR is not used in the LOO log-likelihood
function and its value is fixed to the MLE.

Therefore, mathematically, we want to maximise the LOO log-likelihood obtained in Eq. (3.8)

F (pR−1
0 ) =

R−1X

r=0

(r + 1)nr+1 log pr (3.32)

constrained to Eqs. (3.31), (3.30) and the normalisation constraint

RX

r=0

nr pr = 1 , (3.33)

and recalling thatpR is fixed to the MLE, i.e.

pR =
R

N
.

The idea of applying these constraints was previously outlined in [Kneser and Ney, 1995], where an
heuristic and not optimal solution was proposed. In order toobtain an optimal solution to the problem,
we use the Karush-Kuhn-Tucker (KKT) conditions (see Appendix A). In this case, the Lagrangian
function is instanced to

L(pR−1
0 , λ, µ, ν) =

R−1X

r=0

(r + 1)nr+1 log pr −Λ(pR−1
0 , λ) − Ψ(pR−1

0 , µ, ν) ,

whereΛ(pR−1
0 , λ) is the Lagrangian part for the normalisation constraint

Λ(pR−1
0 , λ) = λ

 
RX

r=0

nr pr −1

!
,

and whereΨ(pR−1
0 , µ, ν) is the part generated by the inequality constraints

Ψ(pR−1
0 , µ, ν) =

R−1X

r=2

µr

„
r − 1

N
− pr

«
+

R−1X

r=1

νr

“
pr −

r

N

”
+ ν0

„
p0 −

1

N

«
.
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In this case the KKT conditions are reduced to

(r + 1)nr+1

pr

− nrλ + µr − νr = 0 r = 1, . . . , R − 1 (3.34)

n1

p0

− n0λ − ν0 = 0 (3.35)

RX

r=0

nr pr = 1 (3.36)

µr

„
r − 1

N
− pr

«
= 0 r = 2, . . . , R − 1 (3.37)

νr

“
pr −

r

N

”
= 0 r = 1, . . . , R − 1 (3.38)

ν0

„
p0 −

1

N

«
= 0 (3.39)

µr ≥ 0 r = 2, . . . , R − 1 (3.40)

νr ≥ 0 r = 0, . . . , R − 1 (3.41)

together with constraints in Eqs. (3.30) and (3.31).
In the previous KKT conditions,µr stands for the “strictness” of the lower bound for each proba-

bility pr, andνr is the corresponding “strictness” for the upper bound. Therefore, ifµr is greater than
0 then the lower constraint is (strictly) active, i.e. the bound is verified by equality andpr has the value
of the lower bound. Oppositely, ifµr is equal to0, then the lower bound is not (strictly) active andpr

can take values larger than it. This interpretation of the Lagrangian multipliers allows us to make a case
analysis depending on the multipliers for a given probability pr with r > 1:

• “Lower bound is active”, thenµr > 0 andνr = 0

• “Upper bound is active”, thenµr = 0 andνr > 0

• “Unbound case”, thenµr = 0 andνr = 0

Note that we have omitted the caseµr > 0 andνr > 0, since it implies that both constrains are active,
which is impossible by definition.

“Lower bound is active”

In this case, sinceνr = 0 we can work out the value ofµr from Eq. (3.34)

µr = −

„
(r + 1)nr+1

pr

− nrλ

«
. (3.42)

As result of Eq. (3.40) and (3.42) we obtain

pr ≥
1

λ

(r + 1)nr+1

nr

, (3.43)

and using the constraints in Eq.(3.30)

pr ≥
r − 1

N
, (3.44)

we obtain a solution by plugging previous Eqs.(3.43) and (3.44) into the constraint in Eq. (3.37)

pr(λ) = max


r − 1

N
,
1

λ

(r + 1)nr+1

nr

ff
, (3.45)

which depends on a normalisation constantλ.
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“Upper bound is active”

In this case, sinceµr = 0 we can again work out the value ofνr from Eq. (3.34)

νr =
(r + 1)nr+1

pr

− nrλ . (3.46)

As result of Eq. (3.41) and (3.46) we obtain

pr ≤
1

λ

(r + 1)nr+1

nr

, (3.47)

and using the constraints in Eq.(3.30), specifically

pr ≤
r

N
, (3.48)

we obtain a solution by means of the constraint in Eq. (3.38)

pr(λ) = min


r

N
,
1

λ

(r + 1)nr+1

nr

ff
, (3.49)

which depends on a normalisation constantλ.

“Unbound case”

In this case sinceµr = 0 andνr = 0, the value ofpr is straightly worked out from Eq. (3.34)

pr(λ) =
1

λ

(r + 1)nr+1

nr

. (3.50)

The actual solution

Finally, taking into account the result for each case depicted in Eqs. (3.45), (3.49),and (3.50), we obtain
a solution dependent on a normalisation constantλ

pr(λ) = max


r − 1

N
, min


1

λ

(r + 1)nr+1

nr

,
r

N

ffff
. (3.51)

Note that this solution is valid forr = 2, . . . , R − 1.
An analogous procedure can be carried out for the special casesr = 0, 1 yielding the following

result

pr(λ) = min


1

λ

(r + 1)nr+1

nr

,
1

N

ff
.

The interpretation of the solution in Eq. (3.51) is as follows. We compute the unconstrained LOO
estimatepr = 1

λ

(r+1)nr+1

nr
, with the unknown normalisation constantλ. This estimate is then com-

pared with the lower and upper bound and it is clipped if necessary. Now the only remaining problem
is that this comparison requires the normalisation constant to be known. To this purpose we introduce
theλ dependingnormalisation function,

Q(λ) =
RX

r=0

nr pr(λ) . (3.52)

This way, the normalisation constraint is reformulated asQ(λ) = 1. SinceQ(λ) is a monotonically
decreasing function, the value forλ can be easily computed.
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Note that in order to ensure monotonicity the following constraint must be added to the algorithm

p0 ≤ p1 . (3.53)

The addition of this constrain does not significantly modifythe algorithm, though it becomes more
awkward. The solution with the additional constraint in Eq.(3.53) can be obtained in the same way that
in the proposed method but it becomes more cumbersome. Specifically, if we define

p̄01(λ) =
1

λ

2n2 + n1

n1 + n0
, (3.54)

and

p̄0(λ) =
1

λ

n1

n0
, (3.55)

and

p̄1(λ) =
1

λ

2n2

n1
, (3.56)

then the solution to the interval constraints with the additional constraint in Eq. (3.53) is given by
Eq. (3.51) for all ther values but for0 and1 which are equal to

p0(λ) =

8
><
>:

1
N

p̄01(λ) ≥ 1
N

andp̄0(λ) ≥ p̄1(λ)

p̄01(λ) p̄01(λ) < 1
N

andp̄0(λ) ≥ p̄1(λ)

p̄0(λ) otherwise

, (3.57)

and

p1(λ) =

8
><
>:

1
N

p̄01(λ) ≥ 1
N

andp̄0(λ) ≥ p̄1(λ)

p̄01(λ) p̄01(λ) < 1
N

andp̄0(λ) ≥ p̄1(λ)

p̄1(λ) otherwise

, (3.58)

respectively. Let it be as it were, the constraint in Eq. (3.53) is always verified in practice, and hence,
this constraint becomes useless.

3.4 Quasi-monotonic constraints
A natural requirement is that the probability estimates,pr, should be a monotonic function ofr. This
is a more natural requirement than the interval constraints. The monotonic requirement is specified by
the following set of constraints

pr ≤ pr+1, r = 0, 1, . . . , R − 2 . (3.59)

Similar constraints were previously proposed in [Kneser and Ney, 1995] but no algorithm or solution
to computed them was given. Note that, we have intentionallyomitted the last monotonic constraint

pR−1 ≤ pR =
R

N
. (3.60)

Obviously this makes the following discourse not to ensure monotonicity, and that is why we will
refer to this algorithm asquasi-monotonicalgorithm. This assumption has two main motivations. On
the one hand, dropping this last bound incur in a simpler algorithm that will allow us to introduce
another algorithm in the following Section 3.5. On the otherhand, the algorithm for obtaining the
totally monotonic solution is a special case of the algorithm proposed in the mentioned Section 3.5.
Furthermore, this constraint is (almost) always verified inpractice by the current algorithm.
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Thereby, for the remaining of this section, we wish to optimise the model in Eq. (3.3), constrained
by the monotonic requirements in Eq. (3.59). By applying theKKT conditions (see Appendix A), only
a characterisation of the solution is obtained,

p0 = . . . = pr1| {z }
q0

< pr1+1 = . . . = pr2| {z }
q1

< . . . < prK−1+1 = . . . = prK| {z }
qK−1

, qK =
R

N
(3.61)

Since eitherpr−1 < pr or pr−1 = pr must be verified; the solution is a structure ofK + 1 segments
of probabilities with the set of boundariesrK+1

0

−1 := r0 < r1 < . . . < rK := R − 1, rK+1 := R . (3.62)

Inside thek-th segment, all the probabilities share the very same probability qk. The number of seg-
ments range from2 to R. ForK = 1, there are just two segments: one segment contains just one index,
R, and the other segment contains the remaining indexes,r = 0, . . . , R−1; which share the very same
probability,q0. ForK = R − 1, each segment is made up of one probability.

In order to simplify notation, we express the constraints interms of the segment probabilitiesqK
0 :=

q0, ..., qK . By defining

mk =

rk+1X

r=rk + 1

nr , (3.63)

the normalisation constraint is rewritten as

KX

k=0

mkqk = 1 , (3.64)

and the monotonicity constraints are summarised as

qk−1 < qk k = 1, . . . , K − 1 . (3.65)

Recall thatqK is as usual fixed to the relative frequencies. i.e.

qK =
R

N
. (3.66)

In order to obtain the solution, we start by assuming that thesegmentationrK+1
0 is given. In such

case, the LOO log-likelihood function is

F (qK−1
0 ) =

K−1X

k=0

Ak log qk , (3.67)

with Ak defined as

Ak =

rk+1X

r=rk + 1

(r + 1)nr+1 , (3.68)

subject to the normalisation constraint in Eq. (3.64). The Lagrangian function for this optimisation
problem is

L(qK−1
0 , λ) = F (qK−1

0 ) − Λ(λ, qK−1
0 ) , (3.69)

with

Λ(λ, qK−1
0 ) = λ

 
KX

k=0

mkqk − 1

!
. (3.70)
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Constraining the partial derivatives of the Lagrangian to be equal to0 yields the optimal solution for a
given segmentation

qk =
1

λ

Ak

mk

(3.71)

where the normalisation constantλ is independent of the segmentation

λ =
N

1 − mKqK

=
N

1 − nR pR

(3.72)

Since we have assumed the segmentation given, whether the solution verifies the constraints in
Eq. (3.65) or not depends on if the segmentation is optimal ornot. Therefore, in order to obtain the
boundaries of the segmentation, we should find the boundaries rK−1

0 that maximise the log-likelihood
in Eq. (3.67) while satisfying the monotonic constraints.

This is efficiently solved by dynamic programming using the following recurrence

F (r) = arg max
r′<r : pr′<pr

{F (r′− 1) + A(r′, r) log q(r′, r)} , (3.73)

with

A(r′, r) =
rX

s=r′

(s + 1)ns+1 , (3.74)

and with

q(r′, r) =
1

λ

A(r′, r)Pr

s=r′ ns

. (3.75)

Note thatF (r) is the log-likelihood for the partial segmentation that ends at countr. As usual with
dynamic programming, the optimal solution is obtained by tracing back the decisions made during the
recurrence in Eq. (3.73).

3.5 Monotonic Constraints with Upper Bounds
In Section 3.4, we analysed the quasi-monotonic constraints. This constraints involve practical prob-
lems since the probability for ann-gram that has occurredr times can be larger thanr/N , leading to
conditional probabilities that may not verify the conditional normalisation constraints in Eq. (3.1). This
problem is one of the model deficiencies outlined in Section 3.1, and it is derived from the assumption
made in Eq. (1.83) in Chapter 1.

In order to avoid those problems, we could add another set of constraints to the formulation in
Section 3.4

pr ≤
r

N
, r = 1, 2, . . . , R . (3.76)

Our aim is, then, to maximise Eq. (3.8) with the normalisation constraint in Eq. (3.33), with the
monotonic constraints in Eqs. (3.59) and (3.60); and with the upper boundaries defined in Eq. (3.76).
Similarly to Section 3.4, if we apply the KKT conditions to the maximisation, we obtain the character-
isation of the solution. The solution structure is similar to the structure in Eq. (3.61) as follows

p0 = . . . = pr1| {z }
q0

< pr1+1 = . . . = pr2| {z }
q1

< . . . < prK+1 = . . . = prK+1| {z }
qK

(3.77)

with the following additional constraints

qk ≤
rk+1

N
k = 0, . . . , K − 1 . (3.78)
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In this case, we proceed in a similar fashion to the previous section. Therefore, if the segmentation
rK+1

0 is given, then we have to maximise Eq. (3.67) subject to the normalisation constraint in Eq. (3.64),
and constrained by Eq.(3.78). Applying KKT conditions to this problem requires the definition of the
following Lagrangian function

L(qK−1
0 , λ) =

K−1X

k=0

Ak log qk − Λ(λ, qK−1
0 ) − Ψ(ν, qK−1

0 ) , (3.79)

with Λ(λ, qK−1
0 ) being the Lagrangian terms induced by the normalisation constraint,

Λ(λ, qK−1
0 ) = λ

 
KX

k=0

mkqk − 1

!
, (3.80)

and withΨ(ν, qK−1
0 ) being the Lagrangian terms concerning to the upper bounds inEq. (3.78),

Ψ(ν, qK−1
0 ) =

K−1X

k=0

νk

“qk − rk+1

N

”
. (3.81)

Recall thatAk is defined in Eq. (3.68).
The KKT conditions in this case are the followings

Ak

qk

− λmk + νk = 0 (3.82)

νk

“rk+1

N
− qk

”
= 0 (3.83)

rk+1

N
≥ qk (3.84)

νk ≥ 0 (3.85)

Similarly to Section 3.3, we proceed by cases:

• Bound is active, thenνk > 0.

• Bound is not active, thenνk = 0.

On the one hand, if the bound is active then, using Eq. (3.83) we get the value ofqk

qk =
rk+1

N
. (3.86)

On the other hand, if the bound is not active, we work out the value of qk from Eq.(3.82)

qk =
1

λ

Ak

mk

. (3.87)

From Eqs. (3.83), (3.86), and (3.87), we obtain a solution depending on a normalisation constant,λ,

qk(λ) = min


1

λ

Ak

mk

,
rk+1

N

ff
, k = 0, . . . , K − 1 , (3.88)

where the normalisation constantλ depends on the segmentation

λ = λ(rK+1
0 ) .

Recall thatmk is defined in Eq. (3.63) andAk is defined in Eq. (3.68).

60 JAF-DSIC-UPV



3.5. Monotonic Constraints with Upper Bounds

Therefore, if the unknown normalisation constantλ(rK+1
0 ) were known, then the question of

whether the solution in Eq. (3.88) verifies the monotonic constraints in Eq. (3.59) or not depends on the
segmentation boundaries,rK−1

0 , that maximise Eq. (3.67), constrained by Eq.(3.78) and by Eq. (3.64).
Therefore, if the normalisation constantλ is given, then we can compute the segmentation that max-
imises Eq. (3.67) with the following recurrence

F ′(r) = arg max
r′≤r : pr′<pr

{F ′(r′−1)+A(r′, r) log(qλ(r′, r))} , (3.89)

with

qλ(r′, r) = min


1

λ

A(r′, r)Pr

s=r′ ns

,
r

N

ff
. (3.90)

Recall thatA(r′, r) is defined in Eq. (3.74).
After evaluating the recurrence in Eq. (3.89) forr = 0, ..., R; we trace back the decisions made in

the evaluation to recover the optimum segmentation. Given the optimal segmentation, it is straightfor-
ward to compute the optimal probabilitiesq̂k for k = 0, ..., K.

In a fashion similar to the interval constraints in Section 3.3, we define aλ dependent normalisation
function

Q′(λ) =

KX

k=0

mkq̂k(λ) , (3.91)

and reformulate the normalisation constraint in Eq. (3.64)as

Q′(λ) = 1 . (3.92)

Note that the functionQ′(λ) is defined using the probabilities of the optimal segmentation forλ.
Since the functionQ′(λ) is monotonically decreasing the normalisation constraintcan be found

using algorithms similar to the ones used forQ(λ) in Section 3.3.

3.5.1 Monotonic constraints

In order to make the quasi-monotonic algorithm fully monotonic, we can develop a similar training
scheme to that obtained for computing the solution to the monotonic constraints with upper bounds. We
start with the quasi-monotonic wording but also adding the left-out constraint in Eq. (3.60). Afterwards,
if we apply the techniques used for obtaining the solution tothe monotonic constraints with upper
bounds, then we obtain a solution where the only difference is in the recursion in Eq. (3.89) which now
is given by

F ′′(r) = arg max
r′≤r : pr′<pr

{F ′′(r′−1)+A(r′, r) log(qλ(r′, r))} , (3.93)

whereqλ(r′, r) is defined by cases as follows

qλ(r′, r) =

8
>>><
>>>:

1
λ

A(r′,r)
P

r
s=r′

ns
r < R − 1

min


A(r′,R−1)
PR−1

s=r′
ns

, R
N

ff
r = R − 1

. (3.94)

Unlike the quasi-monotonic case, the addition of the constraint in Eq. (3.60), makes the normalisation
constantλ, not to be independent of the segmentation. Therefore it is necessary to use a scheme similar
to the monotonic with upper bounds, restating the normalisation constraint as a normalisation function
Q′′(λ) and requiring it to be1.
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3.6 Exact extended Kneser-Ney smoothing
The exact extended Kneser-Ney smoothing [Andrés-Ferrer and Ney, 2009] method reduces the number
of free parameters in the LOO estimation by using an absolutediscounting model for counts larger than
a given discounting thresholdS, mathematically expressed as

pr(p
S−1
0 , d) =

(
pr r < S
r−d
N

r ≥ S
, (3.95)

where the parameterd is the so-called discounting parameter. Obviously, this method does not guaran-
tee that the remaining probabilitiespr for r = 0, 1, ..., S − 1 are monotonic. Whether monotonicity is
satisfied or not depends on the training data and the chosen discounting thresholdS.

This estimation technique was initially presented with a fixed discounting threshold,S = 1 [Kneser
and Ney, 1995], and afterwards extended toS = 3 [Chen and Goodman, 1998]. Nevertheless, no exact
solution was given for the estimation ofS > 1. In this section, we analyse the exact solution for this
approach using the LOO log-likelihood criterion.

We wish to optimise the model in Eq. (3.3), but with the probabilities, pr, depending ond as
expressed in Eq. (3.95), for countsr larger or equal to the thresholdS. Therefore, the log-likelihood
function in Eq. (3.32) is rewritten by

F (pS−1
0 , d) =

S−1X

r=0

(r + 1)nr+1 log pr +

RX

r=S

(r + 1)nr+1 log
r − d

N
, (3.96)

subject to the normalisation constraint in Eq. (3.33) rewritten as

S−1X

r=0

nrpr +
RX

r=S

nr
r − d

N
= 1 . (3.97)

The optimal parameter set must maximise Eq. (3.96) subject to the normalisation constraint in
Eq. (3.97). The Lagrangian function of such mathematical problem is

L(pS−1
0 , d, λ) = F (pS−1

0 , d) − Λ(pS−1
0 , d, λ) , (3.98)

with

Λ(pS−1
0 , d, λ) = λ

 
S−1X

r=0

nrpr +
RX

r=S

nr
r − d

N
− 1

!
, (3.99)

and whereF (pS−1
0 , d) is defined in Eq. (3.96).

As usual convex optimisation problems, it is needed to compute the gradient of the Lagrangian
function with respect tod, andpr,

L(pS−1
0 , d, λ)

∂pr

=
(r + 1)nr

pr

− λnr, r = 0, 1, . . . , S − 1 (3.100)

L(pS−1
0 , d, λ)

∂d
= −

RX

r=S+1

rnr

r − 1 − d
+ λ

RX

r=S

nr

N
, (3.101)

and equalling them to0 allow us to work out the value of the optimal probability estimates,̂pr,

p̂r(d) =
1

λ(d)

(r + 1)nr+1

nr

, r = 0, . . . , S − 1 , (3.102)
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where the normalisation constant depends ond as follows

λ(d) =

 
RX

r=S+1

rnr

r − 1 − d

! 
RX

r=S

nr

N

!−1

. (3.103)

Similarly to Sections 3.3 and 3.5, we reformulate the normalisation constraint in Eq. (3.97) by
defining a normalisation functionQ′′′(d)

Q′′′(d) =

S−1X

r=0

nr p̂r(d) +
RX

r=S

nr
r − d

N
, (3.104)

and requiring it to be equal to1, Q′′′(d) = 1.
The functionQ′′′(d) is again monotonically decreasing, and therefore it is straightforward to find

the optimal valuêd such thatQ′′′(d̂) = 1
Unlike original and modified Kneser-Ney, we have not made anyapproximation in order to obtain

the exact value for̂d andp0. Additionally, the threshold countS is not fixed beforehand to be either1
(Kneser-Ney), or3 (modified Kneser-Ney).

Note also that although these estimation techniques were firstly introduced by definingpr for r < S
as a function of a discount parameterdr, both parametrisation are equivalent by means of the following
equation

pr =
r − dr

N
.

3.7 A word on time complexity
Until now, we have not analysed the time requirements of the proposed methods compared with the
standard Kneser-Ney (KN) and modified Kneser-Ney (mKN). Obviously, all the proposed methods
need to compute both the conventionaln-gram countsN(w, h) and the counts-of-counts (COC)nr for
r = 0, 1, . . . , R − 1. Therefore, we omit the time complexity required to computethose counts.

The standard KN and mKN smoothings require a time complexityof O(R), since only one or three
discounting parameters must be computed in order to define the probabilities̃p(w|h) of the model in
Eq (1.75) in Chapter 1. For instance, the Kneser-Ney makes use only ofn1, n2 andn3 for defining just
one discounting parameterb as expressed in Eq. (1.96) Chapter 1.

The proposed methods are split into two groups:

Iterative methods: comprising the constrained methods that need to perform iterations to compute the
normalisation constantλ by means of a decreasingly monotonic normalisation function Q(λ),
that is to say the following methods: interval constraints,monotonic constraints with and without
upper bounds; and exact extended Kneser-Ney (eeKN).

Non-iterative methods: made up of the methods that do not require to iterate, i.e., the quasi-monotonic
method.

For the latter we give the total time complexity. Specifically, the quasi-monotonic constraint need to
compute the recursion specified in Eq. (3.73), which can be computed inO(R2).

However, for the iterative methods, we give the time complexity for each iteration. On the one
hand, the monotonic constraints with and without upper bounds, need to compute the recursions in
Eqs. (3.89) and (3.93) which are similar to the recursion forthe quasi-monotonic constrains requiring
a time complexity ofO(R2) for each iteration. Therefore, these two methods requireO(R2I) in order
to find the solution whereI stands for the total amount of iterations needed to find the normalisation
constant.
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On the other hand, the interval constraints and eeKN can compute the probability estimates in a
time complexity ofO(R) for a given normalisation constant. This leads to a total time complexity of
O(RI) whereI stands for the total amount of iterations needed to find the normalisation constant.

The number of iterationsI varies depending on the data, the model order,n; and the smoothing
algorithm. However, in all the experimentation we have carried out in the following section, it usually
lays in between10 and50.

3.8 Experiments

Experiment setup
In this section, the practical performance of all the proposed smoothing techniques is analysed from the
LM point of view. The perplexity (see Section 1.2 Chapter 1) on a test set will be used to compare all
the techniques. The less the perplexity is, the better the model is. Furthermore, we also use a modified
version of the perplexity, the so-calledjoint perplexityfor evaluating some of the proposed methods.
This is motivated by the assumption made in the modelling that makes equivalent the optimisation of
the joint and conditional models. The joint perplexity is defined as the (conditional) perplexity but for
the probabilities which are joint probabilitiesp(w, h) instead of the conditional probabilitiesp(w|h) as
follows

PP(T ) = 2
1

W

PM
m=1

PTm
t=1 log2 p(sml,h) , (3.105)

with the testing dataS comprising a set of evaluation sentences{s1, . . . , sM} each of lengthTm; and
whereW stands for the total amount of words, i.e.,

W =
MX

m=1

Tm .

In order to quantify the behaviour of each techniques, we have compared all the the proposed
techniques with the baseline perplexity given by the modified Kneser-Ney [Chen and Goodman, 1998]
and original Kneser-Ney [Kneser and Ney, 1995]. In order to obtain the baseline, we have used the
standard SRILM toolkit [Stolcke, 2002]. Additionally, theexperiments have been obtained using the
smoothed back-off model in Eq. (3.3) unless it is otherwise specified.

For analysing the different smoothing techniques two corpora has been used: the English part of the
Europarl v3 [Callison-Burch et al., 2007] and the Wall Street Journal (WSJ) [Kneser and Ney, 1995].
Table 3.1 summarises some statistics about the two corpora.As previously discussed, it is observed
that the percentage of singletonsb is very high for3-grams comprising the28.5% of the total3-gram
occurrences.

Table 3.2 contains some statistics for the testing data. Thetest set for the Europarl is defined in the
shared task [Callison-Burch et al., 2007]; on the other hand, for the WSJ, we have selected an small
percentage of paragraphs from all the years, in order to gainindependence on the test set with respect
to time factors.

In order to analyse the behaviour of all the techniques as a function of the training size, we have
split the training into increasing sizes starting from200K sentences and doubling the size until the full
corpus, i.e.,200K, 400K, 800K, and full corpus (≈ 1.6M for WSJ and≈ 1.4M for Europarl).

An important problem in LM evaluation is how to handle theout of vocabulary (OOV)words.
If the OOV are not handled properly, then misleading conclusions could be drawn from evaluation.
Some works [Kneser and Ney, 1995], tackled the problem by selecting the most frequent words, for
instance20K, from training and tagging the remaining words as unknown words. Then the unknown

bBy singleton we denote here, an event such as a word or an-gram that has occurred just once in the corpus.
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Table 3.1: Table with some statistics of the both corpora used in the experiments.

Training Europarl WSJ
sentences 1.40M 1.62M
avg. length 24.6 26.0
running words 34.4M 42.12M
vocab. size 280.5K 200.1K
n1/N (1-gram) 0.4 % 0.2%
n1/N (2-gram) 18.9 % 18.1%
n1/N (3-gram) 28.5 % 28.5%

Table 3.2: Some statistics of the both test sets.

Test Europarl WSJ
sentences 2K 12.5K
avg. length 26.8 26.1
running words 53.6K 326.3K

word becomes a very common event, such that small variationsin its probability could dominate the
perplexity differences among systems. For instance, if we take the extreme example in which all the
vocabulary words are unknown, then the perplexity of any text will be 1; although the meaning of this
perplexity is misleading since it does not mean that given a previous history of words the LM is able
to predict the following word. Instead, this perplexity means that our model is able to predict that the
following word will beunknownto the LM, which is useless for most of the applications.

In order to avoid these misleading conclusions, two steps have been taken. On the one hand, we
report perplexity results skipping OOVn-grams. On the other hand, we have performed experiments
increasing the size of the vocabulary from10% of the vocabulary until the100% in steps of10%.
For the100% case in which all the vocabulary words are considered, we have reserved the smoothing
probability mass for the unseen uni-grams in order to give probability to the unknown words. For
doing so, the full vocabulary size must be known, however, any sensible estimation of the size suffices,
specifically, we have extrapolated the number of unseen words in the vocabulary from the seen words.
Bare in mind that we also report perplexities ignoring OOV words to quantify the influence of our
estimation for unknown events. Table 3.4 reflects the percentage of OOV in test as a function of the
training size. Furthermore, in table 3.3 the sizes of the vocabulary partitions are detailed.

In the remaining of this section, we have obtained results mainly for bi-grams and tri-grams lan-
guage models. For some experiment configurations we have also computed4-grams results. In all cases
the conclusions are consistent with results obtained for the tri-gram language model.

Theoretical properties in practice
We can gain some insights into the constrained technique by analysing the TG countsr⋆. Therefore,
in Figure 3.1 the TG counts,r⋆ = pr N , are plotted as a function of the original countsr. The plots
were obtained using a4-gram language model in the200k partition of the WSJ corpus and using the
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Table 3.3: Percentage of out of vocabulary words (OOV) in test as a function of the
training size and the percentage of vocabulary size. The figures represent percentages,
i.e.,5.4 stands for5.4% words.

Voc. Pctg. Corpus 200K 400K 800K full size

10%
Europarl 5.4 4.0 2.9 2.1
WSJ 6.3 4.9 3.7 2.8

20%
Europarl 3.0 2.1 1.5 1.1
WSJ 3.4 2.5 1.8 1.4

30%
Europarl 2.1 1.4 1.0 0.8
WSJ 2.3 1.6 1.2 0.8

40%
Europarl 1.7 1.2 0.9 0.6
WSJ 1.7 1.2 0.8 0.6

50%
Europarl 1.4 1.0 0.7 0.5
WSJ 1.4 0.9 0.7 0.4

60%
Europarl 1.3 0.9 0.7 0.5
WSJ 1.2 0.8 0.5 0.3

70%
Europarl 1.2 0.9 0.6 0.5
WSJ 1.0 0.7 0.5 0.3

80%
Europarl 1.1 0.8 0.6 0.5
WSJ 1.0 0.6 0.4 0.3

90%
Europarl 1.1 0.7 0.5 0.5
WSJ 0.8 0.6 0.4 0.2

100%
Europarl 1.0 0.7 0.5 0.4
WSJ 0.7 0.5 0.3 0.2

full vocabulary. It is worth noting that the original TG counts wildly oscillate for larger values ofr,
i.e.m the estimation ofr⋆ is noisy. Recall that we have already outlined this property of the TGcounts
when analysing the LOO smoothing model deficiencies in Section 3.1.

It is valuable to mention, the way in which each of the proposed methods counteract such over-
training. The probability estimates obtained with the interval constraints tend to strictly verify one of
the constraints, either the upper or the lower. The (quasi-)monotonic constraintsc, howeverer, tend to
produce strips with the same TG count. These strips are sometimes larger than the countr itself. Oppo-
sitely, the monotonic constraints with upper bounds methodavoids this undesirable result by splitting
these strips whenever necessary. Finally, in the case of theeeKN and for the chosen discounting thresh-
old (S = 30), it can be seen that the TG counts are not monotonic. However, if we had chosenS = 10
instead, then the counts would have been monotonic, since all the noisy counts are approximated by
one discount as depicted in Figure 3.1.

The figure 3.2 is the analogous version of figure 3.1 but for using a3-gram model instead of4-gram
model. When comparing figures 3.1 and 3.2, we observe that when then-gram order, i.e.n, is increased
the counts oscillate more wildly.

cSince the only difference between the quasi-monotonic and the monotonic constraints is the upper constraint
pR−1 ≤ R/N ; their plots are virtually the same.
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Table 3.4: Vocabulary size as a function of the training size and the percentage of the
full vocabulary. The figures represent Kilo-words, i.e.,8.7 stands for8.7K words.

Voc. Pctg. Corpus 200K 400K 800K full size

10%
Europarl 8.7 11.7 15.3 20.0
WSJ 10.2 14.6 20.9 28.1

20%
Europarl 17.4 23.3 30.7 40.0
WSJ 20.4 29.2 41.8 56.1

30%
Europarl 26.2 35.0 46.0 60.0
WSJ 30.7 44.0 62.7 84.2

40%
Europarl 34.9 46.6 61.3 80.0
WSJ 40.9 58.3 83.7 112.2

50%
Europarl 43.6 58.3 76.7 100.0
WSJ 51.1 73.0 104.6 140.3

60%
Europarl 52.3 70.0 92.0 120.1
WSJ 61.3 87.5 125.5 168.3

70%
Europarl 61.1 81.6 102.4 140.1
WSJ 71.6 102.1 146.4 196.4

80%
Europarl 69.8 93.3 122.7 160.1
WSJ 81.8 116.7 167.3 224.4

90%
Europarl 78.5 104.9 138.1 180.1
WSJ 92.0 131.3 188.2 252.5

100%
Europarl 87.2 116.6 153.5 200.0
WSJ 102.3 145.8 209.1 280.5

Finally, the figure 3.3 depicts one of the normalisation functions, Q(λ). Specifically, we have
selected the normalisation function for the interval constraints. In this plot, it is observed that the
function is monotonically decreasing. Note that the total number of seenn-grams,N , is equal to
5 210 341 and the optimal normalisation constantλ̂ takes the value of5 244 023. The normalisation
functions of the other proposed smoothings show a similar behaviour of that depicted in figure 3.3 but
for the eeKN smoothing.

For the eeKN case, we have plotted the normalisation function in figure 3.4. Recall that, the nor-
malisation function for the eeKN smoothing is parametriseddepending on the discounting parameter
d instead of a normalisation constantλ. In the figure 3.4, we have plotted the normalisation function
Q(d) for severaln-gram models in the case of eeKN withS = 3. The larger then-gram order is, the
larger the discounting parameterd is. Specifically, the discounting parameter takes the valueof 0.61,
1.01, 1.13 and1.20 respectively for uni-gram, bi-gram, tri-gram and four-gram models.

Backing-off results

Firstly, in the figures 3.5 and 3.6 we analyse the practical behaviour of all the methods involving mono-
tonic constraints: quasi-monotonic, monotonic with upperbounds and monotonic. The first surprising
result is that the (conventional) Kneser-Ney (KN) outperforms the modified Kneser-Ney (mKN). Re-
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Figure 3.1: The4-gram modified countr⋆ as a function of the original countr for the4
proposed techniques obtained with200K sentences partition of WSJ and full vocabulary
size.

sults in [Chen and Goodman, 1996] report that the mKN outperforms the KN smoothing, however, this
result are obtained using a linear discounting instead of a backing-off discount. Afterwards, we analyse
the behaviour of linear discounting smoothings, and, then,we will see that mKN outperforms the KN
for interpolated discounting methods.

In figure 3.5, the (conditional) perplexity ignoring OOV events is plotted as a function of the per-
centage of most frequent words from the vocabulary. The three techniques show virtually the same
behaviour which slightly improves the best baseline, KN. This improvement, is systematic and grows
with the vocabulary size. Although, the plot in figure 3.5 wasobtained with a3-gram language model,
other orders such as2-gram or4-gram, obtain similar plots. For the case of the perplexity without
ignoring the OOV the plots show a similar behaviour. Therefore, we do not include the plots for the full
perplexity (with OOV) since the behaviour is similar but with a slightly smaller gap.

Figure 3.6, comprises two plots with the perplexity as a function of the training size for the WSJ
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Figure 3.2: The3-gram modified countr⋆ as a function of the original countr for the4
proposed techniques obtained with200K sentences partition of WSJ and full vocabulary
size.

corpus. The top plot, shows the performance of the monotonicsmoothing techniques for a2-gram
language model. The bottom plot is the analogous plot for3-gram language model. There is not any
difference between the performance of the monotonic modelswhich obtain slightly better results than
the KN baseline. It is observed that the improvement gap is larger for low order models.

Since we have not observed any significant difference between the monotonic approaches, we will
henceforth take monotonic with upper bounds as the representative of these smoothing techniques.
Furthermore, the KN smoothing is taken as the baseline sinceit obtains better results for a back-off
smoothing scheme than the mKN.

The behaviour of the exact and extended Kneser-Ney (eeKN) isdepicted in figure 3.7. It is observed
that the best perplexity results are obtained withS = 1, that is to say, with just2 free parameters:p0

andd. Note that in this case the eeKN is just a different estimation of the conventional KN smoothing.
Anyway, as the training data increases, the differences between different choices of this discounting
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puted with the200K sentences partition of WSJ and full vocabulary size.

threshold do not significantly modify the result. It is of worth noting that for the testedn-grams (n =
2, 3, 4), the eeKN always outperforms the KN smoothing. The more scarce training data is, the larger
the improvement is.

In Table 3.5, we compare the perplexities obtained in both corpora (full vocabulary) using a trigram
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Figure 3.5: Perplexity skipping OOV events as a function of vocabulary size (in %)
with the full size partition of the Europarl corpus for a3-gram language model smoothed
with all the monotonic approaches and the standard smoothings Kneser-Ney (KN) and
modified Kneser-Ney (mKN).

language model. We can conclude that all the proposed techniques perform at least as the baseline,
being better in certain circumstances. It is observed that eeKN outperforms the baseline in all the
circumstances. It is also observed that all the proposed monotonic constraints yield the same result.

In the first place, we had expected better results with the monotonic approaches since they are less
restrictive than the interval constraints. Recall from Section 1.2.3 in Chapter 1, that for optimising
the probability estimates, we have smoothed the conditional probabilities p̃(w|h) with the model in
Eq. (1.75) and in order to optimise the parameters, we have taken the assumption in Eq. (1.83) which
leads to the optimisation of the joint model in Eq. (1.93). Therefore, we may loose performance by
the assumption made in Eq. (1.83). Figure 3.8 shows thejoint perplexity as defined in Eq. (3.105) for
the the different approaches using the full size partition of the WSJ corpus. We have plotted only the
monotonic constraints with upper bounds since all the monotonic constraints obtain the very same joint
perplexities as well as conditional perplexities.

Two conclusions can be drawn from figure 3.8. On the one hand, the joint perplexity always in-
creases with the training size since it is computed with the joint probabilities and, hence, the more
n-grams we observe the smaller the probabilities are in average. On the other hand, it clearly shows
that the monotonic approaches are significantly influenced by the assumption in Eq. (1.83) which make
us to optimise a joint model instead of a conditional model. Actually, all the proposed smoothings but
for the monotonic constrained, have almost the same behaviour according to the joint perplexity. This
common behaviour is also shared by the KN. Therefore, the behaviour observed with the conditional
perplexity is due to the fact that the smoothings are degraded when passing from the joint model to the
conditional model. The models which obtain better results are less degraded than the others. This fact
is somehow surprising and inspiring for future work (see Section 3.9).
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modified Kneser-Ney (mKN).

Linear interpolation results
Although the theory and the proposed methods are aimed at a backing-off smoothing model, we can
experimentally use the smoothings in a linear interpolation model as discussed in Section 3.2.2.
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gram language model.

As can be seen in table 3.6, the mKN outperforms the KN as expected in this case. In general, all
the proposed smoothing techniques are significantly degraded when used in a interpolation smoothing,
obtaining similar results to that of the mKN. This degradation is also observed for4-grams and2-gram.

It is also observed that for the interpolation case the discounting threshold of the eeKN seems
to play an important role. In Fig. 3.9, it is clearly observedthat the best result is obtained with the
discounting threshold,S = 3.

If we compare tables 3.5 and 3.6, it is observed that in general the interpolated smoothing obtains
better results.

3.9 Conclusions and future work
Standard discounting models based on leaving-one-out estimates represent two extremes. On the one
extreme the absolute discounting (Kneser-Ney) reduces thenumber of parameters to estimate to one.
On the other extreme the Turing-Good smoothing estimates all the LOO probabilities, producing small
probabilities and over-fitting problems.

In this chapter, we have developed novel discounting methods that are less restrictive than absolute
discounting approaches, but more restrictive than Turing-Good method. Therefore, we try to optimise
the trade-off between the number of parameters and the data scarcity.

Specifically, we have proposed five novel discounting methods based on constraining leaving-one-
out estimates: interval constraints, quasi-monotonic constraints, monotonic constraints, monotonic con-
straints with upper bound and the exact extended Kneser-Neysmoothing. The associated estimation al-
gorithms are also derived in order to compute the discountedestimates in an efficient way. We have also
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performed systematic experiments for two language modelling tasks, comparing the proposed methods
with other standard discounting methods. This experimentation reports slight improvements over the
baseline of the KN/mKN method under some circumstances, specially for scarce data. However, an
improvement in terms of perplexity does not always imply an improvement in terms of word error rate
(WER). As future work we intend to check if the perplexity improvement are transferred to the system
performance.

We have found several surprising and interesting conclusions. Firstly, all the monotonic-tagged
methods (quasi-monotonic, monotonic, and monotonic with upper bounds) behave similarly. This is
very surprising, since except for the monotonic with upper bound, all monotonic smoothing models
have normalisation deficiencies. As discussed in Section 3.1, due to the way in which we use the joint
probability estimatespr to define the conditional smoothing model as depicted in Eq. (3.3), the dis-
counted probabilityBh can be0 or even negative ifr < r⋆. In such cases, the heuristic approaches
renormalise those parameters adding the negative probability mass plus1, i.e. −Bh + 1, to the total
probability amount. We thought that this arbitrary renormalisation was distorting the probability esti-
mates degrading the system performance. Oppositely, we found that fixing theoretically that problem
by adding upper boundaries to the probability estimatespr, do not incur in any profit when compared
with deficient models fixed heuristically.

For eeKN case, we found that several values of the discounting thresholdS, obtain worse results
than that of the minimum valueS = 1 for a backing-off smoothing. From previous works, where the
mKN obtained better results than KN; this conclusion was unexpected since the KN can be understood
as an alternative estimation of the caseS = 1 and the mKN as an alternative estimation for the case
S = 3. However, in a interpolation model, we have found that eeKN with S = 3 outperformsS = 1,
which is consistent with the fact that mKN outperforms KN with interpolation smoothing. Hence, it
seems that the fact of redistribution the discounted probability mass over all the events has a positive
effect, however in this case is important to use3 (S = 3) different discounting parameters oppositely
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to back-off smoothing.
Another interesting observation is that directly applyingthe optimal smoothing parameters for the

backing-off smoothing model to the interpolated model degrades all the smoothings. It would be in-
teresting to apply the proposed theory to an interpolated smoothing model, in order to see whether the
proposed smoothings improve the interpolation baseline ornot.

Finally, the most surprising conclusion is that the monotonic-tagged smoothings do not report an
improvement with respect to the interval constraint in terms of (conditional) perplexity. However, if we
define a joint version of such perplexity then these models obtain a higher performance, as expected.
Therefore, the assumption of optimising a joint model instead of the conditional model has some impor-
tant and negative repercussions. Actually, all the discounting methods but for the monotonically-tagged
methods, obtain almost the same results in terms of joint perplexity. This make us think that the main
difference among the smoothings methods is the way in which each smoothing is degraded when pass-
ing from a joint model to a conditional one.

From the discussion above, we expect to obtain improvementsby directly optimising a conditional
smoothing model without any assumption. As future work, we intend to optimise conditional probabil-
ities avoiding the map to a joint model.
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Europarl
Training Size 200K 400K 800K Full Size

All Sk OOV All Sk OOV All Sk OOV All Sk OOV
mKN 117.7 117.0 106.0 105.2 96.3 95.7 89.3 88.7
KN 115.3 114.0 104.1 103.0 94.8 93.9 88.0 87.2

Monotonic Upper 115.3 113.7 104.0 102.7 94.6 93.6 87.9 87.0
Quasi-Monotonic 115.3 113.7 104.0 102.7 94.6 93.6 87.9 87.0

Monotonic 115.3 113.7 104.0 102.7 94.6 93.6 87.9 87.0
Interval 115.1 113.6 103.8 102.6 94.5 93.6 87.8 86.9

eeKN (S = 1) 114.8 113.2 103.6 102.3 94.4 93.4 87.6 86.7
eeKN (S = 3) 115.1 113.6 103.8 102.6 94.5 93.5 87.8 86.9

Wall Street Journal (WSJ)
mKN 120.3 118.6 107.4 106.0 95.9 94.8 85.9 85.2
KN 120.3 118.6 107.4 106.0 95.9 94.8 85.9 85.2

Monotonic Upper 120.2 118.2 107.2 105.7 95.8 94.6 85.8 85.0
Quasi-Monotonic 120.1 118.2 107.2 105.7 95.8 94.6 85.7 85.0

Monotonic 120.1 118.2 107.2 105.7 95.8 94.6 85.7 85.0
Interval 119.9 118.0 107.1 105.6 95.7 94.5 85.7 84.9

eeKN (S = 1) 119.7 117.7 106.9 105.3 95.6 94.4 85.6 84.8
eeKN (S = 3) 120.0 118.0 107.1 105.6 95.7 94.5 85.7 84.9

Table 3.5: Perplexities on the corpora for abacking-off smoothed3-gram language model.Sk OOVcolumn stands for the perplexity
skipping the OOV, while theAll column accumulates all the events (OOV and known).



Europarl
Training Size 200K 400K 800K Full Size

All Sk OOV All Sk OOV All Sk OOV All Sk OOV
mKN 123.9 111.6 109.3 101.3 97.9 92.7 90.4 86.2
KN 124.2 111.6 109.6 101.5 98.2 92.9 90.8 86.4

Monotonic Upper 123.9 111.3 109.3 101.2 98.0 92.6 90.5 86.2
Quasi-Monotonic 124.0 111.3 109.3 101.2 98.0 92.6 90.5 86.2

Monotonic 124.0 111.3 109.3 101.2 98.0 92.6 90.5 86.2
Interval 124.0 111.3 109.3 101.2 97.9 92.6 90.5 86.1

eeKN (S = 1) 124.3 111.5 109.6 101.4 98.2 92.9 90.8 86.4
eeKN (S = 3) 123.8 111.2 109.2 101.1 97.2 92.6 90.5 86.1

Wall Street Journal (WSJ)
mKN 126.6 116.3 110.7 104.5 97.6 93.9 86.8 84.5
KN 127.1 116.6 111.2 104.8 98.1 94.2 87.1 84.9

Monotonic Upper 126.8 116.2 110.9 104.5 97.8 93.9 86.8 84.6
Quasi-Monotonic 126.8 116.2 110.9 104.5 97.8 93.9 86.9 84.6

Monotonic 126.8 116.2 110.9 104.5 97.8 93.9 86.9 84.6
Interval 126.8 116.3 110.9 104.5 97.8 93.9 86.9 84.6

eeKN (S = 1) 127.3 116.6 111.4 104.9 98.2 94.3 87.2 84.9
eeKN (S = 3) 126.7 116.2 110.9 104.4 97.7 93.9 86.8 84.5

Table 3.6: Perplexities on the corpora for alinear interpolationsmoothed3-gram language model.Sk OOVcolumn stands for the
perplexity skipping the OOV, while theAll column accumulates all the events (OOV and known).
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Chapter 4
The loss function in statistical pattern recognition

“ Life’s most important questions are, for the most part, nothing but probability problems.”
PIERRE-SIMON LAPLACE
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Chapter 4. The loss function in statistical pattern recognition

4.1 Introduction
Statistical pattern recognition is a well-founded discipline that allow us to solve many practical classi-
fication problems. A classification problem is stated as the problem of choosing to which class a given
object belongs. LetX be the domain of the objects that a classification system might observe; and
Ω the set of possible classes ({ω1, ω2, . . . , ωC}) to which an object may belong to. A classification
system is characterised by a function that maps each object to one class, the so-calledclassification
function (c : X → Ω) [Duda et al., 2001].

The performance of a classification system is usually measured as a function of the classification
error. However, there are problems in which all the classification mistakes or misclassifications do not
have the same repercussions. Therefore, a criterion that ranks these mistakes should be provided. The
loss function,l(ωp|x, ωc), evaluates thelossin which the classification system incurs when classifying
the objectx into the classωp, knowing that the correct class isωc [Duda et al., 2001]. It is well
known that, if a0–1 loss function is provided, then the optimal system minimises the classification
error rate [Duda et al., 2001].

This chapter is mainly devoted to design loss functions thatshould improve system performance
while keeping the simplicity of0–1 optimal classification system. In [R. Schlüter and Ney, 2005]
complex classification rules were analysed using ametric loss function. Some other works, for in-
stance [Ueffing and Ney, 2004], analyse the most general lossfunctions. However, we focus on other
loss functions which are not restricted by the metric requirements at the expense of ignoring the class
proposed by the system, i.e.ωp.

The remainder of this chapter is organised as follows. In Section 4.2 pattern recognition problems
are analysed from a decision theory point of view. In Section4.3, we introduce statistical machine
translation as a case of study. Finally, concluding remarksare summarised in Section 4.4.

4.2 Bayes Decision Theory
In this Section, we review and develop some of the ideas introduced in Section 1.1 Chapter 1. A
classification problem is an instance of a decision problem.From this point of view, a classification
problem is composed of three different items:

1. A set ofObjects(X) the system might observe and has to classify.

2. A set of classes (Ω = {ω1, . . . , ωC , . . .}) in which the system has to classify each observed
objectx ∈ X .

3. A Loss function, l(ωp|x, ωc), used to weight the classification actions. This function evaluates
the loss of classifying an observed objectx into a class,ωp ∈ Ω, knowing that theoptimal class
for the objectx is ωc ∈ Ω.

Recall that a classification system is characterised by the classification function, which maps each
object to one class [Duda et al., 2001]

c : X → Ω . (4.1)

Therefore, when an objectx ∈ X is observed in a classification system, the system should choose
the “correct” class from all possible classes. Taking this framework into account, we define the risk of
a system when classifying an objectx, the so-calledconditional risk givenx, as

R(ωp|x) =
X

ωc∈Ω

l(ωp|x, ωc) pr(ωc|x) . (4.2)

Note that the conditional risk is the expected value of the loss function,l(ωp|x, ωc), with respect to the
actual probability distribution,pr(ω|x).
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Using the conditional risk, we define thethe global risk[Duda et al., 2001] as the contribution of
all objects to the classifier performance, i.e.

R(c) = Ex [R(c(x)|x)] =

Z

X

R(c(x)|x) pr(x)dx , (4.3)

whereR(c(x)|x) is the conditional risk givenx, as defined in Eq. (4.2).
We wish to design the classification function that minimisesthe global risk. Since minimising the

conditional risk for each objectx is a sufficient condition to minimise the global risk, without any loss
of generality, the optimal classification rule, namelyminimum Bayes’ risk, is the one that minimises the
conditional risk, i.e.

ĉ(x) = arg min
ω∈Ω

R(ω|x) . (4.4)

Therefore, depending which loss function the system designis based on, there is a different optimal
classification rule.

The algorithms that perform the minimisation in previous Eq. (4.4), are often calleddecoding al-
gorithmsor search algorithms. Consequently, the problem of designing an algorithm that perform such
minimisation is calledthe decoding problemor the search problem.

Throughout this chapter we focus on the way of building the optimal classification system with the
best possible model. We do not intend to discuss about which training criterion, method or algorithm
is better for improving the system performance. Instead, wedeal with the following stage in the design
of the system. Once we have the best possible approximation to the actual probability distributions, we
answer the question of which the best decoding strategy is.

In practice, we also need to compare among systems. In order to do so, we need to compare the
global risk of those systems. The global risk in Eq. (4.3), can be understood as the expected loss with
respect to the object-class joint probability distribution

R(c) = Ex [R(c(x)|x)] =

Z

X

X

ω∈Ω

l(c(x)|x, ω) pr(ω, x)dx , (4.5)

with pr(ω,x) = pr(ω|x) p(x). Therefore, using the law of great numbers for a given test set, T =
{(xn, ωn)}N

n=1, i.i.d. according topr(ω,x), the global risk can be approximated by

R̄T (c) =
1

N

NX

n=1

l(c(xn)|xn, ωn) . (4.6)

We call this approximation theempirical riskon the test setT .
There is not a unique best loss function for any system, sincethe loss depends on the characterisa-

tion of the task that we want to solve. The classical and most common approach is to consider that each
misclassification has the same impact. Therefore, a priori we distinguish two sorts of actions: wrong
classifications (loss of1) and correct classifications (zero loss), i.e.,

l(ωp|x, ωc) =

(
0 ωp = ωc

1 otherwise
(4.7)

This loss function is known as the0–1 loss function.
Minimising the risk when the loss function is the0–1 loss function, is equivalent to minimise the

classifying errors. When Eq. (4.7) is used, the minimum Bayes’ risk in Equation (4.4) is simplified
yielding the well-known optimal Bayes’ classification rule[Duda et al., 2001],

c(x) = arg max
ω∈Ω

pr(ω |x) , (4.8)
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wherex is the object to be classified, andω denotes a possible proposed class.
However, while the0–1 loss function is adequate for many problems, which have a small set of

classes; there are problems where a more appropriate loss function should be defined. For example, if
the system classifies diseases, it may be worse to classify anill person as a healthy one than vice-versa.
This distinction is made independently of the illness probability, and depending upon the repercussions
of the wrong actions, i.e., depending on the following questions: is the illness treatment dangerous?
is the illness deadly?, and so on. Another important exampleis the case in which the set of classes
is large, or even infinite (but still enumerable). In such a case, as the set of all possible classes is
huge, it is not appropriate to penalise all wrong classes with the same weight. In other words, since it is
impossible to define a uniform distribution when the number of classes is infinite, it does not make sense
to define a uniform loss function in the infinite domain because there are objects that are more probable
than others, and the error will be increased if the system fails in probable objects. Instead of using
the 0–1 loss function, it would be better to highly penalise the domain zones where the probability
is high. In this way, the system will avoid mistakes on probable objects at the expense of making
mistakes on unlikely objects. Consequently, the error willbe decreased since unlikely objects occur
fewer times in comparison with probable objects. Note that we are dealing with infinite enumerable
sets in this example, and, therefore, this is a classification problem and not a linear regression problem.
An example of this idea is plotted at Fig. 4.1

The most general loss function that can be defined makes use ofthe three variables: the object to
classifyx, the proposed classωp and the correct classωc. In general, it is useless to define a non-zero
loss function when the proposed class and the correct class are equal. Therefore, we define theerror
functionǫ(x, ωp, ωc) as the value of the loss function whenωp 6= ωc. For each error function we define
a loss function in the following way

l(ωp|x, ωc) =

(
0 ωp = ωc

ǫ(x, ωp, ωc) otherwise
(4.9)

The error function must verify the following finiteness property,

X

ωc∈Ω

pr(ωc|x) ǫ(x, ωp, ωc) < ∞ , (4.10)

since the conditional risk definedR(ωp|x) in Eq. (4.2) must exist.
The optimal Bayes’ classification rule corresponding to theprevious loss function in Eq. (4.9) is

c(x) = arg min
ωp∈Ω

X

ωc 6=ωp

pr(ωc|x) ǫ(x, ωp, ωc) . (4.11)

The previous classification rule in Eq. (4.11), has a great disadvantage. In order to classify an object
we have to perform the minimisation which also implies a sum over all classes. If we compare the rules
in Eq. (4.11), and the rule in Eq. (4.8), it is clear that in theformer case, the cost is higher since the
sum over all possible correct classes should be performed. This sum is not important if the number of
classes is small, however, in several appealing language problems such as statistical machine translation
or speech recognition the number of classes is huge or even infinite (enumerable). In those cases, the
sum inside the minimisation could be even unfeasible.

The loss functions in Eq. (4.9) and in Eq. (4.7) represent twoextremes of the loss function possibil-
ities. On the one hand, the0–1 loss function yields the simplest and fastest classification rule. On the
other hand, the general loss function in Eq. (4.11), is the most general loss but also the slowest one.

There is another category of loss functions which representa trade-off between computational cost
and generality. This category is characterised by the property of ignoring the proposed classωp in the
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error function. Therefore, if we define the following loss function,

l(ωp|x, ωc) =

(
0 ωp = ωc

ǫ(x, ωc) otherwise
, (4.12)

where the dependence ofǫ(· · · ) on the proposed classωp is dropped, and, then, the optimal classifica-
tion rule is given by

c(x) = arg min
ωp∈Ω

X

ωc 6=ωp

pr(ωc|x) ǫ(x, ωc) . (4.13)

Applying some basic arithmetic operations to the classification rule in previous Eq. (4.13), the classifi-
cation rule is significantly simplified, i.e.,

c(x) = arg min
ωp∈Ω

8
<
:
X

ωc 6=ωp

pr(ωc|x) ǫ(x, ωc)

9
=
; (4.14)

= arg min
ωp∈Ω

{−pr(ωp|x) ǫ(x, ωp) + S(x)} (4.15)

= arg max
ωp∈Ω

{pr(ωp|x) ǫ(x, ωp)} (4.16)

with S(x) =
P

ω∈Ω ǫ(ω,x) pr(ω|x).
Note that comparing Eqs. (4.16) and (4.8), it is observed that the cost is almost the same, except for

the computation ofǫ(x, ωp). Actually, all the constant error functions, i.e.ǫ(x, ωp) = c, lead to the
same classification rule than the0–1 loss function in Eq. (4.8). Therefore, the0–1 loss function is the
simplest error function of this category. If we further compare Eq. (4.16) with Eq. (4.11), it is seen that
the former is fastest that the latter, since in the former a sum over all the class domain must be computed
for each candidate class in the minimisation search. We classify the loss functions into two categories:

• Thegeneral loss functionscharacterised in Eq. (4.9) that require to scan the set of classes twice:
one to compute the minimisation and another scan in order to compute the sum for each candidate
in the former minimisation (see Eq. (4.11)).

• Thesimplified loss functionsthat drop the dependence on the proposed class defined as detailed
in Eq. (4.12), and that only require to scan the set of classesonce for computing the maximisation
(see Eq. (4.16)).

Analysing the Eq. (4.12), the question of which the best error function is, raises immediately. The
answer is not easy, and it depends on the task and problem for which we are designing the classification
system. For instance, if the number of classes is huge or eveninfinite, a good approximation is to use
the probability distribution over the classes, i.e.ǫ(x, ωc) = pr(ωc). Figure 4.1 plots this idea. Note that
since there are classes in the domain with a small probability of occurrence, it is useless to uniformly
distribute the loss. For instance, let assume thatωh is the most probable class and thatωl is one of the
less probable classes. We further assume that for a given objectx, the loss of classifying it in each of
both classes, sayωh andωl, is the same. Ifx belongs toωl, then we could misclassify it by assigning
it to the classωh and vice-versa. Since the classωh is more probable, the system could fail more times
than if the loss of misclassifying an object of the classωh were the highest at the expense of reducing
the loss of misclassifying objects belonging to classωl. Note that this fact is independent of the quality
of the models used to approximate the actual probabilities.This idea is analysed into detail for the
statistical machine translation problem in Section 4.3.

According to previous argument, if the loss wereǫ(x, ωc) = pr(ωc, x) then we should expect
that the system would work even better. The difference between the marginal probability and the joint
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Figure 4.1: Difference of using a0–1 loss function (on the left) and an approximation
to the true class probability as the loss function (on the right) when using a loss function
of the sort of Eq. (4.12). The left-scale of the y axis shows a possible actual probability
over the target sentences. The right-scale of the y axis shows the value of the loss
function when a mistake is made. Finally, the x axis is an infinite enumeration of the
numerical identifiers corresponding to the infinite enumerable set of possible classes (or
target sentences in the SMT case).

probability is that we can modify the loss on the correct class depending on each object. Obviously, this
refines the accuracy of the the loss.

A more general approach can be used for mixing different models and information sources. It
consists in defining an additional training step to optimisea parametrised loss function. We start by
defining a family of error functions,Υ, and identifying each function in the family with some vector
of parameters, sayλ. Then, we use another function criterion, sayC(ǫλ(x, ωc)), in order to range
between the classification systems. Afterwards, with the help of an optimisation method, either theo-
retical or practical, the vectorλ is optimised. In practice, this is used to approximate a generic error
functionǫ(x, ωc, ωp) with a faster error function that drops the dependence on theproposed class, i.e.
ǫλ(x, ωc). In this way, we design a fast classification rule, that approximate our real classification risk.
In order to perform the minimisation, a validation set is typically used. This idea is further explored in
Section 4.3.3 under the view of statistical machine translation.

4.3 Statistical Machine Translation

In this section, we propose and analyse different loss functions which are eligible for substituting the0–
1 loss function in pattern recognition problems. Since, thissubstitution is specially appealing when the
set of classes is infinite, we focus on the real scenario ofstatistical machine translation (SMT) [Brown
et al., 1993].

In Chapter 1, we stated the SMT problem as the problem of finding the translationy for a given
source sentencex. SMT is a specific instance of a classification problem where the set of possible
classes is the set of all the possible sentences that might bewritten in a target language, i.e.Ω = Y ∗,
whereY is the target lexicon. Likewise, the objects to be classifieda are sentences of a source language,
i.e. x ∈ X∗, whereX is the source lexicon.

aIn this context to classify an objectx in the classωc is a way of expressing thatωc is the translation ofx.
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Recall from Section 1.3 that, the SMT systems are based on theBayes’ classification rule for the
0–1 loss function depicted in Eq. (4.8). Usually, the class posterior probability is decomposed using
Bayes’ theorem into two probabilities,

ŷ = ĉ(x) = arg max
yp∈Y ∗

{pr(x|yp) pr(yp)} , (4.17)

which is known as theinverse translation rule (ITR)since the translation probability,pr(x|yp), is
defined in an inverse way, i.e., we define a probability distribution over the source sentencex which
is the information that is “given” to the system. On the otherhand, a direct model distributes the
probability among the target sentencesyp conditionally to the given informationx, pr(yp|x). Note
that we usedyp instead ofy to highlight the fact thatyp plays the role of the proposed translation in
the definition of the loss function.

Equation (4.17) implies that the system has to search the target stringŷ that maximises the product
of both, the target language modelpr(y) and the inverse translation modelpr(x|y). Nevertheless,
using this rule implies, in practice, changing the distribution probabilities as well as the models through
which the probabilities are approached. This is exactly theadvantage of this approach, as it allows the
modelling of the direct translation probabilitypr(y|x) with two models: an inverse translation model
that approximates the direct probability distributionpr(x|y); and a language model that approximates
the language probabilitypr(y).

This approach has a strong practical drawback: the search problem. This search is known to be
an NP-hard problem [Knight, 1999, Udupa and Maji, 2006]. However, several approximate search
algorithms have been proposed in the literature to solve this problem efficiently [Al-Onaizan et al.,
1999, Brown et al., 1990, García-Varea and Casacuberta, 2001, Germann et al., 2001, Jelinek, 1969,
Tillmann and Ney, 2003, Wang and Waibel, 1997].

Another drawback of the ITR, is that it is obtained using the0–1 loss function. As stated in Sec-
tion 4.2, this loss function is not particularly appropriate when the number of classes is huge as it
happens in SMT problems. Specifically, if the correct translation for the source sentencex is yc, and
the hypothesis of the translation system isyp; then using the0-1 loss function (Eq. (4.7)) has the
consequence of penalising the system in the same way, independently of which translation the system
proposesyp and which the correct translationyc is.

4.3.1 General error functions
As stated above, the most generic loss functions depicted inEq (4.9), produce minimisations which
require the computation of a sum over all the set of classes. Machine translation is a classification
problem with a huge set of classes. Hence, the most generic loss functions yield difficult search al-
gorithms which are approximated. There are some works that have already explored this kind of loss
functions [R. Schlüter and Ney, 2005, Ueffing and Ney, 2004].

The more appealing application of this loss functions is theuse of a metric loss function [R. Schlüter
and Ney, 2005]. For instance, in machine translation one widespread metric is the WER (see Sec-
tion 1.3 for a definition), since the loss function in Equation (4.12) depends on both, the proposed trans-
lation and the reference translation, the WER can be used as loss function [Ueffing and Ney, 2004].
Nevertheless, due to the high complexity, the use of these general loss functions, is only feasible in
constrained situations liken-best lists [Kumar and Byrne, 2004].

4.3.2 Simplified error functions
The search algorithms generated by the classification rule in Eq. (4.12) have the same asymptotic cost
than0–1 loss function, at the expense of dropping the dependence on the proposed class. As stated in
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Section 4.2, a more suitable loss function than the0–1 loss, is obtained using as the error function the
target sentence probability,ǫ(x,yc) = pr(yc),

l(yp|x,yc) =

(
0 yp = yc

pr(yc) otherwise
(4.18)

This loss function seems to be more appropriate than the0-1. This is due to the fact that if the system
misclassifies some sentences of a given test set, this loss function tries to force the system to fail in the
source sentencex of which correct translationbyc is one of the least probable in the target language.
Thus, the system will fail in the least probable translations, whenever it gets confused; and therefore,
theGlobal Riskwill be reduced.

The associated Bayes’ rule for loss function in Eq. (4.18) is

ŷ(x) = arg max
yp∈Y ∗

˘
pr(yp|x)pr(yp)

¯
. (4.19)

Note that we usedyp instead ofy to highlight the fact thatyp plays the role of the proposed translation
in the definition of the loss function in Eq. (4.18).

Previous Eq. (4.19) is known as thedirect translation rule (DTR)since the translation probability,
pr(yp|x), is defined in an direct way. The direct translation rule was heuristically introduced into
the scope of machine translation in order to alleviate the search problem by many of the current SMT
systems [Koehn et al., 2003, Och and Ney, 2004a, Och et al., 1999, Zens, 2008]. Note that the DTR
was introduced as a heuristic version of the ITR in Eq. (4.17), wherepr(x|y) is substituted bypr(y|x).
This rule allows an easier search algorithm for some of the translation models. Although the DTR has
been widely used, its statistical theoretical foundation has not been clear for long time, as it seemed
to be against the Bayes’ classification rule. As stated above, the direct translation rule is the Bayes’
optimal classification ruleif the loss function in Eq.(4.18)is used[Andrés-Ferrer et al., 2008].

Since the DTR uses the target language probability as the error function, it should work better than
the ITR, from a theoretical point of view. Nevertheless, thestatistical models used for approximate the
translation probabilities may not be good enough. Thus, themodelling error, which is the error made
when approximating the actual probability with a model, could be more important than the advantage
obtained from the use of a more appropriate loss function. Therefore, it seems a good idea to use
the direct rule in the equivalent inverse form so that the translation system will be the same and then
these asymmetries will be reduced. By simply applying the Bayes’ theorem to Eq. (4.19), we obtain a
equivalent rule

ŷ = arg max
y∈Y ∗

˘
pr(y)2p(x|y)

¯
. (4.20)

Theoretically, rules in Eq. (4.19) and Eq (4.20) are equivalent and must give the same solution. There-
fore, the difference between the Eq. (4.19) and Eq (4.20) measure the asymmetries of the translation
models as well as the error in the modelling. Bare in mind thatthe language models also presents some
modelling errors and, hence, this last approach assumes that the language model is a very good approx-
imation to the actual probability distribution, due to the fact that the “direct weight” has passed from
the direct translation modelpr(y|x) to the language model. Whether the direct model or the inverse
model is better for the translation task depends on the modelproperties, the estimation technique and
the training data.

bHere lies the importance of distinguishing between the translation proposed by the systemyp and the correct
translationyc for a given source sentencex.
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As stated in Section 4.2 a refined loss function is designed using the joint probability as the error
function,ǫ(x,yj) = pr(x,yj),

l(yp|x,yc) =

(
0 yp = yc

pr(x,yc) otherwise
(4.21)

which leads to
ŷ = arg max

y∈Y ∗
{pr(x,y) pr(y|x)} . (4.22)

Depending on how we model probabilities in Eq. (4.22), several optimal classification rules are
obtained. Specially if the joint probability (p(x,y)) is modelled with an inverse translation probability
plus a target language probability, then, theinverse and direct translation rule (I&DTR), is obtained

ŷ = arg max
y∈Y ∗

{pr(y) pr(x |y) pr(y |x)} . (4.23)

The interpretation of this rule is a refinement of the direct translation rule. In this case, if the system
makes a mistake, then it tends to be done in the least probablepairs (x,y) in terms ofpr(y,x).

4.3.3 Approximation to general error functions
As stated in Section 4.2, the loss functions of the kind in Eq.(4.12), are usually faster than the general
loss functions depicted in Eq. (4.9) since the former scans the possible translations once and the latter
twice (one for the minimisation and another for the sum). Theloss function in Eq. (4.12) sacrifices the
proposed translation in order to speed up the search process. Unfortunately, the automatic evaluation
metrics used to quantify the translation systems require both, the proposed and the correct translation.
Therefore, with the fastest loss functions we are not able tominimise the evaluation metrics, which
in principle is what we expect from our best system. However,by defining a family of simple error
functions depending on a parametric vector, sayλ, we are able to approximate the evaluation metric,
such as the BLEU or WER.

One way to approximate this general error function is to use aset of features,fk(x, yc), that
depend on both the source sentence and its correct target translation. Then we define the following
error function

ǫλ(x, yc) =

KY

k=1

fk(x, yc)
λk . (4.24)

If our actual evaluation error function is

ǫ(x, yp, yc) = 1 − BLEU(yp, yc) , (4.25)

then using a validation setD = {(xn, yn)}N
n=1 we can use any optimisation algorithm to minimise our

actual error function in Eq. (4.25). For instance, the maximum entropy algorithm [Berger et al., 1996]
is typically applied to find the optimal parameter vectorλ.

The error function defined in Eq. (4.24) leads to the following classification rule

ŷλ(x) = arg max
yc∈Y ∗

pr(yc|x)

KY

k=1

fk(x, yc)
λk . (4.26)

If we extend the feature vector,f , by adding the conditional probability,pr(yc|x) as a new feature with
a new parameterc λK+1; then the classification rule expressed in terms of the extended feature vector,

cIn the case that there existed a feature, sayfl(·), which already is the conditional probability, then the new
feature vector remains the same and the new parameter vectoris the previous one but for the componentl which is
increase by one, i.e.̄λl = λl + 1.
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f̄ and the extended parametric vectorλ̄ is

ŷλ̄(x) = arg max
yc∈Y ∗

KY

k=1

f̄k(x, yc)
λ̄k . (4.27)

If we apply the logarithm to the previous Eq. (4.27) we obtainthe equivalent expression

ŷλ̄(x) = arg max
yc∈Y ∗

KX

k=1

λ̄k log f̄k(x, yc) . (4.28)

If we defineh̄ = log f̄ then the classification rule in Eq. (4.28) is expressed as follows

ŷλ̄(x) = arg max
yc∈Y ∗

KX

k=1

λ̄kh̄k(x, yc) , (4.29)

whereλ̄ stands for the extended extended parameter vector as in Eq. (4.27).
Most of the state-of-the-art systems use this idea, although they present it as if they were using a

log-linear model [Mariño et al., 2006, Och and Ney, 2004a]. Specifically, if in Eq. (4.8) we model the
direct probability as a log linear model

pλ(y|x) =
1

Zλ(x)
exp(

KX

k=1

λkhk(x, y)) , (4.30)

with

Zλ(x) =
X

y∈Y ∗

exp(

KX

k=1

λkhk(x, y)) (4.31)

then using the model in Eq. (4.30) in the rule in Eq. (4.8), we obtain the following rule

ŷλ(x) = arg max
y∈Y ∗

1

Zλ(x)
exp(

KX

k=1

λkhk(x, y)) (4.32)

= arg max
y∈Y ∗

exp(
KX

k=1

λkhk(x, y)) (4.33)

= arg max
y∈Y ∗

KX

k=1

λkhk(x, y) . (4.34)

Note that if you compare Eqs. (4.34) and (4.29), they are equivalent.
Although the log-linear explanation of the process yields the same classification rule, it is not sat-

isfactory in the sense that the log-linear model in Eq. (4.30) is never trained in its full form and, its
normalisation weightZλ(x) is ignored. This ellipsis can be done in the decoding process butcannot
be done in training. In other words, the log-linear model in Eq. (4.30) is only trained in the form of
classification rule (4.34) so that it minimises the general loss function in Eq. (4.25) by using the loss
function in Eq. (4.12) with the error function in Eq. (4.24).Therefore, the state-of-art log-linear models
are alog-lineal loss functiontrained to resemble the general loss function in Eq. (4.25).

Typical features used by the state-of-the-art systems range among [Mariño et al., 2006, Och and
Ney, 2004a] the followings:
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• Direct translation models:a typical feature is to use a direct translation model

hk(x, y) = log pθ(y|x), fk(x, y) = pθ(y|x) . (4.35)

The most used models are the IBM model 1 and the phrase-based models.

• Inverse translation models:a typical feature is to use a inverse translation model

hk(x, y) = log pθ(x|y), fk(x, y) = pθ(x|y) . (4.36)

The most used models are the IBM model 1 and the phrase-based models.

• Joint translation models:a typical feature is to use a stochastic finite transducer,

hk(x, y) = log pθ(x, y), fk(x, y) = pθ(x, y) . (4.37)

• An n-gram language model:that is to say

hk(x, y) = log pθ(y), fk(x, y) = pθ(y) . (4.38)

• Word bonus:it is a well know problem of then-gram language models that they give more prob-
ability to short sentences. Additionally, the translationmodels tend to distribute the probability
among ill-formed sentences as the length of the sentence increases [Brown et al., 1993]. There-
fore, in order to keep the translation systems from always producing poor translations because
of trying to shorten them, the following feature is used

hk(x, y) = log exp(|y|), fk(x, y) = exp(|y|) . (4.39)

4.3.4 Experiments

The aim of this Section is to show experimentally how the theory stated in this work can be used to
improve the performance of a translation system. Therefore, the objective is not to obtain a competitive
system, but rather to analyse the previously stated properties in practice.

In order to analyse the theory, we have used two set of experiments. For the former set we used
a semi-synthetic corpora and a simple translation model, the IBM model II (see Section 1.3.1). For
the latter, two real tasks are used whilst the translation models used were the phrase-based models
(see Section 1.3.2). Through both experiments an-gram language model is used to approximate the
language probability distributions, i.e.pr(y). Specifically, the language model was trained using a
5-gram model obtained with the SRILM toolkit [Stolcke, 2002].

Similarly to Germann et al. [2001], we defined two error measures:search error andmodel error.
These error measures are inspired on the idea that when a SMT system proposes a wrong translation, it is
due to of one of the following reasons: either the suboptimalsearch algorithm has not been able to find a
good translation or the model is not able to make up a good translation, and hence it is impossible to find
it. A translation error is asearch error (SE)if the probability of the proposed translations is less than
a reference translation; otherwise it is amodel error, i.e., the probability of the proposed translations
is greater than the reference translation. Although a modelerror always has more probability than the
reference translation, this does not excludes the fact thata much better translation maybe found.

In order to evaluate the translation quality, we used the following well-known automatically com-
putable measures:word error rate (WER), bilingual evaluation understudy (BLEU), position indepen-
dent error rate (PER), andsentence error rate (SER).
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4.3.5 Corpora
Three different corpora were used for the experiments that were carried out in this chapter: Eutrans-I
(Tourist), Europarl and Xerox.

Table 4.1 summarises some of the statistics of the Tourist corpus [Amengual et al., 1996]. The
Spanish-English sentence pairs correspond to human-to-human communication situations at the front-
desk of a hotel which were semi-automatically produced using a small seed corpus compiled from travel
guides booklets.

Table 4.1: Basic statistics of the Spanish-English TOURIST task.

Spanish English

Training
Sentences 170K
Running Words 2.2K 2.2M
Vocabulary 688 540
Avg. sentence length 12.9 13.0

Test
Sentences 1K
Running Words 12.7K 12.6K
Perplexity 3.6 2.9

Table 4.2 shows some statistics of the Europarl corpus [Koehn, 2005]. Specifically, this is the
version that was used in the shared task of the NAACL 2006 Workshop on SMT [NAACL 2006].
Europarl corpus is extracted from the proceedings of the European Parliament, which are written in
the different languages of the European Union. There are different versions of the Europarl corpus
depending on the pair of languages that are used. In this work, only the English-Spanish version was
used. As can be observed in Table 4.2, the Europarl corpus contains a great number of sentences
and large vocabulary sizes. These features are common to other well-known corpora described in the
literature.

Table 4.2: Statistics of the Europarl corpus

Spanish English

Training
Sentences 730K
Running Words 15.7M 15.2M
Vocabulary 102.9K 64.1K
Avg. sentence length 21.5 20.8

Test
Sentences 3.1K
Running Words 91.7K 85.2K
Perplexity 102 120

Table 4.3 reports some statistics of the Xerox corpus [Atos Origin, Instituto Tecnológico de Infor-
mática, RWTH Aachen, RALI Laboratory, Celer Soluciones andSociété Gamma and Xerox Research
Centre Europe, 2001]. This corpus involves the translationof technical Xerox Manuals from English to
Spanish, French and German, and vice-versa. In this work, only the English-Spanish version was used.
As can be observed in Table 4.3, the Xerox corpus contains a considerable number of sentences and
medium-size vocabularies.
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Table 4.3: Statistics of the Xerox corpus

Spanish English

Training
Sentences 55.7K
Running Words 0.75M 0.67M
Vocabulary 11.0K 8.0K
Avg. sentence length 13.5 11.9

Test
Sentences 1.1K
Running Words 10.1K 8.4K
Perplexity 35 47

Word Based Translation experiments

In this section, the IBM Model2 [Brown et al., 1993] is used to approximate the translation probability
distributions. Together with the IBM Model2 [Brown et al., 1993], its corresponding search algorithms
are used to carry out the experiments in this Section. This choice was motivated by several reason.
Firstly, the simplicity of the translation model allows us to obtain a good estimation of the model
parameters. Secondly, there are several models that are initialised using the alignments and dictionaries
of the IBM model 2, for instance, the IBM HMM [Och et al., 1999]or the phrase-based models can
be initialised by the IBM model 2. Finally, the search problem can be solved exactly using dynamic
programming for the case of the direct translation rule depicted in Eq. (4.19).

In order to train the IBM Model2, we used the standard toolGIZA++ [Och, 2000]. We re-
implemented the algorithm presented in [García-Varea and Casacuberta, 2001] to perform the search
process for the ITR. Even though this search algorithm is notoptimal, we configured the search parame-
ters in order to minimise the search errors, so that most of the errors should be model errors. In addition,
we implemented the corresponding version of this algorithmfor the DTR and for the I&DTR. All these
algorithms were developed by dynamic programming. For the I&DTR, we implemented two versions
of the search: one guided by the direct model (a non-optimal search algorithm, namely I&DTR-D) and
the other guided by the inverse translation model (which is also non-optimal but more accurate, namely
I&DTR-I).

In order to have an experimentation as close as possible to a theoretical scenario, we selected the
Spanish-English TOURIST task (see Section 4.3.5). The parallel corpus consisted of171, 352 differ-
ent sentence pairs, where1K sentences were randomly selected from testing, and the rest (in sets of
exponentially increasing sizes:1K, 2K, 4K, 8K, 16K, 32K, 64K, 128K and170K sentences pairs) for
training. All the figures show the confidence interval at 95%.

Figure 4.2 shows the differences in terms of the WER among allthe mentioned forms of the DTR:
“IFDTR” (Eq. 4.20), and “DTR” (Eq. 4.19). Since the IBM Model2 (in its direct version) tries to pro-
vide very short translations, we implemented a normalised length version of the DTR. In the figure this
normalised version is referred “DTR-N”. Note the importance of the model asymmetry in the obtained
results. The best results were the ones obtained using the inverse form of the DTR. This behaviour is
not surprising, since the only mechanism that the IBM Model 2has to ensure that all sources words are
translated is a length distribution that usually allows themodel to ommit the translation of a few words.
Anyway, the “DTR” and “DTR-N” performed worse than the ITR (Table 4.4).

Figure 4.3 shows the results achieved with search algorithms base on the most important classi-
fication rules. All the I&DTR obtain similar results to the ITR. Nevertheless, the non-optimal search
algorithm guided by the direct model (“I&DTR-D”) was an order of magnitude faster than the more
accurate one (“I&DTR-I”) and the “ITR”. The inverse form of the DTR (“IFDTR”) behaved similarly
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Figure 4.2: Asymmetry of the IBM Model 2 measured with the respect to the WER for
the TOURIST test set for different training sizes.
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Figure 4.3: WER results for the TOURIST test set for different training sizes and
different classification rules.

to these, significantly improving the results reported by DTR. There are no significant differences be-
tween the rules analysed in terms of WER. However, the execution times were significantly reduced by
the direct guided search in comparison with the other searches. Table 4.4 shows these execution times
and the figures with the maximum training size.

The different search algorithms (based on loss functions) do not convey a significant improvement
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Table 4.4: Translation quality results with different translation rules for TOURIST test
set for a training set of170K sentences. Where T is the time expressed in seconds and
SE stands for the percentage ofsearch errors.

Model WER SER BLEU (%) SE (%) T
I&DTR I 10.0 49.2 84.7 1.3 34
I&DTR D 10.6 51.6 84.4 9.7 2
IFDTR 10.5 60.0 83.7 2.7 35
ITR 10.7 58.1 84.3 1.9 43
DTR N 17.9 74.1 75.0 0.0 2
DTR 30.3 92.4 53.5 0.0 2

in WER in Figure 4.3. Note that the loss function only evaluates the SER, i.e. the loss function min-
imises the SER, and does not try to minimise the WER. Thus, changing the loss function, does not
necessarily decrease the WER.

In order to check this hypothesis, Figure 4.4 shows the analogous version of Figure 4.3 but with
SER instead of WER. It should be noted that as the training size increases, there is a difference in the
behaviour between the ITR and both I&DTR. Consequently, theuse of these rules provides better SER,
and this difference becomes statistically significant as the estimation of the parameters improve. In
the case of the inverse form of the DTR (“IFDTR”), as the training size increases, the error tends to
decrease and approximate the ITR error. However, the differences are not statistically significant and
both methods are equivalent from this point of view.
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Figure 4.4: SER results for the TOURIST test set for different training sizes and differ-
ent classification rules.

In conclusion, there are two sets of rules: the first set is made up of IFDTR and ITR, and the second
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Table 4.5: The results of translation quality obtained using the proposed variety of loss
functions with the Europarl test set.

Spanish→ English
Rule Formula BLEU (%) WER PER
ITR pr(x|y)pr(y) 26.8 61.1 45.2
DTR pr(y|x)pr(y) 20.6 61.1 48.9
I&DTR pr(y|x)pr(x|y)pr(y) 28.1 59.0 43.3
IFDTR pr(x|y)[pr(y)]2 22.2 62.5 48.3

English→ Spanish
Rule Formula BLEU WER PER
ITR pr(x|y)pr(y) 25.7 60.7 45.8
DTR pr(y|x)pr(y) 19.9 62.0 51.3
I&DTR pr(y|x)pr(x|y)pr(y) 26.0 59.4 45.1
IFDTR pr(x|y)[pr(y)]2 21.5 62.7 49.4

is composed by the two versions of the I&DTR. The first set reports worse SER than the the second
set. However, the I&DTR guided with the direct model (“I&DTR-D”) has many good properties in
practice. Note that for real tasks and state-of-the-art systems, it is expected that the behaviour of the
rules correspond to the result obtained with the smallest corpus size, where no significant difference
exists among the systems in terms of SER.

Phrase-based translation experiments

In the case of phrase-based translation (PBT) different models (for the two tasks considered) were
estimated. The training of these models were carried out in the following way:

• First, a word-level alignment of all the sentence pairs in the training corpus was carried out. This
alignment was performed for the Spanish-to-English and English-to-Spanish directions, using a
standard GIZA++ [Och, 2000] training, with the standard training scheme15253145.

• Then, a symmetrisation of both alignment matrices was built, using the THOT toolkit [Ortiz et al.,
2005]. Specifically, the refined symmetrisation method was used [Och and Ney, 2004b].

• Finally, a phrase-based model was estimated, using the THOT toolkit [Ortiz et al., 2005].

With respect to the decoding process, we implemented our ownphrase-based decoder. Specifically,
the decoder implements anA⋆ algorithm which is very similar to that described in the literature [Ger-
mann et al., 2001, Ortiz et al., 2003] for single-word models. The decoder was adapted to deal with the
different translation rules (or equivalently, the different loss functions) proposed here. These decoders
verbatim the unknown words to the output, since our model is not fine-grained and its basic units are
words.

Tables 4.5 and 4.6 show the translation quality measures forthe Europarl and Xerox tasks, respec-
tively, for the different loss functions proposed in Section 4.2. The DTR and FIRTD behaves similarly.
As expected, the D&ITR obtains the best performance. The differences between the FIRTD and the
DTR (which are theoretically equivalent) are not too great,so the under-performance of the DTR com-
pared with the ITR is not due to model asymmetries. If the translations given by the DTR are compared
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Table 4.6: Translation quality results obtained, using the proposed variety of loss func-
tions, with the test set of Xerox task.

Spanish→ English
Rule Rule (Search Alg.) BLEU (%) WER PER
ITR pr(x|y)pr(y) 61.7 25.9 17.6
DTR pr(y|x)pr(y) 59.0 27.0 18.9
I&DTR pr(y|x)pr(x|y)pr(y) 61.6 25.9 17.5
IFDTR pr(x|y)[pr(y)]2 60.6 26.2 18.0

English→ Spanish
Rule Rule (Search Alg.) BLEU WER PER
ITR pr(x|y)pr(y) 63.6 25.6 18.5
DTR pr(y|x)pr(y) 62.8 26.0 19.1
I&DTR pr(y|x)pr(x|y)pr(y) 64.6 25.1 18.1
IFDTR pr(x|y)[pr(y)]2 62.8 26.2 19.0

with the ITR, it can be observed that the DTR tends to generateshorter translations. This result is ex-
pected since the error function of the DTR,pr(y), is modelled using an-gram language model, and it
is well-known thatn-gram language models give more probability to short sentences, that is to say, the
resulting systems tends to shorten translations.

Tables 4.5 and 4.6 show that the theoretically expected increase of the translation performance in
terms of WER and BLEU, is apparently not achieved for the DTR and both corpora. Although in the
Xerox corpus the improved performance for the DTR is achieved, the differences between the systems
are not very high. However, figures 4.5 and 4.6 show that, in fact, the DTR rule outperforms the ITR, but
also provides shorter translations. Note that the longer the sentences are the worse thebrevity penalty
(BP) of the BLEU scoreis and consequently the worse the BLEU is (Fig. 4.6). Note that in Fig. 4.5,
the DTR incurs in a WER which is in all cases smaller than the WER performed by ITR. Again this
is due to then-gram model which is used to model the language model, i.e. the error function of the
DTR. The I&DTR had the same brevity penalty problem, however, in this case the problem was not so
important since the rule includes the inverse translation model, which counteracts the problem.

Table 4.7 shows some translations obtained using both DTR and ITR. As can be seen, DTR tends to
produce shorter translations than ITR, which typically produces more translation errors. For instance,
in the first sentence,the European agencyis translated asthe agencyby the DTR; this is due to the fact
that although the first translation is more precise, the language model (the loss function for the DTR)
scores the second as a more probable sentence. Oppositely, the DTR correctly translatesmustin the
first sentence but the ITR translates it asshould. Most of the common mistakes shared for both rules
are syntactic errors, although semantic errors can be found, as well.

In conclusion, the DTR and I&DTR, obtain better results withshort sentences due to a bias in the
language model, although the precision of such sentences isbetter. Nevertheless, the I&DTR is not
dramatically affected by an increase in the sentence length. As future work, we intend to solve the
language model bias to short sentence in some way, perhaps byintroducing a length normalisation in
the loss function or in the models.
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Figure 4.5: The WER results obtained for the Europarl test set (Spanish to English)
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Table 4.7: Differences between some translation examples obtained using DTR and
ITR. Bold words highlight the differences between the two proposed translations. REF

stands for the reference translation.

SRC: en segundo lugar , la agencia europea debe ser completamenteindependiente .

REF: secondly , the European agency must be completely independent

DTR: secondly , theagency mustbetotally independent

ITR: secondly , theEuropean agency shouldbecompletely independent .

SRC: es crucial que los consumidores acepten el euro .

REF: it is crucial for consumers to accept the euro .

DTR: it is crucial that consumersto acceptthe euro .

ITR: it is crucial that consumersacceptance ofthe euro .

SRC: de modo que me siento reacio a ir más lejos en materia de comercio o a aconsejar

medidas suplementarias en materia de comercio o inversión .

REF: so i am reluctant to go further on trade or to advise further action on trade or investment .

DTR: i am reluctant to go further trade or advisefurther steps trade or investment .

ITR: i am reluctant to go furtheron trade orto adviseadditional efforts on trade or investment .

4.4 Conclusions
The analysis of the loss function is an appealing issue. The results of analysing different loss functions
range from allowing to use metric loss functions such as BLEU, or WER; to proving the properties
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of some outstanding classification rules such as the direct translation rule, the inverse translation rule
or even the maximum entropy rule. For each different error function ǫ(x,yj ,yk) in the general loss
function of Eq. (4.9), there is a different optimal Bayes’ rule. The point of using one specific rule is an
heuristic and practical issue.

An interesting focus of study is the use of metrics such as BLEU, or WER; as the loss function.
Nevertheless due to the high complexity, it is only feasibleon constrained situations liken-best lists.

The work developed in this chapter is focused on the study of loss functions that have a linear
complexity and that are outstanding due to historical or practical reasons. This work explores the direct
translation rule, the inverse translation rule, and the direct and inverse translation rule. In this sense,
we have provided a theoretical approach based on decision theory which explains the differences and
resemblances between the Direct and the Inverse Translation rules. We have also given insights into
the practical differences of these two rules, which are widely used. For instance, this theoretical frame
predicts an improvement (in terms of SER), an improvement that has been confirmed in practice for
simple words models. In conclusion, according to the experimental results, the DTR outperforms the
ITR when short sentences are provided to the system.

The proposed modifications to the0–1 loss function depicted in Eq. (4.12) can handle the intuitive
idea of penalising a wrong action based on the repercussionsof the correct action. For instance, if the
correct translation,yc, of a source sentence,x, is a very unlikely sentence, failure in the translation of
such a sentence is not important. Oppositely, failure in thetranslation of a likely sentence is an important
mistake. It is important to note the fact that the proposed loss functions cannot handle significant cases.
For example, it is not the same to make an incorrect translation due to grammar errors than to make
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an incorrect translation due to semantic errors. In order totake into account such cases, it is necessary
to work with general loss functions of the sort in Eq. (4.9) despite of its cost. However, the idea of
penalising the mistakes proportionally to the probabilityof the correct translation can also be used in
case of dealing with more complicated decision rules and, eventually, with more complicated search
algorithms.

Note that though we have focused our analysis to error functions which are a probability distribu-
tion, the error functionǫ(·) does not necessary have to be a probability distribution. This idea brings
up the question of which the best loss function is. For instance, a confidence measure could even be
used to define error functions. Maybe the growing of the loss function should better be non-lineal
with the probability. In this sense more interesting loss functions could be obtained using information
theory. For instance, we can penalise the system with theremaining information. That is, if we know
pr(x, y), then the information associated with a target sentenceyc is− log(pr(x, yc)). The remaining
information, or the information that the system has learnt when it fails is given by

− log(
X

(x′,y′) 6=(x,yc)

pr(x
′, y′)) = − log(1 − pr(x,yc)) ,

leading to the the error function

ǫ(x, yc) = − log(1 − p(x, yc)) . (4.40)

Figure 4.7, shows the remaining information of a probability function. Note that the remaining informa-
tion has a singularity at1, i.e. if the system has not been able to learn a sure event, which has probability
of 1, then the loss is infinity. Note that this loss can be defined for any probability such aspr(y) or
pr(x, y).

Another very interesting research line is derived from approximating complex loss functions in
Eq. (4.9) with simple loss functions in Eq. (4.12). Although, many of the state-of-art SMT systems
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indirectly make use of this idea, as analysed in Section 4.2 (page 90), this idea may be exploited from
the point of view presented in this chapter.
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Chapter 5
Statistical stochastic finite state transducers

“ An expert is someone who knows some of the worst mistakes thatcan be made in his subject, and
how to avoid them” W. HEISENBERG
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Chapter 5. Statistical stochastic finite state transducers

5.1 Introduction
As stated in Section 1.3 Chapter 1, the machine translation process is a classification problem. There-
fore, multiplying the maximisation Eq. (1.9) Chapter 1 bypr(x), which is a constant for the maximi-
sation, the optimal translation is the one that maximises the following equation

ŷ(x) = arg max
y

{pr(y, x)} (5.1)

where the joint probabilitypr(y, x) can be modelled by astochastic finite state transducer (SFST).
Note that Eq. (5.1) is equal that Eq. (1.11) but instantiatedto the MT notation.

SFSTs constitute an important family of translation modelswithin the theory of formal languages [Vi-
dal et al., 2005a]. Even though these models are much more limited than other more powerful ones,
the computational costs of the algorithms that are needed todeal with them are much lower. SFSTs
also permit a simple integration with other information sources, which makes it easy to apply SFSTs to
more difficult tasks such as speech translation [Casacuberta et al., 2004]. SFSTs and the corresponding
training and search techniques have been studied by severalauthors, in many cases explicitly moti-
vated by MT applications [E. Vidal and Segarra, 1989, Oncinaet al., 1993, Knight and Al-Onaizan,
1998, Mäkinen, 1999, Amengual et al., 2000, Alshawi et al., 2000a, Casacuberta, 2000a, Vilar, 2000,
Vogel and Ney, 2000, Picó and Casacuberta, 2001, Bangalore and Riccardi, 2003, Kumar and Byrne,
2003, Casacuberta and Vidal, 2004, Tsukada and Nagata, 2004, Casacuberta et al., 2005, Kumar et al.,
2006, Casacuberta and Vidal, 2007, Mariòo et al., 2006]. There are other statistical models for MT that
are based on alignments between words (statistical word-alignment models) [Brown et al., 1993] or be-
tween word sequences (phrase-based models or alignment templates) [Och and Ney, 2004, Zens, 2008].
Some of these models (monotone phrase-based models[Zens, 2008]) are closely related to SFST. Other
translation models, which can be considered generalisations of SFSTs, are theinversion transduction
grammars[Wu, 1995] and thehead transducers[Alshawi et al., 2000b]. These models are theoretically
more powerful than SFSTs, but in general, they require higher computational costs.

The GIATI technique [Casacuberta and Vidal, 2007] has been applied to machine translation [Casacu-
berta and Vidal, 2004], speech translation [Casacuberta etal., 2004] and computed-assisted transla-
tion [Barrachina et al.]. The results obtained using GIATI suggest that, among all the SFST learning
techniques tested, GIATI is the only one that can cope with translation tasks under real conditions of
vocabulary sizes and amounts of training data available. However, as the task complexity increases, GI-
ATI tends to fall behind other approaches that more explicitly rely on statistics [Casacuberta and Vidal,
2007, Mariòo et al., 2006].

5.2 Stochastic finite-state transducers (SFST)
Stochastic finite-state transducers (SFST) are similar to stochastic finite-state grammars or automata [Vi-
dal et al., 2005b], but in this case two different alphabets are involved: source (input) and target (output)
alphabets. Each transition in a SFST has attached a source worda and a (possible empty) string of target
words [Vidal et al., 2005a].

Definition 1 A SFSTT is defined as a tuple{X , Y , Q, q0, t, f}, whereX is a finite set of source
words; Y is a finite set of target words;Q is a finite set of states;q0 ∈ Q is the initial state;p :
Q × X⋆ × Y ⋆ × Q → [0, 1] is a transition probability function andf : Q → [0, 1] is a final-state
probability function. The functionst andf must verify:

∀q ∈ Q, f(q) +
X

(x̄,ȳ,q′)∈X×Y ⋆×Q

t(q, x̄, ȳ, q′) = 1 . (5.2)

aThe term “word” is used to refer a single token as in MT i.e. a “symbol” in formal language theory.
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5.2. Stochastic finite-state transducers (SFST)

The non-probabilistic counterpart of a given a SFSTT , calledcharacteristic finite-state transducer
of T (FST), can be defined. Thetransitionsare those tuples inQ × X⋆ × Y ⋆ × Q with probability
greater than zero and theset of final statesare those states inQ with final-state probability greater than
zero.

Given T , a translation formwith J (the number of words or symbols in the source sentence)
transitions associated with thetranslation pair(x, y) ∈ X∗ × Y ∗ is a sequence of transitionsφ =
(q0, x̄1, ȳ1, q1) (q1, x̄2, ȳ2, q2) (q2, x̄3, ȳ3, q3) . . . (qJ−1, x̄J , ȳJ , qJ ), such that̄x1x̄2 . . . x̄J = x

andȳ1ȳ2 . . . ȳJ = y. Its probability is the product of the corresponding transition probabilities, times
the final-state probability of the last state in the sequence, that is to say,

pT (φ) =
JY

j=1

t(qj−1, x̄j , ȳj , qj) f(qJ ) . (5.3)

The set of translation forms associated with a translation pair (x, y) with probability higher than zero
is denoted asΦ(x, y).

Theprobability of a translation pair(x, y) according toT is then defined as the sum of the proba-
bilities of all the translation forms associated with(x, y), i.e.,

pT (x, y) =
X

∀φ∈Φ(x,y)

pT (φ) . (5.4)

If T has no useless states [Vidal et al., 2005a],pT (x, y) describes a probability distribution on
X⋆ × Y ⋆ which is calledstochastic finite-state translation. Recall that this distribution is used to
model the joint probability introduced in Eq. (5.1). The terms regular or, more properly,rational
translations are also often used in the scientific literature to refer to (the non-probabilistic counterpart
of) these mappings [Berstel, 1979].

A SFST has two embedded stochastic regular languages, one for the source alphabet and another for
the target alphabet. These languages correspond to the two marginals (pi andpo) of the joint distribution
modelled by the SFST as follows

pi
T (x) =

X

y∈Y ⋆

pr(x, y), po
T (y) =

X

x∈X⋆

p(x, y) . (5.5)

In practice, the corresponding source or target finite-state grammars are obtained from the finite-state
transducer by dropping the target or source words of each transition, respectively.

SFSTs exhibit properties and problems similar to those exhibited by stochastic regular languages.
One of these properties is the formal basis of the GIATI technique for transducer inference. It can be
stated as the following theorem [Casacuberta et al., 2005]:Every stochastic finite-state translation can
be obtained from a stochastic regular language and two morphisms. This is a weaker version of the
stochastic extension of a classical morphism theorem [Berstel, 1979]:Every rational translation can be
obtained from a local language and two alphabetic morphisms, where alocal languageis defined by a
set of permitted two-word segments (and therefore astochastic local languageis equivalent to abigram
distribution [Vidal et al., 2005a]). In both cases, the morphisms allow usto build the components of a
pair of the finite-state translation from a string of the corresponding local language [Casacuberta et al.,
2005].

A SFSTT can be used to approximate the joint probability in Eq. (5.1), pr(x, y), obtaining

ŷ = arg max
y∈Y ⋆

pT (x, y). (5.6)

That is, givenT andx ∈ X∗, search for a target strinĝy which maximisespT (x, y).
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While this SFST stochastic translation problemis proved to beNP-Hard [Casacuberta, 2000b], a
generally good approximation can be obtained in polynomialtime through a simple extension of the
Viterbi algorithm [Picó and Casacuberta, 2001]. This approximation consists in replacing the sum
operator in Eq. (5.4) with the maximum operator as follows

pT (x, y) ≈ bpT (x, y) = max
∀φ∈Φ(x,y)

pT (φ). (5.7)

This approximation to the SFST stochastic translation problem permits the computation of the optimal
translation form (with respect to Eq. (5.7)) in linear time with the number of source words. The trans-
lation of the given source sentence is then approached as thesequence of target strings which appear in
this optimal translation form.

5.2.1 Grammatical inference and alignments for transducerinference
(GIATI)

The morphism theorems stated in Section 5.2 suggest a technique [Casacuberta et al., 2005] to in-
fer an SFSTs, the so-calledgrammatical inferences and alignments for transducer inference(GIATI)
approach [Casacuberta, 2000b]. Therefore, the GIATI technique has a strong and solid theoretical foun-
dation. This technique has been applied to machine translation [Casacuberta and Vidal, 2007, Mariòo
et al., 2006], speech translation [Casacuberta et al., 2004] and computed-assisted translation [Barrachina
et al.]. The results obtained using GIATI suggest that, among all the SFST learning techniques tested,
GIATI is the only one that can cope with translation tasks under real conditions of vocabulary sizes
and amounts of training data available. However, as the taskcomplexity increases, GIATI tends to fall
behind other approaches that more explicitly rely on statistics.

Given a finite sample of pairsD = {(xn, yn)}N
n=1 of string pairs fromX⋆ × Y ⋆ (a parallel

corpus), the GIATI approach works as follows,

1. Each training pair(xn, yn) from D is transformed into a stringzn from anextended alphabet
Γ to obtain a sampleD′ of strings (D′ ⊂ Γ⋆).

2. A stochastic finite-stategrammar[Vidal et al., 2005b],G, is inferred fromD′.

3. The symbols (fromΓ) of the grammar transitionsare transformed into input/output symbols
(X⋆ × Y ⋆).

The main problem of this procedure is to define the set of the extended symbols. The transforma-
tion of the training pairs must capture the correspondencesbetween words of the input and the output
sentences and must permit the implementation of the inversetransformation of the third step. This is
achieved with the help of bilingual segmentations [Casacuberta and Vidal, 2004].

In order to illustrate this first step, we will use the Spanish-English pair (“una habitación doble” ,
“a double room”). A suitable word-alignment would align “una” with “ a”, “ habitación” with “ room”
and “doble” with “ double”. From this alignment, a possible string could be “(una,a) (habitación,room)
(doble,double)”. However, this would imply a reordering of the words “double” and “room”, that is
difficult to model in the finite-state framework. The key ideais to avoid a reordering, for example,
the alignment can be used to produce a left-to-right bilingual segmentation into two segments: (“una”
, “a”) and (“habitación doble” , “ double room”). This segmentation directly yields the single string
and the corresponding extended alphabet required by GIATI.In the first version of GIATI, empty target
segments were allowed, in this case, a simpler segmentationwhich has proved equivalently adequate in
practice is: “(una,a) (habitación,-) (doble,double room)”.

One of the shortcomings of GIATI comes from the fact that heuristically it needs“external” statis-
tical techniques to preprocess the training pairs. Actually, the bilingual segmentation of first step in the
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original GIATI technique was based on statistical alignment models [Brown et al., 1992]. The proba-
bilities associated with the transitions of a SFST learnt inthis way are just those of the corresponding
stochastic finite-state grammar inferred instep 2. Therefore, an interesting feature of GIATI was that
it can readily make use of all the smoothing techniques knownfor n-grams language models (see Sec-
tion 1.2 Chapter 1) and for stochastic finite-state grammars[Llorens et al., 2002]. Note, however, that
GIATI extended alphabets are typically very large and this fact hardens the data-sparseness problems.

Clearly, for a given translation pair, there are many possible bilingual segmentations; but the orig-
inal version of GIATI did not take advantage of this fact, thereby making less profit from the (always
scarce) training data. In the next section, a new GIATI version is introduced [Andrés-Ferrer et al.,
2008]. This version is more explicitly based on statisticalestimation procedures and would not suffer
from this shortcoming. These procedures require an initialisation that can be random or based on the
above segmentation obtained using statistical alignment models. Another interesting feature of the new
GIATI version is that thestep 2is embedded in the estimation procedure itself.

5.3 Statistical GIATI (SGIATI)
Our new, statistical version of GIATI, SGIATI [Andrés-Ferrer et al., 2008], is based on a rather simple
probabilistic model for segment-based (phrase-based) statistical machine translation. Given a transla-
tion pair,(x, y), we assume that both sentences can be segmented into a certain number of segments,
sayC, which are monotonically aligned one-to-one, to produce the desired segment-based translation
of x into y. This is illustrated in the example shown in Figure 5.1, where three possible segmentations
of a given pair are considered. Note that we usej andi to define the precise limits of the segments in
x andy, respectively.

por favor , súbanos nuestros bultos a la habitación .
please , send up our luggage to the room .

por favor , súbanos nuestros bultos a la habitación .
please , send up our luggage to the room .

por favor , súbanos nuestros bultos a la habitación .
please , send up our luggage to the room .

Figure 5.1: Three possible segmentations of the translation pair ”por favor
, súbanos nuestros bultos a la habitación . ” and ”please ,
send up our luggage to the room . ”. The used segmentations are:j =
(0, 2, 3, 4, 6, 7, 8, 9, 10) and i = (0, 1, 2, 4, 6, 7, 8, 9, 10) for the first segmentation;
j = (0, 3, 6, 8, 10) andi = (0, 2, 6, 8, 10) for the second; andj = (0, 6, 8, 10) and
i = (0, 2, 5, 10) for the third.

Uncovering thehiddenrandom variables for the number of segments,C, and those for the segmen-
tations ofx andy, j andi respectively; the probability of observing a given translation pair,pr(x, y),
is written as follows

pr(x, y) =
X

C

X

j,i

pr(x, y, j, i, C) , (5.8)

wherej andi range over the set of all possible segmentations ofx andy

j = (j0, j1, j2, . . . , jC), jl < jl+1 with l ∈ {1, . . . , C − 1} and jC = J, j0 = 0 (5.9)

i = (i0, i1, i2, . . . , iC), il < il+1 with l ∈ {1, . . . , C − 1} and iC = I, i0 = 0 (5.10)
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with J = |x| andI = |y|. For brevity, we usejl
k to denote the sub-vector ofj from positionk to l;

i.e.,jl
k = (jk, jk+1, . . . , jl−1, jl).

Our probabilistic model for(x, y), completedwith j, i and C, is decomposed left-to-right as
follows

pr(x, y, j, i, C) =

CY

c=1

pr(x(c), y(c), jc, ic |H(c − 1))pr($, $, C |H(C)) , (5.11)

where we have used the notationx(c) for c-th segment ofx, i.e.,xjc

jc−1+1; y(c) is similarly used for
y; andH(c − 1) denotes the history ofc − 1 previous segments,

H(c − 1) = {x(jc−1
0 ), y(ic−1

0 ), jc−1
1 , ic−1

1 } , (5.12)

wherex(jc−1
0 ) stands for thec− 1 segmentsxj1

j0+1, x
j2
j1+1, . . . , x

jc−1

jc−2+1 and similarly doesy(ic−1
0 );

and whereH(0) is defined as the sure event and, hence,pr(x(1), y(1), j1, i1 |H(0)) is equal to
pr(x(1), y(1), j1, i1); and, finally, the length distributionpr($, $, C |H(C)) = 0 if C differs from
the length ofj or i.

Note thatH(c−1) can be approximated with then more recent segmentations, similarly ton-gram
language modelling. For simplicity, the probability of thecurrent segment given the history of thec−1
previous segments is approximated using a first-order Markovian assumption (n = 2). That is to say,

H(c − 1) ≈ H2(c−1) = {(x
jc−1

jc−2+1), (y
ic−1

ic−2+1), jc−2, jc−1, ic−2, ic−1} . (5.13)

In this way, our complete probabilistic model in Eq. (5.11) is approximated as follows

pr(x, y, j, i, C) :=

CY

c=1

pr(x(c), y(c), jc, ic |H
2(c−1))pr($, $ |H2(C)) . (5.14)

The model in Eq. (5.14) is still difficult to learn due to the inclusion of absolute segment boundaries
while computing the probability of the current segment. Instead, to ease parameter estimation, each
absolute boundary is rewritten relative to its previous boundary,

pr(x, y, j, i, C) :=

CY

c=1

pr(x(c), y(c), jc − jc−1, ic − ic−1 |H
2(c−1))pr($, $ |H2(C)) (5.15)

:=
CY

c=1

p(x(c), y(c) |H2(c−1)) p($, $ |H2(C)) , (5.16)

where, in Eq. (5.16), we assume that segment probabilities are null when the relative boundariesjc −
jc−1 and ic − ic−1 disagree with their corresponding segment lengths; and where from Eq. (5.15)
to Eq. (5.16) we have changed the probability distributionspr(· · · ) by the model parametersp(· · · ).
Therefore, our final model is parametrised with the following parameter set:

Θ = {p(u, v), p(u, v |u′, v′) | ∀u, u′ ∈ X
∗, v, v′ ∈ Y

∗} , (5.17)

where allu′, v′ verify the following normalisation property

X

u∈X∗,v∈Y∗

p(u, v |u′, v′) = 1 . (5.18)
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For clarity shake, consider as an example,x = x1x2x3 andy = y1y2. Using Eq. (5.8), the joint
probability of observingx andy can be written as follows

pr(x, y)=pr(x, y, (0, 3), (0, 2), 1) + pr(x, y, (0, 1, 3), (0, 1, 2), 2) + pr(x, y, (0, 2, 3), (0, 1, 2), 2)
(5.19)

According to Eqs. (5.14) and (5.15), the probabilities in the right-hand side of Eq. (5.19) are approxi-
mated by

pr(x, y, (0, 3), (0, 2), 1) := pr(x
3
1, y

2
1, 3, 2)pr($, $ |x3

1, y
2
1) (5.20)

pr(x, y, (0, 1, 3), (0, 1, 2), 2) := pr(x1, y1, 1, 1)pr(x
3
2, y2, 2, 1 |x1, y1)pr($, $ |x3

2, y2) (5.21)

pr(x, y, (0, 2, 3), (0, 1, 2), 2) := pr(x
2
1, y1, 2, 1)pr(x3, y2, 1, 1 |x2

1, y1)pr($, $ |x3, y2) . (5.22)

From Eqs. (5.19)–(5.22), and applying Eq. (5.16), the jointprobability of observingx andy is written
in terms of model parameters

pr(x, y) := p(x3
1, y

2
1) p($, $ |x3

1, y
2
1)

+ p(x1, y1) p(x3
2, y2 |x1, y1) p($, $ |x3

2, y2)

+ p(x2
1, y1) p(x3, y2 |x

2
1, y1) p($, $ | x3, y2)

. (5.23)

Note that the source and target segmentations in Eqs. (5.19)–(5.22) do not explicitly appear in Eq. (5.23),
though they are implicitly taken into account since they guide the probability decompositions in Eqs. (5.20)–
(5.22).

5.4 Useful recurrences
Given a bilingual pair(x, y) and a parameter setθ, the joint probabilitypθ(x, y) is efficiently com-
puted by means of any of the following two recurrences: theforward-like and backward-likerecur-
rences.

Roughly speaking, the forward recursion efficiently computes the probability of a given prefix.
More precisely, given the source boundariesl′, l and the target boundariesm′, m; the forward recur-
rence is defined as the probability of the prefixxl

1 andym
1 to occur knowing that the previous segment

ended at positionsl′ andm′,

αl′lm′m = αl′lm′m(x, y) = pθ(xl
1, y

m
1 , l′, m′) , (5.24)

where0 < l′ < l ≤ J and0 < m′ < m ≤ I .
The forward-like recursion is efficiently computed by the following recursive equation

αl′lm′m =

8
>>>>>><
>>>>>>:

1 l′ = l = m = m′ = 0

p(xl
1, y

m
1 )

l′ = m′ = 0,

l > 0, m > 0
l′−1X

l′′=0

m′−1X

m′′=0

αl′′l′m′′m′ p(xl
l′+1, y

m
m′+1 |x

l′

l′′+1, y
m′

m′′+1) otherwise

(5.25)
The backward counterpart efficiently computes the probability of a given suffix. Specifically, given

the source boundariesl′′, l′ and the target boundariesm′′, m′ the forward recurrence is defined as the
probability of the suffixxJ

l′+1 andyI
m′+1 given that the previous segments werexl′

l′′+1 andym′

m′′+1, in
other words

βl′′l′m′′m′ = βl′′l′m′′m′(x, y) = pθ(xJ
l′+1, y

I
m′+1 |x

l′

l′′+1, y
m′

m′′+1) , (5.26)

JAF-DSIC-UPV 111



Chapter 5. Statistical stochastic finite state transducers

where0 < l′′ < l′ ≤ J and0 < m′′ < m′ ≤ I .
Again, the backward-like recursion is efficiently computedby the application of the following re-

cursive equation

βl′′l′m′′m′ =

8
>>>>>><
>>>>>>:

1 l′ = l = J, m = m′ = I

p($, $ |xJ
l′′+1, y

I
m′′+1)

l′ = J, m′ = I,

l′′ < J, m′′ < I
JX

l=l′+1

IX

m=m′+1

βl′lm′m p(xl
l′+1, y

m
m′+1 | x

l′

l′′+1, y
m′

m′′+1) otherwise

(5.27)
Using the forward-like recurrence, the joint probabilitypθ(x, y) is computed as follows

pθ(x, y) =
X

l,m

αlJmI . (5.28)

Alternatively, the joint probability can also be computed with the backward recursion as follows

pθ(x, y) = β0000 . (5.29)

The total time complexity required to compute both recurrences isO(J3I3), and two matrices
of sizeO(J2I2) are needed to store them. It is important to highlight that ifwe use a Markovian
approximation of ordern, higher than2, then the recurrence tables will needO(JnIn) elements and a
time complexity ofO(Jn+1In+1).

The probability of using a given source and target segment positions l′′, l′, l andm′′, m′, m, re-
spectively, is defined as follows

γl′′l′lm′′m′m =
αl′′l′m′′m′ p(xl

l′+1, y
m
m′+1 |x

l′

l′′+1, y
m′

m′′+1)βl′lm′m

pθ(x, y)
, (5.30)

with 0 ≤ l′′ < l′ < l ≤ J and0 ≤ m′′ < m′ < m ≤ I .
Finally, we will henceforth use the notationγnl′′l′lm′′m′m to refer toγl′′l′lm′′m′m for the n-th

outcome of a given collection of training translation pairs{(x1, y1), . . . , (xN , yN )}. This notation is
also expanded to the corresponding forwardαnl′lm′m, and backwardβnl′lm′m recurrences.

5.5 Maximum likelihood estimation of SGIATI
Since our model is based on a hidden bilingual segmentation variable, it is necessary to use some ap-
proximate inference algorithm. Specifically, we use the EM algorithm introduced in Section 1.1.4 in or-
der to estimate the parameters in Eq. (5.17) w.r.t. a collection of training translation pairs{(x1, y1)}

N
n=1.

The(incomplete)log-likelihood function is given by

LL(θ) =

NX

n=1

log
X

Cn

X

jn,in

pθ(xn, yn, jn, in, Cn) , (5.31)

with

pθ(xn, yn, jn, in, Cn) =

CnY

c=1

p(xn(c), yn(c) |H2
n(c − 1)) p($, $ |H2

n(Cn)) . (5.32)
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5.6. Preliminary experiments

However, the EM algorithm maximisesLL(·) by iteratively maximising a variational function
L(q, θ) as reviewed in Section 1.1.4 Chapter 1. Letθ(k−1) be a guess of the optimal parameters
obtained from previous iterations. Then, in the E-step all the sufficient statistics needed to compute
q(k−1)(jn, in) = pθ(k−1) (jn, in |xn, yn) are calculated. Specifically, we compute the probabilities
γnl′′l′lm′′m′m, for all 0 ≤ l′′ < l′ < l ≤ J and0 ≤ m′′ < m′ < m ≤ I . Note that in order to
efficiently compute and storeγnl′′l′lm′′m′m, both recurrencesαnl′lm′m andβnl′lm′m are computed
and stored.

In the M-step, the parameter setθ(k) that maximisesL(q(k), θ) are computed as follows

p(k)(u, v |u′, v′) =
N (k−1)(u, v; u′, v′)P

u′′,v′′ N (k−1)(u′′, v′′; u′, v′)
, (5.33)

where we have used the definition

N (k−1)(u, v; u′, v′)=
X

n

X

l′′<l′<l
m′′<m′<m

γnl′′l′lm′′m′m δl′′l′lm′′m′m(xn, yn, u′, u, v′, v) ,

which is the expected value of the occurrences of the event(u, v; u′, v′) in the training data. The
expressionδl′′l′lm′′m′m(xn, yn, u′, u, v′, v) is a predicate that is1 if the segment boundariesl′′, l′, l,
andm′′, m′, m, and the source and target phrases are compatible, i.e.,

δl′′l′lm′′m′m(x, y, u′, u, v′, v) =

(
1 xl′

l′′+1 = u′, xl
l′+1 = u, ym′

m′′+1 = v′, ym
m′+1 = v

0 otherwise
(5.34)

In order to implement the re-estimation Eq. (5.33), it is only needed to compute the forward
αnl′lm′m and backwardsβnl′lm′m for all samples and for all values ofl, m, l′ andm′. Afterwards,
the expected counts given byγnl′′l′lm′′m′m, are efficiently computed using the previously computed
forward and backward recursions.

As we have discussed in Section 1.1.3, the maximum likelihood estimation technique tends to un-
derestimate the probability of the unseen events. The EM algorithm is not an exception, and, therefore,
we need to resort to smoothing techniques. Since the SGIATI techniques is highly inspired inn-gram
models, it seems sensible to extend the leaving-one-out smoothing estimation techniques discussed in
Chapter 3. Therefore, we use the following backing-off smoothing

p̃(u, v |u′, v′) =

(
p(u, v |u′, v′)(1 − φ(u′, v′)) if (u, v) ∈ V(u′, v′)

pbo(u
′, v′)φ(u′, v′) if (u, v) 6∈ V(u′, v′)

(5.35)

whereV(u′, v′) ⊂ X⋆ × Y⋆ is the set of segments that have a not-null probability giventhe his-
tory (u′, v′); pbo(u

′, v′) is a probability distribution defined over all unseen segmentations pairs, i.e.
(u, v) 6∈ V(u′, v′); and, finally,φ(u′, v′) stands for the probability mass discounted from the seen
events that occur after the previous history(u′, v′).

Since in this model we are using fractional occurrence counts N (k−1)(u, v; u′, v′), instead of ac-
tual counts; it is not possible to apply leaving-one-out to obtain a closed form solution to the discounted
probability massφ(u′, v′) as it is done inn-gram language models [Ney et al., 1997]. In practice, we
have fixed it to a constant valueφ(u′, v′) = ǫ.

5.6 Preliminary experiments
In this section, some preliminary experiments were carriedout to asses the formal derivation of the
current GIATI version, SGIATI, and to compare it with the previous heuristic version of GIATI.
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Chapter 5. Statistical stochastic finite state transducers

Test Set Train Set
Spanish English Spanish English

sentences 2K 10K
avg. length 12.7 12.6 12.9 13.0
vocabulary 611 468 686 513
singletons 63 49 8 10
running words 35.0K 35.6K 97.2K 99.2K
perplexities (3-gram) - - 5.4 3.8

Table 5.1: Basic statistics of the Spanish-English EUTRANS-I task, wheresingletons
stands for the words occurring once, andrunning wordsdenotes the total amount of
word occurrences.

WER BLEU SER
Order (n) 1 2 1 2 1 2
GIATI 20.4 8.3 63.2 87.3 80.4 44.2
SGIATI 13.0 7.7 77.4 88.5 65.3 41.1
Moses 11.7 88.3 42.1

Table 5.2: Results obtained with the EUTRANS-I task for different algorithms: SGIATI
(the EM version), and GIATI, which corresponds to the model obtained by counting the
occurrences of each segment and then re-normalising by the sum of all counts.

The experiments were carried out using the Spanish-EnglishEUTRANS-I task [Amengual et al.,
2000]. The Spanish-English sentence pairs correspond to human-to-human communication situations
at the front-desk of a hotel which were semi-automatically produced using a small seed corpus compiled
from travel guides booklets. The corpus comprises several domains and4 persons each of which was
in charge of a (non-disjoint) subset of sub-domains. The basic statistics of this corpus are shown in
Table 5.1.

Since the size of recurrence tables grow exponentially withthe length of the history size, we only
report results for the bigram and unigram case. Moreover, inthe bigram case we used the smoothing
detailed in Eq. (5.35).

Table 5.2 summarises some results. The GIATI denotes the model obtained by counting the occur-
rences of each segment and then re-normalising by the sum of all counts, i.e. previous GIATI estimation
technique. The SGIATI stands for the training algorithm presented in this chapter. Finally,Mosesstands
for the Moses system [Koehn et al., 2007] that were trained performing the MERT in a validation set.
We have fixed the maximum phrase length to7 words for all the systems. The proposed statistical es-
timation provides an increase of performance with respect to the GIATI version for both history sizes.
The high increase obtained for the unigram model is due to thefact that there is only one state and
the probability mass can be readjusted properly. This re-estimation meaningfully differs from GIATI
parameters. In the bigram case, the average of segment pairsper state is over5, which means that on
average the EM can only redistribute the probability mass among few segments (over5) for a given
previous history. Both GIATI algorithms are highly dependent on the quality of the selected segments
used to initialise the algorithm.
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5.7. Conclusions

5.7 Conclusions
In this chapter, we have proposed a new statistical estimation for stochastic finite-state transducers.
Specifically, a segmental extension to these models obtained via GIATI methodology have been de-
scribed. This statistical framework is more independent with respect to alignment methods. The results
reported show that the new technique increases the system performance with respect to (the conven-
tional) GIATI in a small translation task.

However, the proposed statistical approach presents two great disadvantages: the complexity and
the memory requirements. These requirements, which are generated by the recurrences, make the
generalisation of this technique with complex data and withlonger histories unfeasible. For example,
the algorithm needs about7GB in order to store the recurrence tables for trigrams and sentences no
longer than100 words. If a maximum memory is given for training the SGIATI model, then the longer
then of the Markovian approximation is, the shorter the sentences have to be. Additionally, we have
observed that the improvements obtained using the proposedSGIATI model are not larger enough for
justifying the memory and time complexity that this model requires.

Another great disadvantage is that, unlike the GIATI model [Casacuberta et al., 2005], the SGIATI
model cannot directly take profit from then-gram smoothing techniques based on leaving-one-out.
Therefore, we probably loose more performance than what we can gain by using SGIATI.

Finally, since the SGIATI is a joint modelpθ(x, y), we are modelling more than what we need,
i.e., a conditional probability modelpθ(y |x). In a joint model, not only the translation correspondence
between words is learnt but also their occurrence frequency. The problem generated by this fact can be
easily understood with the following example. We assume that we have observed a bilingual pair just
once, but that the translation of this pair is unique. For instance, we might have observed “My room
is 217” and its translation “Mi habitación es la 217”. We further assume that the numbers “217” have
only occurred in this outcome. From this example it is clear that a good conditional model will assign
a high probability to the event(217| 217), i.e.,p(217| 217) ≈ 1. However, since the event(217, 217),
has only occurred once, a joint model will give it a very smallprobability, i.e.,p(217| 217) ≈ 0. This
small probability accounts for two facts: that the pair(217, 217) is a good translation phrase or/and that
the pair(217, 217) is not frequent; and there is no way to differentiate betweenthem. In the following
chapter, we propose a conditional model based on this SGIATImodel that fixes some of the deficiencies
of this model.
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Chapter 6
A phrase-based hidden Markov model for monotone

machine translation

“ The existing scientific concepts cover always only a very limited part of reality, and the other part
that has not yet been understood is infinite.” W. HEISENBERG

Contents
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.2 Phrase-based hidden Markov model . . . . . . . . . . . . . . . . . . 120

6.3 Forward and backward probabilities . . . . . . . . . . . . . . . . .. 123

6.4 Decoding and Viterbi recurrence . . . . . . . . . . . . . . . . . . . .124

6.4.1 The decoding process . . . . . . . . . . . . . . . . . . . . . . . 124

6.5 Maximum likelihood estimation . . . . . . . . . . . . . . . . . . . . . 126

6.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.6.1 Corpora . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.6.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

119



Chapter 6. A phrase-based hidden Markov model for monotone machine translation

6.1 Introduction

As previously discussed, the machine translation problem is stated as the problem of translating asource
(input) sentence,x, into atarget (output)sentence,y. Typically, at least one inverse translation model
is needed to approximate the probabilitypr(x | y) in Eq. (1.102).

In the Chapter 1, we discussed that the first proposed models,the so-calledIBM translation mod-
els [Brown et al., 1993], tackled the problem with word-level dictionaries plus alignments between
words. However, current systems model the inverse conditional probability usingphrase dictionaries.
This phrase-based methodology stores specific sequences oftarget words (target phrase) into which a
sequence of source words (source phrase) is translated. A key concept of this approach is the procedure
through which these phrase pairs are inferred.

A popular, phrase-based technique consists in using the IBMalignment models [Brown et al., 1993]
to obtain a symmetrised alignment matrix from whichcoherentphrases are extracted (see Section 1.3
Chapter 1). Then, an approximate and heuristically motivated count normalisation is carried out in
order to obtain a conditional phrase dictionary [Koehn et al., 2003].

Alternatively, some approaches have been described in the last few years in which phrase dictio-
naries are statistically inferred. In particular, the SGIATI model presented in Chapter 5 defines a joint
model with its algorithm for estimating phrase-based probabilities. Another joint probability model for
phrase-based estimation was proposed in [Marcu and Wong, 2002], however, this model is a particular
case of SGIATI in which the previous history is ignored (n = 1) and where the monotonicity constraint
has been removed. In the work by Marcu and Wong [2002], all possible segmentations are extracted
using the EM algorithm [Dempster et al., 1977], without any matrix alignment constraint, in contrast
to the approach followed in Och and Ney [2004]. Based on this work, Birch et al. [2006], constrained
the EM to only consider phrases which agree with the alignment matrix, thus reducing the size of the
phrase dictionaries (or tables).

A drawback of the above phrase-based models is that they are not conditional, but joint models
that need to be renormalised in order to make them conditional. Recall that in the previous Chapter 5,
we outlined some of the problems of using a joint model. In this chapter, however, we introduce a
direct, conditional phrase-based approach for monotone translation [Andrés-Ferrer and Juan, 2007].
Monotonicity allows us to derive a relatively simple statistical model which is properly described as a
phrase-based hidden Markov model.

In the remaining of this chapter, we first introduce our modelin Section 6.2, and then their asso-
ciated training recurrences in Section 6.3. The decoding algorithm is explained in the following Sec-
tion 6.4. EM-based maximum likelihood estimation of the model parameters is described in Section 6.5.
Empirical results are reported in Section 6.6 and then some concluding remarks are given.

6.2 Phrase-based hidden Markov model

Let x andy be a pair of source and target sentences of known length,J andI . In order to define our
phrase-based hidden Markov model forpθ(x |y, J), it is first convenient to introduce our definition of
monotone segmentation, both for the monolingual and bilingual cases.

A monotone, monolingual segmentation ofx into a given number of segments,T , is any sequence
of indexesj = (j0, j1, . . . , jT ) such that1 = j0 < j1 < · · · < jT = J . Similarly, a monotone,
segmentation ofy into T segments is any sequence of indexesi = (i0, i1, . . . , iT ) such that1 =
i0 < i1 < · · · < iT = I . Given two monotone, monolingual segmentations ofx andy into T
segments,j andi, their associatedbilingual segmentation ofx andy is defined ass = s1s2 · · · sT

with st = (jt−1 + 1, jt, it−1 + 1, it), t = 1, . . . , T . Reciprocally, given a monotone,bilingual
segmentation ofx andy, we can easily extract their associated monolingual counterparts.
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6.2. Phrase-based hidden Markov model

Figure 6.1 shows an example in which all possible bilingual segmentations forJ = 4 andI = 5
are represented as paths in a directed, multi-stage graph. The initial stage of the graph has a single,
artificial node labelled as "init", which is only included topoint to the initial segments of all the possible
segmentations. There are12 of such initial segments, vertically aligned on the first stage. Similarly,
there are15, 3 and13 segments aligned on the second, third and final stages, respectively. The total
number of segments is then43. There is a unique segmentation of unit length,s = s1 = (1415), which
is represented by the rightmost path, but there are12, 18 and4 segmentations of length2, 3 and4,
respectively; comprising35 segmentations in total. As empty segments are not allowed, segmentation
lengths range from one to the length of the shortest sentence. Note that segments on the first stage
can only appear in the first position of a segmentation. Also,segments on the second and final stages
can only appear on analogous positions in a segmentation. However, those three on the third stage (i.e.
(3334), (3333) and(3344)) may appear in the second or third positions, although they cannot end any
segmentation. For instance,(3334) appears in the second position of((1212), (3334), (4455)) and
also in the third position of((1111), (2222), (3334), (4455)).

Note that we are using the terms segment and segmentation only for positions in the input and output
sentences. We reserve the termphrasefor actual portions of the given sentences. For instance, the
bilingual segmentation((1212), (3334), (4455)) of x4

1 andy5
1 results in the bilingual phrases(x2

1, y
2
1),

(x3, y
4
3) and(x4, y5).

In what follows, we will writex(st) to denote the portion ofx delimited by (the input part of)
segmentst; more generally,x(st

t′) will denote the concatenationx(st′)x(st′+1) · · ·x(st). Analogous
notation will be used fory, i.e.,y(st) andy(st

t′).
Now, we can define our inverse translation model forpr(x |y) as a full exploration of all bilingual

segmentations ofx andy,

pr(x |y) = pr(x |y, J) =

min(J,I)X

T=1

X

s

pr(x, s, T |y, J) , (6.1)

where the second sum is defined over all possible bilingual segmentations of lengthT ; and as most of
the literature in SMT, although we do not explicitly the dependence on the source sentence lengthJ , it
is assumed to be known.

To computepr(x, s, T |y, J) in (6.1), we use the following decomposition

pr(x, s, T | y, J) = pr(T |y, J)pr(s |y, T, J)pr(x |y, s, T, J) ,

wherepr(s | y, T, J) is modelled as a first-order Markovian process

pr(s |y, T, J) :=

TY

t=1

pr(st | st−1) , (6.2)

with s0 :=“init”, i.e. the initial state used to model the probabilityof each state to be the first in the
sequence of states; andpr(x | y, s, T, J) is modelled as composed of independent bilingual phrases

pr(x |y, s, T, J) :=
TY

t=1

pr(x(st) |y(st), st) . (6.3)

Clearly, the above modelling assumptions lead to a phrase-based HMM-like model. Its set of states is
that of all possible bilingual segments, while its set of transitions includes all pairs〈q′, q〉 in which the
state (segment)q is a successor ofq′, q ∈ Succ(q′). For each stateq, we will have a different emission
probability for each target segmenty(q).
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6.3. Forward and backward probabilities

For efficiency and simplicity, we will further assume in thischapter that both initial and transition
state probabilities are uniformly distributed; hence, foreachq andq′, including “init” for q′,

pr(q | q
′) :=

(
1

|Succ(q′)|
if q ∈ Succ(q′)

0 otherwise
(6.4)

Also, T is assumed to be uniformly distributed,

pr(T | y, J) :=
1

min(I, J)
(6.5)

and the phrase translation probabilities are assumed to be stored in a single, state-independent table

pr(x(st) |y(st), st) := p(x(st) |y(st)) .

Using the above assumptions, our model (6.1) can be rewritten as follows

pθ(x |y, J) :=
1

min(J, I)

X

s
|s|≤min(J,I)

|s|Y

t=1

p(x(st) |y(st))

|Succ(st−1)|
. (6.6)

The vector of parameters governing this model only includesa table of phrase translation probabilities,

Θ = {p(u |v) : (u, v) bilingual phrase} .

6.3 Forward and backward probabilities
As usual with HMMs (see Section 1.1.5 Chapter 1), we will discuss here the so-calledforward and
backwardprobabilities for efficient computation of the model probabilities, as given in Eq. (6.6). To fix
ideas, considerx andy to be two arbitrary sentences for which we have to compute Eq.(6.6). Given
a segmentation length and position,T and t, and a stateq, the forward probability is defined as the
following prefix joint probability

αT
tq := pθ(x(st

1), st = q |y, T ) ,

wherest
1 is any partial segmentation, from positions1 to t, such thatst = q. This probability can be

recursively computed by dynamic programming, using the so-calledforward recurrence,

αT
tq =

X

q′ : q∈Succ(q′)

αT
t−1q′pr(q | q

′) p(x(q) |y(q)) =
X

q′ : q∈Succ(q′)

αT
t−1q′

p(x(q) |y(q))

|Succ(q′)|
, (6.7)

with the base caseαT
tq = 1 for t = 0 andq =“init”; 0 otherwise. Note that in Eq. (6.7), we have

decomposed the caseαT
tq in terms of a smaller caseαT

t−1 q′ .
The backward probability also depends on a given segmentation lengthT and positiont; and a state

q. It is defined as the following suffix probability

βT
tq := pθ(x(sT

t+1) |y, T, st = q) ,

wheresT
t+1 is any partial segmentation, from positionst+1 toT , that might follow the stateq in position

t. As before, it can be efficiently computed by dynamic programming, using a “reverse” version of the
forward recurrence calledbackward recurrence,

βT
tq =

X

q′∈Succ(q)

βT
t+1 q′pr(q

′ | q) p(x(q′) |y(q′)) =
X

q′∈Succ(q)

βT
t+1 q′

p(x(q′) | y(q′))

|Succ(q)|
, (6.8)
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with the base caseβT
Tq = 1 for any terminal stateq = (·, I, ·, J) and anyt; and0 otherwise. Note

that similarly to the forward recurrence, in Eq. (6.8), we have decomposed the caseβT
tq in terms of the

simpler caseβT
t+1 q′ .

Finally, Eq. (6.6) can be computed using (6.7) as

pθ(x |y) =
1

min(J, I)

X

T

X

q=(·,I,·,J)

αT
Tq ,

or using (6.8) as

pθ(x |y) =
1

min(J, I)

X

T

βT
0“init” .

An efficient implementation of both recurrences requires two tables ofO(IJ min(J, I)) values and
a computational complexity ofO(I2J2 min(J, I)).

6.4 Decoding and Viterbi recurrence

The Viterbi recursion, efficiently computes the most likelystate sequence that can emit a given output
sequence. We introduce this recursion here as a prelude to the search recurrence. This recursion is
defined as the most likely state sequence of lengtht that ends in the stateq, i.e.

δq t = max
st
1 : st=q

{pθ(x(st
1), s

t
1 |y)} , (6.9)

note that the last statest is required to beq.
The Viterbi recursion in Eq. (6.9) is efficiently computed bythe following recurrence

δq t = max
q′

n
p(q | q′) p(x(q) |y(q)) max

s
t−1
1 : st−1=q′

{pθ(x(st−1
1 ), st−1

1 |y(st−1
1 ))}

o
, (6.10)

where by applying the Viterbi’s definition yields

δq t = max
q′

{p(q | q′) p(x(q) |y(q))δq′ t−1} = max
q′


p(x(q) |y(q))

|Succ(q′)|
δq′ t−1

ff
. (6.11)

Finally, the probability of the Viterbi’s segmentation is given by

pθ(ŝ, x |y) = max
T,q=(·,J,·,I)

δq,T . (6.12)

As usually, tracing back the decisions made during the maximisation process yields the maximum
segmentation,̂s.

The Viterbi recursion shares the same asymptotic requirements than that of the forward and back-
ward recursions.

6.4.1 The decoding process

The decoding process is stated as the problem of finding the most likely target sentencêy for given a
source sentencex. According to our model the decoding problem is stated as

ŷ = arg max
y

{pθ(x |y) p(y)} . (6.13)
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During the decoding process, an additional problem with respect to the Viterbi recursion must be
kept in mind, that is to say, the target sentencey is unknown. Therefore, we want to find the following
maximum probability

pθ(x, ŷ) = max
y

8
<
:

min{I,J}X

T=1

X

s

pθ(x, sT
1 , T |y) p(y)

9
=
; , (6.14)

since the fundamental equation of machine translation introduced in Eq. (1.102) Chapter 1 requires a
language model.

In order to solve Eq. (6.14) it is usually assumed a Viterbi-like approach approximating each sum
by their maximum value as follows,

p̂ = pθ(x, ŷ) = max
y,sT

1 ,T

{pθ(x, sT
1 , T |y) p(y)} , (6.15)

where recall that̂y stands for the target sentence that maximises this probability.
Provided that we only usen-gram language models in this thesis, we further assume thatthe lan-

guage model probability of a given target phrasep(y(st) |y(st−1
1 )) only depends on the(n− 1)-most

recent words, i.e.
p(y(st) |y(st−1

1 )) := p(y(st) | suf
n−1

(y(st−1
1 ))) , (6.16)

wheresuf n−1(· · · ) stands for the(n − 1)-most recent words.
In order to perform this maximisation, we define a decoding recurrence

σq,v(x) = max
t,st

1,y(st
1)

st=q, suf |v|(y(st
1))=v

˘
pθ(x(st

1), s
t
1 |y(st

1)) p(y(st
1))
¯

, (6.17)

where bysuf |v|(y(st
1)) = v we denote the fact that the suffix ofy(st

1) must be equal tov. We further
assume that ifv = ⋆ then this constraint is ignored, i.e.,

σq,⋆(x) = σq(x) = max
t,st

1,y(st
1)

st=q

˘
pθ(x(st

1), s
t
1 |y(st

1)) p(y(st
1))
¯

. (6.18)

Note thatσq,v can be recursively expressed in terms of a more basic case of itself as follows

σq,v = max
q′,v′,h

suf |v|(v
′h)=v,|v′h|≥|v|

{p(q | q′) p(x(q) |v′) p(v′ |h)σq′,h} , (6.19)

where note thatv′ plays the role ofy(st) andq the role ofst; and wherep(q | q′) is uniformly dis-
tributed as shown in Eq. (6.4).

In this way the probability of the desired target string is computed using the search recurrence as
follows

pθ(x, ŷ) = max
I

{ max
q=(·,I,·,J)

{σq,⋆}} . (6.20)

As usually, tracing back the decisions made during the recurrence computation provides the optimal
solution defined in Eq. (6.15).

However, although the recursionσq,v speeds up the search problem, it is still a hard problem. For
this reason, we still need to perform an approximate decoding in which we use a maximum number of
hypothesis for each stateq, sayM , and also a beam pruning [Wang and Waibel, 1997, 1998]. That is
to say, instead of using Eq. (6.19), we use the following approximated version

σ⋆
q,v =

⋆
max

q′,v′,h

suf |v|(v
′h)=v,|v′h|≥|v|

{p(q | q′) p(x(q) |v′) p(v′ |h)σ⋆
q′,h} , (6.21)
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where
⋆

max stands for an approximate version ofmax where we have applied several heuristics, such
as beam search or histogram pruning.

6.5 Maximum likelihood estimation
As discussed in section 6.2, the unknown vector of parameters of our phrase-based HMM model
only includes a table of phrase translation probabilities (see Eq. (6.2)). We will describe here its
EM-based maximum likelihood estimation with respect to a collection of training translation pairs
{(x1, y1), . . . , (xN , yN )}.

The log-likelihood function ofθ is:

LL(θ) =
X

n

log pr(xn |yn)

=
X

n

log
1

min(Jn, In)

X

s
|s|≤min(Jn,In)

|s|Y

t=1

p(xn(st) | yn(st))

|Succ(st−1)|
(6.22)

Remember from Section 1.1.4 in Chapter 1, that the EM algorithm maximisesLL(·) by iteratively
maximising a variational functionL(q, θ) through the application of two basic steps in each iteration:
the E(xpectation) step and the M(aximisation) step.

Letθ(k−1) be a guess of the optimal parameters obtained from previous iterations; then, in this case,
the E step requires the computation, for each pair(xn, yn), of the sample versions of (6.7) and (6.8),
as well as the following joint probability

ξT
ntq′q := pθ(k−1) (xn, st−1 = q′, st = q |yn, T ) ,

which can be efficiently computed as

ξT
ntq′q =

αT
nt−1q′ p(x(q) |y(q))βT

ntq

pr(xn |yn) |Succ(q′)|
. (6.23)

On the other hand, the M step re-estimates the table of phrasetranslation probabilities,

p(k)(u |v) =
N (k−1)(u, v)P
u′ N (k−1)(u′, v)

, (6.24)

whereN (k−1)(u, v) is the expected number of occurrences of the the pair(u, v); i.e.

N (k−1)(u, v) =
X

n

1

min(Jn, In)

X

q′ q

X

T t

ξT
ntq′q δnq(u, v) , (6.25)

with δnq(u, v) defined as1 if u = xn(q) andv = yn(q); 0 otherwise.

6.6 Experiments

6.6.1 Corpora
The proposed phrase-based hidden Markov model was assessedon two different corpora: the EUTRANS-
I dataset [Amengual et al., 2000] and the Europarl-10. The former dataset comprises12 000 bilingual
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EUTRANS-I Train Set Test Set
Spanish English Spanish English

sentences 10K 2K
avg. length 12.9 13.0 12.7 12.6
vocabulary 686 513 611 468
running words 97.2K 99.2K 35.0K 35.6K
perplexities (3-gram) - - 5.4 3.8

Table 6.1: Basic statistics of the Spanish-English EUTRANS-I task, whererunning
wordsdenotes the total amount of word occurrences.

EUROPARL-10 Train set Test set
English Spanish English Spanish

sentences 76, 996 5, 000
avg. length 7.01 7.0 7.2 7.0
voc. size 16K 22K 4.1K 5.2K
running words 546K 540K 35.8K 3.91M
perplexities (3-gram) - - 77.6 86.8

Table 6.2: Basic statistics of the EUROPARL-10 corpus whererunning wordsdenotes
the total amount of word occurrences.

sentence pairs from a limited-domain Spanish-English machine translation application for human-to-
human communication situations in the front-desk of a hotel. It has also been used in previous Chap-
ter 5. The latter comprises all the sentences of the English-Spanish Europarl-v2 [Koehn, 2005] with
length equal or less than10. We have randomly selected5K sentences for testing. Some basic statistics
are shown in Table 6.1 and 6.2.

6.6.2 Results

Two basic experiments were carried out with the Eutrans-I corpus. In the first experiment, we used
Moses [Koehn et al., 2007] to obtain a baseline of the corpus using an inverse phrased-based probabil-
ity model and a4-gram language model, i.e. without MERT training, as discussed in Section 6.4. For
this experiment, we have used a maximum phrase length of15 words and we have used only the inverse
translation model and the language model, i.e. we have not perform the MERT training. For evalu-
ating the performance we usedword error rate (WER) andbilingual evaluation understudy(BLEU)
measures. We obtained a WER of7.7% and a BLEU score of89.1%. These are relatively good re-
sults since, recall that in general low values of WER and highvalues of BLEU are a clear indication
of high quality translations. Additionally, we compared this Moses baseline with the proposed phrase-
based hidden Markov model to better train the phrase translation table. We proceeded as in the baseline
model although, now, the phrase table obtained before was used to initialise the EM algorithm proposed
in Section 6.5 for parameter training in accordance with criterion in Eq. (6.22). In this case, we obtained
a WER of7.8% and BLEU of88.5%.

Obviously, the result obtained with our model was not betterthan that obtained with the baseline
approach. In analysing the phrase table provided by our model, we found that the EM algorithm prefers
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long to short phrases; that is, given a target phrase, long source phrases are favoured with higher prob-
abilities. To empirically check this hypothesis, we repeated the two basic experiments described above
by first discarding training phrases longer that a given maximum threshold. For the most restrictive
thresholds, however, phrases longer than the threshold were not discarded so as to ensure full coverage
of the training data. The results are shown in Figure 6.2 in terms of BLEU.

 84

 85

 86

 87

 88

 89

 90

1 2 4 8 15

baseline

PHMM

maximum phrase length

BLEU (%)

Figure 6.2: BLEU (%) as a function of the maximum phrase length threshold, for the
baseline approach and our phrase-based HMM (PHMM).

The results in Figure 6.2 confirm our hypothesis on the bias tolong phrases in our model. A possible
solution to this problem is to refine our phrase-based HMM with inclusion of length models to penalise
long phrases.

In the case of the Europarl-10 corpus, we carried out one experiment similar to the first experiment
with the Eutrans-I corpus. In this case we fixed the phrase length to 7. The Moses baseline scored
50.0% points of WER and32.7% of BLEU; whilst the proposed model scored54.6% points of WER
and26.7% of BLEU; which clearly worsens the baseline. It seems that this negative result is also due
to the overfitting tendency of the MLE, since we did not propose a smoothing model.

6.7 Conclusions
A phrase-based hidden Markov model has been proposed for statistical machine translation. We have
described the forward and backward recurrences for efficient computation of the model and its EM-
based parameter re-estimation algorithm. Empirically results have been reported comparing the pro-
posed model with a baseline system. It has been found that ourmodel is biased to long phrases and
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tends to quickly overfit the system. Due to this overfitting the systems does not outperforms the baseline
system.

We have identified some problems. Firstly, a classical HMM isnot fully adequate for processing
both input and output strings, since the handling of the segmentation variables requires speciallised
states. Secondly, the computational time is too expensive to make this model useful with big corpora.
Actually, we need a matrixO(IJ min{I, J}); however the third dimensionmin{I, J} accounts for
the number of phrases that have been used and does not introduce any relevant statistical information to
the training process. Finally, the model tends to get overfitted biasing the long phrases.

In the following chapter, we extend and modify this model by making use of ahidden semi-Markov
model (HSMM)formalism. This allow us to amend the three previously mentioned problems.
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Chapter 7
A phrase-based hidden semi-Markov model for

monotone machine translation

“ Then there was the man who drowned crossing a stream with an average depth of six inches.”
W. I. E. GATES
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c1 c2 c3

x1 x2 x3 x4

y1 y2 y3 y4 y5

Figure 7.1: A generative example of the hidden semi-Markov model approach to ma-
chine translation, in which a source stringx4

1 is translated to a target stringy5
1 through

a segmentation of both sentences into4 concepts.

7.1 Introduction
In previous chapter, we introduced a novel approach to machine translation based on the hidden Markov
model. One drawback of this model, is the computational complexity associated with its training al-
gorithm. In this section, by making use of the hidden semi-Markov formalism, we successfully amend
the computation problem of the previous model. With this newformalism, we properly define a phrase-
based model eligible for being theoretically expanded without the problems derived from the heuristi-
cally computed phrase dictionaries. Finally, and in order to avoid the harmful overfitting problems, we
resort to a smoothing word-based IBM model 1.

We begin this chapter with the description of our new proposal in Section 7.2. Likewise to classical
HSMM, in Section 7.3 the well-known forward and backward recurrences are described into detail. The
training algorithms are explained in Section 7.4. The practical behaviour of the PBHSMM is analysed
in Section 7.6. Afterwards, concluding remarks are gathered in Section 7.7.

7.2 The phrase-based hidden semi-Markov model
Inspired on the HSMM described in Section 1.1.6 Chapter 1, wedefine here ourphrase-based hidden
semi-Markov model (PBHSMM)for monotone machine translation [Andrés-Ferrer and Juan,2009]. Let
x ∈ X⋆ be the source sentence andy ∈ Y ⋆ the target sentence, we model the conditional translation
probability,pr(x |y, J) by assuming that the monotonic translation process has beencarried out from
left to right in segments of words orphrases. For this purpose, both sentences should be segmented
in the same amount of phrases. Figure 7.1, depicts an exampleof a possible monotonic bilingual
segmentation in which the source sentence comprises4 words,x4

1; whereas the target sentence is made
up of 5 words,y5

1. Note that each bilingual phrase forms aconcept[Brown et al., 1993]; for instance
c1, c2 and c3 are concepts in fig. 7.1. In order to represent the segmentation process, we use two
segmentation variables for both source,l, and target,m, sentences.

To better understand our monotone translation modelpθ(x |y, J), it is first convenient to fully
understand how the segmentation process is represented using the formerly mentioned segmentation
variables: the source segmentation variable,l; and the target segmentation variable,m.

On the one hand, the target segmentation variablem stores each target segment length at the posi-
tion at which the segment begins. Therefore, if the target segmentation variablem has a value greater
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than0 at positioni, then a segment with lengthmi starts at such positioni. Note that this notation dif-
fers from that of Chapter 6, since now the length is specified at the segment boundaries. For instance,
the target segmentation represented in Figure 7.1 is given by m = m5

1 = (2, 0, 1, 2, 0). Therefore, val-
ues for the segmentation variable such asm = (2, 1, 0, 3, 0) or m = (2, 2, 0, 3, 0), are out-of-domain,
and, hence, invalid. The Table 7.1 enumerates in the second column all the target segment variable
domain for the case of a target sentence of5 words. In the same table, the third column corresponds to
the induced target segmentation for the value ofm specified in the first column. Note that the domain
of the target segmentation ranges among all the possible segmentation lengths.

On the other hand, the source counterpart of the target segmentation variable is the source seg-
mentation variablel. The source segmentation random variable accounts for the length of eachsource
segmentat the position at which its correspondingtarget segmentbegins. If the source segmentation
variablel has a value greater than0 at positioni, then the length of the source segment corresponding
to the target phrase that starts at positioni, is li. Recall that the length of the target segment starting at
positioni is mi. For instance, in Figure 7.1 the source segmentation variable is l = l51 = (2, 0, 1, 1, 0).

Table 7.1 enumerates all possible values of both segmentations variables,m and l for a source
sentence of4 words and a target sentence of5; and the segmentation they induce in both source and
target sentences. It is valuable to mention, that the possible values ofl depend on bothm andJ . There
is only one bilingual segmentation with unit length; but there are12, 18 and4 segmentations of length
2, 3 and4, respectively. Note that in the special case in whichm splits the target sentencey5

1 in 5
segments; there is no possible value forl and no segmentation is induced inx4

1.
Now, we can mathematically define our inverse translation model, depicted in Figure 7.1, as a full

exploration of all segmentations

pr(x |y, J) =
X

m

X

l

pr(x, l, m |y, J) , (7.1)

wherem ranges among all the possible target segment values fory, andl ranges only on those values
that are in accordance withm andJ .

The complete model in Eq. (7.1) is decomposed as follows

pr(x, l, m |y, J) = pr(m |y, J)pr(l |m, y, J)pr(x | l, m, y, J) . (7.2)

All the probabilities in Eq. (7.2) are being decomposed left-to-right. We explain into detail the
decomposition of the target segment length probability model since the extension of this technique
to the source length and the emission probabilities is straightforward and can make the discussion
cumbersome.

To simplify notation, we need to give some additional definitions, before decomposing the target
length probabilitypr(m | y, J). Given a target segmentation variable, saym, we define its prefix
counterpart,m̄ as follows

m̄i =

iX

k=1

mk i = 0, 1, . . . , I . (7.3)

Similarly, for the source segmentation variablel we can define its prefix counterpartl̄ as follows

l̄i =

iX

k=1

lk i = 0, 1, . . . , I . (7.4)

For instance, in Figure 7.1, the prefix segments lengths arem̄ = m̄5
0 = (0, 2, 2, 3, 5, 5) andl̄ = l̄

5
0 =

(0, 2, 2, 3, 4, 4), for target and source segmentation variables respectively.
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# segments m y5
1 segments l x4

1 segments
1 (5, 0, 0, 0, 0) y5

1 (4, 0, 0, 0, 0) x4
1

2

(4, 0, 0, 0, 1) y4
1, y5

(3, 0, 0, 0, 1) x3
1, x4

(2, 0, 0, 0, 2) x2
1, x

4
2

(1, 0, 0, 0, 3) x1, x
4
2

(3, 0, 0, 2, 0) y3
1, y

5
4

(3, 0, 0, 1, 0) x3
1, x4

(2, 0, 0, 2, 0) x2
1, x

4
2

(1, 0, 0, 3, 0) x1, x
4
2

(2, 0, 3, 0, 0) y2
1, y

5
3

(3, 0, 1, 0, 0) x3
1, x4

(2, 0, 2, 0, 0) x2
1, x

4
2

(1, 0, 3, 0, 0) x1, x
4
2

(1, 4, 0, 0, 0) y1, y
5
2

(3, 1, 0, 0, 0) x3
1, x4

(2, 2, 0, 0, 0) x2
1, x

4
2

(1, 3, 0, 0, 0) x1, x
4
2

3

(3, 0, 0, 1, 1) y3
1, y4, y5

(2, 0, 0, 1, 1) x2
1, x3, x4

(1, 0, 0, 2, 1) x1, x
3
2, x4

(1, 0, 0, 1, 2) x1, x2, x
4
3

(2, 0, 2, 0, 1) y2
1, y

4
3, y5

(2, 0, 1, 0, 1) x2
1, x3, x4

(1, 0, 2, 0, 1) x1, x
3
2, x4

(1, 0, 1, 0, 2) x1, x2, x
4
3

(2, 0, 1, 2, 0) y2
1, y3, y

5
4

(2, 0, 1, 1, 0) x2
1, x3, x4

(1, 0, 2, 1, 0) x1, x
3
2, x4

(1, 0, 1, 2, 0) x1, x2, x
4
3

(1, 3, 0, 0, 1) y1, y
4
2, y5

(2, 1, 0, 0, 1) x2
1, x3, x4

(1, 2, 0, 0, 1) x1, x
3
2, x4

(1, 1, 0, 0, 2) x1, x2, x
4
3

(1, 2, 0, 2, 0) y1, y
3
2, y

5
4

(2, 1, 0, 1, 0) x2
1, x3, x4

(1, 2, 0, 1, 0) x1, x
3
2, x4

(1, 1, 0, 2, 0) x1, x2, x
4
3

(1, 1, 3, 0, 0) y1, y2, y
5
3

(2, 1, 1, 0, 0) x2
1, x3, x4

(1, 2, 1, 0, 0) x1, x
3
2, x4

(1, 1, 2, 0, 0) x1, x2, x
4
3

4

(2, 0, 1, 1, 1) y2
1, y3, y4, y5 (1, 0, 1, 1, 1) x1, x2, x3, x4

(1, 2, 0, 1, 1) y1, y
3
2, y4, y5 (1, 1, 0, 1, 1) x1, x2, x3, x4

(1, 1, 2, 0, 1) y1, y2, y
4
3, y5 (1, 1, 1, 0, 1) x1, x2, x3, x4

(1, 1, 1, 2, 0) y1, y2, y3, y
5
4 (1, 1, 1, 1, 0) x1, x2, x3, x4

5 (1, 1, 1, 1, 1) y1, y2, y3, y4, y5 ∅ ∅

Table 7.1: A full domain specification for both segmentation variables, m and l, in
the case of a source sentence of4 words and a target sentence of5 words. For better
understanding of these variables, the induced segmentation in both source and target
sentences is also provided in columns3 and5. Although there is a possible segmenta-
tion of the target sentencey into 5 segments (last row), it is not the case for the source
sentencex.
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The probability of the target segmentation variable is given by

pr(m | y, J) =

IY

i=1

pr(mi |m
i−1
1 , y, J) . (7.5)

At first stage, we assume that each partial probability in Eq.(7.5) does not depend neither ony, nor on
both lengths (I andJ) and, hence, the probabilitypr(mi |m

i−1
1 , y, J) is modelled as follows

pr(mi |m
i−1
1 , y, J) :=

(
p(mi) m̄i−1 + 1 = i, mi > 0

1 m̄i−1 + 1 6= i, mi = 0
(7.6)

Note that the first case in Eq. (7.6) is satisfied by the positionsi in which a segment begins, whereas the
other case is satisfied by the positions that lay inside a segment (execept for the boundaries).

Finally the segmentation probability can be expressed as follows

pr(m |y, J) :=
Y

i∈Z(m)

1
Y

i6∈Z(m)

p(mi) (7.7)

whereZ(m) or simplyZ stands for the set of positionsi for which mi is 0. For instance, in the
example in Figure 7.1,Z is instanced toZ(m) = {2, 5}.

Provided that one of the two products in Eq. (7.7) simplifies to 1, the segmentation probability is
expressed as

pr(m |y, J) :=
Y

i6∈Z

p(mi) . (7.8)

Since explicitly showing these details makes the discourseto be awkward, we will henceforth omit them
abusing of notation whenever it does not entail confusion. Hence, we will use equations similar to the
following

pr(m | y, J) :=
Y

t

p(mt) , (7.9)

where we have explicitly omitted thatt ∈ Z, but we keep the subindext instead ofi for subtly high-
lighting this modelling process. Note that decomposition is similar to the usual state probability de-
composition used in hidden semi-Markov models (see Section1.1.6 Chapter 1).

Similarly to the target segmentation modelling, the sourcesegmentation yields the following equa-
tion

pr(l |m, y, J) :=
Y

t

p(lt |mt) , (7.10)

where we have assumed that thet-th source segment lengthlt depends only on the correspondingt-th
target segment lengthmt; and hence, it is independent of the remaining target segment lengths as well
as independent of the previoust − 1 source segment lengthslt−1

1 .
Finally, knowing the segmentation variables, the emissionprobability is also decomposed left-to-

right yielding

pr(x | l, m, y, J) :=
Y

t

p(x(t) |y(t)) , (7.11)

where we have assumed that the emission of the source phrasex(t) only depends ony(t); and where
x(t) stands forxl̄t

l̄t−1+1
andy(t) for yt+mt−1

t ; i.e., thet-th “emitted” source phrase and its respective

t-th target phrase. Note thatl̄t is equal tōlt−1 + lt provided that positiont is a starting position for a
target segment.
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Summarising, the proposed (complete) conditional translation model is defined as follows

pr(x, l, m |y, J) :=
Y

t

p(mt) p(lt |mt) p(x(t) |y(t)) , (7.12)

and, hence, the incomplete model introduced in Eq. (7.1) is parametrised as follows

pθ(x |y, J) :=
X

m

X

l

pθ(x, l, m | y) , (7.13)

wherepθ(x, l, m | y) is given by the following expression

pθ(x, l, m |y) =
Y

t

p(mt) p(lt |mt) p(x(t) | y(t)) , (7.14)

with the following parameter setθ

θ = {p(m), p(l |m), p(u |v) | ∀l > 0, ∀m > 0,∀u ∈ X
⋆,∀u ∈ Y

⋆} . (7.15)

In thephrase-based hidden semi-Markov model (PBHSMM)defined in this section, we can under-
stand each target phrasey(t) as the “state” of a HSMM in which the source phrasex(t) is emitted. Note
that the output sentence probability,p(y), plays the role of the state sequence probability in a HSMM.
Such probabilityp(y), is better modelled by a specific language model such as an-gram, due to the
nature of such variable. Obviously this is not a pure HSMM in which we have a latent state variable.
The omission of this latent variable is more an assumption than a requirement. Recall that in Figure 7.1
we have depicted each bilingual phrase pair being emitted bya conceptwhich could represent a latent
state. We have proposed this extension in the conclusion section as a future research line.

Since the model assumes that the segmentation variables arenot given in the training data, some
approximate inference algorithm such as the EM (see Section1.1.4 Chapter 1) is needed. In the follow-
ing section, the standard recurrences needed in HSMM training are adapted to the proposed translation
model.

7.3 Recurrences
As it is common in hidden Markov models and specifically in hidden semi-Markov models, some
helpful recurrences are defined in order to efficiently obtain the answer to some common questions. We
focus, in this section, on3 selected questions among many others:

• Which is the probability for a given bilingual pair(x, y)?

• Which is the best segmentation for a given bilingual pair(x, y)?

• Which is the best parameter setθ given a training set{(xn, yn)}N
n=1?

7.3.1 Forward recurrence

The forward recurrenceαtl is defined as the following prefix probability

αtl = αtl(x, y) := pθ(xl
1, l̄t = l, m̄t = t |y) , (7.16)

where the events̄lt = l andm̄t = t, imply that a source (or target) phrase ends at positionl (or t) in
the input (or output, respectively).
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The prefix probability in Eq. (7.16) is recursively computedas follows

αtl =

8
>>>><
>>>>:

1 t = 0, l = 0
t−1X

t′=0

l−1X

l′=0

αt′l′ p(t′ − t) p(l′ − l | t′ − t) p(xl
l′+1|y

t
t′+1)

0 < t ≤ I
0 < l ≤ J

0 otherwise

(7.17)

In order to compute the forward recurrence in Eq. (7.16), a matrix of O(IJ) elements is needed.
The computational complexity required to fill such a matrix is O(I2J2). However, if the phrases are
constrained to a maximum source and target phrase length,L andM respectively, then the complexity
is reduced toO(IJML).

Furthermore, a detailed analysis of the forward algorithm unveils that not all the elements ofαtl

must be computed. The elements excluded do not verify one of the following requirements: that both
source and target sentences must be segmented in the same amount of phrases; or that both source
and target phrases must be smaller thanL andM respectively. For instance, in Figure 7.2, we have
highlighted which elements must be computed for two sentences of length20 and22. The remaining
values are useless, and we should save the time needed to compute them. Note that the longer the sen-
tences are, the more effective this optimisation is. Specifically, in the previous example the number of
elements to compute approximately account for the50% of the total values. This reduces the computa-
tional complexity in a ratio of2. Additionally, it is possible to add some heuristics to the process such
as beam pruning [Wang and Waibel, 1997, 1998].

Finally, the answer to the first question, i.e., how to compute the probability of a given pair, is given
by means of the forward recurrence as follows

pθ(x |y) = αIJ . (7.18)

7.3.2 Backward recurrence

The backward recurrenceβtl is defined as the suffix probability

βtl = βtl(x, y)=pθ(xJ
l+1|l̄t = l, m̄t = t, y) , (7.19)

wherel̄t = l andm̄t = t, implies that a source (or target) phrase ended/started at positionl (or t) of the
input (or output, respectively).

The suffix probability in Eq. (7.19) is recursively computedas follows

βtl =

8
>>>><
>>>>:

1 t = I, l = J
IX

t′=t+1

JX

l′=l+1

βt′l′ p(t′ − t) p(l′ − l | t′ − t) p(xl′

l+1 |y
t′

t+1)
0 ≤ t < I
0 ≤ l < J

0 otherwise

(7.20)

The computational complexity, both in terms of memory and time, of the backward recurrence are
the same of that of the forward recurrence. Furthermore, thesame optimisations applied to the forward
recursion are also eligible to be applied in the backward recursion.

Analogously to the forward recursion, the probability of a given bilingual pair of sentences(x, y)
can be efficiently computed as follows

pθ(x |y) = β00 . (7.21)
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αl,t 0 1 2 3 4 5 6 7 8 9 10111213141516171819202122
0 ■

1 ■ ■ ■

2 ■ ■ ■ ■ ■ ■

3 ■ ■ ■ ■ ■ ■ ■ ■ ■

4 ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

5 ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

6 ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

7 ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

8 ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

9 ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

10 ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

11 ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

12 ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

13 ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

14 ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

15 ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

16 ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

17 ■ ■ ■ ■ ■ ■ ■ ■ ■

18 ■ ■ ■ ■ ■ ■

19 ■ ■ ■

20 ■

Figure 7.2: The relevant values that should be computed for the forward recurrence in
the case of a source sentence of20 words and a target sentence of22 words. The max-
imum phrase length is assumed to be3 for both source and target phrases. Finally, the
black squares (■) stand for theαtl values that must be computed while the remaining
points are not needed.

7.3.3 Viterbi recursion
The second question proposed at the beginning of the sectionis stated as finding the best segmentation
for a given bilingual pair(x, y), i.e.

(̂l, m̂) = arg max
l,m

{pθ(x, l, m |y, J)} . (7.22)

In order to efficiently answer this question, we define the Viterbi recursion as follows

δtl = max
T,lT

1 ,mT
1

lT =l,mT =t

{pθ(xl
1, l

T
1 , mT

1 | y, J)} , (7.23)

where note thatl, m are required to end at positionsl andt respectively.
The Viterbi recursion in Eq. (7.23) is efficiently computed by the following recurrence

δtl =

8
>><
>>:

1 t = 0, l = 0

max
t′,l′

{δt′l′ p(t′ − t) p(l′ − l | t′ − t) p(xl
l′+1|y

t
t′+1)}

0 < t ≤ I
0 < l ≤ J

0 otherwise

(7.24)
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A traceback of the decisions made to computeδIJ provides the maximum segmentation̂m and l̂, i.e.
the solution to the Eq. (7.22).

The Viterbi recursion shares the computational requirements of the forward and backward recur-
rence. Furthermore, the same optimisations applied to the forward and backward recursion should also
be adapted for computing the Viterbi recursion.

7.4 Training
Since the proposed PBHSMM assumes that the segment length variables are not given in the training
data, an approximate inference algorithm such as the EM is needed. We give here the description of the
common training algorithms with respect to a collection of training translation pairs{(x1, y1), . . . , (xN , yN )},
that is to say: the Baum-Welch algorithm [Rabiner, 1989], and the Viterbi algorithm [Rabiner, 1989].
Both algorithms are instantiations of the EM algorithm as discussed in Section 1.1.4 Chapter 1.

The log-likelihood function as a function of the parametersθ is

LL(θ) =
X

n

log pr(xn |yn)

=
X

n

log
X

l,m

pθ(xn, l, m |yn)

=
X

n

log
X

l,m

Y

t

p(mt) p(lt |mt) p(xn(t) |yn(t)) . (7.25)

However, recall that the EM algorithm maximises a lower bound to the log-likelihood function,LL(·),
by iteratively maximising a variational functionL(q, θ) through the application of two basic steps in
each iteration: the E(xpectation) step and the M(aximisation) step.

7.4.1 Fractional counts
Using the previously defined forward and backward recursions, we can compute the probability of using
the source phrasexl′

l+1 and the target phraseyt′

t+1 when segmenting a given sample(x, y),

γtlt′l′ = pθ(xl′

l+1, l̄t = l′, l̄t−1 = l, m̄t = t′, m̄t−1 = t |y)

=
αtl p(t′ − t) p(l′ − l | t′ − t) p(xl′

l+1 |y
t′

t+1)βt′l′

pθ(x, y)

, (7.26)

with l < l′ andt < t′. This fractional counts are very useful for training the parameters of the model
in the following two Sections 7.4.2 and 7.4.3.

7.4.2 Baum-Welch training
Let θ(k) be a guess of the optimal parameters obtained from previous iterations. In this case, the E step
requires the computation, for each pair(xn, yn), of the sample versions of (7.16), sayα

(k)
ntl, and (7.19),

sayβ
(k)
ntl , as well as the fractional counts per sample, sayγ

(k)

ntlt′l′
. These sufficient statistics are com-

puted using the parameters obtained from previous iteration, θ(k). Recall that these sufficient statistics
summarise the optimal functionq(k) obtained in the E-step, by storing the relevant information; in other
words, computing these recurrences is equivalent to computeq(k).

Afterwards, in the M step, a new set of parametersθ(k+1) is estimated from the recurrences com-
puted in the E step. The new set of the parameters includes thethree probabilities of the model: the
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phrase dictionaryp(k+1)(u |v), the target length probabilityp(k+1)(m) and the source length condi-
tional probabilityp(k+1)(m | l).

The phrase dictionary is estimated as follow

p(k+1)(u |v) =
N (k)(u, v)P
u′ N (k)(u′, v)

, (7.27)

with
N (k)(u, v) =

X

n

X

l,l′

X

t,t′

γ
(k)

ntlt′l′
δ(xn(l, l′), u)δ(yn(t, t′), v) , (7.28)

where we use the notationz(l, l′) to refer tozl′

l+1, and whereδ(a, b) stands for the Kronecker delta
function which evaluates to1 if a = b and0 otherwise.

For the target phrase length probabilities, we obtain the following re-estimation equation

p(k+1)(m) =
N (k)(m)P

m′ N (k)(m′)
, (7.29)

with
N (k)(m) =

X

n

X

l,l′

X

t

γ
(k)

nt,l,(t+m),l′
, (7.30)

wherem is a target phrase length.
Finally, the source phrase length probabilities are re-estimated as follows

p(k+1)(l |m) =
N (k)(l, m)P
l′

N (k)(l′, m)
, (7.31)

with
N (k)(l, m) =

X

n

X

l′

X

t

γ
(k)

t,l,(t+m),(l′+l)
, (7.32)

wherel denotes a source phrase length, andm a target phrase length.
If an initial parameter set is givenθ(0); we can iteratively refine our initial guess by alternatively

applying the E-step and the M-step until convergence. The convergence criteria is given by either
reaching a maximum number of iterations or increasing the log-likelihood under a given threshold.
Since the log-likelihood function in Eq. (7.25) is not convex, the Baum-Welch training only provides a
local optimum after convergence. Therefore, the reader should bare in mind that a wrong initial guess
θ(0) can ruin the system performance.

7.4.3 Viterbi training

Let θ(k) be a guess of the optimal parameters obtained from previous iterations. In this case, the E-
step requires the computation of the maximum segmentation(l

(k)
n , m

(k)
n ), as defined in Eq. (7.22), for

each pair(xn, yn). In order to efficiently compute the optimal segmentation, the Viterbi recursion in
Eq. (7.24) is computed for each sample.

Afterwards, in the M-step finding the parameter setθ(k) that maximisesL(q, θ) is equivalent to
find the parameter set that maximises the following function

Q(θ | θ(k)) =
X

n

X

t

log p(m
(k)
nt ) + log p(l

(k)
nt |m

(k)
nt ) + log p(xn(t) |yn(t)) . (7.33)
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Rearranging terms in Eq. (7.33), we obtain

Q(θ | θ(k)) =
X

m

M (k)(m) log p(m) +
X

m

X

l

M (k)(l, m) log p(l |m)

+
X

u

X

v

M (k)(u, v) log p(u | v) ,
(7.34)

whereM (k)(e) stands for the number of times the evente has occurred in the sample completed with
the length variables, i.e.,{(xn, yn, l

(k)
n , m

(k)
n )}N

n=1. Specifically,M (k)(m) is defined as follows

M (k)(m) =
X

n

X

t

δ(m
(k)
nt , m) , (7.35)

andM (k)(l, m) is given by

M (k)(l, m) =
X

n

X

t

δ(m
(k)
nt , m)δ(l

(k)
nt , l) , (7.36)

and finally the phrase counts are defined as

M (k)(u, v) =
X

n

X

t

δ(x(k)
n (t),u)δ(y(k)

n (t),v) , (7.37)

wherex
(k)
n (t) andy(k)

n (t) stand for thet-th source and target phrase induced byl
(k)
n andm

(k)
n , respec-

tively; and where the expressionδ(a, b) is the Kronecker’s delta function.
The Viterbi training described here is also an iterative training process, since it is another instanti-

ation of the EM algorithm (see Section 1.1.4 Chapter 1). Therefore, if an initial parameter set is given
θ(0); we can iteratively refine our initial guess by alternatively applying the E-step and the M-step until
convergence. Similarly to the Baum-Welch training, the Viterbi training only provides a local optimum
after converge. However, since the Viterbi algorithm constraints the family of functions in the E-step,
i.e. q(k)(l, m) = δ(l, l

(k)
n )δ(m, m

(k)
n ), the optimal parameter set obtained after a Viterbi training is

typically worse than that of the Baum-Welch training [Rabiner, 1989].
The main advantage of the Viterbi training with respect to Baum-Welch training is that we only need

to compute one recurrence, the Viterbi recurrence, in contrast to the two recurrences, the forward and
backward recurrences, needed in the Baum-Welch training. Additionally, since the Viterbi algorithm
only takes into account the most probable segmentation in each iteration, a given outcome has effect on
less parameters, speeding up the algorithm. Therefore, theViterbi training is at least twice times faster
than the Baum-Welch training.

7.4.4 The model smoothing
A well-known drawback of the EM algorithm is that it tends to overfit the models. Moreover, the
HMM-based model discussed in Chapter 6, shown severe overfitting problems. In order to alleviate
these problems, we smoothed the phrase tablep̃(u |v) with a IBM model 1 [Brown et al., 1993] as
follows

p̃(u | v) := (1 − ǫ) p̂(u | v) + ǫ pIBM1(u |v) , (7.38)

wherep̃(u | v) stands for the smoothed phrase table,p̂(u | v) stands for the optimal phrase table (not
smoothed) obtained after the EM training andpIBM1(u |v) stands for the probability of the IBM
model 1without the null word, i.e.,

pIBM1(u / v, |u| , |v|) :=

|v|X

i=1

|u|Y

j

1

|v|
p(uj | vi) . (7.39)
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The IBM model 1 performs accurately when deciding whether a set of words contains the translations
of another set of words or not; even though it is unable to learn the order of such words.

7.5 Decoding Recurrence
In this section, we explain the recurrence used to perform the model search or decoding process in-
side a system based on the fundamental equation of machine translation introduced in Section 1.3
(Eq. (1.102)). The search problem in such a system is stated as the problem of finding the maximum
probable target sentence as follows

ŷ = arg max
y

{pθ(x |y) p(y)} , (7.40)

where thepθ(x | y) is modelled according to the PBHSMM proposed in Eq. (7.13), i.e.,

ŷ = arg max
y

(
X

m

X

l

pθ(x, l, m |y) p(y)

)
. (7.41)

In order to cope with Eq. (7.41) a Viterbi-like approximation is taken for all the sums. In this way the
search problem is reduced to

ŷ = arg max
y

˘
max
m,l

{pθ(x, l, m |y) p(y)}
¯

. (7.42)

For sake of simplicity, we focus on finding the probability ofthe maximum probable translation̂y,
i.e.,

pθ(x | ŷ) = max
y,l,m

{pθ(x, l, m | y) p(y)} . (7.43)

Provided that we only usen-gram language models, we assume that the language model probability
for a given target phrasep(v |ym

1 ) only depends on the(n − 1)-most recent words, i.e.

p(v | ym
1 ) := p(v | suf

n−1
(ym

1 )) , (7.44)

wheresuf n−1(· · · ) stands for the(n − 1)-most recent words.
In order to perform the maximisation in Eq. (7.43) we define a Viterbi-like decoding recurrence as

follows
σl,v(x) = max

t,lt
1,mt

1,y
mt
1

lt=l,suf |v|(y
mt
1 )=v

n
pθ(xl

1, l
t
1, m

t
1 |y

mt

1 ) p(ymt

1 )
o

, (7.45)

where bysuf |v|(y
mt
1 ) = v we denote that the suffix ofymt

1 must be equal tov. We further assume
that if v = ⋆, then this constraint is ignored, i.e.,

σl,⋆(x) = σl(x) = max
t,lt

1,mt
1,y

mt
1

lt=l

n
pθ(xl

1, l
t
1, m

t
1 |y

mt

1 ) p(ymt

1 )
o

. (7.46)

The search recurrenceσl,v can be recursively expressed in terms of a simpler case of itself as
follows

σl,v(x) = max
l′,v′,h

suf |v|(v
′h)=v

l′<l,|v ′h|≥|v|

n
p(l) p(

˛̨
v
′
˛̨

/ l) p(xl
l′+1 |v

′) p(v′ |h)σl′,h(x)
o

, (7.47)
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where note thatv is split into two partsv′ andh. The first part is used in the translation of the source
phrase whereas the second parth, is used as the prefix of the language model.

Finally, the solution to the search problem in Eq. (7.43) is computed using the search recurrence as
follows

pθ(x | ŷ) = σJ,⋆ . (7.48)

Note that once it is known how to computepθ(x | ŷ), the optimalŷ is obtained by tracing back the
decisions made during its computation.

However, although the recursionσl,v speeds up the search problem, it is still a hard problem. For
this reason, we still need to perform an approximate decoding in which we use a maximum number of
hypothesis for each source positionl, sayM , and also a beam pruning [Wang and Waibel, 1997, 1998].
That is to say, instead of using Eq. (7.47), we use the following approximated version

σ⋆
l,v(x) =

⋆
max

l′,v′,h

suf |v|(v
′h)=v,|v′h|≥|v|

n
p(l) p(

˛̨
v
′
˛̨
| l) p(xl

l′+1 |v
′) p(v′ |h)σ⋆

l′,h(x)
o

, (7.49)

where
⋆

max stands for an approximate version ofmax where we have applied several heuristics, such
as beam search or histogram pruning.

In the experimental section, we have also used the proposed model inside a log-linear loss func-
tion (see Section 1.3 of Section 4.3.3 for further details).For this aim, we have used the Moses sys-
tem [Koehn et al., 2007], and added our model as a feature inside its search. Should the reader be
interested in the details of this search, please refer to Koehn et al. [2007].

7.6 Experiments
We have carried out two types of experiments. The first set of experiments [Andrés-Ferrer and Juan,
2009] were designed to analyse the properties of the proposed model when used in a classical phrase-
based model that is based on the fundamental equation of statistical machine translation defined in
Eq. (1.102). The second set of experiments were designed to analyse the behaviour of the improvements
obtained in the first experiment when passed as a feature in a log-linear model based on Eq. (1.103).
To evaluate the quality of the translations, we used two error measures: bilingual evaluation understudy
(BLEU) [Papineni et al., 2001], and translation edit rate (TER) [Snover et al., 2006].

7.6.1 Classical phrase-based models.
For the first set of experiments, we tested our model in two corpora: the Europarl-10 and the Europarl-
20. The former comprises all the sentences from the English-to-Spanish part of Europarl-v3 [Koehn,
2005] with length equal to or less than10. The latter is made up of all the English-to-Spanish Europarl-
v3 sentences with length equal to or less than20. For both corpora we randomly selected5 000
sentences to test the algorithms. However, since the Europarl-10 has several repeated sentences, we
avoided repeated sentences in the test. Note that since we wanted to perform detailed experimentation,
we constrained the training length because of the time requirement for training the proposed PBHSMM.
Table 7.2 shows some basic statistics of the training part for both corpora; Table 7.3 summarises some
statistics from the testing part.

All the experiments were carried out using a4-gram language model computed with the standard
tool SRILM [Stolcke, 2002] and a modified Kneser-Ney smoothing. We used two systems: the proposed
PBHSMM with the search algorithm depicted in Section 7.5; and the Moses system [Koehn et al., 2007]
but constraining the model to a classical SMT system based onEq.(1.102) in Chapter 1 (a phrase-based
inverse model and an-gram language model). We used this constrained version of Moses instead of the
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Training Europarl-10 Europarl-20
Language En Sp En Sp
sentences 76, 996 306, 897
avg. length 7.01 7.0 12.6 12.7
running words 546K 540K 3.86M 3.91M
voc. size 15.5K 22.1K 37.1K 57.8K

Table 7.2: Basic statistics of the training sets.

Test Europarl-10 Europarl-20
Language En Sp En Sp
sentences 5, 000 5, 000
avg. length 7.2 7.0 12.6 12.9
running words 35.8K 35.2K 63.0K 63.8K
ppl (4-gram) 48.3 56.9 62.3 69.1

Table 7.3: Basic statistics of the test sets.

full log-linear model in order to define a fair translation baseline. However, in the following subsection,
we will compare both systems inside a log-linear model.

The proposed training algorithms require an initial guess.To this aim, we computed the IBM word
alignment models with GIZA++ [Och and Ney, 2003], for both translation directions. We computed the
symmetrisation heuristic [Och and Ney, 2004] and extractedall theconsistentphrases [Och and Ney,
2004]. Afterwards, we computed our initial guess by counting the occurrences of each bilingual phrase
and then normalising the counts. Instead of using the Moses system to perform this initialisation task,
we have implemented our own version of this process.

Since the training algorithm highly depends on the maximum phrase length, for most of the exper-
imentations we limited it to4 words. Table 7.4 summarises the results obtained for both translation
directions with the Europarl-10 corpus. Surprisingly, Viterbi training obtains almost thesame results
as the Baum-Welch training; this is probably because most ofthe sentences accumulate all the proba-
bility mass in just one possible segmentation. Maybe that iswhy our algorithm is not able to obtain a
large improvement with respect to the initialisation. Notethat since the proposed system and the Moses
system use different phrase-tables, these two numbers should not be compared. Therefore, the Moses
baseline is only given as a reference and not as a system to improve. The important question is whether
the model produces an improvement with respect to the initialisation, i.e., the result on iteration0. Note
that this corpus is small; therefore, although its complexity allow us to check some properties of the
algorithm, we cannot draw further conclusions. Moreover, recall that we have erased the repetitions
from the this test set.

Table 7.5 is the counterpart of Table 7.4 but for the Europarl-20. It can be observed that Baum-
Welch training has no advantage with respect to Viterbi training. Typically, approximately4 iterations
suffice to avoid overfitting which maximises the system performance. The results show a small im-
provement over the initialisation. Although the improvement is very small, its magnitude is similar
to the improvement obtained when extending the maximum phrase length as shown in Table 7.6. For
instance, as the table shows, extending the maximum phrase length from4 to 5 incurs in the same
improvement as performing4 Viterbi iterations in the model. Finally, in most of the cases, the Viterbi
training improves the translation quality in terms of TER and/or BLEU.
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En→ Sp Sp→ En
TER BLEU TER BLEU

Mosesp(x |y) p(y) 50.0 32.9 47.2 32.7
Iterations PBHSMM (Baum-Welch training)

0 51.4 31.9 48.2 33.2
1 51.4 31.9 47.9 33.1
2 51.5 31.9 47.9 33.1
4 51.2 32.6 48.1 33.1
8 51.4 31.8 48.0 33.0

Iterations PBHSMM (Viterbi training)
0 51.4 31.9 48.2 33.2
1 51.4 31.9 47.9 33.1
2 51.1 32.6 48.0 33.2
4 51.2 32.6 48.0 33.0
8 51.4 31.8 48.0 33.0

Table 7.4: Results for the Europarl-10 corpus with a maximum phrase length of4.

En→ Sp Sp→ En
TER BLEU TER BLEU

Mosesp(x |y) p(y) 57.3 23.5 55.1 24.10
Iterations PBHSMM (Baum-Welch training)
0 57.7 25.0 56.0 26.0
1 57.7 25.1 55.8 26.4
2 57.7 25.1 55.9 26.4
4 57.7 25.2 55.8 26.5
8 57.7 25.2 55.8 26.5
Iterations PBHSMM (Viterbi training)
0 57.7 25.0 56.0 26.0
1 57.7 25.1 55.8 26.4
2 57.7 25.1 55.9 26.4
4 57.7 25.2 55.8 26.5
8 57.7 25.2 55.8 26.5

Table 7.5: Results for the Europarl-20 corpus with a maximum phrase length of4.

Even though, the training does not incur in a significant improvement over the baseline in terms
of BLEU and/or TER; in practice, the quality of the translations is increased by the training. Table 7.7
shows some translation examples. A detailed analysis of theproposed translations suggest that most
cases belong to case A, case B or case D, and few translations belong to case C.
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Iterations En→ Sp Sp→ En
TER BLEU TER BLEU

Iterations Maximum phrase length2
0 60.5 21.2 57.9 23.5
4 60.5 21.2 58.1 23.5
Iterations Maximum phrase length3
0 58.6 24.1 56.1 25.7
4 58.3 24.1 56.4 25.5
Iterations Maximum phrase length4
0 57.7 25.0 56.0 26.0
4 57.7 25.1 55.8 26.5
Iterations Maximum phrase length5
0 57.7 25.1 55.8 26.6
4 57.4 25.3 55.3 26.9
Iterations Maximum phrase length6
0 57.7 25.4 55.9 26.6
4 57.3 25.6 55.4 26.8

Table 7.6: Results for the Europarl-20 corpus with several phrase length.

7.6.2 Log-linear models.
In this case, we also used two corpora: the Europarl-20, and Europarl-v3. The former has already been
described in the previous section. In this set of experiments, we randomly selected2 000 sentences from
the Europarl-20 training set as the development set to train the log-linear weights. The latter corpus is
the standard dataset used in Koehn and Monz [2006]. Table 7.8summarises the properties of the first
corpus and Table 7.9 summarises the porperties of the secondcorpus.

We compared3 systems: Moses, log-PBHSMM, and log-PBHSMM+Moses. All thesystems used
the Moses decoder [Koehn et al., 2007] to perform the decoding process. Therefore, the differences
among the three systems lay in the features used in the log-linear model. The first system is the standard
log-linear system trained with Moses [Koehn et al., 2007], where the following features were used:

• Direct phrase-based translation model

• Inverse phrase-based translation model

• Direct lexicon model

• Inverse lexicon model

• A phrase penalty2.718

• A word penaltye

• A 5-gram language model smoothed with the modified Kneser-Ney smoothing

The second model, the log-PBHSMM, has the same features as the Moses system, but we replaced
both direct and inverse phrase-based models with our trained PBHSMM systems. Finally, for the third
system, thelog-PBHSMM+Mosessystem, we added both direct and inverse phrase-based probabilities
trained with our PBHSMM system to the Moses system. Additionally, we obtained results with the
systems in a monotone way (not using reodering) and using thestandard distance-based reordering
implemented in the Moses decoder [Koehn et al., 2007]. The log-linear weights of the three systems
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Case A Training improves evaluation measures
REF. I sincerely believe that the aim of the present directive is astep in the right direction .
IT. 0 I am convinced that the aim of this directive is a step in the right direction .
IT. 4 I sincerely believe that the aim of the directive before us isa step in the right direction .
MOSES I sincerely believe that the aim behind the directive is alsoa step in the right direction .
Case B Training improves translation but not evaluation measures
REF. Mr president , i wish to endorse mr posselt ’s comments .
IT. 0 Mr president , i support for to our .
IT. 4 Mr president , i join in good faith to our colleague , mr posselt .
MOSES mr president , i would like to join in good faith in the words ofour colleague , mr robig .
Case C Training degrades the system
REF. BSE has already cost the uk gbp 1.5 billion in lost exports .
IT. 0 BSE has cost the uk 1.5 million losses exports .
IT. 4 BSE already has cost in the uk alone 1500 million pounds into loss of exports .
MOSES BSE has already claimed to britain 1500 million pounds into loss of trade .
Case D Other cases
REF. I will finish by telling you a story .
IT. 0 I will history .
IT. 4 To conclude a story .
MOSES I shall conclude a history .
REF. Are there any objections to amendment nos 3 and 14 being considered as null and void

from now on ?
IT. 0 Are there any objections to give amendments nos 3 and 14 .
IT. 4 Are there any objections to adopt amendments nos 3 and 14 ?
MOSES Are there any objections to consider amendments nos 3 and 14 ?

Table 7.7: Some translation examples (Sp→ En) before and after training the phrase
table,4 iterations with the Viterbi training, and maximum phrase length of4 words.

Training Development Test
Language En Sp En Sp En Sp
sentences 304 897 2 000 5 000
avg. length 12.7 12.6 12.8 12.6 12.6 12.8
running words 3.83M 3.88M 25.1K 25.5K 63.8K 63.0K
voc. size 37.0K 57.7K 3.9K 4.7K 6.3K 8.1K
ppl (5-gram) – – 62.2 67.2 63.3 69.2

Table 7.8: Basic statistics of Europarl-20 with development set.

were trained in the development set of each corpus performing Minimum Error Rate Training (MERT)
in terms of BLEU.

Table 7.10 shows the results in terms of BLEU and TER for these systems using the Europarl-20
training corpus. Instead of computing a single figure, we computed the confidence interval at95% as
described in Koehn [2004]. In this case we constrained the maximum phrase length to4 words, so that
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Training Development Test
Language En Sp En Sp En Sp
sentences 730 740 2 000 2 000
avg. length 20.8 21.5 29.3 30.3 30.0 30.2
running words 15.2M 15.7M 58.7K 60.6K 58.0K 60.3K
voc. size 72.7M 113.9K 6.5K 8.2K 6.5K 8.3K
ppl (5-gram) – – 79.6 78.8 78.3 79.8

Table 7.9: Basic statistics of Europarl-v3.

System En→ Sp Sp→ En
Distance-based reordering

TER BLEU TER BLEU

Moses 56.7 ± 0.7 27.7 ± 0.7 54.2 ± 0.7 28.5 ± 0.7
log-PBHSMM 56.4 ± 0.7 28.1 ± 0.7 53.8 ± 0.7 28.7 ± 0.6
Moses + log-PBHSMM 56.4 ± 0.7 28.3 ± 0.7 53.4 ± 0.7 28.8 ± 0.7

Monotone
TER BLEU TER BLEU

Moses 58.6 ± 0.7 26.1 ± 0.6 55.1 ± 0.7 27.3 ± 0.7
log-PBHSMM 57.6 ± 0.7 26.6 ± 0.6 54.4 ± 0.7 27.9 ± 0.6
Moses + log-PBHSMM 58.6 ± 0.7 26.4 ± 0.7 54.2 ± 0.6 28.0 ± 0.7

Table 7.10:Results for several translation systems on the Europarl-20corpus.

these results were comparable with the results obtained in the previous experimental setup. It can be
observed, that the log-PBHSMM obtains an improvement over the monotonic baseline, though it is not
statistically significant.

Table 7.11 is the same as Table 7.10 but with the Europarl-v3 corpus. In this case, we constrained
the maximum phrase length to the standard length of7 word. It can be observed, that, in this case, our
proposed model PBHSMM is not better than the standard Moses baseline. However, this corpus has the
peculiarity that the development and test set are not distributed according to the training set probability
distribution. This can be easily checked in Table 7.9 by comparing the average sentence lengths in
each partition. Therefore, the fact that the proposed PBHSMM works slightly worse than the standard
phrase-tables is not surprising. The only reason for providing these results is because it is a standard
corpus.

7.7 Conclusions
In this chapter, we have presented a phrase-based hidden semi-Markov model for machine translation
inspired on both phrase-based models and classical hidden semi-Markov models. The idea behind this
model is to provide a well-defined monotonic formalism that,while remaining close to the phrase-based
model, explicitly introduces the statistical dependencies needed to define the monotonic translation
process with theoretical correctness.

Although the proposed model does not take full advantage from the HSMM formalism, we could
not ignore some previous negative results [DeNero et al., 2006] when conditional phrase-based models
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System En→ Sp Sp→ En
Distance-based reordering

TER BLEU TER BLEU

Moses 55.0 ± 0.8 29.9 ± 0.9 53.6 ± 0.9 30.5 ± 1.0
log-PBHSMM 55.6 ± 0.9 29.3 ± 0.9 53.8 ± 0.9 30.1 ± 0.9
Moses+log-PBHSMM 54.9 ± 0.9 29.9 ± 0.8 53.5 ± 1.0 30.6 ± 0.9

Monotone
TER BLEU TER BLEU

Moses 55.6 ± 0.9 29.1 ± 0.8 53.8 ± 0.9 30.2 ± 0.9
log-PBHSMM 56.0 ± 0.9 28.9 ± 0.9 54.3 ± 0.9 29.8 ± 0.9
Moses+log-PBHSMM 55.6 ± 0.8 29.2 ± 0.9 54.0 ± 0.9 30.1 ± 0.9

Table 7.11:Results for several translation systems on the Europarl-v3corpus.

are trained statistically. In that work, DeNero et al. [2006] concluded that a statistical (conditional)
phrase-based model worsens the translation performance ofa phrase-based system because statistical
systems peak the phrase table probabilities. Consequently, we have forced our PBHSMM to be as
close as possible to a phrase-based model to check whether DeNero’s conclusion was extensible to this
formalism or not. In contrast to DeNero et al. [2006], our experimental analysis has shown a slight
improvement in some cases by applying the estimation algorithm with respect to the baseline, though
this improvement is not statistically significant. Furthermore, we have surprisingly found that both
training algorithms, Viterbi and Baum-Welch, obtain the same practical behaviour. Hence, we advocate
for the use of Viterbi training.

We consider that the addition of a well defined training procedure would allow us to improve the
system with future extensions. For instance, we could have assumed that thet-th source segment length
depends on thet-th target segment length and on thet-th target segmenty(t), that is to say,

pr(l |m, y, J) :=
Y

t

p(lt |mt, y(t)) . (7.50)

In order to fully take advantage of the HSMM theoretical framework, one outstanding and simple
extension to the proposed model is to “unhide” theconceptvariable by having a mixture of phrase-based
dictionaries. Hence, the model proposed in Section 7.2 would be given by

pr(x |y, J) :=
X

c

X

l

X

m

Y

t

p(ct | cπt) p(mt | ct) p(lt |mt, ct) p(x(t) | y(t), ct) , (7.51)

wherep(x(t) | y(t), ct) stands for a phrase-table that depdends on the current hidden conceptct and
the seen concepty(t); and wherep(ct | cπt) plays the role of the transition probabilities. Actually, the
requirements of this extension would not significantly affect the proposed estimation algorithms. For
instance, the forward recurrence will be slightly modified as follows

αctl =

8
>><
>>:

1 t = 0, l = 0
P

t′,l′,c′
αc′t′l′ p(c | c′) p(t′−t | c) p(l′−l | t′−t, c) p(xl

l′+1|y
t
t′+1, c)

0 < t ≤ I
0 < l ≤ J

0 otherwise
(7.52)

where the sum overt′ ranges fromt+1 to I ; likewise the sum overl′ ranges froml+1 to J ; and where
c′ ranges among all the possible phrase states.
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Note that the new unhidden concepts proposed in Eq.(7.51) would capture the syntactic, semantic
and grammatical constraints between the source and the target sentence inside the same translation
pair. However, we have left this interesting extension out of this thesis, and we intend to develop it in
immediate future work.

We have also used the proposed PBHSMM as a feature inside a log-linear model as most of the
current state of the art systems do. The results show an improvement over the baseline, both monotone
and non-monotone systems, but only if the test probability distribution is similar to the training proba-
bility distribution. This improvement would probably be lost as the monotonicity of the language pairs
decreases. However, we leave the practical analysis of thismodel in other language pairs for future
work.

The model presented in this chapter, PBHSMM, can have some sparseness issues for some lan-
guages. Furthermore, the model extension proposed in (7.51) can aggravate this sparseness problems.
In order to alleviate them, we could use word categories or tags, either statistically inspired or syntacti-
cally inspired. This approach would give a more reliable estimation of the phrase emission probabilities
by reducing the sparsity problems.

Finally, the most undesirable property of the proposed model is its monotonicity. Although the
monotonic constraint is a clear disadvantage for this first PBHSMM translation model, it can be ex-
tended to non-monotonic processes. For instance, the IBM-like reordering models [Zens et al., 2003]
can be included in the proposed model by means of memory states. Furthermore, we can decouple the
translation problem in two problems: the reordering of the input and then a monotonic translation. In
this way we could define specific input reordering models thatdo not need to tackle the problem of
translating the source sentence but rather reorder it. Afterwards, we could use any monotone translation
model to carry out the translation from the reordered sourcesentence to the target sentence. Neverthe-
less, these extensions lay far beyond the aim of this thesis.
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Chapter 8. Conclusions

8.1 Summary

The work developed in this thesis covers several topics in natural language processing: text classifica-
tion, language modelling, and statistical machine translation. Moreover, from a statistical point of view,
this thesis revisits several statistical techniques used in these natural language processing problems:
parameter estimation, loss function design, and statistical probability design.

With regard to parameter estimation, in Chapter 2, we proposed a constrained-domain maximum
likelihood estimation technique (CDMLE). Our new proposalavoids the additional heuristic smoothing
step that removes the good theoretical properties that the MLE verifies. The proposed technique can be
extended to avoid the smoothing stage of any statistical model. In order to introduce this technique, we
have applied it to the estimation of the naive Bayes classifier, which follows a multinomial distribution.
We tested the novel training algorithm in several text classification tasks: Eutrans-I, 20-Newsgroups,
Industry Sectors, and Job Categories. Finally, we observedthat the proposed CDMLE technique shows
performance that is similar to that obtained by classical smoothing techniques in these text classification
tasks.

In Chapter 3, we used the CDMLE idea to smooth then-gram leaving-one-out smoothing methods.
We smoothed the Good-Turing probability estimates by constraining their domain. This novel approach
filled the gap between two extremes in LM smoothing, that is tosay, between the Good-Turing and the
Kneser-Ney smoothing methods. The new proposed smoothing algorithms were compared in practice
with respect to the Kneser-Ney baseline in terms of perplexity. Two corpora were used to perform
this comparison: the Wall-Street-Journal and the English part of Europarl-v3. The results reported
an improvement over the baseline in terms of perplexity for backing-off n-gram language models.
The proposedn-gram smoothing techniques are also generalisable to otherleaving-one-out estimation
problems.

In Chapter 4, we carefully studied the consequences of changing the0–1 loss function for more
complex loss functions. We focused our study on those loss functions that retain a similar decoding
complexity when compared with the0–1 loss function. Several candidate loss functions were pre-
sented and tested in several statistical machine translation tasks. Furthermore, two different machine
translation models were used to analyse the properties of each loss function: the IBM model 2 and the
phrase-based models. We proved that some outstanding translation rules such as theDirect Translation
Ruleor even the log-linear models are, in fact, particular casesof these loss functions.

The remaining three chapters of this thesis, are focused on defining monotone phrase-based models
with efficient training algorithms. We started this hard task in Chapter 5 by giving a purely statistical
definition and a training algorithm for a phrase-based GIATIextension. However, in this case, the
training algorithm had high requirements in terms of both memory and time. This fact made the training
algorithm practically unfeasible for many tasks.

After analysing the proposed SGIATI method, we found that a joint model hardens the modelling
task unnecessarily since a joint translation model solves amore complex modelling task than what is
needed: a conditional translation model. Hence, in Chapter6, we proposed a monotone phrase-based
hidden Markov model (PBHMM) for machine translation. The training algorithms for this new proposal
are faster than the previous SGIATI model, which allowed us to obtain results in more complex tasks.
However, the time and memory complexity were still demanding. Furthermore, the model did not
improve the phrase-based model baseline for complex tasks.

Finally, we improved the PBHMM by using the hidden semi-Markov model formalism. Thus, a
phrase-based hidden semi-Markov model was proposed in Chapter 7. This model, while remaining
close to the conventional phrase-based models, introducedthe hidden semi-Markov formalism in order
to define efficient training algorithms. The experimental analysis reported improvements with respect
to a phrase-based model when used as a statistical model in a classical SMT system. However, when
this model played the role of a feature inside a log-linear loss function (a log-linear model in the SMT
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literature), the results were similar to those obtained with the state-of-the-art systems.
In summary, the main contributions of this thesis are the following:

• Constrained-domain maximum likelihood estimation (CDMLE) is proposed as an alternative to
the standard maximum likelihood estimation and smoothing post-processing. This novel ap-
proach was applied to the naive Bayes text classifier, obtaining good results in practice.

• New n-gram language smoothing models are proposed by applying CDMLE to smooth the
leaving-one-out (Good-Turing) probability estimates. Specifically, we have proposed5 smooth-
ing models: interval-constrained smoothing, quasi-monotonic smoothing, monotonic smoothing,
monotonic smoothing with upper constraints, and exact extended Kneser-Ney (eeKN) smooth-
ing.

• A detailed practical analysis of several loss functions in the scope of machine translation is
given. We proved that the direct translation rule is a special case of a loss function. Furthermore,
we proved that the log-linear models are a special loss function with a parametric vector for
characterising the loss. This parametric loss is usually adjusted or trained to resemble an error
measure such as the BLEU or the WER.

• Translation models for monotone translation problems are presented as the application of well-
known statistical modelling techniques such as HMM or HSMM.The results reported for the
the PBHSMM improved the quality of the translations when compared with a phrase-based
translation model. Unfortunately, the results obtained when the PBHSMM model plays the role
of a feature inside a log-linear loss do not outperform the state-of-the-art translation systems for
both monotone and non-monotone systems.

• Exact EM training and Viterbi-like training obtain the sameresults in practice when phrase-
based translation models are used. Specifically, we checkedthis wide spread intuition with the
proposed PBHSMM.

8.2 Ideas and future work

As research is a constantly changing and expanding field whenone research line is explored, it is
common for several more interesting lines to arise. Since this thesis is not the exception, we have left
several interesting and appealing lines for future exploration.

Firstly, we circumvented the problem of smoothing by proposing the CDMLE technique in Chap-
ter 2. The CDMLE technique can be easily expanded to several probability models, and, hence, systems.
Specifically, in the case of multinomial distribution, we have left out complex constraints that are similar
to complex smoothing techniques.

When applied ton-gram smoothing, the CDMLE yields several novel smoothing techniques. The
proposed techniques for smoothingn-gram models reported an improvement in terms of perplexity
when a back-off model is used; however, it is not yet clear that this improvement would yield an
improvement in terms of WER or BLEU. We think that this is a very interesting research line since,
depending on the task, we would get full improvement. For instance, all the improvements in isolated
models are not directly transferred to a global improvementin a log-linear loss (log-linear model in
SMT literature) for machine translation tasks.

The proposed smoothings followed a backing-off scheme, however, the best practice performance
is obtained with linear interpolation models. It would be a very interesting research line to extend the
proposed discounting methods to linear interpolation smoothing models. This extension would entail
the problem of computing leaving-one-out withfractional counts, since an iterative algorithm EM-like
would be necessary.
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The experimentation carried out in Chapter 3 suggests that the differences between the proposed and
the standard smoothing methods lay in the transition from the joint probability domain to the conditional
domain. Recall that the techniques based on leaving-one-out, which include the proposed smoothing
models, maximise thejoint likelihood function, pr(w, h); even though the system goal is to optimise
the (conditional) likelihood function,pr(w |h). We observed that the best smoothing technique, exact
extended Kneser-Ney, obtains the samejoint perplexitiesthan the KN technique; however, it is also the
technique whose performance is less diminished when it is measured in terms of the standard(condi-
tional) perplexity. Therefore, we believe that improvement will be achieved bydirectly applying the
proposed techniques to maximise the (conditional) likelihood function, even if there is no close solution
available. Moreover, it would also allow us to have discounting parameters that depend on then-gram
context,h, thereby, flexibilising the smoothing models.

Another interesting observation is that directly applyingthe optimal smoothing parameters for the
backing-off smoothing model to the interpolated smoothingmodel degrades all the proposed smooth-
ings in Chapter 3. It would be interesting to apply the proposed theory to an interpolated smoothing
model, in order to see whether the proposed smoothings improve the interpolation baseline or not.

In Chapter 4, we have explored the loss functions that lay in between the0–1 loss function and the
general error loss functions, such as the WERor the BLEU, which have already been studied [R. Schlüter
and Ney, 2005, Ueffing and Ney, 2004]. We found that thelog-linear modelsare really alog-linear loss
function. The results showed that none of the proposed loss functionscan beat these log-linear loss
functions. Although some outstanding loss functions were studied in Chapter 4, there are some appeal-
ing loss functions that have been left out, such as the remaining information. If these loss functions
were introduced inside a log-linear loss function that approximates the error criterion, then we think
that the system performance would be improved.

Finally, in the remaining three chapters we proposed several monotone translation models. Specifi-
cally, the last model improved (in some circumstances) the baseline, while having a very clear statistical
foundation. Note that we have decided to adhere to the monotonic constraint since for mainly mono-
tone (at phrase level) language pairs such as Spanish and English, the translation task is still an open
problem. Furthermore, adding complex reordering models only incurs in slight improvements.

We think that a more detailed experimentation with other language pairs is necessary in order to
see to what extent monotone formulation is good for those language pairs. Additionally, the PBHSMM
proposed in Chapter 7 can be greatly extended, as proposed inSection 7.7. The PBHSMM exten-
sions range from substituting the phrase emission probabilities by a word-level model, to expanding the
model to be non-monotone at the phrase-level. However, we think that the most appealing extension is
the extension of the model with a “hidden concept” or state. This will generate a mixture of phrase dic-
tionaries to be used at different positions in the source sentence while performing the translation. This
extension would take into account not only semantic relationships but also syntactic or grammatical
dependencies.

The reader should keep in mind that this extension would incur in slight modifications of the
PBHSMM training algorithms. Obviously, such an extension would require a huge parameter set.
However, this set can be reduced by modelling the emission probabilities at each state by IBM mod-
els 1 and 2 [Brown et al., 1993]. This would eventually lead toa PBHSMM where the phrase tables are
dynamically built whenever a source phrase is needed.

Surprisingly, we found that simplified translation tasks based on real data such as the Europarl-
20 corpus report similar or worse results than those obtained with the full corpora. How can long
sentences be properly translated if short sentences cannotbe correctly translated with similar training
data? We consider this to be a problem in the current state-of-art, phrase-based log-linear models and/or
error measures. Note that the length of the translated sentences does not seem to simplify the task
when the training data is also restricted. Therefore, it seems to us that the current models lack enough
generalisation capacity. Although the phrase table is a good aid in the translation process, we think that
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it is necessary to use a fined-grain unity in the translation process such as word-based phrase-tables, as
we proposed in the above extension to the PBHSMM.

One of the major criticisms to the proposed PBHSMM model liesin its monotonicity at phrase
level. This problem would be solved by one of the proposed extensions in Section 7.7. We are referring
to the implementation of IBM-like reorderings [Zens et al.,2003] by means of memory states. Also,
the translation process can be divided in two steps (a reordering of the input and a monotone translation
from the reordered input to the output [Kanthak et al., 2005]), in order to make the model non-monotone.

8.3 Scientific publications
Most of the work in this thesis has directly yielded international articles in workshops, conferences and
journals. In this section, we enumerate these contributions to the scientific community, highlighting the
relationship with this thesis.

The theory and experimental results in Chapter 2 have yielded one publication in an international
conference:

• J.Andrés-Ferrer and Alfons Juan. Máxima versoimilitud con dominio restringido applicada a
clasificación de textos. InProceedings of “Campus Multidisciplinar en Percepción e Inteligen-
cia” , CMPI-06, pages: 791–803, Albacete, Spain July 10-14, 2006.

It has also yielded a publication in an international journal:

• J.Andrés-Ferrer and Alfons Juan. Constrained domain maximum likelihood estimation for
naive Bayes text classification.Pattern Analysis and Applications (PAA). Published online. 2009.

Some of the smoothing techniques proposed in Chapter 3 have produced a participation in an inter-
national conference:

• J. Andrés-Ferrer and H. Ney. Extensions of absolute discounting (Kneser-Neymethod). In
Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing,
ICASSP2009, Taipei, Taiwan, 2009. Association for Computational Linguistics.

This contribution was awarded with theIEEE Spoken Language Processing Student Travel Granta,
which honours the student of an outstanding paper in the spoken language processing area accepted for
publication in the ICASSP conference or a ASRU workshop sponsored by the IEEE Signal Processing
Society.

The results obtained with IBM model 2 in Chapter 4 were published in two international confer-
ences:

• J.Andrés-Ferrer, I. García-Varea, F. Casacuberta. Análisis teórico sobre las reglas de traducción
directa e inversa en traducción automática estadística. InProceedings of “Campus Multidisci-
plinar en Percepción e Inteligencia”, CMPI-06, pages: 855–867, Albacete, Spain July 10-14,
2006.

• J.Andrés-Ferrer, I. García-Varea, F. Casacuberta. Combining translation models in statisti-
cal machine translation. InProceedings of the 11th International Conference on Theoretical
and Methodological Issues in Machine Translation, TMI-07, pages: 11–20, Skovde, Sweden
September 7-9, 2007.

The phrase-based results and a summary of the theory were published in an international journal:

• J.Andrés-Ferrer, D. Ortiz-Martínez, I. García-Varea, F. Casacuberta. On the use of different
loss functions in statistical pattern recognition appliedto machine translation.Pattern Recogni-
tion Letters. Volume 29, pages: 1072–1081, 2008.

aMore information athttp://research.microsoft.com/en-us/people/alexac/a ward.aspx
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The statistical extension to GIATI, the SGIATI model, whichis presented in Chapter 5, was pub-
lished in the following journal:

• J.Andrés-Ferrer, A. Juan and F. Casacuberta. Statistical estimation of rational transducers ap-
plied to machine translation.Applied Artificial Intelligence22(1-2):4–22, 2008.

The hidden Markov model approach to machine translation discussed in Chapter 6 was published
in the following international workshop:

• J.Andrés-Ferrer and A. Juan. A phrase-based hidden Markov model approach to machine
translation. InProceedings of New Approaches to Machine Translation, pages 57–62, January
2007.

Finally, the proposed phrased-based hidden semi-Markov model approach and some of the results
in Chapter 7 were published in the following international conference:

• J.Andrés-Ferrer and A. Juan. A phrase-based hidden semi-Markov approach to machine trans-
lation. In Proceedings of European Association for Machine Translation (EAMT), pages 168–
175, May 2009, Barcelona (Spain). European Association forMachine Translation.
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AppendixA
Karush-Kuhn-Tucker Conditions

In Chapters 2 and 3, we have used advanced convex optimisation techniques that deserve a superficial
survey. In Section 1.1.2 Chapter 1, we have analysed that in order to obtain the optimal parameter set,
it is needed to find the maximum parameter set according to a given criterionC(θ; D). Almost all the
optimisation problems that derive form this formulation, are subject at least to some normalisation con-
straint. In order to solve these constrained optimisation problems theconvex optimisationtheory [Boyd
and Vandenberghe, 2004] is usually applied.

First, we review a typical convex optimisation example. We wish to solve the following equation

θ̂ = arg max
θ∈Θ

{C(θ; D)} , (A.1)

subject to

Pn(θ) = 0, (n = 1, . . . , N) . (A.2)

In order to solve the previous optimisation theLagrangian functionmust be defined

L(θ, λ) = C(θ; D) −
X

n

λn Pn(θ) , (A.3)

where aLagrangian multiplier(λn) is defined for each equality constraintPn.
Theory concludes that solving Eq. (A.1) subject to Eq. (A.2)is equivalent to solve the following

problem
θ̂ = arg max

θ∈Θ

{max
λ

L(θ, λ)} . (A.4)

Therefore, an optimal point must verify the following property

∇L(θ, λ)|
θ̂,λ̂

= 0 , (A.5)

rising up a linear system from which the value ofθ̂ is hopefully worked out.
The above optimisation example is typically known as anequality constrained program. However,

in this thesis, we solve some optimisation problems that also include inequality constraints. In order to
solve problems with inequality constraints, theKarush-Kuhn-Tucker (KKT)conditions are needed.
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The new problem is similar to the previous constrained problem but with some additional inequality
constraints, that is to say, we wish to solve Eq. (A.1) subject to Eq. (A.2) and subject to the following
constraints

Qm(θ) ≤ 0, (m = 1, . . . , M) . (A.6)

In this case, the Lagrangian function is defined as follows

L(θ, λ, µ) = −C(θ; D) +
X

n

λn Pn(θ) +
X

m

µm Qm(θ) . (A.7)

Solving Eq. (1.15) subject to Eq. (A.2) and to Eq. (A.6) is theequivalent to solve

θ̂ = arg min
θ∈Θ

min
λ,µ

L(θ, λ, µ) . (A.8)

The KKT necessary conditions for a point(θ, λ, µ) to be a maximum point of Eq. (A.8) are the fol-
lowing

∇θ L(θ, λ, µ)|
θ̂,λ̂,µ̂

= 0 (A.9)

Pn(θ) = 0, (n = 1, . . . , N) (A.10)

µm Qm(θ) = 0, (m = 1, . . . , M) (A.11)

µm ≥ 0, m = 1, . . . , M (A.12)

Qm(θ) ≤ 0, (m = 1, . . . , M) (A.13)

Even though KKT conditions arenecessaryconditions, they are not sufficient conditions. That is to
say that a maximum point must verify them, but not all points that verify them are maximum points. An
additional condition must be verified in order to check whether a point that verifies the KKT conditions
is optimal or not. This condition states that the Hessian of the Lagrangian function must be positive at a
maximum point [Boyd and Vandenberghe, 2004]. After the possible optimal points are given, checking
whether this sufficient and necessary condition is verified or not, is a simple mathematical exercise. If
the characterisation of the solution is unique, then the solution is necessarily the maximum (if it exists).

The KKT conditions often provide just a characterisation ofthe solution, but not a procedure to
obtain it. Hopefully, once the form of the solution is known,it is often possible to define an efficient
algorithm to obtain this characterised solution.
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