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Abstract: 

Porous polymer membranes based on poly(vinylidene fluoride-

trifluoroethylene)/poly(ethylene oxide) copolymers, P(VDF-TrFE)/PEO, are prepared 

through the, from partial to total,  elimination of PEO, leading to interconnected 

micropores in the polymer blends.  

The electrolyte uptake, thermal and mechanical properties depends on the amount of 

PEO present in the polymer blend. Also the degree of crystallinity of PEO polymer and 

elastic modulus (E´) of the polymer blend decreases with increasing of PEO removal. 

Electrical properties of the polymer blend membranes are influenced by the porosity and 

are dominated by diffusion. The temperature dependence of ionic conductivity follows 

the Arrhenius behavior. It is the highest for the membranes with a volume fraction of 

pores of 44% (i.e, 90% PEO removal), reaching a value of 0.54 mS.cm-1 at room 

temperature. 

Battery performance was determined by assembling Li/C-LiFePO4 swagelok cells. The 

polymer blend with 90% PEO removal exhibit rate (124 mAhg-1 at C5 and 47 mAhg-1 at 

2C) and cycling capabilities suitable for lithium ion battery applications. 

	



2 
 

1. Introduction: 

Rechargeable Li-ion batteries, the ones most intensively studied for applications such as 

computers, mobile phones and  electric vehicles, among others, due their outstanding 

properties: they are lighter and cheaper than other battery types, show  high specific 

energy (100-265 Wh/Kg) and suitable power/weight relation (1800 W/Kg) [1, 2].   

The main goal of the different investigations is to obtain the maximum energy density 

per unit of weight or volume taking into account its safety [3-5]. 

One essential component in Li-ion batteries is the polymer electrolyte (PE) consisting of 

a macromolecular system (polymer with salts in its constitution [6])  with high ionic 

conductivity (>10-7 at 10-1 S/cm) [7, 8]. Further, polymer electrolytes can be used in 

multiple applications, including electrochromic devices [9-11], fuel cells [12, 13] and 

sensors/actuators [14], supercapacitors/ultracapacitors [15], together with Li-ion 

batteries [4, 16]. 

Solid polymer electrolytes (SPE) [8], gel polymer electrolytes (GPE) [17] and 

composite polymer electrolytes (CPE) [18] are different types of polymer electrolytes 

(PEs).  

The SPE are the ones with the simplest fabrication, and, for Li-ion battery applications, 

consist in different lithium salts dissolved in a polymeric matrix. CPE are very similar 

to SPE but differs in the inclusion of different nanofillers (inert oxide ceramic, 

molecular sieves, metallic, carbonaceous fillers, ferroelectric materials) dispersed in the 

polymer matrix to improve the mechanical, thermal and electrochemical properties. The 

GPE are obtained in two steps, first the salts are dissolved in a polar or ionic liquid and 

then added to a host polymer to provide an adequate mechanical stability [19, 20].  

In the area of battery applications, the separator/electrolyte are extremely important as 

they separate both electrodes (anode and cathode), control the number of ions and allow 

the movement of the ions between the electrodes during the charge and discharge 

process of the battery [21].  

The main parameters of a separator/electrolyte are permeability, porosity/pore size, 

electrolyte absorption and retention, low ionic strength, mechanical and thermal 

stability, resistance to chemical degradation by electrolyte impurities and uniform 

thickness [16, 21]. 

Different polymers such as poly(ethylene oxide) (PEO) [22] and poly(acrylonitrile 

(PAN) [23] can be used as battery separators. Among the most interesting polymers for 
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this application are the highly polar and piezoelectric fluorinated polymers: 

poly(vinylidene fluoride) (PVDF) and their copolymers poly(vinylidene fluoride-co-

trifluoroethylene), P(VDF-TrFE); poly(vinylidene fluoride-co-hexafluoropropene), 

P(VDF-HFP) and poly(vinylidene fluoride-co-chlorotrifluoroethylene), P(VDF-CTFE) 

[16]. 

For battery separator, these fluorinated polymers show strong advantages in comparison 

to other polymers (such as polyolefins) as they show high dipolar moment and dielectric 

constant which are important to increase lithium salts ionization, semi-crystallinity, 

chemical resistance, suitable mechanical strength, possibility of porosity control through 

binary and ternary polymer/solvent systems and high anodic stability due to the 

presence of strong electron-withdrawing function groups (-C-F-) [16, 24, 25].  

In particular, P(VDF-TrFE) has excellent properties to be used as battery separator in 

lithium ion battery applications, as sample preparation varying polymer/solvent ratio 

allows to vary the degree of porosity, which is correlated to electrolyte uptake and ionic 

conductivity [25].   

Polymer blends are often used as battery separator in lithium ion battery applications 

when the polymers that compose the blend show complementary properties that allow 

improving separator performance. For example, it is typical the use of one polymer with 

excellent mechanical properties and the other with high affinity with the electrolyte 

solution [6]. 

PEO polymer is  most used as polymer electrolyte and P(VDF-TrFE)/PEO blend have 

been produced with a room temperature ionic conductivity of 0.25 mS cm-1 for 1M 

LiClO4.3H2O electrolyte solution, despite the blends do not showed any porous 

microstructure [26].  

The P(VDF-TrFE)/PEO polymer blend was tested for lithium-ion battery applications 

with an 1 M lithium hexafluorophosphate (LiPF6) in ethylene carbonate/dimethyl 

carbonate (EC-DMC, 1/1 in weight) electrolyte solution and the capacity vs. current rate 

dependence of Li/Sn-C half- cells indicated reduced values in the blend membrane with 

respect to P(VDF-TrFE) ones due to the lower ion conductivity of the blends [27]. 

Thus, the objective of this work is to evaluate physical characteristics and battery 

performance of porous P(VDF-TrFE)/PEO polymer blends as a function of the porosity, 

by partially or totally removing PEO from the membranes.  
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2. Experimental Details 
 

2.1. Materials 

P(VDF-TrFE) (Mw = 350 000 g/mol) and PEO (Mw = 100 000 g/mol) were acquired 

from Solvay and Polysciences, respectively. The solvent N,N-dimethylformamide 

(DMF, 99.5%), Propylene carbonate (PC, anhydrous 99.0%) and Lithium Bis 

(Trifluoromethanesulfonyl) Imide (LiTFSI) were purchased from Aldrich. 

 
2.2. Polymer Blend Preparation 

The P(VDF-TrFE)/PEO blends were prepared with a composition of  50/50 weight ratio 

by dissolving the adequate amounts of both polymers in DMF at a 15/85 w/v 

polymer/solvent ratio.	The choice of this composition is due to the fact that larger PEO 

contents in the polymer blend lead to very fragile membranes and removing PEO yields 

a discontinuous material [28, 29]. The polymers were dissolved at 60 ºC during 4 hours 

by stirring until a homogeneous and transparent solution was obtained. The solutions 

were deposited in Petri dishes and the solvent evaporated at 70 ºC for two hours. 

Finally, complete removal of the solvent was achieved in vacuum for another three 

hours at 70 ºC. Samples with average thickness of 300 µm were obtained. 

 

2.3. Removal of PEO and Measurement of the Degree of Porosity 

Porosity was obtained by removing PEO from the samples. Due to its hydrophilic 

nature, PEO was removed just by fully immersing the samples in water for different 

times. 

The percentage of the removal of PEO was calculated after different immersion times 

using the following equation: 

                                      (1) 

where  and  denote the weight of dried membrane and weight of membrane after 

soaked in water, respectively.  

The value of porosity created in the P(VDF-TrFE)/PEO blend membrane is proportional 

to the initial percentage of PEO less of the percentage of the PEO polymer remaining 

after PEO removal in each time. 
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2.4. Electrolyte Solution and Uptake 
 
The electrolyte uptake was determined, after immersing the membranes in a solution of 

1 M LiTFSI in PC for 24 hours, by equation 2: 

%    (2) 

where ε is the uptake of the electrolyte solution, M0 is the mass of the membrane and M 

is the mass of the membrane after immersion in the electrolyte solution. This electrolyte 

solution exhibits similar viscosity as the 1 M LiPF6-EC-DMC electrolyte commonly 

employed in lithium-ion batteries [30]. The electrical conductivity of the 1 M LiTFSI in 

PC electrolyte is σ0= 6.5 × 10-3 S cm-1 at 25 °C. 

 

2.5. Characterization Techniques 

The microstructure of the membranes was examined in a scanning electron microscope, 

Jeol JSM-5410 after deposition of a gold conductive layer of sputtered gold.  

Contact angle measurements (sessile drop in dynamic mode) were performed at room 

temperature in a Data Physics OCA20 device using ultrapure water (3 mL droplets) as 

the test liquid. At least 3 measurements were carried out in each sample in different 

sample locations and the average contact angle was calculated. 

The crystalline phase of each polymer within the blend was determined by Fourier 

transform infrared spectroscopy (FTIR) using a Thermo Nicoled Nexus equipment in 

ATR mode over a range of 650–1750 cm−1 with 64 scans at resolution of 4 cm−1.  

Differential scanning calorimetry analysis (DSC) was carried out with a Perkin-Elmer 

Pyris 1 DSC instrument under a flowing nitrogen atmosphere between 25 and 200 oC at 

a heating rate of 10 ºC.min-1. All samples were measured in 30 µL aluminium pans with 

perforated lids to allow the release and removal of decomposition products. The degree 

of crystallinity (ΔXcryst) for each polymer was calculated using equation 3: 

  ,                                         (3) 

where ΔHf  is the melting enthalpy of the sample and ΔH100 is the melting enthalpy for a 

100% crystalline sample, being 103.4 J.g-1 for P(VDF-TrFE) [31] and 203 J.g-1 for PEO 

[32]. 
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Dynamic mechanical analysis (DMA) was performed in a Seiko DMS210 apparatus in 

the tensile mode. The storage modulus and loss tangent were measured at room 

temperature as a function of frequency from 0.05 Hz to 20 Hz.  Samples with typical 

dimensions of 10×4×0.030 mm were used.  

 

2.5.1. Electrochemical Evaluation 

The ionic conductivity was evaluated with an Autolab PGSTAT-12 (Eco Chemie) set-

up for frequencies between 500 mHz and 65 kHz, using a constant volume support 

equipped with gold blocking electrodes located within a Büchi TO 50 oven. The sample 

temperature variation ranged from 20 to 140 oC and was measured by means of a type K 

thermocouple placed close to the films. The ionic conductivity was measured during the 

heating cycles and determined by  

                                                         (4) 

where  is the thickness,  is the area of the samples and is the bulk resistance 

obtained from the intercept of the imaginary impedance (minimum value of Z’’) with 

the slanted line in the real impedance (Z’) through the Randles circuit [33]. The 

tortuosity (τ), the ratio between the effective capillarity to thickness of the sample, was 

determined by [34]: 

                                 (5) 

where σ0 is the electrical conductivity of the liquid electrolyte, σeff is the conductivity of 

the membrane and the electrolyte set and φ is the porosity of the membrane.  

The MacMullin number, NM, describes the relative contribution of a separator to the cell 

resistance and is defined by [35]: 

                                   (6)       

where σeff is the conductivity of the membrane and liquid electrolyte pair and σ0 is the 

conductivity of the pure liquid electrolyte 

The evaluation of the electrochemical stability of the polymer blends was carried out 

within a dry argon-filled glovebox using a two-electrode cell configuration with a 25 

µm diameter of gold microelectrode as working electrode and lithium disk counter 

electrode (10 mm diameter, 1mm thick, Aldrich, 99.9% purity) on a stainless steel 
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current collector. The sample was put between electrodes and the assembly was 

performed to an Autolab PGSTAT-12 (Eco Chemie) apparatus used to record 

voltammograms at a scan rate of 100 mVs-1. Measurements were conducted at room 

temperature within a Faraday cage located inside the glovebox. 

Li/C-LiFePO4 half-cells were assembled in an argon-filled glove box (H2O, O2 < 1ppm) 

using Swagelok-type cells with 1.5 mm thick Li metal foil (7 mm diameter) as 

reference/counter electrode, a swollen P(VDF-TrFE)/PEO membrane (9 mm diameter) 

as separator, C-LiFePO4 electrode (7 mm diameter) as working electrode and 1 M 

LiTFSI in a propylene carbonate (PC) as electrolyte. The C-LiFePO4 cathode was 

prepared as described in [36]. 

The cycling performance of the Li/C-LiFePO4 half-cells was carried out using a 

Biologic MPG station at room temperature. The galvanostatic cycling was performed 

within the 2.5-4.0 V voltage range, respectively, at low current rate (C5) and high 

current rate (2C). The rate capability was investigated at various discharge rates from 

C5 to 2C. 
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3.1. Results and Discussion  
 
3.1.1. Morpholgy, Uptake, Porosity and Contact Angle 

The membranes were immersed in water up to 7 days and the water was changed every 

day. The	evolution	of	the	PEO	content	 in	the	samples	 is	shown	in	figure	1:	 	89%	of	PEO was	

removed	during	the	first	day.  

 
Figure 1 – PEO removal process in function of time 

 
After removing the samples from the water, the drying process of the samples was 

performed in two steps: in open air for one day and in vacuum for another day. In the 

following, the samples will be named 0%, 25 % (1 hour), 38% (3 hours), 44% (6 hours), 

90% (1 day) and 98% (7 days), respectively, representing the PEO removed from the 

membrane. 

The surface and cross-section membrane morphology of the P(VDF-TrFE)/PEO blends 

are shown in figure 2 for samples with different PEO content.  
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Figure 2 - Surface (left)and cross-section (right) SEM images respectively of the 

P(VDF-TrFE)/PEO blends with different percentage of PEO removal: a-b) 0%, c-d) 

38%, e-f) 90% and g-h) 98%.  

 

The figure 2 a) and b) show the surface and cross-section morphology of the P(VDF-

TrFE)/PEO blend   showing fibrilar structure characteristic of P(VDF-TrFE) attributed 
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to the lamellar structures of the all trans β crystalline phase [37]. Since melting 

temperature of PEO is lower that 70ºC, PEO crystallizes during cooling from 70ºC to 

room temperature, in this process, pure PEO would form large spherulites (> 50µm 

diameter, results not shown), which are not observed in figure 2a-b) [28] and indicating 

that the crystallization kinetics of PEO is hindered by the presence of P(VDF-TrFE). 

The variation of the microstructure of the blends after PEO elimination is shown in 

figure 2 c-f for two different percentage of removal: 38% and 89%, respectively. 

Figure 2 shows that the pore structure (both porosity and pore size) increases with 

increasing PEO removal up to 90%. For PEO removal above 90%, the collapse of the 

pore structure is observed as shown figure 2 g-h for 98% PEO removal.  

Thus formation of the pore structure is fully determined by the elimination of the PEO 

as well as the interconnectivity which increases with decreasing PEO content as shown  

in the cross-section SEM images (figure 2 d) and 2 f)). Figure 2 f) shows a highly 

porous structure able to absorb higher electrolyte contents in the three-dimensionally 

continuous channels in comparison to figure 2 d). 

As previously reported, the conductivity of P(VDF-TrFE)/PEO based lithium salt 

complexes is in large extent  determined by the continuity and ionic mobility in the PEO 

phase that depends on the electrolyte solution content in the porous membrane (uptake 

value) [26]. 

Figure 3 illustrates the uptake of the electrolyte solution for the different percentage of 

PEO removal as a function of the dipping time. 

It has been shown for PVDF/PEO blends with 1M LiClO4 in PC electrolyte solution, 

that the PEO content has large influence in both rate and ratio of liquid electrolyte 

uptake [38] Figure 3 shows uptake values of 123% for the polymer blend without 

elimination of PEO due to stronger interactions of the organic electrolyte (e.g., solvent 

molecules and lithium salt) with the PEO host compound associated with a plasticized 

structure [39]. 
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Figure 3 – Uptake value as a function of time for samples with different PEO content 

(indicated as PEO removal).  

 

Independently of the PEO removal (figure 3), the blend membranes achieve saturation 

after approximately 10 min, with a 1M LiTFSI in PC content indicating that the void 

volume was fully filled. Liquid electrolyte uptake occurs in different stages: the 

electrolyte fill the pores (whenever present), then it swells into the amorphous phase 

and finally it is absorbed into the P(VDF-TrFE).  

The uptake value depends on the percentage of PEO removal in the P(VDF-TrFE)/PEO 

blend as shown in the figure 4. For the porous membranes of P(VDF-TrFE)/PEO blend, 

the uptake value after 10 minutes are 28%, 55%, 83% and 107% for 25%, 38%, 44% 

and 90% of PEO removal, respectively. Comparing the samples with PEO polymer 

elimination, it is observed that they present enhanced ability to absorb and retain the 

electrolyte solution except for sample with 98% of PEO removal due to the collapse of 

the microstructure (figure 2 g-h). The large uptake of P(VDF-TrFE)/PEO blend without 

PEO removal is due to stronger interactions of the organic electrolyte through the 

plasticizer effect [40]. 

This process depends thus on PEO content, porosity and pore connectivity (figure 4 and 

figure 2 (microstructure images)). 

Figure 4 shows the maximum uptake value after 15 min in electrolyte solution as well 

as the porosity as a function of PEO removal in the P(VDF-TrFE)/PEO blends. 
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Figure 4 – Uptake value and degree of porosity as a function of the percentage of PEO 

removal.  

 
Taking into account figure 4, the porosity of the polymer blend increases from 12% to 

44.5%, which in turn increases the uptake of liquid electrolyte from 33% to 119% with 

the elimination of PEO polymer. The fast uptake process can be attributed to the 

porosity, fully interconnected open pore structure and good affinity to the electrolyte. 

The uptake value increases with increase of the porosity for the membranes with PEO 

removal which in turn will affect the ionic conductivity of the membranes (figure 9 and 

10) due to the liquid trapped also in the pores [41]. In addition to the pores, the liquid 

electrolyte are also absorbed in the amorphous matrix of the P(VDF-TrFE) polymer, 

which causes swelling. 
The hydrophilic or hydrophobic behavior of the polymer blends is another important 

parameter to be considered in the development of battery separator applications as it 

reflects adhesion of the porous membrane with electrodes and it can be assessed through 

the measurement of the contact angle, i.e, wettability. Good wettability also allows the 

separator to better retain the electrolyte solution, thereby facilitating fast ion transport 

between the two electrodes during charge and discharge cycling [42]. 

The contact angle as a function of the percentage of PEO removal is illustrated in the 

figure 5. 
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Figure 5 – Contact angle of the P(VDF-TrFE)/PEO blend as a function of percentage of 

PEO removal. 

 

The low contact angle (~40º) observed for the membrane without elimination of PEO is 

due to the hydrophilic nature of PEO. Further, the contact angle increases with 

increasing PEO removal (figure 5) –i.e. decreasing PEO content- due to the morphology 

variations of porous membranes but, in particular, due to the larger relative content of 

hydrophobic P(VDF-TrFE). The maximum value of the contact angle (~92º) is observed 

for 90% of PEO removal.  
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3.1.2. FTIR, Thermal and Mechanical Results 

The vibrational spectra of the P(VDF-TrFE)/PEO blend membranes was determined by 

FTIR spectroscopy as presented in figure 6. The assignment of the absorption bands for 

each polymer (P(VDF-TrFE) and PEO  can be found in [28]. 

It was observed main absorption bands at 851 and 886 cm-1 corresponding to the all-

trans conformation of the P(VDF-TrFE) polymer [43, 44]. In this way, the presence of 

PEO does not cause any relevant modification in crystal phase of P(VDF-TrFE). 

 
 

Figure 6 – FTIR spectra of the P(VDF-TrFE)/PEO blends as a function of percentage 

of PEO removal. 

 
The absorption peaks of PEO are observed at 964, 1235-1280, 1343 and 1468 cm-1 that 

corresponds to CH2 rocking, CH2 twisting, CH2 wagging and CH2 scissoring [28]. 

Figure 6 shows that, as expected, the absorption peaks of PEO decrease with increasing 

the percentage of PEO removal. 

The safety of lithium ion batteries is a critical parameter strongly dependent on the 

thermal stability of the separators. The thermal stability in the membranes has been 

determined by the melting temperature, from which also the degree of crystallinity has 

been calculated. 

The DSC heating scans of the different P(VDF-TrFE)/PEO blends is shown in figure 7.  
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Figure 7 – DSC thermograms of the P(VDF-TrFE)/PEO blends as a function of 

percentage of PEO removal 

 
Figure 7 shows three endothermic peaks for all membranes. The lower temperature peak 

appears around 56-66ºC and corresponds to the melting temperature of PEO, and 

therefore decreases with increasing of percentage of PEO removal, i.e, with decreasing 

PEO content [45]. The other higher temperature endothermic peaks correspond to the 

P(VDF-TrFE) polymer: the one at ~119 ºC corresponds to the ferroelectric (FE)– 

paraelectric (PE) transition (Curie transition) and the one around ~148 ºC corresponds 

to the melting temperature of the PE phase [46]. Melting temperatures and crystalline 

fraction calculated by applying Eq. 3 are shown in Table 1 as a function of PEO 

removal. 

 
Table 1 – Degree of crystallinity and melting temperature for the different membranes 

as a function of the different percentage of PEO removal. 

 P(VDF-TrFE) PEO 
% PEO removal Tf ± 3 (ºC) χ ± 2 (%) Tf ± 3 (ºC) χ ± 2 (%) 

0 148 35 66 70 
25% 149 34 59 26 
38% 148 36 57 18 
44% 149 35 57 9 
90% 151 33 56 1.7 
98% 148 35 --- --- 
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Ojo con los cálculos de la cristalinidad, tiene que tomarse como referencia la masa de 
PEO que queda en la muestra después de la extracción, los números que pones para que 
se ha dividido por la masa total de la muestra 
 
Lo mismo para la cristalinindad del P(VDF-TrFE), hay que referirlo a su masa en la 
muestra 
 
Table 1 shows that the degree of crystallinity and melting temperature of the P(VDF-

TrFE) polymer is independent of the PEO removal. In relation to the degree of the 

crystallinity of PEO, it is observed that decreases with increasing of percentage of PEO 

removal, i.e. with decreasing PEO content due to a destruction of the crystalline regions 

at the amorphous/crystalline interfaces [47]. For PEO, increasing the amorphous content 

is beneficial for achieving a higher ionic conductivity [48]. 

The determination of the mechanical properties for the polymer blends is fundamental 

for this application. The mechanical properties of the samples were obtained by 

dynamical mechanical analysis (DMA) at room temperature through the measurements 

of the storage modulus E´ (figure 8). 

 
 

Figure 8 – DMA curves for (a): storage modulus, E´ vs log (ν) for all P(VDF-

TrFE)/PEO blends and (b): storage modulus, E´ as a function of the percentage of PEO 

removal at 1Hz.  

 
 

It is shown that an increase in E´ (figure 8a) is detected for all polymer blends with 

increasing frequency in the analyzed range from 0.05 to 10 Hz, which is attributed to 

the slow time response of these viscoelastic polymers at room temperature, far from the 

glass transition temperature (above in the case of PEO, and below in the case of P(VDF-
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TrFE))   [49]. The elastic modulus (E´) is also strongly dependent (figure 8a and b) on 

the membrane microstructure. 

Figure 8b shows that elastic modulus (E´) decreases with increasing of the degree of 

porosity (proportional to percentage of PEO removal) except for samples with high pore 

size (figure 2f) where the collapse of the structure also occurs (figure 2g). 

 

 

 

 
3.1.3. Ionic Conductivity and Electrochemical Stability 

 
Figure 9 represents the Nyquist curves of the liquid electrolyte soaked in all P(VDF-

TrFE)/PEO blends determined by AC impedance at 50ºC. For all samples, 

independently of the frequency, a linear dependence is observed. This behavior 

represents the diffusion of the polymer chain with coordinated ions and the liquid 

uptake of the polymeric blend membrane that benefits ion migration which results in a 

low impedance. 

  
Figure 9 - (a) Nyquist plots at 50 ºC and (d) ionic conductivity at 25 ºC and 100 ºC for 

the different P(VDF-TrFE)/PEO blends. 

 

It is observed that the ionic conductivity (σi), determined by Eq. (4), increases with 

increasing the percentage of PEO removal (i.e. decreasing PEO content), as shown in 

figure 9b, independently of the measured temperature. Increasing temperature leads, on 

the other hand, to an overall increase of the conductivity. 
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For the P(VDF-TrFE)/PEO blends, the highest room temperature ionic conductivity was 

0.54 mS cm-1 for PEO removal of 90% as  shown in table 2.  

This shows that the highest ionic conductivity is obtained for the polymer blends with 

the highest electrolyte uptake (table 2). The liquid electrolyte uptake depends on the 

porosity which in turn affects ionic conductivity. It is shown that higher porosity leads 

to higher electrolyte uptake which results in higher ionic conductivity (figure 4 and 9, 

table 2). 

 

 

Table 2 – Effective degree of porosity, room temperature ionic conductivity, tortuosity, 

MacMullin number (NM) and activation energy (Ea) of the different polymer blend 

separator membranes soaked in 1M LiTFSI-PC. 

 % PEO removal 
Property 0% 25% 38% 44% 90% 98% 

Effective porosity ϕeff / % 0 12 18.5 22 44.5 0 
σi at 25ºC / mS.cm-1 0.04 0.03 0.07 0.21 0.54 0.01 

NM 163 217 93 31 12 650 
τeff 0 5 4 3 2 0 

Ea / kJmol-1 8.7 13.4 9.1 8.1 6.3 12.6 
 
 

Table 2 shows, together with the ionic conductivity and degree of porosity, the 

tortuosity value and the MacMullin number (NM) calculated by Eqs. 5 and 6, 

respectively. 

It is observed that the ionic conductivity follows the same trend as the porosity, which 

in turn depends on the percentage of PEO removal. 

The tortuosity describes a conductivity pathway through straight channels of uniform 

orientation parallel to the transport direction. Typically, τeff >1 as τeff = 1 describes an 

ideal porous body with cylindrical and parallel pores. The value of tortuosity of the 

membranes is between 2 and 5 depending on the porosity and reveals that a major 

contribution for the conduction process is the swelling of the amorphous phase of 

P(VDF-TrFE). A low tortuosity value  is observed for the sample with PEO removal of 

90%, which supports better pore connectivity (figure 2f) [50].  

It is also observed that the MacMullin number (NM)  depends on the PEO removal, 

being also correlated with the tortuosity and the affinity between the membrane and the 

electrolyte solution [51]. The lowest value of the MacMullin number was obtained for 
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P(VDF-TrFE)/PEO polymer blend with PEO removal of 90%, that blend  presenting a 

high degree of porosity, high electrolyte uptake and low tortuosity. 

Figure 10 shows the ionic conductivity as a function of temperature. The log σ vs 

1000T-1 shows a linear correlation in the temperature range between 25ºC and 100ºC, 

indicating that the temperature dependence of the ionic conductivity obeys the 

Arrhenius model: where R is the gas constant, σ0 the pre-

exponential factor and T the testing temperature. 

The activation energy for ion transportation within the polymer blends is listed in Table 

2. It is shown that Ea depends on PEO removal and its behavior is proportional to the 

ionic conductivity value and liquid electrolyte uptake. 

 
Figure 10 - Log σ as a function of 1000/T for the different polymer blend samples. 

 

Figure 10 shows that the ionic conductivity increases with increasing temperature due to 

the increase of the free volume [52] and segmental mobility of the polymer with 

increasing temperature, as well as with the larger concentration of ionic charge carriers 

and their mobility [53]. The ionic conductivity behavior do not exhibit a clear change 

around the melting point of PEO for any sample since the ionic motion is expected to be 

coupled to local modes of the P(VDF-TrFE) chains. 

For battery system applications it is necessary to determine the electrochemical stability 

of the separators. Linear sweep voltammetry curves of Li/polymer blend/gold electrode 

cell at 25ºC are shown in figure 11. 
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Figure 11 – Voltammogram at a 0.5 V/s scanning rate, for the polymer blend samples. 
 

In the figure 11 it is observed a rapid increase in current around 5V (vs. Li+/Li) , 

associated with the oxidative decomposition of the liquid electrolyte [54] but the current 

values are very small and could be considerate as a parasitic current that not affect the 

electrochemical window stability of these samples up to 5V. In this way, this effect is 

independent of the PEO removal. Thus, the overall results show that PEO removal 

improves the degree of porosity, ionic conductivity and does not affect the 

electrochemical stability of the P(VDF-TrFE)/PEO polymer blend, showing suitable 

properties for lithium-ion battery applications. 
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3.1.4. Battery performance evaluation in Li/C-LiFePO4 Swagelok cell 

Li/C-LiFePO4 Swagelok cells using P(VDF-TrFE)/PEO polymer blends with 0%, 44% 

and 90% of PEO removal as separators were evaluated between 2.5V and 4.0V at 25ºC 

to demonstrate the applicability of the materials in lithium-ion battery applications. 

Figure 12 a) and b) presents the 10th charge-discharge curves at C5 and 2C, 

respectively. No unstable voltage profiles were observed for any of the cells. In figure 

12a at C5, it is found that the cells deliver discharge capacities of 124, 82 and 63 mAhg-

1 when the P(VDF-TrFE)/PEO polymer blend with PEO removal values of 90%, 44% 

and 0% are used as separators, respectively. For 2C rate, the discharge capacities values 

are 47, 21 and 10 mAhg-1 for PEO removal of 90%, 44% and 0%, respectively (figure 

12b). Independently of the scan rate (figure 12 a and b), the discharge capacity increases 

with increasing PEO removal in the P(VDF-TrFE)/PEO polymer blend. Thus, 

independently of the scan rate, the discharge capacity of the cells with polymer blend 

electrolyte follows the order 90% > 44% > 0%. This behavior is related to the ionic 

conductivity value,  higher ionic conductivity leading to improved repeated 

intercalation/de-intercalation of Li+ in/from the electrode materials [54].  

  



22 
 

 
Figure 12 – Charge-discharge curves for Li/C-LiFePO4 at: a) C5 and b) 2C. c) 
Discharge capacity as a function of cycle number. 
 
 

The discharge capacities as a function of cycle number for two scan rate (low rate, C5 

and medium rate, 2C) are shown in figure 12c). Independently of the scan rate, the 

discharge capacity is stable as a function of the cycle number. In relation to the 2C scan 

rate for PEO removal of 90%, the discharge capacity slightly decreases with increasing 

the cycle number due to interfacial resistance between electrode and separator 

membrane [55]. The delivered capacity at 2C shows a low value in comparison to C5 

due to the polarization associated with the electrolyte diffusion kinetics [27].  

It is observed that all the cells show relatively stable performance for both scan rates in 

the cycling number range under consideration.   

Delivered capacity and capacity retention (capacity normalized with respect to the 

nominal one) as a function of current rate dependence of the polymer blend with high 

ionic conductivity (90% PEO removal) is shown in the figure 13. A progressive, almost 

linear, decrease in capacity is observed with increasing current density up to 1 C, 

associated to the diffusion phenomena taking place within the electrode active material 

phase and polymer electrolyte separator membrane [56]. 



23 
 

 
Figure 13 - Delivered capacity and capacity retention vs. current rate dependence 

 
 

Figure 13 shows that above 1C a very contained decay in the delivered capacity and 

capacity retention is observed due to the intercalation of the Li+ ion present in the 

electrode film and to Ohmic polarization [57].  

These results illustrate for this polymer blend system that polymer blend with 90% PEO 

removal shows the best performance as lithium ion battery separator and could be used 

for battery application. On the other hand, if we compare its performance with that of  

highly porous pure P(VDF-TrFE) membrane reported in reference  [58] (porosity, 72% 

and uptake, 396%, 0.32 mS/cm ionic conductivity), it can be concluded that ionic 

conductivity value depends not only of degree of porosity but also of the interaction 

between polymer and electrolyte solution. The ionic conductivity value affects the 

performance of separator in lithium-ion battery application in that this P(VDF-

TrFE)/PEO system in function of PEO removal is very promissing for this application. 
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Conclusions 
 
The effect of the removal of poly(ethylene oxide) in the polymer blends based on 

poly(vinylidene fluoride-trifluoroethylene)/poly(ethylene oxide) has been investigated 

for Li-ion battery separator applications. The pristine polymer blend membranes were 

prepared by solvent casting at 70ºC. The (partial to total) elimination of PEO produces 

interconnected micropores in the polymer blends influencing the electrolyte uptake 

value of 1M LiTFSI in PC. 

The IR vibration modes characteristic of P(VDF-TrFE) are not influenced by the 

elimination of PEO in the polymer blend. The mechanical properties depend on the 

PEO removal and correlates with the degree of crystalinity.  

Electrical properties of the polymer blend membranes are influenced by PEO removal 

and are dominated by diffusion, the ionic conductivity as a function of temperature 

following the Arrhenius behavior. The ionic conductivity has a maximum for the 

samples with 90% of PEO removal e, reaching a value of 0.54 mS.cm-1 at room 

temperature.  

P(VDF-TrFE)/PEO polymer blend with 90% PEO removal exhibit excellent cycling 

performance, i.e, 124 mAhg-1 at C5 and 47 mAhg-1 at 2C in comparison with other 

samples. Also presents good electrochemical stability and could be applied as promising 

separator for applications in lithium-ion batteries. 
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