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Composition of Constraint, Hypothesis and Error
Models to Improve Interaction in Human-Machine
Interfaces

J.Ramon Navarro-Cerdan*, Rafael Llobet, Joaquim Arlandis, Juan-Carlos
Perez-Cortes

Institut Tecnologic d’Informatica, Universitat Politéecnica de Valéncia, Valéncia, Spain

Abstract

Although there are many tasks where output strings are automatically
generated from a set of evidence, they are not perfect and human interven-
tion is often required to correct the result. In this paper we present a generic
Symbol Input Interaction Method for Human-Machine Interfaces that com-
bines multi-source information: an input Hypothesis Model an Error Model,
a Constraint Model and a user interaction scheme.

We use Weighted Finite-State Transducers (WFSTSs) to represent the dif-
ferent sources of information available: the initial hypotheses, the possible
errors, the constraints imposed by the task (interaction language) and the
user input. The fusion of these models to find the most probable output string
can be performed efficiently by using carefully selected transducer operations.
The proposed system initially suggests an output based on the set of hypothe-
ses, possible errors and constraint models. Then, if human intervention is
needed, a multimodal approach, where the user input is combined with the
aforementioned models, is applied to produce, with a minimum user effort,
the desired output. This approach offers the practical advantages of a de-
coupled model (e.g. input-system + parameterized rules 4+ post-processor),
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keeping at the same time the error-recovery power of an integrated approach,
where all the steps of the process are performed in the same formal machine
(as in a typical HMM in speech recognition) to avoid that an error at a given
step remains unrecoverable in the subsequent steps. After a presentation
of the theoretical basis of the proposed multi-source information system, its
application to two real world problems, as an example of the possibilities of
this architecture, is addressed. The experimental results obtained demons-
trate that a significant user effort can be saved when using the proposed
procedure. A simple demonstration, to better understand and evaluate the
proposed system, is available on the web.!

Keywords: multi-source information fusion, human-machine interaction,
weighted finite-state transducer composition, interactive multimodal string
correction.

1. Introduction

In a general architecture for a Human-Machine Interface, the entry sub-
system can be any source of input data such as an OCR, a gesture or speech
recognition system, a vehicle navigation or control system, a tactile input
device, etc. These systems are often subject to variable amounts of error
and uncertainty. Therefore, methods to detect and correct input errors and,
if necessary, allowing user interaction to improve and/or validate the input
data, are needed. Particularly, when the input modality has a significant
inherent complexity but the language syntax and semantics of the input
data are known in advance, a sophisticated symbol-input correction or post-
processing method is likely to improve the efficiency of operation and the
convenience for the user. Examples of complex entry subsystems are those
character or gesture recognition modules in which the input data potentially
shows a high level of uncertainty, or those which meet ergonomic trade-offs
due to size, weight, form-factor or handling constraints, like mobile phones,
touch-based keyboards, etc. All these entry methods have in common that
they produce an input hypothesis which should be post-processed and vali-
dated.

In addition, the most recent systems are usually equipped with a combi-
nation of several input sources, such as a touch screen, a keyboard, a sound
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input system, new sensors like accelerometers, GPS, etc. In these cases, a
method capable of combining the evidence of multimodal inputs can also be
useful [1, 2, 3, 4].

Formally, the role of an input interaction system is to maximize the likeli-
hood that the strings received as input hypotheses from the different, possibly
multimodal, input subsystems are correct, in the sense that they are com-
patible with the constraints imposed by the task (language). In this context,
different methods to address the problem of error correcting and keystroke
saving in input interaction systems have been proposed.

Error correcting has been traditionally handled by using a lexicon to val-
idate the known words and asking the operator to verify or re-enter symbol
by symbol the unknown ones. Alternatively, similar words to those poten-
tially misspelled can be found in the dictionary using the Levenshtein edit
distance and a dynamic programming technique at relatively high computa-
tional costs. Other specific techniques can be used to carry out approximate
search in the lexicon. In [5] an excellent survey of string search methods is
presented.

More sophisticated methods based on n—grams or on finite-state ma-
chines have also been extensively studied [6, 7, 8, 9]. In them, a candidate
input string is parsed and an output string is generated from the set of tran-
sitions in the automaton with the lowest cost (highest probability). The
classical technique, widely used in different fields, to find the maximum like-
lihood path on a finite-state machine and to perform error-correcting parsing
on a regular grammar is the Viterbi Algorithm [10, 11]. In [12], OCR errors
are corrected using context-dependent confusion rules and a language model,
both represented by means of Finite-State Transducers (WFST). The confu-
sion rules are extracted from a training corpus by aligning the misrecognized
words of the OCR output with their corresponding ground truth. In [13] a
text correction method, also based on WFST) is presented. The approach
consists of three main independent phases: detecting misspelled words, gen-
erating candidate corrections and ranking corrections. Misspelled words are
obtained as the difference between the set of input words and the language
model, while candidate generation is done by generating a list of words that
have edit distance less than k to each of the input words and selecting the
subset that also exists in the dictionary. These processes are carried out
using basic operations over Finite-State Automata.

All these approaches take a string provided by the symbol-input sub-
system, apply a Language Model and often optimize a transformation cost



using an Error Model, but, in general, they do not take into account multi-
ple input sources or detailed probabilistic input evidence or the possibility of
user-interaction in the loop to improve the resulting string.

One of the main practical advantages of our approach lies on the use of a
de-coupled model, where the different parts of the system remain individual
processes, but the optimality of the whole composition is guaranteed by fully
propagating the uncertainty from each process to the next. In the recent
work [14], a generic formulation of this idea is discussed and presented in
an elegant way using relational algebra and a probabilistic scheme. The
discussion describes basic de-coupled approaches as those where each stage
merely passes a simple (canonical) output to the next stage. In that case,
errors in the early stages can produce a cascade of unrecoverable errors in
later stages, since each component makes a locally optimal choice without
taking into account the rest of the components. However, if the uncertainty
in the predictions at all stages of the system (pipeline) are accounted for,
global optimality is attainable.

In previous conference papers, preliminary versions of the work presented
here can be found: In [15] and [16], we propose the use of Weighted Finite-
State Transducers (WFSTSs) for stochastic error-correcting language model-
ing applied to OCR hypotheses. The combination of different models, in-
cluding an error model, and the use of a vector of input hypotheses with
their a-posterior: probabilities are introduced there, however no interaction
nor multimodality is allowed in the proposed scheme. In [17], an application
to License Plate Recognition, introducing the combination of several possi-
bly incomplete and unaligned hypotheses is presented. In [18], a preliminary
and simplified version of the final formulation proposed here, in which only
symbol sequences are allowed as input data, is introduced. This new paper
includes several novel contributions. The concept of multimodality is intro-
duced and new example applications that use this scheme are presented. The
input data can be any type of information (text, speech or, in general, any
set of evidences) as long as it can be represented by a Finite State Machine.
There is also an error model integrated into the user interaction subsystem,
which allows the recovery of errors in the user input stream, while the user
interacts with the system. The fusion of interactivity and multiple input
modalities leads to a more general concept of constraint model employed
here to replace the notion of language model used so far in the cited works.
The scope of the tasks to which this new paradigm can be applied is wider
and more diverse.



The rest of the paper is organized as follows: In the next section, the
general interaction system is described. In Section 3, a brief description
about the foundations of WFSTSs is presented. In Section 4, the proposed
method is explained in detail. In Section 5, two example applications of
the proposed method are presented: an interactive multimodal OCR post-
processing system and an efficient entry data in GPS devices. Experimental
results and conclusions are presented in Sections 6 and 7.

2. The interaction system: a practical scenario

In this Section, a simple but practical scenario is presented to better
understand the proposed method, even though the methodology is explained
in more detail in Section 4.

We will consider a practical task involving a massive form processing task
in which large amounts of handwritten documents must be converted into
text. Examples of these applications are census data acquisition, surveys or
invoices processing to name only a few.

Usually, this process consist of three main phases: a) forms scanning,
b) text transcription of the form fields by means of an OCR and ¢) human
revision, correction and validation. The most costly phase in terms of time
and human resources is, by far, the last one, as OCR engines are far to be
error-free, especially when working with handwritten text, which leads to
long manual validation times.

However, it is possible to significantly reduce the cost of the final process
if a) an OCR post processing and b) an efficient interaction system are incor-
porated into the process chain. In the first place, the OCR post processing
phase can reduce the errors initially produced by the OCR engine, which
will reduce the number of fields that will need to be corrected (or even val-
idated if the confidence given by the classifier is high enough). This can be
achieved if there is new evidence known beforehand that can be incorporated
into the system, such as information related with the language associated to
each form field (a dictionary, syntactic or grammatical restrictions, etc.) or
the probabilities with which the OCR engine confuses the different symbols
(i.e. the confusion matrix). Additionally, efficient interaction can reduce
the time needed to correct the remaining errors after the previous phase,
understanding efficiency as obtaining the correct string with the minimum
interaction (e.g. keystrokes). Again, an efficient interaction can be achieved
if new evidences, as the information introduced by the user or the features of



the interaction device (keyboard type, keyboard layout, key distances, etc.),
which provide an estimation of the common error patterns associated to the
interaction subsystem, are combined with the previous available evidences
instead of being considered separately.

We propose an interactive multimodal system that combines all those
sources of information, including probabilistic evidence, to deal with the
problem of processing an initial hypothesis string coming from any input
sub-system (for example, an OCR engine) in order to obtain an improved
output according to a Constraint Model.

In detail, the following sources of information are typically available: a)
the input hypothesis, which can be as simple as a sequence of symbols or
as complex as a graph representing a set of probabilistic phrases belonging
to a grammar, that we call the Hypothesis Model (HM); b) a model of the
expected errors in the input hypothesis and their probabilities, that we call
the Error Model (EM); c¢) the language of the interaction task, which the
expected string belongs to, called the Constraint Model (CM); and, when
needed, d) the information from the user interaction, that we call the Inter-

action Model (IM).
User interaction

<«

Input ) o | Corrected

Figure 1: Interactive multimodal post-processing scheme.

We represent each of these models (HM, EM, CM, IM) by a Weighted
Finite-State Transducer (WFST) and compose all of them to address the
problem of finding the most probable string in the CM according to the
current hypothesis (HM), the possible errors (EM) and the user entry (IM).
This problem can be solved by properly composing all these models and
finding the shortest (most probable) path in the composed transducer. We
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have used the OpenFST library [22] to create the transducers and to perform
the operations mentioned above.

Figure 1 shows the proposed multimodal interaction system, where the
operator o denotes the composition of transducers. In a first step, HM, EM
and CM are composed, which allows to transduce any string x € Ly, into
any other string y € Lgjys according to the error operations defined in the
EM (assuming that the EM can transduce any string into any other). In the
decoding phase, the most probable of these transductions can be found. If the
proposed output is not the one the user expects, then interaction is allowed
to improve the resulting string. In this case, an additional WFST called IM
is created and composed with HMoEM, which imposes new constraints to
the system. It is even possible to model the fact that the user can make
mistakes while interacting with the system by including a new Error Model
associated to the IM representing the most common user error patterns.

Although in this paper the technique is seen as a transformation from
the HM to the CM, this method can also be interpreted as a noisy channel
scheme, where the observed string is considered a noisy version of the in-
tended string [19], i.e. the CM generates an error-free string with a given
probability and the EM (noise model) decides whether or not to insert errors
to produce the observed string (HM) [20].

To illustrate these ideas, let us consider a simple example based on the
aforementioned practical scenario. If the goal is to process a form field that
must contain, for instance, the name of an animal, and only {cat, cow, bat,
goat} are possible options, then the WFST representing the CM would be
that shown in Figure 2. On the other hand, if the OCR output is, say, the
string aat, the HM representing this output would be that shown in Figure 3
(top). Furthermore, the fact that the OCR classifier gave, in some cases,
several class hypotheses per symbol, together with their a posteriori proba-
bilities, could be also modeled: for example [a:1] for the first symbol, [a:0.6,
0:0.4] for the second and [t:0.8, d:0.2] for the last one, in which case the HM
would be the one shown in Figure 3 (bottom). Finally, assuming for sim-
plicity, that our alphabet is restricted to ¥ ={a,b,c,g,0,t,w}, if it is known
(according to some previous empirical tests) that the probabilities of confu-
sion between symbols associated with the OCR classifier (confusion matrix)
and the probabilities of insertion and deletion are those shown in Figure 4
(left), then the associated EM would be the transducer shown in Figure 4
(right) (where, for readability, only a few arcs have been represented). This
model represents the edit operations (substitution, insertion and deletion)
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allowed to transform the initial hypothesis into a valid string. Although the
confusion matrix shown in the example contains a number of zeros, it is usu-
ally smoothed in order to allow the substitution of any pair of symbols, since
it is often considered possible even if it has not been observed in the matrix
estimation process.

Figure 2: Constraint Model representig the dictionary {cat, cow, bat, goat}. Double-circled
states are final states and include the probability to be final.

Figure 3: Hypothesis Model representig the OCR output string aat without a posteriori
probabilities (top) and with more than one possible class per character together with its
probabilities (down).

If all these models are properly composed, the shortest path of the re-
sulting transducer gives us the most likely transformation of a hypothesis
in the HM into a string in the CM through the error operations defined in
the EM, where the input/output symbols along this shortest path represent



a b ¢ g 0 t  wo e
a|07 0 01 0 02 0 0 0.1
bl 0 07 01 0 02 0 0 0.1
c|01 0O 07 0 02 0 0 01
gl 0 0 01 07 02 0 0 0.1
ol 0 o 03 0 07 O 0 01
t{ 0 02 01 O 0 07 0 0.1
w|01 0 01 0 0 0 0.8 0.1
/01 01 01 01 01 01 01 01

Figure 4: Example of OCR confusion matrix together with insertion and deletion proba-
bilities (symbol &), with rows representing input symbols and columns representing output
(left) and its associated Error Model (right). For the sake of readability, only probabilities
in bold have been showed in the model.

the sequence of operations needed to transform one into the other, and the
product of the probabilities at each transition, the likelihood of the trans-
formation. In our example, {a/c, a/a, t/t}, i.e., aat — cat, with probability
p = 0.05 x 0.21 x 0.56 = 0.00588. Table 1 shows the operations in more
detail.

Table 1: Most likely transduction to correct input aat

HM EM CM Transformation
produces consumes/produces —consumes
STEP 1 a:l a/c:0.1 c:0.5 a/c:0.05
STEP 2| a:0.6 a/a:0.7 a:0.5 a/a:0.21
STEP 3 £:0.8 t/t:0.7 t:1 t/t:0.56

As mentioned before, if the resulting string is not correct, it can be ef-
ficiently re-estimated by incorporating the user interaction in the model. A
convenient method of interaction for the user is often the introduction of a
prefix of the expected string. For example, if the right word is goat, the user
should sequentially introduce the characters of this word until the system
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produced the correct output. In this case, if the user introduces the charac-
ter g, the IM representing this prefix would be that shown in Figure 5. This
model only accepts (and produces) strings starting with ¢, therefore, if it is
incorporated between EM and CM, it acts as a filter that blocks any string
at the output of EM not starting with the representing prefix. In this case,
the most likely transformation (actually the only possible) would be {e¢/g,
a/o, a/a, t/t}, i.e., aat — goat. Table 2 shows the operations in more detail.

Table 2: Most likely transduction to correct input aat with prefix g

HM EM IM CM  Transformation
prod. cons./prod. cons./prod. cons.
STEP 1 - €/g:0.1 g/g:l 2:0.25 €/g:0.025
STEP 2 | a:l a/0:0.2 o/o:1 o/o:1 0/0:0.2
STEP 3 | a:0.6 a/a:0.7 a/a:l a:l a/a:0.42
STEP 4 | t:0.8 t/t:0.7 t/t:1 t:1 t/t:0.56

In short, the proposed system has a dual purpose: to transform the ob-
served evidence (HM) into a valid string based on a maximum likelihood
approach and, in case the proposed string is not the correct one, to obtain
the intended string with the minimum user interaction effort.

One of the main contributions of the approach proposed is that the HM
does not necessarily encode a single string, but also more complex inputs
(Section 4.2). In addition, it allows multimodal user interaction, as explained
before. When the corrected string proposed by the system is not the one
intended by the user, the IM can be dynamically combined (as the user
interacts with the system) with the other models to get the intended output
with the minimum user effort.

It is even possible to model potential mistakes of the user while interacting
with the system (for example, typing an adjacent key instead of the desired
one, double-typing a key, etc.). In this case, the User Interaction Model
can have associated its own Error Model that allows recovering user-input
errors (see Section 4.4). In fact, the IM can be seen as a second Hypothesis
Model, which leads to a multimodal error interaction system where several
inputs (hypotheses) are combined to propose an output. Even several in-
teraction sources can conceivably coexist, thereby increasing the potential
multimodality of the system.
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Figure 5: Interaction Model representig the prefix {g} over an alphabet ¥ ={a,b,c,g,0,t,w}.

In the proposed approach, no assumption is made on where the initial
hypothesis comes from, or how the user interacts with the system. The
initial hypothesis could be the output of a Human-Machine Interface like
an OCR, tactile input or gesture recognition system, sensor inputs from a
physical process, a biological sequence like DNA or protein strings, or even
a combination of several of them. The user interaction can be typically done
by means of a physical, “soft” (touchscreen-based) or reduced (as in a mobile
phone) keyboard, but also by means of a speech or gesture-based recognizer
an on-line OCR system or any sensor or input subsystem designed to read
voluntary human actions.

In this section, a practical scenario has been presented, although the
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proposed method can be applied to a wide range of problems. In the following
sections, the theoretical foundations of WFST are reviewed first, and then
the different proposed models are explained in more detail and generality.
Finally, two example applications that make use of the proposed methodology
are presented and tested.

3. Weighted Finite-State Transducers

Weighted Finite-State Transducers (WFST) have proved to be flexible
and useful formalisms with uses in many disciplines, mainly in Pattern Recog-
nition and Machine Translation. We present in this work a novel use of
WFSTs in combination with Stochastic Error-Correcting Models for Human
Interaction tasks.

WESTs are generalizations of Finite-State Automata (FSA) [21, 23, 24].
FSAs are often represented as finite directed graphs with nodes as states
and arcs as transitions. Each transition is associated to a symbol from an
alphabet 3. Formally, an FSA is a five-tuple (Q, qo, F', 3, §) where @ is
a finite set of states, qo € @ is the initial state, F' C () is the set of final
states, 2 is a finite set of symbols and § : @ x X — @) is the set of transitions
between states. Each transition t is labeled with a symbol s(t) € X. In a
FSA, given a string s € ¥*, s is accepted when a path from the initial state
to a final state of the graph exists and their transition labels concatenated
are equal to the string s.

Finite State Transducers (FSTs) add ouput labels in the transitions to
the previous formalism. Therefore, an FST is defined as a six-tuple (@, qo,
F,; X%, A, )) where 3 is a set of input symbols, A is a set of output symbols
and function ¢ is defined as 6 : Q x X — @ x A. FSTs are able to transduce
a string of an input language over X into a string of an output language
over A. A weighted version of an FST (WFST) can be defined by including
weights in their transitions. These weights can have the meaning of the cost
of taking a particular arc in a path through the transducer.

Additionally, each state ¢ has an initial weight w;(¢q) and a final weight
wy(q). Any state g can be initial if w;(q) # 0 and/or final if wy(q) # 0.

Given a transducer whose weights represent probabilities, if all the out-
going arcs of a given state plus its final weight add up to 1, then the rela-
tions (input, output) that this transducer produces are called joint relations
and have probability P(input,output). If it is each subset of outgoing arcs
of a given state that are labeled with the same input symbol what totals
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1, then the relations are called conditional relations and have probability
P(output|input). If a number of source WFST are to be composed with
the restriction that the resulting WFST is markovian, then one of the in-
formation sources has to be modelled as joint and the rest as conditional
probabilities, as explained in [25].

An FSA can be seen as an FST with same input and output symbols in
each transition. This is referred to as an identity transducer. The same is
true for a WFSA respect to a WFST.

FSTs (and WESTSs) are very flexible and powerful for some applications
due to some of their properties and the operations they allow. The methodol-
ogy presented in this paper makes strong use of the composition operation [26]
that can be described as follows: for transducers 77 and 75, if T} transduces
the string z € ¥ to y € A with weight w; and T5 transduces y € A to z € I’
with weight w,, then their composition T5 = 17 o T, transduces x to z with
weight w; ® ws.

Different semirings {K, ®,®,0,1} (where K is a set, 0,1 € K and @&, ®
are the additive and multiplicative operations respectively) can be used to
compute the weights, some of which are shown in Table 3.

Table 3: Several types of semirings

Semiring K ® ® 0 1
Probability R, + X 0 1
Tropical R U {+00,—c0} + min +oo 0

Although the examples showed in Section 2 are explained in terms of
a probability semiring, we have actually used tropical semirings to avoid
underflow problems when computing the total probability along the shortest
path.

4. Description of the method

In this section we discuss the use of WFSTs to deal with the problem of
efficient interaction. The method consists of building and composing WFSTs
that encode different pieces of information and represent distinct models, ex-
tending the ideas of language modeling through Stochastic Error Correcting
Parsing proposed in [9] and [15].

As mentioned above, several sources of information can be identified: the
input hypothesis, the expected errors and the constraints that the strings of
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the task must satisfy. Each of these sources of information can be represented
by a WFST that we call the Hypothesis Model (HM), the Error Model (EM)
and the Constraint Model (CM) respectively. HM produces the set of ini-
tial hypotheses, then EM accepts and probably transforms these hypotheses
and, finally, CM only accepts the strings compatible with the encoded set of
constraints or language.

The initial goal is to find the most probable string accepted by CM ac-
cording to the current hypothesis (encoded in HM) and the possible errors
(encoded in EM). This is done by composing HM o EM o CM and finding the
most probable path in the composed transducer.

Although the correct string can be found by properly combining HM,
EM and CM, it could happen that the selected string in the CM is not the
one the user expects. In this case, a user interaction is needed to get the
expected output. To deal with this interaction process, a new WFST called
the User Interaction Model (IM) is used. This WFST encodes the extra
information given by the user (for example a prefix of the correct output).
It is built dynamically as the user interacts with the system and composed
with the other transducers, which imposes new constraints to the resulting
transducer. The more information the user introduces, the more likely the
composed transducer will converge to the intended output.

The details of how each of these models can be efficiently encoded by a
WEFST and how they are combined to deal with the problem of finding the
most probable hypothesis are presented in the next sections.

4.1. The Constraint Model (CM)

A stochastic FSA that accepts the smallest k-Testable Language in the
Strict Sense consistent with a task-representative constraint sample can be
obtained using a grammatical inference algorithm [27]. The set of strings ac-
cepted by this automaton is equivalent to a classical language model obtained
using n-grams, for n = k.

Using a stochastic grammatical inference algorithm is convenient because
it can take advantage of very different constraint sets, from a list of sequences
of symbols, with each valid sequence appearing only once (equivalent to a
lexicon) to a list of symbol sequences extracted from a real instance of the
task (with each one appearing as many times as in the sample) or a list of
sequences with strings or string categories as the symbols of the grammar,
etc. Only in the first case, when using a classical lexicon, the automaton is
not required to be stochastic, since a lexicon is not a representative sample.
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In the other examples, the model can take advantage of the probabilistic
information present in the data.

The response of the model is also defined by constant k. If k is equal to or
higher than the length of the longest sequence in the sample, only sequences
that exist in the sample will be valid, giving rise to a deterministic model.
Otherwise, when k is lower, the model is non-deterministic, the behaviour is
similar to a classical n—gram and the output sequences may be or not in the
reference sample.

Note that the stochastic or probabilistic nature of the underlying gram-
mar (i.e. its ability to take into account the relative frequencies of the dif-
ferent symbol sequences) does not depend on the choice of k. Therefore, for
instance, a deterministic model can be based on a stochastic grammar, when
the constraints database is a real sample of sequences and k is large, and
a non-deterministic model could make use of a non-probabilistic grammar,
when the database is a simple lexicon and £ is small.

In Figure 2, an example of a CM derived from a set of animal names was
showed. In a more generic context, Figure 6 shows the probabilistic identity
transducer derived from the sample S={a, bab, bac, ca, cab} and k = 3. For
simplicity, in this description we use an identity transducer (a transducer
with input and output symbols equal in each transition), which can be seen
as an acceptor of the language L(.S). The transition weights (probabilities in
this case) are shown in each arc. The probabilities of the final states (double
circled) are shown after the state number.

Given a sequence s, P(s) is computed as the product of the probabilities
along the path (including the probability of the final state) that accepts (or
produces) s. Because the proposed transducer reflects joint relations, P(s)
represents the probability that s is accepted (or produced) by the CM.

4.2. The Hypothesis Model (HM)

The HM encodes the initial input to the system before any correction
or user interaction is performed. This input consists of a set of hypotheses
together with their probabilities, which are represented as paths in a finite
state automata. The goal of the system is to select and possibly transform
one of these hypothesis to produce the correct output.

If the task, for instance, involves an OCR classifier for recognition of text
fields, the HM can represent the output of the OCR classifier in Figure 3.
In general terms, this model represents a sequence of n-dimensional vectors
U1 ...0Um, where each character is assigned n a posteriori probabilities, one for
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Figure 6: Example of an identity transducer representing a constraint model.

each possible class, m is the length of the string read and v, ; is the probability
that the it character is of class j*. This sequence can be represented as an
identity WEST with m+-1 states and n transitions between each pair of states.
Figure 7 shows an example of a WFST with alphabet [a, b, ¢] that represents
the symbol-input [0.6,0.2,0.2],[0.0,0.7,0.3],[0.1,0.6,0.3]. This means that
the first symbol is a with probability 0.6 or b with probability 0.2 or ¢ with
probability 0.2, the second symbol is b or ¢ with probabilities 0.7 and 0.3
repectively, and so on. Transitions with zero-probability are not shown in the
graph. This topology makes it possible to represent sequences in which the
probability of each symbol does not depend on the context. If the probability
of each symbol depended on the previous history, a topology like the example
in Figure 8 could be used instead. For example, in this model the probability
of a in the second position of the sequence is 0.4, 0.5 or 0.8, depending on
whether the first symbol is a, b or ¢ respectively.

Figure 7: Example of a hypothesis model in which the probability of each symbol does
not depend on the context.
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Figure 8: Example of a hypothesis model in which the probability of each symbol depends
on the previous history.
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These transducers model the uncertainty of the input to avoid the error
induced by propagating only the most probable hypothesis (abb in the first
example or ca in the second one) to the next stages.

Similarly to the CM, the HM is in general a probabilistic model. In this
case, each path from an initial state to a final state of the model represents
a hypothesis h.

Depending on the task, the structure of the HM can be very variable. The
only restriction is that can be represented by a WEST encoding the input
hypotheses. In Section 5.2 an HM aimed at a different task is described.

4.3. The Error Model (EM)

In some tasks, it is likely that at least one of the symbol sequences that
the input hypothesis can generate is compatible with the constraint model.
However, when this is not the case or when a compatible sequence similar
to one in the set of hypotheses could also be acceptable according to some
criterion, an additional model that allows generate distorted versions of the
input sequences that can be considered in the search of the best final result
is necessary.

In a classical n—gram model, these cases are dealt with by a smoothing
method. In our case, an Error Model performs this task by allowing that
“distorted” hypothesis sequences appear in the global search. In a sense, the
Error Model, which can be as complex as needed, gives a finer control of
the mentioned “smoothing effect”. In the simplest case, the three classical
edit operations are included: insertions, substitutions, and deletions. Given
two symbols s1, so and the empty symbol e, insertions, substitutions and
deletions are transductions of type €/ss, s1/s2 and s /e respectively.

Different probabilities can be assigned or estimated for these operations.
The confusion matrix of the input process, which reflects the probabilitiy that
each pair of symbols are confused, estimated using a representative corpus,
can be used to compute the probability of substitutions. For instance, for an
Optical Character Recognition input, the frequency with which the classifier
takes one character for another is modeled. For keyboard input, we would
estimate the probabilities that users press a key that is near the one intended.
In devices with small keyboards where several characters share the same key
(e.g. a mobile phone), the frequencies of the different mistakes observed are
also used to estimate the confusion matrix.

The EM can also be seen as a static or generic model of the uncertainty
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measured in the input subsystem, in contrast with the dynamic or particu-
larized estimation provided by the input hypothesis model.

The insertion and deletion probabilities are usually task-dependent and,
in most cases, they should be estimated empirically. In Figure 4 an exam-
ple with the probabilities of the edit operations and its associated EM was
shown.  Figure 9 contains examples of different Error Model transducers
with symbols in {a,b} (¥ = A = {a, b}). The transducer on the left converts
any string = in ¥* to any other string y in A* with p(y|x) by means of sub-
stitutions, insertions and deletions. In this case, the probability of leaving a
symbol unchanged (substitution by itself) has been set to 0.8, the probability
of substitution by a different symbol to 0.2 and the probability of insertion
and deletion to 0.05. A transducer like this one can be right-composed with
a HM, so any hypothesis h produced by the HM is converted into iL, where
his a noisy version of h. The transducer on the right represents the trim
operation, i.e., deletion of blanks at the beginning and the end of the string.
If this transducer is right-composed with a given transducer T', the state 0
will delete all the blanks coming from 7" at the beginning of the string, then
the state 1 will keep all coming symbols a and b unchanged and, finally, the
state 2 will allow the deletion of blanks at the end of the string. In this
case, this transformation is made without cost, as all the transitions have
probability 1.

These are only a couple examples showing how modeling the errors and
their probabilities in an independent transducer allows for additional flexi-
bility. For example, building an EM that allows insertions or deletions only
at the beginning or at the end of the string, or establishing a bound on the
number of error operations is straightforward. It is also possible to include
other error sources such as transpositions of two adjacent symbols that often
happen in keyboard typewriting tasks, special confusion matrices that take
into account the distances among the keys, etc.

4.4. The User Interaction Model (IM)

When human intervention is necessary, the decision process must include
a feedback option. The modular nature of the proposed method makes rel-
atively easy the addition of new models representing complementary infor-
mation. In this case, the goal is that the system can take advantage of the
user feedback to provide new outputs compatible with it, in real time, as the
user introduces new symbols (typically a prefix of the intended output). It is
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b:€/0.05

Figure 9: Examples of two Error Model transducers, with all possible insertions, deletions
and substitutions (left) and with the posibility of deletions only at the beginnig and at
the end of the string (right). 5 represents the white symbol.

expected that an interaction far shorter than the one necessary to introduce
the complete output string may be enough.

In the simplest case, if the characters entered represent a prefix of the
correct output, a straightforward method for implementing the interaction
model is the following: given a prefix P = pq,po, ..., pn, an identity trans-
ducer with n 4 1 states is built. A transition with input and output symbol
p; and probability 1 is added between states s; and s;.1 with ¢ = 1,... n.
Also, transitions with input and output symbol o € ¥, where X represents
the set of symbols of the task, are added as cycles in the last state s,,;. This
transducer accepts/produces any string with symbols in ¥ starting with P.
Figure 10 shows an example of a transducer representing the prefix P = ab.

The effect of right-composing this transducer with the model composed
so far, HM o EM, is “filtering” the strings produced and leaving only those
starting with P = ab. In Section 4.5, further details about this composition
operation are given.

Other models could easily be created to allow interaction when the en-
tered characters represent a suffix or, in general, any substring of the desired
output.

When the interaction subsystem is not accurate enough (as could happen
in mobile devices where the small size of the keyboard makes typing error-
prone), this model can be generalized to try to recover user-interaction errors.
An error model can be associated to the IM in the same way as it was
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Figure 10: Example of an identity transducer representing the prefix P = ab and alphabet
Y =ua,b,c.

done with the HM. In this case, there would be an EM associated to the
HM (EMy,,,, ), representing the errors that can occur in the hypotheses, and
an EM associated to the IM (EMjy,), representing the errors due to the
interaction process.

In a keyboard, typically, the user interaction errors consist of typing adja-
cent keys to the desired ones and, to a lesser extent, skipping keys or typing
repeated or extra characters. The probability of accepting a symbol differ-
ent than the typed one could be a function of the physical distance between
the corresponding keys (typed character and accepted character) in the key-
board, while the probability of insertion and deletion transitions could be
empirically estimated. Of course, other sources of interaction errors, such as
spelling mistakes or ambiguities could also be taken into account.

For example, if the user types the prefix P = ab and we assume that a, b
and ¢ are adjacent keys on the keyboard (with b between a and c¢), the User
Interaction Model shown in Figure 11, which represents the user interaction
composed with its error model, could be used. If this transducer is right-
composed with HM o EM, all the strings produced with symbols in a,b,c
will be accepted, but those starting with ab will be more probable. This
transducer is an extension to that shown in Figure 10 with extra transitions:
arcs labeled with € : s (with s in a,b,¢) allow extra symbols to be added
to the prefix, arcs of type s : € allow to remove symbols from the prefix,
and arcs of type s : s allow to accept either the typed symbol, or any other
related one (with lower probability).
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Figure 11: Example of an User Interaction Model representing the prefix P = ab, with
error recovery transitions.

One of the advantages of this technique is that the proposed model allows
different ways of interaction (typewritten or handwritten characters, speech,
etc.) as long as the input can be represented by means of a probabilistic
transducer.

The computational cost obtained is practical even for large Constraint
Models, as can be seen in the experiments (Section 6). This means that the
resulting string can be almost immediately available as the user interacts
with the system.

4.5. Composing the HM, EM, IM and CM

With the information encoded in HM, EM, IM and CM, the most probable
string according to the grammar and probabilities defined in each model can
be found. This is achieved by composing all these models, searching the most
probable path and concatenating its output symbols.

Given two transducers 77 and 75, the composition T} o T selects the
intersection between the set of strings produced by T} and the set of strings
accepted by T, and then, transduces these strings from the input in 7} to
the output in T5. If T3 is an identity transducer (i.e., the input and output
symbols are the same in each transition), it acts as a filter and leaves the
accepted strings unchanged, although the probabilities can change.
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Also, the probability of the resulting strings is computed according to
the weights defined in each transition. If 77 produces the string x with
probability p(z) and T5 transduces x to y with probability p(y), then T} o Ts
transduces x to y with probability p(z)p(y).

We have performed the composition of the different transducers as shown
in Figure 12. Let L(H) denote the set of weighted strings produced by the
HM. The transducer HM o EM expands L(H) with new strings, generally
by producing perturbed or noisy versions of the original hypotheses in L(H)
that we call L(ﬁ ). Figure 13 shows the composition of the transducers HM
and EM depicted in Figures 7 and 9 (left) respectively. This automaton
transduces the strings produced by the HM into any string in »*, with a
probability related to the similarity between the original and the transduced
string (for clarity, probabilities have been omitted in the figure).

L(H L(H) L(HI Final
av L e ) gy EEHD ) oy L, Fima
Sequence

Figure 12: Composition of the different transducers used in the proposed system.

As the user interacts, the identity transducer IM is created. This trans-
ducer accepts (and produces) strings containing a substring “similar” (or
equal in the case that the IM does not contain error transitions) to that
entered by the user. Therefore, the effect of right composing the IM with
HM o EM is to select from L(H) those strings compatible with the grammar
defined in the IM or, in the case that the IM includes error transitions, to
decrease its likelihood as the differences with the original user entry increases.

Finally, let L(ﬁl) denote the set of strings produced by HM o EM o IM.
Then, the effect of right composing the CM with HM o EM o IM is to select
from L(HT) those strings accepted by the constraint model and compute new
weighs for them according to the probabilities defined in the CM.

In summary, the goal of the proposed method is to find the most likely
transduction of an input string h = (hq, hs, ..., h,) produced by HM, into
an output string § = (s1, Sa,...,Sy,) accepted by the CM by means of the
intermediate transductors EM and IM. Formally, the string § is computed
as:

§ = argmax P(h, s)
h,s
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Figure 13: Composition of the HM shown in Fig. 7 with an EM with all possible substi-
tutions, insertions and deletions using an error model similar to Fig. 9 (left) but adding
also ¢ symbol.
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where h is the set of strings produced by HM, s the set of strings accepted
by CM, and P(h,s) = P(HM,EM,IM,CM).

Assuming independence among the HM,EM,IM and CM, and allowing
different weights for the models:

P(h,s) = P(HM)M™ P(EM)*M P(IM)*™ P(CM)

where \; defines the contribution of model 7 to the final P(h, s) value, taking
as a reference the CM that has a fixed Aoy, = 1. These factors are estimated
by the maximization of the first part of a ROC curve area using the algorithm
described in [28].

This process is equivalent to search the most probable path in the trans-
ducer HM o EM o IM o CM, which produces the string s.
Therefore, P(h,s) is the probability of the most probable path, ¢, resulting
from the concatenation of transtions, (¢1,ts,...,t,), in the transducer, where
each transition ¢;, as a result of the composition operation, contributes to the
final score value with

P(hi,s; | t;) = P(HM | t;)™ P(EM | t;)* P(IM | t,)*™ P(CM | t;)

and the final score is computed as

P(h,s) =[] P(hisi | t:)
i=1

Note that in this process, the only transducer that actually modifies the
symbols of the original hypotheses is EM, being the other ones identity trans-
ducers that leave the input sequences unchanged, but playing the roles of
filtering the acceptable strings and recomputing their probabilities.

Our final WFST is not markovian, since the individual automata repre-
sent joint probabilities [25]. However, this is not a problem if the goal is to
find the best path taking into account the different evidences provided by
each WFST, considered not as probabilities but as scores, and given that
all the score values are positive and there is an order relation in the scores
finally obtained.

4.6. Decoding

In the decoding phase, the most probable path in the composed trans-
ducer is found using a variant of the Dijkstra algorithm [29]. The concate-
nation of the output symbols along this path forms the output string, with a
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score that can be computed as the product of the probabilities of each tran-
sition along the path. If several alternatives are needed, the n-best paths can
also easily be obtained.

To avoid underflow problems, instead of working with probabilities we
have used tropical semiring WFSTs (K, @, ®,0, 1) where K are negative log
probabilities, @ is the min operation, ® is +, 0 is +o00 and 1 is 0.

4.7. Computational cost and lazy composition

WEFST composition of very large transducers can incur in large compu-
tational costs. For a CM of 64000 states and 140000 transitions (like the
one used in some of our experiments), a standard EM with all possible in-
sertions, deletions and substitutions and an average-sized HM with 8 states
and 5 transitions (hypotheses) per state, the resulting composed transducer
can have up to 450000 states and more than two million transitions.

To avoid this problem, lazy composition have been used. Lazy operations
delay the computation of the result until it is required by another operation.
This is useful when a large intermediate transducer must be constructed but
only a small part of it needs to be visited [21]. In our approach, given that
the operation of shortest (lowest cost) path search does not need visiting all
the states of the composed transducer, the composition is delayed until that
operation is performed.

On the other hand, when more than two transducers need to be com-
posed, n-way composition can be used [30]. Instead of composing the dif-
ferent transducers in pairs, as done in standard composition, this method
directly constructs the resulting transducer to avoid creating unnecessary
transitions, which leads to very much faster computational costs.

5. Applications

One of the advantages of the proposed framework is its flexibility, which
allows to adapt it to a wide variety of applications and requirements. In
this work, two applications are presented and analyzed as an example of the
possibilities of the proposed scheme: a) an OCR post-processing system and
b) an efficient data entry system for GPS navigation devices. In both cases,
the OpenFST library [22] was used for the experiments.
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5.1. Interactive multimodal OCR post-processing

In this section, an interactive multimodal system aimed at OCR post-
processing is presented. A character recognition task dealing with known
fields of scanned handwritten forms has been chosen as the input.

In this task, the Constraint Model encodes the list of valid strings of a
particular field in the form. If the a priori probability of each valid string is
known, the model can take advantage of this probabilistic information.

The Hypothesis Model encodes the output of the OCR classifier as ex-
plained in Section 4.2. Figure 7 shows an example of a WFST encoding a
particular hypothesis model.

The Error Model defines the three usual edit operations: substitutions,
insertions and deletions, as explained in Section 4.3 and shown in Figure 9
(left).

User interaction may be necessary when the system fails in finding the
correct transcription. For this purpose, a keyboard that can be full-size,
reduced, physical or virtual, or any other symbol input device (each input
symbol will be regarded in any case as a keystroke) is used, and the goal is
to allow the user to obtain a correct output string with the minimum effort.
To address this process, a User Interaction Model that encodes a prefix is
used as described in Section 4.4. In this task, no error model associated to
IM (EM,;) has been used, assuming that user entry is free from errors.

Experimental results are presented in Section 6.1.

5.2. Efficient entry data in GPS devices

It is difficult to interact efficiently with GPS devices (and with mobile
devices in general), due to the size of the screen, the inherent limitations of
a soft keyboard (small size and a limited set of characters) and the limited
accuracy of the finger or pointing device detection.

However, when a priori knowledge of the input is available, efficient tech-
niques to improve the efficiency of data entry can be applied. For example,
when introducing the destination city in a GPS device, a priori knowledge
like the complete list of city names, the city importance or population, the
recent destinations, the current coordinates and the prefix introduced so far
can be used to speed up the entry process. Additionally, a priori knowledge
of known common errors like typing an adjacent key or of unavoidable errors
produced by the abscense of some local characters in the keyboard, can also
be used to recover these errors.
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We used the method proposed in Section 4 to drastically reduce the num-
ber of keystrokes needed to enter the destination city. A similar technique
could be used for entering the destination address, country, etc. The idea is
based on representing each source of information by means of a WEFST and
composing them to suggest the most probable city.

In this application, the models CM, HM, EM and IM explained in Sec-
tion 4 have been used as follows:

The CM encodes the list of valid cities. The population of each city
can be used to provide probabilistic information to the model, assuming
that more populated cities are more likely to be selected as destination. In
the experiments presented in Section 6 a probability proportional to the
population has been used. The value of k has been made equal to the length
of the longest city name, therefore only cities that exist in the sample are
suggested as possible destinations.

The HM encodes the most likely cities to be chosen as destination ac-
cording to a number of factors such as the closeness to the current position
or to any other position in a map that can be set by the user with a simple
touch on the screen, being a touristic or recently specified destination, etc.

In our case, higher probabilities have been assigned to closer cities, as-
suming that they are more likely to be chosen as destination. For efficiency,
in the experiments presented in Section 6, only cities within a radius of 50
km from the current or a predetermined position have been included in HM.
A parameter has been used to weight the influence of the distance to the set
or current position.

It is possible that the HM does not contain the desired destination, there-
fore an error model EM that allows to reach cities not included in the HM
is necessary. For this purpose, we have used a transducer like the one in
Figure 14 (assuming an alphabet ¥ = a, b, ¢). If the upper arc of the initial
state is first selected, then the transducer leaves the strings encoded by the
HM unchanged, which allows the CM to accept any of these strings, whereas
if the lower arc is selected, the transducer can generate any string, allowing
the CM to accept other strings not initially included in HM. For this to work,
it is necessary to include the empty string in the HM, i.e., the initial state
must also be final.

To model the likelihood that the HM actually contains the desired desti-
nation, probabilities of o and (1 — ) with « € [0 — 1] are set in the upper
and lower arcs of the EM respectively. The larger the value of «, the smaller
the probability of selecting a destination not initially included in the HM and
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Figure 14: Error model used in the GPS task assuming an alphabet 3 = a, b, c.
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viceversa.

Finally, the IM encodes a prefix of the destination city name. A first des-
tination proposal can be done by combining only HM, EM and CM, however,
user interaction will be probably required to select the desired destination.
In this case, an IM model is dynamically created and composed with the
previous models as the user inserts the prefix, as explained in Section 4.4.
The IM can have its own error model associated (e.g. with the probabilites
of pressing adjacent keys) if entry mistakes are likely.

6. Experiments

6.1. Interactive multimodal OCR post-processing

The constraint model defined for the multimodal interactive OCR post-
processing experiments is built (as explained in Section 4.1) using a sample
of 4.5M Spanish surnames, 76,119 of which were unique. The ouput was
restricted to be only exact known surnames (deterministic model), so a k
value equal to the largest surname was selected.

The hypotheses used to test the approach were obtained through an OCR
process on a sample of 25, 262 forms scanned in a real industrial task where a
handwritten field with the surname of the writer was present. 14,364 of the
25,262 (56.9%) surnames were correctly transcribed by the proposed system
with no human intervention while the 10,898 remaining surnames showed
wrong transcriptions. Two test sets were used to compute the performance
of the proposed system: one consisting of the 25, 262 scanned surnames that
we call the total test set and another one consisting of the 10, 898 incorrect
transcriptions that we call the wrongly corrected test set. The total test rep-
resents a real scenario in which a given batch of forms must be processed,
while the wrongly corrected test represents a scenario under the assumption
that it would be possible to set a cost transformation threshold able to ap-
propriately separate correct and wrongly transcripted inputs, which would
allow to manually review only the second ones. Due to this design, most
of the hypotheses into the second set are very far from the correct transcrip-
tion, otherwise the automatic system would probably have recovered them
correctly in the first place. In either case, the HMs were built including the
a posteriori probabilities provided by the OCR, as explained in Section 4.2.

The topology used to build the error model was like the one presented in
Figures 4 and 9 (left). The probabilities of the confusion matrix were esti-
mated previously from a set of approximately 1, 180,000 characters not used
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in the test set. This matrix gives us information about the OCR classifier
confusion distribution. The confusion matrix estimation has been obtained
by means of the OCR engine and the characters used during classifier train-
ing by means of a leaving-one-out design with a smoothing factor added
to model the confusion between characters that did not appear during the
matrix estimation process.

To estimate the effort required to obtain a correct transcription using
the system proposed, the keystroke ratio (KSR) is defined as the number
of keystrokes (or equivalent single-symbol input operations) needed by the
user divided by the number of keystrokes or operations needed to type the
complete string.

To compute the KSR, a realistic assumption is that the user types the
shortest prefix needed to obtain the reference transcription, which implies
that the operator starts typing the correct string from the first symbol even
if it is already correct. Using the mouse to move the cursor to the first
unmatched symbol would typically increase the interaction time and effort
compared to using exclusively the keyboard. However, using i.e. the right
arrow or the tab key to accept a single symbol and move to the next one
(symbol acceptation keystrokes) is usually acceptable and faster than re-
typing the symbol. We can therefore split the KSR into two parts that
we call character stroke ratio (CSR) and accept stroke ratio (ASR). The
first estimates the effort to type new symbols and the second is intended to
evaluate the effort associated to inspect and validate the proposed characters,
and the sum of both measurements gives rise to the KSR (KSR = CSR +
ASR).

An interactive transcription, where the user types the shortest prefix re-
quired to obtain the correct word, a surname in these experiments, was sim-
ulated. In Table 4 it is shown an example on how an input OCR hypothesis
is used by the system to provide new surnames as the user appends a new
corrected symbol to the prefix. Bold characters in the prefix contribute to
the CSR and regular characters add to the ASR.

According to these prefixes, a User Interaction Model (IM) like the one
described in Section 4.4 and similar to the one showed in Figure 10 is dy-
namically built and composed with the rest of the models, until the resulting
string converges to the expected one. In this task, the IM does not include
an associated error model, assuming that the user does not introduce errors
while interacting with the system (although in the application tested in the
following section an IM with error model is used).
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Table 4: Proposed transcriptions for an input OCR hypothesis (only the most probable
class for each symbol is shown) and a prefix sequence entered by the operator

OCR hypothesis | Prefix Proposed transc. | Correct transc.

[none] NAVES

ONAVES C CHAVES CHAVES
[none] MICLEA

HICICA M MICLEA MUGICA

MU  MUGICA
[none] TESTAL
M MERCHAN
TEZCTAL MO  MORATAL MOZOTA
MOZ MOZOTA
[none] ZAIDIN

P PALLIN
[AIIIV PA PALLIN PADIN

PAD PADIN

A first set of experiments was conducted in order to test the improvement
achieved when the user interaction is dynamically added to other sources of
information. To this end, four different approaches with different combina-
tions of information sources (models) were considered: i) Fully-Manual, in
which there are no models and the user must manually introduce the whole
string; ii) Predictive Text in which only IM and CM are considered, assuming
that there is not a previous post-processing nor automatic correction stage;
iii) Error Correction, which represents an automatic error correction system
without integrated user interaction, i.e. HM + EM + CM; and iv) Multi-
modal Interaction in which IM is also included, i.e. HM + EM + CM + IM.

The KSR, CSR and ASR were computed in all of the above mentioned
approaches and for the two defined tests (total and wrongly corrected). Ob-
viously, the approach Fully-Manual is included only as a reference and, in
this case, the KSR is just 1.

Table 5 shows the KSR, CSR and ASR for the first two approaches. These
results show that the predictive text scheme proposed achieves a reduction
of 0.47 in the KSR with regard to a fully-manual digitization in the first test,
and 0.42 in the second.

Table 6 shows the KSR, CSR and ASR for Error Correction and Multi-
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Table 5: KSR, CSR and ASR results for Fully-Manual and Predictive Text approaches.

Total set test Wrongly corrected
Approach KSR CSR ASR || KSR CSR ASR
Fully-Manual 1 1 0 1 1 0
Predictive Text | 0.53 0.40 0.13 || 0.58 0.44 0.15

modal Interaction approaches and for total and wrongly corrected test sets.
In this case the obtained results show a net gain, in terms of KSR, of 0.23 in
the total test, while in the harder wrongly corrected test, the net gain raises
up to 0.32. These gains can be seen as the saving, in terms of human re-
quirements, achieved when the IM is composed with the rest of information
sources.

Table 6: The KSR, CSR and ASR results for Error Correction and Multimodal Interaction
approaches over the total and wrongly corrected test sets.

Total Wrongly corrected
Approach KSR CSR ASR || KSR CSR ASR
Error Correction 0.55 0.24 031 | 0.83 0.51 0.32
Multimodal Interaction | 0.32 0.23 0.09 | 0.51 0.33 0.18

On the other hand, the comparison between Predictive Text and Multi-
modal Interaction shows us the gain achieved when an extra source of in-
formation (the OCR output in this case) together with an error correction
method, are incorporated into the user interaction scheme. In this case, the
results show a reduction of 0.21 and 0.07 in the KSR for total and wrongly
corrected test sets respectively.

A second set of experiments were conducted in order to test the influ-
ence of the number of valid strings, i.e., the complexity of the CM, using
the wrongly corrected test set To this end, subsets of increasing size were
randomly extracted from the sample of surnames to build different constraint
models.

In Figure 15, KSR, CSR and ASR results for a range of constraint model
sizes is shown. These results can be compared to a Predictive Text approach
(Figure 16) where only the user input and a language model are used to
predict the text, with no OCR information available (no HM).

Even if the OCR hypotheses that reach this stage are specially uncertain
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and difficult to recover, as mentioned, since they are those that failed on
the automatic recognition phase, the results show that they contain useful
information that can be retrieved by the interactive multimodal method,
reducing significantly the effort needed for the transcription.

If “accept strokes” are assumed to involve a lower effort than “character
strokes”, a subjective but reasonable weighted KSR (WKSR) can be defined
in order to compare the required user effort in a more realistic way than
just using the KSR. Figure 17 shows a comparison of a WKSR=0.67-CSR +
0.33-ASR for the Interactive Multimodal system against a non-multimodal
Predictive Text approach.
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Figure 15: KSR, CSR and ASR (95% confidence interval) for varying lexicon size, for a
multimodal approach.

The computational cost is another important issue for this task, where
the size of the models can be very large in practice, and the typical operations
involve large batches of documents to recognize.

Interaction average time when a large lexicon size is present has been ob-
tained for multimodal and not multimodal systems. We found that there
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is a significant increase in this response time of multimodal versus non-
multimodal systems, but in the worst case the interaction average time is
approximately 3.0 ms, which is much shorter than the fastest human inter-
action time. The time measurement has been obtained on an Intel Xeon 2.5
GHz computer with 2 GB of memory, gnu/linux OS and gcc 4.4. The largest
constraint model was built from 76,119 unique words, but the use of sub-
stantially larger constraint models remains practical, since the computational
cost typically grows sub-linearly.
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Figure 16: KSR, CSR and ASR (95% confidence interval) for varying lexicon size, for a
non-multimodal approach.

6.2. Efficient data entry in GPS navigation devices

In this task, the names of 7660 Spanish municipalities were used to build
the constraint model. As in previous experiments, a k equals to the longest
municipality name was used, so only existing municipalities were possible
outputs (deterministic model).
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Figure 17: Weighted KSR comparison for multimodal and non-multimodal approaches
(95% confidence interval).

The proposed application has not been embedded in a GPS navigation
device. Instead, smart phones with qwerty touch-keyboards were used to
simulate the data entry. A number of 84 test sets (bags), each of them
consisting of 30 destinations (municipalities) randomly selected, which makes
a total of 2520 destinations, were introduced by 21 users (120 destinations
per user) and subsequently stored.

Each bag was built as follows: a coordinate pair representing a position
within the Spanish territory was randomly generated. Then, 30 municipali-
ties were selected using a random process that considered the proximity of the
municipalities to the reference position and their population. The smaller the
distance to the reference position and the larger the population, the higher
the probability of the municipality to be selected.

Users were asked to use only the forefinger for data entry, to simulate
the process commonly used in navigation devices. Also, they were asked
not to correct mistyped characters, to assess the ability of the system to
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recover from user interaction errors. From the 2520 entered destinations,
1920 (76.2%) were free of errors, while the rest (23.8%) had at least one
mistyped or missing character.

In order to test to what extent the addition of new evidences can improve
the performance of the proposed method, three experiments with a growing
number of models were carried out: a) only with an IM and a CM (EXP1),
b) with EMnt as well, i.e., the IM has its own error model that allows to
recover user interaction errors (EXP2) and ¢) with the previous components
plus a HM and an EMmv (Figure 14) (EXPs3).

EXP1 assumes a scenario where only the user input and the constraint
model are used to predict the destination. This experiment can be considered
a baseline. In EXP2, knowledge about common input errors related with the
keyboard layout is added, allowing for input error recovery. Finally, in EXP3
a multimodal approach, in which a position and a radius enclosing the most
likely destinations around this position are assumed.

KSR, CSR, ASR and WKSR were computed for all the experiments, as
explained in Section 6.1, with the aim of assessing the required user effort to
get the desired destination. Computational costs were also computed.

Table 7 shows the results obtained in each of the proposed experiments.
KSR, CSR ASR and WKSR, along with the final error rates and response
times (average delay between each user interaction and the generation of a
new proposal) are shown. An error is computed when the proposed destina-
tion is not the intended one after the user has completely introduced all the
characters (which occurs when the user entry contains errors and the system
is unable to correct them). In EXP3 the destinations included in the test
sets were within a radius of 30 km, so results shown in this table are for the
same radius.

Table 7: User effort (KSR, CSR, ASR and WKSR), error rate and response time obtained
in each of the proposed experiments.

KSR CSR ASR WKSR Error(%) Time (ms)

EXP1 058 045 0.13 0.34 15.56 0.05
EXP2 054 040 0.14 031 4.25 0.38
EXPs 0.18 0.15 0.03 0.11 0.40 1.62

It must be noted that, although 23.8% of the entries used in the test set
had at least one mistyped or missing character, only 15.56% are erroneously
corrected in EXP1, where no error model is applied. The reason is that the
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correct string can be found in the constraint model before the mistyped or
missing character is reached in the input string. The data input process would
be finished at that point in a real user interface. Therefore, even without
error model, a small fraction of the strings are corrected by the system.

If the results obtained in EXP1 are taken as a baseline, it can be observed
that the addition of new models encoding other available knowledge sources
considerably improves the performance of the system in terms of user effort
savings. It can be also concluded that the inclusion of an error model as-
sociated with user interaction (EXP2) drastically decreases the error rate.
When an hypothesis model built from a given set of geographic coordinates,
which can be manually set or taken from the current GPS position sensor, is
also included (EXP3), then both significant user effort gains and error rate
reductions are achieved.

Regarding response time, in all the cases the system is able to suggest
new destinations much faster than a trained user would type new characters,
which means that new suggestions will immediately appear as the user types
new characters. In EXP2 and EXP3, the response time is higher due to
the inclusion of new error and hypothesis models that require the shortest-
path search algorithm to explore a larger number of paths. However, the
interaction time is still in the range of a few milliseconds in a standard
implementation.

Figure 18 shows KSR, CSR and ASR values for the different radius used
to build the HM in EXP3. Destinations included in the test sets were within
a radius of 30 km from a position previously set, which justifies the minimum
of KSR at this point. The shorter the radius, the lower the probability that
the desired destination is within the HM and, therefore, the higher the KSR.
When the radius becomes zero, no HM is effectively used, which would be
equivalent to EXP2. Conversely, the results indicate that the performance
decreases more gradually when the radius modeled gets larger. So, the radius
used to build the HM has an effect in the system performance. A radius
too small can lead to a HM that does not contain the desired destination,
resulting in an increase of the KSR, as the system will tend to propose
destinations in the HM. On the other hand, a radius too large will give
rise to an HM with a larger number of destinations, which can also produce
a small increase of the KSR. The radius can be a user parameter, since the
HM is easily built on-demand when interaction is required.

Figure 19 shows the relationship between the radius used to build HM
and the response time achieved in EXP3. For the reasons discussed before,
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Figure 18: KSR, CSR and ASR related to radius used in building HM (95% confidence

interval).

the response time increases as the radius is smaller or larger than the area
in which desired destinations are most likely to be found (30 km in our
experiments). In any case, the response time remains shorter than the typical
period between keystrokes.

Finally, Figure 20 shows the error rate against the radius. The error rate
approaches the one of EXP2 as the radius shrinks from its optimal value to
zero, while remains very stable as the radius grows.

7. Conclusions

A flexible and generic Symbol Input Interactive Post-processing method
has been presented. The use of WESTSs to encode and combine the set of
Input Hypotheses, Error Models, a Constraint Model and a User Interaction
Model has been proposed. In this method, no explicit parsing of an input
string is performed, which is a clear difference with other systems. Instead,
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Figure 19: Average interaction time related to radius used in building HM (95% confidence
intervals).

the combination of the different models is performed through the composi-
tion operation between transducers, and then the best path in the resulting
transducer is found.

Independently encoding the different sources of information available al-
lows for a decoupled architecture, which brings several advantages: ease the
integration of different probabilistic models representing the available knowl-
edge sources, use of multimodal approaches where inputs coming from dif-
ferent sources need to be combined, and design flexibility.

The different transducers are composed to perform the lowest cost path
search, which gives the most probable string compatible with the Constraint,
the Hypothesis and the Error Models. If the resulting string is wrong, the
User Interaction Model can be used, along with a multimodal interactive
technique, to get the correct string with a low effort level. No intermediate
or irreversible decisions are taken from isolated models.

From a practical point of view, using independent Error, Constraint, In-
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Figure 20: Error rate against radius (95% confidence intervals).

put Hypothesis and User Interaction Models gives a higher degree of design
flexibility than other approaches where a global closely coupled model is used,
such as Stochastic Parsing or Hidden Markov Models.

Although the method can be directly applied to many different tasks,
two experiments of very different nature have been conducted to exemplify
and test the proposed method. In both cases, significant improvements have
been achieved. In the case of the OCR post-processing task, the approach
presented takes advantage of all the information the OCR classifier can pro-
vide, such as the a posteriori class-conditional probabilities or the confusion
matrix. Similarly, in the GPS data-entry task, significant improvements
are achieved when an error model associated with user interaction or a hy-
pothesis model encoding the most likely destinations are added. Also, the
computational costs are very reasonable, allowing a smooth interaction with
the system.
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