

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

 The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-14125-
1_11

http://link.springer.com/chapter/10.1007/978-3-319-14125-1_11

http://hdl.handle.net/10251/72833

Springer

González, J.; Insa Cabrera, D.; Silva Galiana, JF. (2013). A New Hybrid Debugging
Architecture for Eclipse. En Logic-Based Program Synthesis and Transformation. Springer.
183-201. doi:10.1007/978-3-319-14125-1_11.

A New Hybrid Debugging Architecture for Eclipse

Juan González, David Insa and Josep Silva

Universitat Politècnica de València, Valencia, Spain
{jgonza, dinsa, jsilva}@dsic.upv.es

Abstract. During many years, Print Debugging has been the most used method
for debugging. Nowadays, however, industrial languages come with a trace de-
bugger that allows programmers to trace computations step by step using break-
points and state viewers. Almost all modern programming environments include
a trace debugger that allows us to inspect the state of a computation in any given
point. Nevertheless, this debugging method has been criticized for being com-
pletely manual and time-consuming. Other debugging techniques have appeared
to solve some of the problems of Trace Debugging, but they suffer from other
problems such as scalability. In this work we present a new hybrid debugging
technique. It is based on a combination of Trace Debugging, Algorithmic De-
bugging and Omniscient Debugging to produce a synergy that exploits the best
properties and strong points of each technique. We describe the architecture of our
hybrid debugger and our implementation that has been integrated into Eclipse as
a plugin.

1 Introduction

Debugging is one of the most time-consuming tasks in software engineering. However,
the automatization of debugging is still far from being a reality. In fact, during many
years, Print Debugging (also known as Echo Debugging) has been the most common
method for debugging. Print Debugging allows us to easily know whether the compu-
tation traverses one specific point. Many bugs can be corrected with this information,
and the programmer (maybe optimistically) prefers to use this method before loading
a real debugger. Nevertheless, some bugs are almost impossible to detect with Print
Debugging, specially in presence of random values, input, and concurrency.

Fortunately, all modern programming environments, e.g., Borland JBuilder [?], Net-
Beans [?], Eclipse [?], SICStus Prolog SPIDER IDE [?] or SWI-Prolog [?] include a
trace debugger, which allows programmers to trace computations step by step. How-
ever, Trace Debugging is a completely manual task, and the programmer is in charge
of inspecting the computations of the program at a low abstraction level. For this rea-
son, other debugging techniques have been proposed to solve some of these problems,
but they also suffer from other problems. For instance, Algorithmic Debugging [?,?]
(also known as Declarative Debugging) is semi-automatic, i.e., the search for the bug
is directed by the debugger instead of the programmer; and its abstraction level is so
high that programs can be debugged without even seeing the code, but it suffers from
scalability problems.

In this work we introduce a hybrid debugging technique that combines three dif-
ferent techniques, namely, Trace Debugging (TD), Omniscient Debugging (OD) and

Algorithmic Debugging (AD). The combination is done exploiting the strong points of
each technique, and counteracting or removing the weak points with their composition.
Our method is presented for the programming language Java—our implementation is an
Eclipse plugin for Java—but the technique and the architecture of our debugger could
be applicable to any other programming language. In summary, the main contributions
of this work are the following:

– The design of a new hybrid debugging technique that combines TD, OD and AD.
– The integration of the technique on top of the JPDA architecture—which was con-

ceived for tracing, but not for algorithmic or omniscient debugging—.
– The implementation of the technique as a Eclipse plugin.
– The empirical evaluation of the new architecture that demonstrates the practical

scalability of the technique.

The rest of the paper is structured as follows: In Section 2 we describe TD, OD,
and AD, analyzing their strong and weak points. Then, in Section 3 we present our new
hybrid debugging technique and explain its architecture. In Section 4 we describe our
implementation, which has been integrated into Eclipse. The related work is presented
in Section 5. Finally, Section 6 concludes and outlines the future work.

2 Debugging Techniques

This section describes the three debugging techniques that we use in our hybrid method:
TD, OD and AD. For each technique, we also analyze its strong and weak points and
its applicability to Java.

2.1 Trace Debugging

The most used method for debugging is TD. It allows the programmer to traverse the
trace of a computation step by step. The programmer places a breakpoint in a line of the
source code and the debugger stops the computation when this line is reached. Then,
the programmer proceeds line by line and, at each step, the programmer can inspect the
state of the computation (i.e., variables’ values, exceptions, etc.). During the traversal of
the trace, when a call to a method is reached, the debugger can either enter the method
(step into) or skip it (step over). Modern breakpoints are conditional, i.e., the breakpoint
includes conditions over the values of some variables, or over the action performed
where they are defined. For instance, it is possible to define a breakpoint that only stops
the computation when an exception happens, or when a class is loaded. TD has one
important advantage over other debugging techniques: scalability. The debugger only
needs to take control over the interpreter to execute the program normally. Hence, its
scalability is the same as the one of the interpreter. On the other hand, TD has four main
drawbacks:

1. The whole debugging process is done at a very low abstraction level. The pro-
grammer just follows the steps of the interpreter, and she needs to understand how
variables’ values change to identify an error.

2. The debugger can generate an overwhelming amount of information.
3. The debugging process is completely manual. The programmer uses her intuition

to place the breakpoints. If the breakpoint is after the bug, she has to place it again
before, and restart the program. If the breakpoint is placed long before the bug, then
she has to manually inspect a big part of the computation.

4. The inspection of the computation is made forwards, while the natural way of dis-
covering the bug is backwards from the bug symptom.

2.2 Omniscient Debugging

Omniscient debugging [?] solves the fourth drawback of TD with the cost of sacrificing
scalability. Basically both techniques rely on the use of breakpoints and they both do
exactly the same from a functional point of view. The difference is that OD allows the
programmer to trace the computation forwards and backwards (chronologically). This
is very useful, because it allows the programmer to perform steps backwards from the
bug symptom. To do this, the debugger needs a mechanism to reconstruct every state of
the computation. One of the most scalable schemas to do this is depicted in Figure 1.
In this figure, we have an horizontal line representing an execution as a sequence of
events. Some of these events are method invocations (represented with a white circle),
and method exits (represented with a black circle). Each event is identified with a times-
tamp. From the execution, the omniscient debugger stores a variable history record that
contains the values of all variables together with the exact timestamp where they up-
dated each value. The omniscient debugger also stores information about the scope of
variables that we omit here for clarity. With this information the debugger can recon-
struct any state of the computation. For instance, in state 42, value M.N.y did not exist,
and the last value of variables O.x and O.v[3] was 23 and 3 respectively.

Being able to reconstruct the complete trace also allows the programmer to start
the execution at any point. Nevertheless, storing all values taken by all variables in an

Fig. 1. Timestamps-based scheme to store traces in Omniscient Debugging

execution is usually impossible for realistic industrial (large) programs, and even for
medium sized programs. Thus scalability is very limited in this technique.

2.3 Algorithmic Debugging

Algorithmic Debugging [?,?] is a semi-automatic debugging technique that is based
on the answers of the programmer to a series of questions generated automatically by
the algorithmic debugger. The questions are always whether a given result of a method
invocation with given input values is actually correct. The answers provide the debugger
with information about the correctness of some (sub)computations of a given program;
and the debugger uses them to guide the search for the bug until a buggy portion of code
is isolated.

Example 1. Consider the Java program in Figure 2 that simulates Tic-Tac-Toe games
—we suggest the reader not to see the code now, and try to debug this program without
seeing the code. This is possible with AD as it is shown in the following debugging
session—. This program is buggy, and thus it does not produce the expected marks in
the board. Class Replay reads from a file a new game and it reproduces the game using
a TicTacToe object. The null character is represented in Java with ’\u0000’.

An AD session for this program is shown below where boards are represented with

a picture for clarity (e.g., {{X,”,”}{O,”,”}{”,”,”}} is represented with). For the
time being ignore column Node:

Starting Debugging Session...

Node Initial context Method call Final context Answer

(2) [turn=’X’,board=] game.mark(’X’,0,0) [turn=’O’,board=] ? YES

(7) [turn=’O’,board=] game.mark(’O’,0,1) [turn=’X’,board=] ? NO

(8) [turn=’X’,board=] game.win(0,1)=false [turn=’X’,board=] ? YES

Bug found in method: TicTacToe.mark(char, int, int)

Discovered with the call: game.mark(’O’,0,1)

Note that the debugger generates questions, and the programmer only has to answer the
questions with YES or NO. It is not even necessary to see the code. Each question is about
the execution of a particular method invocation, and the programmer answers YES if the
execution is correct (i.e., the output and the final context are correct with respect to the
input and the initial context) and NO otherwise.
At the end, the debugger points out the specific call to a method in the code that revealed
a bug in that method. In this case, method TicTacToe.mark is wrong. This method first
checks whether the movement is correct (e.g, it is the player’s turn, the mark is inside
the board, etc.). If the movement is correct, then it places the mark in the correspond-
ing position of board, it updates the next player to make a movement, and it finally
checks whether this mark wins the game. Unfortunately, the programmer interchanged

public class Replay {
public static void main(String[] args) throws IOException {

TicTacToe game = new TicTacToe();
FileReader file = new FileReader("./game.rec");
play(game, file);

}
private static void play(TicTacToe game, FileReader file) throws IOException {

BufferedReader br = new BufferedReader(file);
String linea = br.readLine();
while ((linea = br.readLine()) != null) {

char player = linea.charAt(0);
int row = Integer.parseInt(linea.charAt(2) + "");
int col = Integer.parseInt(linea.charAt(4) + "");
game.mark(player, row, col);

}
}

}

public class TicTacToe {
private static boolean equals(char c1, char c2, char c3) {

return c1 == c2 && c2 == c3;
}

private char turn = ’X’;
private char[][] board = new char[3][3];

public void mark(char player, int row, int col) {
if (turn == ’\u0000’ || turn != player

|| row < 0 || row > 2 || col < 0 || row > 2
|| board[row][col] != ’\u0000’)
return;

board[col][row] = player; // Bug!! Correct: board[row][col] = player;
turn = turn == ’X’ ? ’O’ : ’X’;
if (win(row, col))

turn = ’\u0000’;
}
private boolean win(int row, int col) {

if (board[row][col] == ’\u0000’)
return false;

if (equals(board[row][0], board[row][1], board[row][2]))
return true;

if (equals(board[0][col], board[1][col], board[2][col]))
return true;

if (col == row && equals(board[0][0], board[1][1], board[2][2]))
return true;

if (col + row == 2 && equals(board[0][2], board[1][1], board[2][0]))
return true;

return false;
}

}

Fig. 2. Example program

the row and the column producing a bug. This error can be easily corrected by replacing
board[col][row] = player by board[row][col] = player.

Typically, algorithmic debuggers have a front-end that produces a data structure
representing a program execution—the so-called execution tree (ET) [?]— and a back-
end that uses the ET to ask questions and process the programmer’s answers to locate
the bug. Each node of the ET contains an equation that consists of a method execution
with completely evaluated arguments and results. The node also contains additional

Fig. 3. ET associated with the call play(game, file) of the program in Figure 2

information about the context of the method before and after its execution (attributes
values or global variables in the scope of the method).

Essentially, AD is a two-phase process: During the first phase, the ET is built, while
in the second phase, the ET is explored. The ET is constructed as follows: The root
node is (usually) the main function of the program; for each node n with associated
method m, and for each method invocation done from the definition of m, a new node
is recursively added to the ET as the child of n.

Example 2. Consider again the Java program in Figure 2. Figure 3 depicts the portion of
the ET associated with the execution of the method play(game, file) using game.rec
as the input file. Each node contains:

– A string representing the method call (including input and output) depicted at the
top of each node.

– The variables (and their values) in the scope at the beginning and at the end of the
method execution. When the value of a variable is modified during the execution of
the method, the node contains both values on the left and on the right of the node
respectively. When the variable is not modified, it is shown only once in the middle
of the node.

Once the ET is built, in the second phase, the debugger uses a strategy to traverse
the ET asking an oracle to answer each question. For instance, each question in the

debugging session of Example 1 corresponds to a node (see column Node) of the ET
in Figure 3. These nodes have been selected by the strategy Divide & Query [?]. After
every answer, some nodes of the ET are marked as correct or wrong. When all the
children (if any) of a wrong node are correct, the node becomes buggy and the debugger
locates the bug in the part of the program associated with this node [?].

Theorem 1 (Correctness of AD [?]). Given an ET with a buggy node n, the method
associated with n contains a bug.

Theorem 2 (Completeness of AD [?]). Given an ET with a bug symptom (i.e., the root
is a method with a wrong final context), provided that all the questions generated by the
debugger are answered, then, a bug will eventually be found.

The most important advantage of AD is its high level of abstraction and its semi-
automatic nature. The main drawbacks of this technique are:

1. Low scalability. Each ET node needs to record a part of the computation state (i.e.,
the context before and after the method execution). Storing the ET of the whole
execution can be unpractical.

2. The strategy that traverses the ET can ask unnecessary questions until it reaches the
part of the computation that contains the bug.

3. Low granularity of the error found. This technique reports a method as buggy, in-
stead of an expression.

2.4 Comparison of the techniques and empirical analysis

Table 1 summarizes the strong and weak points of the techniques.

Feature Trace Omniscient Algorithmic

Scalability Very Good Very bad Bad
Error granularity Expression Expression Method

Automatized process Manual Manual Semi-automatic
Execution Forwards Forwards and backwards Forwards and backwards

Abstraction level Low Low High
Table 1. Comparison of debugging techniques

In our hybrid technique, we want to take advantage of the high abstraction level of
AD. We also want to exploit the semi-automatic nature of this technique to speed up
bug finding and to avoid errors introduced by the programmer when searching the bug.
However, AD alone would explore all computations as if they all were suspicious. To
avoid this, we want to take advantage of the breakpoints, which provide information to
the debugger about what parts of the computation are suspicious for the programmer
(e.g., the last changed code). Hence, we designed our technique to start using the break-
points of the programmer, and then automatize the search using AD. Another problem

that must be faced is that AD is able to find a buggy method, but not a buggy expression.
Therefore, once AD has found a buggy method, we can use OD to further investigate
this method in order to find the exact expression that produced the error.

In order to analyze whether this scheme is feasible, we studied the scalability prob-
lem of both AD and OD. Operationally, AD and OD are similar. They both record
events produced during an execution, and they associate with each event a timestamp.
The main difference is that AD only needs to reconstruct the state of the events that cor-
respond to method invocations and method exits (white and black circles in Figure 1).
Moreover, AD does not need to store information about local variables—only about at-
tributes and global variables—, which is an important difference regarding scalability.

We conducted some experiments to measure the amount of information stored by
an algorithmic debugger to produce the ET of a collection of medium/large benchmarks
(e.g., an interpreter, a parser, a debugger, etc.) accessible at:

http://www.dsic.upv.es/~jsilva/DDJ/#Experiments

Results are shown in Table 2.

Benchmark var. num. ET size ET depth

argparser 8.812 2 MB 7
cglib 216.931 200 MB 18
kxml2 194.879 85 MB 9
javassist 650.314 459 MB 16
jtstcase 1.859.043 893 MB 57
HTMLcleaner 3.575.513 2909 MB 17

Table 2. Benchmark results

Column var. num. represents the total amount of variable changes stored. Column
ET size represents the size of the information stored. Observe that the last benchmark
needs almost 3 GB. Column ET depth is the maximum depth of the ET (e.g., in bench-
mark jtstcase, there was a stack of 57 activation records during its execution). If we
consider that this information does not include local variables, then we can guess that
the amount of information needed by an omniscient debugger can be huge. Clearly,
these numbers show that neither AD nor OD are scalable enough as to be used with the
whole program. They should be restricted to a part of the execution. For AD, we pro-
pose to restrict its use only to the part of the execution that corresponds to a breakpoint
(i.e., the execution of the method where the breakpoint is located). For OD, we propose
to restrict its use only to the part of the execution that corresponds to a single method
(i.e., the method where AD identified a bug). This proposal is completely aligned with
the previous ideas discussed: AD will only start in a suspicious area pointed out by a
breakpoint, and OD will only be used when a buggy method has been found, and thus
the programmer can trace backwards the incorrect values identified at the end of this
method.

Fig. 4. Hybrid debugging with HDJ

3 Hybrid Debugging

In this section we present our hybrid debugger for Java (HDJ) based on the ideas dis-
cussed in the previous section. It combines TD, AD and OD to produce a synergy that
exploits the best properties and strong points of each technique.

We start by describing the steps followed in a hybrid debugging session. Consider
the diagram in Figure 4 that summarizes our hybrid debugging method. We see three
main blocks that correspond to TD, AD and OD. These blocks contain four items that
have been numbered; and these items are connected by arrows. Black arrows represent
an automatic process (performed by the debugger), whereas white arrows represent a
manual process (performed by the programmer):

Trace Debugging. First, after a bug symptom is identified, the user explores the code
as usual with the trace debugger and she places a breakpoint b1 in a suspicious line
(probably, inside one of the last modified parts of the code).

Algorithmic Debugging. Second, the debugger identifies the method m1 that contains
breakpoint b1, and it generates an ET whose root method is m1. This is completely
automatic. Then, the user explores the ET using AD until a buggy node n is found.
Note that, according to Theorem 2, if method m1 is wrong, then it is guaranteed that
AD will find a buggy node (and thus a buggy method). From n, the AD automat-
ically generates a new breakpoint b2. b2 is placed in the definition of the method
m2 associated with n. And, moreover, b2 is a conditional breakpoint that forces the
debugger to stop at this definition, only when the bug is guaranteed to happen. The
condition ensures that all values of the parameters of m2 are exactly the same as
their values in the call to m2 associated with n.

Example 3. Consider a buggy node {x = 0} m(42) {x = 1}, where the definition
of method m, void m(int a), is located between lines 176 and 285. Then, the con-
ditional breakpoint generated for it is (176,{x = 0,a = 42}). Alternatively, another
conditional breakpoint can also be generated at the end of the method.

According to Theorem 1, because node n is buggy, then method m2 contains a bug.
Omniscient Debugging. Third, the debugger acts as an omniscient debugger that ex-

plores method m2 by reproducing the concrete execution where the bug showed up
during AD. The user can explore the method backwards from the final incorrect
result of the method. Observe that the OD phase is scalable because it only needs

to record the trace of a single method. Note that all method executions performed
from this method are known to be correct thanks to the AD phase.

The three phases described produce a debugging technique that takes advantage of
all the best properties of each technique. However, one of the most important objectives
in our debugger is to avoid a rigid methodology. We want to give the programmer the
freedom to change from one technique to another at any point. For instance, if the
programmer is using TD and decides to use OD in a method, she must be able to do
it. Similarly, new breakpoints can be inserted at any moment, and AD can be activated
when required. The architecture of our tool provides this flexibility that significantly
increases the usability of the tool, and we think that it is the most realistic approach for
debugging.

3.1 Architecture

This section explains the internal architecture of HDJ, and it describes its main features.
HDJ is an Eclipse plugin that takes advantage of the debugging capabilities already
implemented in Eclipse (i.e., HDJ uses the Eclipse’s trace debugger), and it adapts the
already existent Declarative Debugger for Java (DDJ) [?] to the Eclipse workbench.
The integration of HDJ into Eclipse is described in Figure 5.

Fig. 5. Integration of HDJ into Eclipse

One of the debuggers, the trace debugger, was already implemented by an Eclipse
plugin called JDT Debug. The other two debuggers have been implemented in the HDJ
plugin. The tool allows the programmer to switch between three perspectives:

Debug: This perspective allows us to perform TD. It is the standard perspective of
Eclipse for debugging. It is composed of several views and editors and it offers
a wide functionality that includes conditional breakpoints, exception breakpoints,
watch points, etc.

ODJ: This perspective allows us to perform OD. It contains the same views and editors
that form the standard debug perspective. Therefore, although the programmer is
using a different debugger with a totally different debugging mechanism, their GUI

Fig. 6. Snapshot of HDJ (DDJ perspective)

is exactly the same; and thus, the internal differences are transparent for her. The
only difference is that ODJ allows us to explore the execution backwards. Internally,
it uses a trace of the execution (as the one described in Section 2.2) that is stored in
a database.

DDJ: This perspective allows us to perform AD. An usage example of this perspective
interface is presented in Figure 6. In the figure we can see two of its three views
and one editor. First, on the left we see the ET view, which contains the ET and
the questions generated by the debugger. Second, on the right we see the Node
inspector, which shows all the information associated with the selected ET node.
This includes the initial context, the method invocation and the final context, where
changes are highlighted with colors. Third, at the bottom we see the Java editor,
which contains the source code and the breakpoints. This editor is shared between
the three debuggers, and thus, all of them manipulate the same source code, and
handle the same breakpoints of the programmer.

One of the important challenges when integrating two new debuggers into Eclipse
was to allow all of them to debug the same program together (i.e., giving the pro-
grammer the freedom to change from one debugger to the other in the same debugging
session). For this, all of them must have access to the same target source code (e.g., a
breakpoint in the target source code should be shared by the debuggers), and use the
same target Java Virtual Machine (JVM) and the same execution control over this target
JVM. In the figure, this common target JVM is represented with the black box. The
Java Virtual Machine Tools Interface (JVM TI) provides both a way to inspect the state
and to control the execution running in the target JVM. The debuggers access it through
the Java Debug Interface (JDI) whose communication is ruled by the Java Debug Wire
Protocol (JDWP). This small architecture to control the JVM is called Java Platform
Debugger Architecture (JPDA) [?].

The integration of HDJ into Eclipse implies having three different debuggers access-
ing and controlling the same JVM where the debuggee is being executed. Therefore, our
architecture uses two different JVMs that run in parallel and communicate via JPDA.
The first JVM is where the debuggee is executed. The second JVM is where the debug-
gers are executed. It is important to remark that the information of one JVM cannot be
directly accessed by the other JVM. Controlling one JVM from the other must be done
through JPDA.

A first idea could be to execute the program in the target JVM and stop it when
the statement that the programmer wants to inspect is reached. However, this would
imply to re-execute the program once and again every time the programmer wants to
perform a step backwards (i.e., to inspect the previous statement). Obviously, this is
a bad strategy, because every time the program is re-executed, the state could change
due to, e.g., concurrency, nondeterminism, input, etc. Therefore, even if we reached
the same statement, it could vary between executions, and the information shown to
the programmer would not be confident. Hence, we need to use some memorization
mechanism to store all relevant states of a single execution.

Prior to our current implementation, our first design was conceived in such a way
that the JVM of the debugger directly controlled the JVM of the debuggee using com-
munication through JPDA. This implementation had to establish communication be-
tween both JVMs after every relevant event. This produced a heavy interaction with a
massive message passing that was not scalable even for small programs. Therefore, we
designed a second strategy whose key idea is to let the JVM of the debuggee to control
itself. More precisely, before executing the debuggee in the JVM, we load a thread in
this JVM so that, this thread directs the debugging of the program, thus, avoiding un-
needed communication thorough JPDA. Figure 7 summarizes the internal architecture
of the debugger to control the execution of the debuggee.

Fig. 7. Architecture of HDJ

The big boxes represent two JVMs. One for the debugger, and one for the debuggee.
The debugger has two independent modules that can be executed in parallel: The algo-
rithmic debugger DDJ, and the omniscient debugger ODJ. Each dark box represents a

thread. DDJ has four threads: interface to control the GUI, construction to build the ET,
control to control and communicate with the debuggee JVM, and selection to select the
next question. ODJ has two threads: interface and control that perform similar tasks as
in DDJ. In the debuggee, a new thread is executed in parallel with the program. This
thread, called HDJ, is in charge of collecting all debugging information and storing it
in a database. This information is later retrieved by threads control. Thread HDJ makes
this approach scalable, because it allows to retrieve all the necessary information with
a very reduced set of JPDA connections. In the case of OD, the information stored in
the database by thread HDJ contains all changes of variable values occurred during the
execution of the method being debugged.

Example 4. Consider again the debugging session in Example 1. In this debugging ses-
sion AD determined that method mark is buggy, and that the bug shows up with the
specific call game.mark(’O’,0,1). With this information, HDJ automatically gener-
ates a conditional breakpoint to debug this call. The information stored in the database
by thread HDJ for this call is shown in Figure 8. Observe that only the variables that
changed their value during the execution are stored.

Fig. 8. Information stored in the database by the omniscient debugger

4 Implementation

HDJ has been completely implemented in Java. It contains about 29000 LOC: 19000
LOC correspond to the implementation of the algorithmic debugger (the internal func-
tionality of the algorithmic debugger has been adapted from the debugger DDJ with
some extensions that include the communication with JPDA trough JDT Debug, and
the perspective GUI), 8300 LOC correspond to the implementation of the omniscient
debugger that has been implemented from scratch, and 1700 LOC correspond to the
implementation of the own plugin and its integration and communication with Eclipse.
The debugger can make use of a database to store the information of the ET and the
trace used in OD (if the database is not activated, the ET and the trace are stored in
main memory). Thanks to JDBC, HDJ can interact with different databases. The cur-
rent distribution includes both a MySQL and Access databases. The last release of the
debugger is distributed in English, Spanish and French.

All described functionalities in this paper are completely implemented in the last
stable release. This version is open and publicly available at:

http://www.dsic.upv.es/~jsilva/HDJ/

In this website, the interested reader can find installation steps, examples, demonstration
videos and other useful material.

4.1 Empirical evaluation

In order to measure the scalability of our technique, we conducted a number of exper-
iments to achieve the time needed by the debugger to start the debugging session. The
scalability of TD is ensured by the own nature of the technique that reexecutes the pro-
gram up to a breakpoint, and then shows the current state. In fact, we use the Eclipse’s
standard trace debugger that is scalable no matter where the breakpoint is placed. In the
case of AD, scalability could be compromised if the debugger is forzed to generate the
ET of the whole execution. Even in this case, we are able to ensure scalability: (i) The
memory problem is solved with a database. Our debugger never stores the whole ET
in main memory. It uses a clustering mechanism to store and load from the database
the subtrees of the ET that are dynamically needed by the GUI. (ii) The time problem
is solved by allowing the debugger to start the debugging session even if the ET is not
completely generated (i.e, our debugger is able to debug incomplete ETs while they are
being generated) [?]. In the case of OD, we cannot ensure scalability if it is applied to
the whole program. For this reason, we limit the application of OD to a single method.
This is scalable as demonstrated by our empirical evaluation whose results are shown
in Table 3.

Benchmark Execution Omniscient
Statements Objects Time (ms) Time (ms)

0 - 9
0 - 1 (96) 5 2060

(294)
2 - 5 (97) 273 3265

6 - 18 (101) 27 4099

10 - 19
7 - 18 (10) 51 6527

(29)
19 - 24 (10) 739 7348
25 - 32 (9) 2062 12379

20 - 57
25 - 39 (3) 83 3999

(10)
40 - 54 (4) 117 6347
55 - 100 (3) 176 3757

Table 3. Benchmarks results for OD

This table summarizes the results obtained for 333 benchmarks. Each benchmark
measures the time needed to generate all the information used in OD (the information
stored in the database by thread HDJ in Figure 7). After this time, the debugger contains
the state at any point in the method, and thus, the programmer can make backwards
steps, jump to any point in the method and show the values of the variables at any

point. These benchmarks correspond to all methods executed (333 different methods)
by the loops2recursion Java library [?] applied over a collection of 25 Java projects. This
library automatically transforms all loops in the Java projects to equivalent recursive
methods.

All benchmarks have been grouped into three categories according to the number
of statements executed in the method (0-9, 10-19, and 20-57). Inside each category, we
indicate the number of benchmarks that fall on this category between parentheses. Cat-
egories have been divided in subcategories that indicate the number of objects that have
changed during the execution of the method (i.e., the number of objects that must be in-
spected and stored in the database). We have a total of 9 subcategories. Each of them in-
dicates the average time needed to execute the methods in that subcategory (Execution
Time), and the time needed to generate the information for OD (Omniscient Time).
All the information is generated between 2 and 12 seconds. The variability between the
rows is dependent on the size of the objects changed. Clearly, row 6 has less objects to
store than rows 7, 8 and 9, but these objects are bigger, and thus both the execution and
omniscient times are higher.

5 Related Work

While a trace debugger is always present in modern development environments, algo-
rithmic debuggers and omniscient debuggers are very unusual due to their scalability
problems already discussed. There exist, however, a few attempts to implement algorith-
mic debuggers for Java such as the algorithmic debugger JDD [?] and its more recently
reimplemented version DDJ [?]. Other debuggers exist that incorporate declarative as-
pects such as the Eclipse plugin JavaDD [?] or the Oracle JDeveloper’s declarative
debugger [?] however, they are not able to automatically produce questions and to con-
trol the search to automatically find the bug. This means that they lack the common
strategies for AD implemented in standard algorithmic debuggers of declarative lan-
guages such as Haskell (Hat-Delta [?]) or Toy (DDT [?]). None of this debuggers can
work with breakpoints as our debugger does.

The situation is similar in the case of omniscient debuggers. To the best of our
knowledge, OmniCore CodeGuide [?] is the only development environment for Java
that includes by default an omniscient debugger. Nevertheless, for the sake of scalabil-
ity, this debugger uses a trace limited to the last few thousands events. Some ad-hoc
implementations exist that can work stand-alone or be integrated in commercial envi-
ronments [?,?,?,?,?]. Almost all these works focus on how to make OD more scalable
[?,?]. For instance, by reducing the overhead of trace capture as well as the amount of
information to store using partial traces that exclude certain trusted classes from the
instrumentation process [?]. Other works try to enhance OD, e.g., with causality links
[?] that provide the ability to jump from the point a value is observed in a given variable
to the point in the past when the value was assigned to that variable. This can certainly
be very valuable to resolve the chain of causes and effects that lead to a bug.

There have been several attempts to produce hybrid debuggers that combine dif-
ferent techniques. The debugger ODB [?] combines TD with OD. It allows the user to
debug the program using TD and start recording the execution for OD when the user

prefers. The debugger by Kouh et al. [?] combines AD with TD. Once the algorithmic
debugger has found a buggy method, they continue the search with a trace debugger to
explore this method (forwards) step-by-step. This idea is also present in our debugger,
but we use OD instead of TD, and thus we also permit backwards steps. The debugger
JIVE [?] combines TD, OD and dynamic slicing. It does not use AD, but allows the
programmer to perform queries to the trace.

To the best of our knowledge, JHyde [?] is the only previous technique that com-
bines TD, OD and AD. Unfortunately, we have not been able to empirically evaluate this
tool (it is not publicly accessible); but considering its architecture, it is highly probable
that it suffers from the same scalability problems as any other omniscient debugger. Un-
like our solution, their architecture is based on program transformations that instrument
the code to store the execution trace in a file as a side effect. First, this instrumentation
and the execution of the trace usually takes a lot of time with an industrial program, so
that the programmer has to wait for the instrumentation before starting to debug; and
second, they store the trace of the whole program, while our scheme only needs the
trace of a single method. The common point is that both techniques are implemented
as an Eclipse plugin, and they both use the same data structure for OD and AD. This is
important to reuse the trace information collected by the debugger. Another important
feature implemented by both techniques is the use of a color vocabulary used in the
views. This is very useful to allow the programmer to quickly see the changes in the
state.

6 Conclusions and Future Work

Trace Debugging, Algorithmic Debugging and Omniscient Debugging are three of the
most important debugging techniques. Some of them are more suitable for one specific
kind of program, while for other programs the other techniques can be better. Further-
more, it is possible that one technique is desirable to debug one part of a program, while
other technique is preferable for other part of the same program. For these reasons, in
any development environment the three techniques should be available.

In this work, we introduce a new debugger called HDJ that implements and inte-
grates the three techniques. The implementation uses a new debugging architecture that
allows the three techniques to share the same target virtual machine, and the same tar-
get source code. This allows the programmer to change from one technique to the other
in the same debugging session. Moreover, we present a new model for debugging that
combines the three techniques. Our new debugging architecture is particularly interest-
ing because it exploits the best properties of each technique (e.g., high precision, high
abstraction level, etc.) and it minimizes the problems such as scalability. HDJ is open
and freely distributed as an Eclipse plugin.

As future work, we plan to incorporate in our debugger the causality links function-
ality [?], which allows the programmer to click on a variable and jump to the statement
that produced the value of this expression. We are also further improving the integration
between AD and OD. In particular, we want to allow the programmer to select a node
in the ET and automatically start an omniscient debugging session with the information
of this node.

7 Acknowledgements

This work has been partially supported by the Spanish Ministerio de Economía y Com-
petitividad (Secretaría de Estado de Investigación, Desarrollo e Innovación) under
grant TIN2008-06622-C03-02 and by the Generalitat Valenciana under grant PROM-
ETEO/2011/052. David Insa was partially supported by the Spanish Ministerio de Ed-
uación under FPU grant AP2010-4415.

