
New Fault Detection,
Mitigation and Injection

Strategies for Current and
Forthcoming Challenges of
HW Embedded Designs

Jaime Espinosa Garcia

Advisors:
David de Andrés Martínez, PhD
Juan Carlos Ruiz Garcia, PhD

Valencia, July 2016

"The problem with the world is that the in-
telligent people are full of doubts, while
the stupid ones are full of confidence."

Charles Bukowski

Agraïments

Volguera començar agraïnt totes aquelles persones que han fet possible que esta tesi
esdevinguera realitat. A totes aquelles persones i que m’han acompanyat durant
tot este temps, amb el seu suport tècnic, lingüístic, físic, econòmic o psicològic.

Primerament, agrair els meus directors els doctors David de Andrés i Juan Carlos
Ruiz per la seua dedicació, suport i ànim durant estos anys. Heu sigut de gran
ajuda. També al professor Pedro Gil per confiar en mi i donar-me el recolzament
econòmic i científic per portar a terme el projecte.

Així mateix, també volguera tenir unes paraules per als meus companys del grup
de Sistemes Tolerants a Fallades (STF) i en especial als del laboratori: el ja doctor
Jesus Friginal, Miquel Martinez, Héctor Marco, Javier Cancio i Antonio Bustos.
Haveu sigut els millors, i junts hem passat molt bons moments. També agrair
els companys de l’estada a Edinburgh Félix Casado i Ali Ebrahim, i molt espe-
cialment als del Barcelona Supercomputing Center Carles, Jaume, Mikel, Javi,
Maria, David, Roberto, Milos, Mladen, Suzanna, Quixiao, Leonidas i la resta del
grup CAOS per fer-me sentir com a casa.

Per descomptat que no només he rebut suport dels companys de recerca. Per
això he d’esmentar la meua estimada Sara, per donar-me tot el suport i l’estima
possibles i impossibles, i els meus pares i germans, perquè sempre han estat fent-
me costat i m’han animat a seguir estudiant per comprendre millor el món que
ens envolta.

Finalment a les persones de la Universitat en general, i del món científic en par-
ticular, a la vocació dels quals devem que el sistema continue funcionant.

Jaume.

v

Sumari

La rellevància que l’electrònica adquireix en la seguretat dels productes ha crescut
inexorablement, puix cada volta més aquesta abasta una major influència en la
funcionalitat dels mateixos. Però, per descomptat, aquest fet ve acompanyat d’un
constant necessitat de majors prestacions per acomplir els requeriments funcionals,
mentre es mantenen els costos i consums en uns nivells reduïts. Donat aquest
escenari, la indústria està fent esforços per proveir una tecnologia que complisca
amb totes les especificacions de potència, consum i preu, tot a costa d’un increment
en la vulnerabilitat a diversos tipus de fallades conegudes, i a la introducció de
nous tipus.

Per oferir una solució a les noves i creixents fallades als sistemes, els dissenyadors
han recorregut a tècniques tradicionalment associades a sistemes crítics per a la
seguretat, que en general oferixen resultats sub-òptims. De fet, les arquitectures
empotrades modernes oferixen la possibilitat d’optimitzar les propietats de confi-
abilitat en habilitar la interacció dels nivells de hardware, firmware i software en
el procés. Tot i això eixe punt no està resolt encara. Es necessiten avanços a tots
els nivells en l’esmentada direcció per poder assolir els objectius d’una tolerància
a fallades flexible, robusta, resilient i a baix cost. El treball ací presentat se centra
en el nivell de hardware, amb la consideració de fons d’una potencial integració en
una estratègia holística.

Els esforços d’esta tesi s’han centrat en els següents aspectes: (i) la introducció de
models de fallada addicionals requerits per a la representació adequada d’efectes
físics que apareixen en les tecnologies de fabricació actuals, (ii) la provisió de fer-
ramentes i mètodes per a la injecció eficient del models proposats i dels clàssics,
(iii) l’anàlisi del mètode òptim per estudiar la robustesa de sistemes mitjançant
l’ús d’injecció de fallades extensiva, i la posterior correlació amb capes de més alt
nivell en un esforç per retallar el temps i cost de desenvolupament, (iv) la provisió
de nous mètodes de detecció per cobrir els reptes plantejats pels models de fallades
proposats, (v) la proposta d’estratègies de mitigació enfocades cap al tractament
dels esmentats escenaris d’amenaça i (vi) la introducció d’una metodologia au-

vii

tomatitzada de desplegament de diversos mecanismes de tolerància a fallades de
forma robusta i sistemàtica.

Els resultats de la present tesi constitueixen un conjunt de ferramentes i mètodes
per ajudar el dissenyador de sistemes crítics en la seua tasca de desenvolupament
de dissenys robustos, validats i a temps adaptats a la seua aplicació.

viii

Sumario

La relevancia que la electrónica adquiere en la seguridad de los productos ha cre-
cido inexorablemente, puesto que cada vez ésta copa una mayor influencia en la
funcionalidad de los mismos. Pero, por supuesto, este hecho viene acompañado
de una necesidad constante de mayores prestaciones para cumplir con los requer-
imientos funcionales, al tiempo que se mantienen los costes y el consumo en unos
niveles reducidos. En este escenario, la industria está realizando esfuerzos para
proveer una tecnología que cumpla con todas las especificaciones de potencia, con-
sumo y precio, a costa de un incremento en la vulnerabilidad a múltiples tipos de
fallos conocidos o la introducción de nuevos.

Para ofrecer una solución a los fallos nuevos y crecientes en los sistemas, los dis-
eñadores han recurrido a técnicas tradicionalmente asociadas a sistemas críticos
para la seguridad, que ofrecen en general resultados sub-óptimos. De hecho,
las arquitecturas empotradas modernas ofrecen la posibilidad de optimizar las
propiedades de confiabilidad al habilitar la interacción de los niveles de hardware,
firmware y software en el proceso. No obstante, ese punto no está resulto todavía.
Se necesitan avances en todos los niveles en la mencionada dirección para poder
alcanzar los objetivos de una tolerancia a fallos flexible, robusta, resiliente y a
bajo coste. El trabajo presentado aquí se centra en el nivel de hardware, con la
consideración de fondo de una potencial integración en una estrategia holística.

Los esfuerzos de esta tesis se han centrado en los siguientes aspectos: (i) la in-
troducción de modelos de fallo adicionales requeridos para la representación ade-
cuada de efectos físicos surgentes en las tecnologías de manufactura actuales, (ii)
la provisión de herramientas y métodos para la inyección eficiente de los modelos
propuestos y de los clásicos, (iii) el análisis del método óptimo para estudiar la
robustez de sistemas mediante el uso de inyección de fallos extensiva, y la posterior
correlación con capas de más alto nivel en un esfuerzo por recortar el tiempo y
coste de desarrollo, (iv) la provisión de nuevos métodos de detección para cubrir los
retos planteados por los modelos de fallo propuestos, (v) la propuesta de estrate-
gias de mitigación enfocadas hacia el tratamiento de dichos escenarios de amenaza

ix

y (vi) la introducción de una metodología automatizada de despliegue de diversos
mecanismos de tolerancia a fallos de forma robusta y sistemática.

Los resultados de la presente tesis constituyen un conjunto de herramientas y
métodos para ayudar al diseñador de sistemas críticos en su tarea de desarrollo de
diseños robustos, validados y en tiempo adaptados a su aplicación.

x

Abstract

Relevance of electronics towards safety of common devices has only been growing,
as an ever growing stake of the functionality is assigned to them. But of course, this
comes along the constant need for higher performances to fulfill such functionality
requirements, while keeping power and budget low. In this scenario, industry is
struggling to provide a technology which meets all the performance, power and
price specifications, at the cost of an increased vulnerability to several types of
known faults or the appearance of new ones.

To provide a solution for the new and growing faults in the systems, designers
have been using traditional techniques from safety-critical applications, which of-
fer in general suboptimal results. In fact, modern embedded architectures offer the
possibility of optimizing the dependability properties by enabling the interaction
of hardware, firmware and software levels in the process. However, that point is
not yet successfully achieved. Advances in every level towards that direction are
much needed if flexible, robust, resilient and cost effective fault tolerance is de-
sired. The work presented here focuses on the hardware level, with the background
consideration of a potential integration into a holistic approach.

The efforts in this thesis have focused several issues: (i) to introduce additional
fault models as required for adequate representativity of physical effects bloom-
ing in modern manufacturing technologies, (ii) to provide tools and methods to
efficiently inject both the proposed models and classical ones, (iii) to analyze the
optimum method for assessing the robustness of the systems by using extensive
fault injection and later correlation with higher level layers in an effort to cut de-
velopment time and cost, (iv) to provide new detection methodologies to cope with
challenges modeled by proposed fault models, (v) to propose mitigation strategies
focused towards tackling such new threat scenarios and (vi) to devise an auto-
mated methodology for the deployment of many fault tolerance mechanisms in a
systematic robust way.

The outcomes of the thesis constitute a suite of tools and methods to help the
designer of critical systems in his task to develop robust, validated, and on-time
designs tailored to his application.

xi

Contents

Agraïments v

Sumari vii

Sumario ix

Abstract xi

1 Introduction 1
1.1 Motivation . 1

1.2 Objectives . 4

1.3 Structure of the thesis . 5

2 Faults Modeling 9
2.1 Pathology . 9

2.2 Manifestation. 10

2.3 Propagation. 13

2.4 Modeling. 15

2.5 Summary . 18

3 Fault Injection 19
3.1 Introduction . 19

3.1.1 Fault space: what, where, when . 20

3.1.2 Properties of fault injection. 21
xiii

3.2 Injection methodologies . 22

3.2.1 Physical fault injection methods . 22

3.2.2 Software-based fault injection methods. 23

3.2.3 Emulation-based fault injection methods . 23

3.2.4 Simulation-based fault injection methods . 24

3.2.5 Analysis of injection results. 24

3.2.6 Summary of methods . 25

3.3 Injection tools . 25

3.3.1 Physical fault injection tools . 26

3.3.2 SWIFI tools . 26

3.3.3 Emulation-based injection tools . 27

3.3.4 Simulation-based injection tools . 28

3.4 The FALLES Tool . 29

3.4.1 Presentation . 29

3.4.2 Detailed operation . 30

3.4.3 Analysis in FALLES . 34

3.5 Summary . 36

4 Dependability Assessment 37
4.1 Introduction . 37

4.2 Analysis of injection results . 38

4.3 Multi-level correlation . 40

4.4 Summary . 42

5 Fault Tolerance Mechanisms 43
5.1 Detection . 43

5.2 Error handling . 46

5.3 Fault diagnosis . 47

5.4 Fault recovery . 48

5.5 Summary . 48

6 Discussion and Conclusions 51
6.1 Discussion . 51

6.1.1 Fault models . 52

6.1.2 Fault injections . 53
xiv

6.1.3 Dependability assessment . 54

6.1.4 Fault Tolerance mechanisms . 54

6.1.5 Fault tolerance implementation . 56

6.2 Conclusion . 56

6.3 Future work. 59

7 Summary of contributions 61
7.1 Publications . 61

7.1.1 Conferences . 61

7.1.2 Journals . 63

7.1.3 Book chapters . 63

7.2 Framework of the Dissertation . 63

7.2.1 Research projects . 63

7.2.2 International research stays. 64

7.2.3 Collaborations. 64

7.3 Awards . 65

Appendices 67

A Tolerating multiple faults with proximate manifestations in
FPGA-based critical designs for harsh environments 69

A.1 Introduction . 70

A.2 Faults in SRAM FPGAs . 71

A.3 Fault tolerance for FPGA-based designs . 73

A.4 A multiple fault tolerance approach . 74

A.4.1 Global architecture . 74

A.4.2 Detailed description . 75

A.4.3 Design of the FSM controller . 77

A.4.4 Summary . 80

A.5 Case study . 81

A.6 Analysis of results . 82

A.7 Conclusions . 84

xv

B The Challenge of Detection and Diagnosis of Fugacious Hard-
ware Faults in VLSI Designs 85

B.1 Introduction . 86

B.2 The problem of Fast Fault Detection and Diagnosis 87

B.2.1 On-line detection of faults and errors . 88

B.2.2 Considered fault models . 90

B.2.3 Fault diagnosis . 90

B.3 Solutions for detection and diagnosis . 91

B.3.1 Architecture of a faults detection and discrimination system 91

B.3.2 Workflow to apply in the proposed technique 94

B.4 Ongoing Work . 95

C Increasing the Dependability of VLSI Systems Through Early
Detection of Fugacious Faults 97

C.1 Introduction . 98

C.2 Fugacious fault models . 100

C.3 Novel architecture for detecting and diagnosing fugacious faults. 102

C.4 Proposed implementation flow . 104

C.5 First prototype and case study. 108

C.6 Results and discussion . 110

C.7 Conclusions. 112

D An Aspect-oriented Approach to Hardware Fault Tolerance
for Embedded Systems 115

D.1 Introduction . 116

D.2 Related Work . 118

D.2.1 Metaprogramming and aspect orientation. 118

D.2.2 Hardware fault and intrusion tolerance automation. 119

D.3 Metaprogramming the design of dependable and secure HDL-based em-
bedded systems . 121

D.3.1 Open compilation to support the customization of hardware systems 122

D.3.2 Architecting hardware fault tolerance mechanisms as metaprograms 124

D.3.3 Integration within the regular hardware design flow 126

D.4 Dealing with white and black box IP cores as case studies 128

D.4.1 White box IP cores: tolerating transient faults via temporal redundancy . 129
xvi

D.4.2 Black box IP cores: integrating third party cores for symmetric encryption 132

D.5 Analysis of Results and Discussion . 136

D.5.1 Experimental setup . 138

D.5.2 Analysis of results . 138

D.6 Conclusions and Open Challenges. 141

E Robust communications using automatic deployment of a CRC-
generation technique in IP-blocks 145

E.1 Introduction . 146

E.2 Research context . 147

E.2.1 CRCs and fault tolerance. 147

E.2.2 Metaprograms and open compilation. 148

E.3 CRC as a metaprogram. 149

E.3.1 Phase 1: Infrastructure generation . 149

E.3.2 Phase 2: Component encapsulation . 151

E.3.3 Phase 3: Component integration . 152

E.3.4 Bridging mechanism deployment and VHDL coding 152

E.4 Case study . 153

E.4.1 CRC-protected UART transmitter . 153

E.4.2 Faultload. 153

E.4.3 Experimental procedure. 154

E.5 Results and discussion . 155

E.6 Conclusions. 157

F Towards Certification-aware Fault Injection Methodologies Us-
ing Virtual Prototypes 159

F.1 Introduction . 160

F.2 Related Work . 161

F.3 Certification-Aware Fault Injection in Virtual prototypes 162

F.3.1 Characterizing Fault behaviour at RTL level 162

F.3.2 Fault injection at Virtual prototypes . 163

F.4 FALLES: Fault injection and Analysis for Low Level Evaluation Suite . . . 164

F.5 Experimental Results . 164

F.5.1 Experimental Setup . 165

F.5.2 Results . 166
xvii

F.6 Conclusions. 167

G Analysis and RTL Correlation of Instruction Set Simulators
for Automotive Microcontroller Robustness Verification 169

G.1 Introduction . 170

G.2 Towards Simulation-based Robustness Verification 171

G.2.1 Fault injection at the RTL . 172

G.2.2 Fault injection at the ISS Level . 173

G.2.3 ISS-based Verification . 173

G.3 Correlating RTL with ISS fault injection . 175

G.4 Experimental Validation . 177

G.4.1 Experimental Setup . 177

G.4.2 Experimental Results . 178

G.5 Related Work . 182

G.6 Conclusions . 183

H Characterizing Fault Propagation in Safety-Critical Processor
Designs 185

H.1 Introduction . 186

H.2 Background on Simulation-based Robustness Verification 187

H.2.1 Fault injection at the RTL . 189

H.2.2 Fault injection at the ISS Level . 189

H.3 Characterizing Fault Propagation . 190

H.4 Experimental Results . 192

H.4.1 Experimental Setup . 192

H.4.2 Results . 193

H.5 Conclusions . 196

Bibliography 199

xviii

List of Figures

1.1 Factors of dependability: fault, error, failure chain 2

2.1 Pathology of permanent faults [66] 11

2.2 Pathology of transient faults [66] 11

2.3 Pathologies of faults manifested as intermittent [69] 12

2.4 Electrical filtering effect . 14

2.5 Logical filtering effect . 15

2.6 Temporal filtering effect . 15

3.1 Workflow for FALLES, part1 . 32

3.2 Workflow for FALLES, part2 . 33

3.3 Latency analysis and error count in FALLES 35

A.1 Global architecture of the proposed fault masking and correction
mechanism. 75

A.2 Detailed architecture of the proposed approach. 76

B.1 Temporal filtering of fugacious faults 89

B.2 Global scheme of the faults detection and diagnosis infrastructure.
Timing Control Unit handles temporisation of Detection decoder . 92

xix

B.3 Observation window enlarged by means of reducing period of signal
switching . 93

B.4 Tools interaction . 94

C.1 Characterisation of fugacious faults 99

C.2 Low level schematic implementation of the proposed detection and
diagnosis architecture . 101

C.3 Proposed implementation flow . 105

C.4 Control flow for stretching the observation window 106

C.5 Stretching the observation window step by step 107

C.6 Strategy for locating delay pass-through elements (Xi, Yi), showing
physical distances inside device. Delays are expressed in relative
units. 109

D.1 Open compilation process defined by CODESH 122

D.2 CODESH Open compilation process in action: a TMR case 124

D.3 Integrating the proposed open compilation process into the regular
hardware design flow . 127

D.4 Metaprogramming temporal redundancy 129

D.5 Metaprogramming the integration of a third party core providing
symmetric data encryption into a given model 134

D.6 Metaprogram generation rule required to integrate the symmetric
data encryption third party component. 137

E.1 Transmission CRC strategies . 147

E.2 CODESH workflow . 149

E.3 A CRC-protected block structure showing relevant interconnections 150

E.4 Phase 2, encapsulation of the new CRC-protected component using
template . 151

E.5 Phase 3, integration of the CRC-protected component into the tar-
get system. 152

xx

E.6 Relation between the spurious retransmission rate and the data/CRC
size ratio . 155

F.1 Proposed methodology . 162

F.2 RTL robustness verification framework 165

F.3 Errors distribution in system and user registers, ttsprk 166

F.4 Histogram of propagation latencies from error to failure, ttsprk . . 166

G.1 (a) RTL processor description (b) Microarchitectural processor de-
scription . 172

G.2 RTL robustness verification framework 177

G.3 Input data variation in 2 sets of benchmark excerpts with uniform
instruction types and numbers, using stuck-at-1 injections at integer
unit . 180

G.4 Input data variation impact analyzed with 2, 4, and 10 full iterations
of benchmark rspeed using stuck-at-1 injections at integer unit . . 180

G.5 Fault injection experiments for different benchmarks and fault mod-
els at IU nodes. 181

G.6 Fault injection experiments for different benchmarks and fault mod-
els at CMEM nodes. 182

G.7 Propagated faults in terms of instruction diversity for the stuck-at-1
model in IU. 183

H.1 (a) RTL processor description (b) Microarchitectural processor de-
scription . 188

H.2 Generic processor pipeline scheme. IF (instruction fetch), D (de-
code), E (execution), M (Memory), W (Write-back). 191

H.3 RTL robustness verification framework 193

H.4 Percentage of failures in the experiments according to whether they
caused a prior error or not. 194

H.5 Percentage of experiments which cause 1 or more errors in the registers195

xxi

H.6 Errors distribution in system and user registers for different bench-
marks . 196

xxii

List of Tables

2.1 Considered combinations of faults with proximate manifestation . . 17

3.1 Evaluation of properties of different injection methodologies 25

3.2 Fault models currently supported by FALLES 29

4.1 SIL levels for systems occasionally used 39

4.2 SIL levels for systems in continuous use 39

A.1 Considered single fault models . 71

A.2 Considered multiple fault models 72

A.3 Considered scenarios and combination of faults 79

A.4 TMR-MDR approach coverage . 82

A.5 Temporal intrusion of the TMR-MDR approach 83

A.6 Area required and clock period attained by the original, the eTMR
and the TMR-MDR versions of the target 84

C.1 Diagnosis of fugacious faults* . 103

C.2 Minimum width of fugacious transient faults for correct detection . 110

C.3 Minimum inactive time of intermittent fugacious faults for correct
detection . 110

C.4 Check all diagnosis cases in all eligible fault injection points 111

xxiii

C.5 Overhead induced in terms of area and clock period 112

D.1 Metaprogram interface (a) and transformation rules (b) required to
insert the new component into the original model (customize the
core structure) . 133

D.2 Comparison of the original (PIC), temporally redundant (TR), and
secured (DES) cores in terms of failures, area, throughput, and
energy consumption. 139

E.1 Number of experiments for the selected configurations 154

E.2 Results for single bit faults . 155

E.3 Results for 16-bits burst faults . 156

E.4 Results for multiple bit faults: HD 156

E.5 Results for multiple bit faults: HW 156

G.1 Benchmarks characterization . 178

xxiv

Chapter 1

Introduction

1.1 Motivation 1.3 Structure of the thesis

1.2 Objectives

A general introduction and background of the work is presented here
alongside summarized points of motivation, goals and structure of the
thesis.

1.1 Motivation

Embedded systems are becoming more and more ubiquitous in everyday life, just
as computers did in recent years. For that reason, development of new founda-
tion technology and applications for them has never stopped, what also brings a
whole new set of challenges to tackle in several domains. In the present thesis the
challenges covered are those related mainly to hardware aspects of dependability,
with some additional hints on the security side these entail.

Dependability is defined as the justified confidence that can be placed in a service
or function to be delivered correctly by a system to its user, be it another system
or a human being. Security, while related to dependability, is defined as the
capability to provide service to authorized requests while avoiding the provision of
information to unauthorized ones and ensuring no undesired system or information
alterations have occurred. Because not always correct service is delivered, the

1

Chapter 1. Introduction

causes and consequences of deviations from the expected function receive the name
of factors of dependability: faults, errors and failures.

Faults are physical defects in hardware like a short-circuit or external events such
as radiation (or mistakes in software functions) provoking errors, i.e. deviations
from correct values in electrical nodes (which in turn affect data), and failures
are the lack of delivery of expected outputs, or the delivery of incorrect ones as a
consequence of errors. Figure 1.1 illustrates the process.

Error Failure
Activation
(manifestation)

Fault
Propagation

Figure 1.1: Factors of dependability: fault, error, failure chain

As long as errors are not perceived by users the system is considered as free of
failures. Existence of failures is critical since they may lead to important harm to
human life, monetary losses, leakage of information or damage to reputation. It is
worth mentioning that the causal chain defined between faults, errors and failures
is recursive, since a failure at a given system level can be seen as a fault from the
perspective of another system level or user.

In the field of embedded systems, dependability is not a new topic. However, it
is a quickly evolving topic where practitioners are continuously required to meet
new and ever-growing demands arising from several sides, typically related to re-
duced failure rates, safe degradation modes or guaranteed lifetimes. To list some
of the most powerful drivers of research in the field, it is possible to mention 3
main pillars: (i) new fabrication technology nodes, (ii) new safety and reliabil-
ity standards for existing applications and (iii) completely new applications
where never before had such systems been used. Security has likewise received a
boost of attention in recent times, as educated individuals and organizations have
demonstrated the potential harm malicious attacks can cause to insecure systems.

As fabrication technology progresses to keep the pace of rising demand for high
performance, low power and a very low cost, dependability properties are likewise
affected. Thus, high performance is achieved by adding more and more computing
elements working in parallel, which increase the total cross section for charged
particles arriving into the system. This means more radiation events will impact
the system. Furthermore due to the reduction of single element cross section, an
increase in the number of multiple bit upsets is also foreseeable, what poses an ad-
ditional challenge to fault tolerance strategies. Thermal and power stress are also
worsened as a consequence of more and more elements switching simultaneously.
Low power computing has jumped from battery-powered devices to every kind of

2

1.1 Motivation

system, as thermal and power considerations have been gaining importance expo-
nentially. However, the achieved benefits come associated with important costs
in several aspects. Because power budgets are so scarce, noise becomes a ma-
jor concern, both the internally and externally originated. Moreover, an added
source of unreliability comes from increased sensitivity to power supply variations.
Additionally, to keep power low, feature dimensions are scaled accordingly, what
greatly increases aging effects (NBTI, EM, HCI...) in deep sub-micron technolo-
gies. Finally low cost is a well known golden driver in industry. In that sense less
and less fabs are willing to invest the quickly growing amounts of money required
to develop new process nodes, what forces them to close in most cases due to
insufficient workload. Those left in production face the challenge of coping with
manufacturing defects, what reduces yield thus increasing price per unit. The use
of fault tolerance techniques can increase yield to achieve sustainable productivity.
With that panorama for the near future, insecurity can also turn an important
issue. The reduced amount of manufacturers, located solely in far east countries,
could increase the chances that any embedded systems designed in other coun-
tries may be tampered or illegally copied, beside the fact that any problem in the
production line of a single fab could cause serious monetary losses and shortages.
Although a number of fault tolerance techniques are already in use, they were de-
signed with a set of specifications that is continuously changing. Therefore some
gaps appear which are not correctly covered by existing solutions.

Safety and reliability standards have been evolving over the years alongside tech-
nology and applications. As a result, older standards are deprecated and new,
more demanding ones appear as substitutes. Typical applications where such tra-
ditional standards apply are automotive, aerospace, railway, nuclear or process
industries. In the new standards such as ISO26260 [81], DO-254 [40], IEC62278
[80], IEC61511 [79], etc. there is a trend to require for fault injection in the sys-
tems, in order to assess, at all stages of the development, the dependability of
the systems. To that end, industrial sector demands optimized processes related
to safety and robustness verification, in order to obtain approved certification at
the lowest cost. The currently available set of injection tools needs to be com-
pleted with faster and more insightful choices to provide solid evidence towards
certifications.

New exciting applications have found their way in the embedded systems realm.
Many of those involve what is known as cyber-physical systems (CPS), where a
computational system is tightly linked to a physical machine. These machines
boast utterly useful capabilities for tackling all sorts of tasks, what makes them
specially interesting under harsh environments which humans would not tolerate.
Additionally, some are commanded to perform life, mission or business critical
tasks. Under those premises application-specific integrated circuits (ASICs) but
also special field-programmable gate arrays (FPGAs) have been in the market for
some time, only to see commercial type SRAM based FPGAs get into that niche

3

Chapter 1. Introduction

in recent times due to their superior performance and value. For traditional and
the newly introduced devices alike, detection and mitigation of potentially critical
faults is a must if they are intended to operate correctly under critical environ-
ments. Moreover, powerful tools for simulating the mission conditions, such as
injection of abnormalities, are another important requirement for the success of
the whole program. Nevertheless, not only critical applications or very specific
markets can benefit from proper detection, mitigation and/or assessment. Gen-
eral purpose recent applications like smart meters, cryptography blocks or even
ubiquitous smartphones can also benefit from increased tolerance to spontaneous
malfunctioning, premature aging or detection of an attempt of tampering, thus
improving the quality perception of the brand and decreasing the negative impact
accidental or malicious events may have on the economy or lives of human beings.

1.2 Objectives

The challenges presented in the previous motivation section cover a wide spectrum
of areas. In the present dissertation, the aim is to contribute to such areas as a
way to improve dependability of the future embedded systems, and by means of
providing the community with new tools, methodologies and strategies to deal
with present and upcoming challenges. The main objectives of this thesis can be
established as the following:

• Study the current and upcoming accidental faults affecting embedded sys-
tems to better understand their origin, evolution and consequences and pro-
vide new representative models whenever required.

With proper models it is possible to emulate physical events in laboratory
conditions, testbeds or simulators, to quickly evaluate solutions before an
actual device is built. The goal is to fix any dependability issues in the
system as soon as possible to reduce cost of re-spins.

• Provide a fault injection and analysis tool capable of exploiting the current
computing state of the art and focused on performance and flexibility, to
accelerate the tasks.

The tool will need to deal with HDL defined circuits at various levels, and
support the utilization of newly defined models along classical ones. Flexi-
bility in the analysis capabilities is a further objective for the tool.

• Develop a dependability assessment methodology which cuts development
time for the industry and help optimize costs.

By employing simulation-based fault injection in early development stages, it
is desirable to propose and validate a methodology to obtain quick assessment

4

1.3 Structure of the thesis

on the robustness characteristics as accurate as possible, thus incorporating
dependability considerations at the beginning of the design process. More-
over, assessment helps to infer statistics of interest to design more robust
circuits according to applicable fault models. This is indicated for ensuring
smooth standards fulfillment.

• Propose new fault tolerance mechanisms better suited to the current tech-
nology and applications trends.

As a means to fulfill this goal a study on available and currently used fault
tolerance strategies will be performed where additional requirements are in-
troduced. With the fault injection, detected weaknesses can be used to find
a proposal for a better suited fault mitigation mechanism, helping to reach
the required dependability levels.

1.3 Structure of the thesis

This section outlines the organization of the thesis document, with its different
chapters. For each of them a brief explanation is given.

The present thesis is based in a collection of publications in the dependability area
developed in the course of this PhD, and linked around a central challenge: the
provision of dependable embedded devices for current and forthcoming demands
in the industry. For the sake of explaining the reader what can be read hereafter,
an introduction to each of the dealt areas comes first, situating the work topics
in which advances have been made. After that, a wrap-up of the whole work is
developed including conclusions and a summary of the production in the thesis.

Chapter 2: Faults modeling. This chapter focuses on the fault process,
pathology, manifestation and modeling. It reviews the current state of the
art in the topic and presents the contributions to it included in the present
thesis, mainly based in some new faults to consider and how to model them.

Chapter 3: Fault injection. In this chapter a state of the art on different
fault injectors precedes the justification for development of a new tool of the
type, taking as the basis a preexisting tool in the group. It deals with the
questions on what, when, how and where to inject faults, plus details in the
different possible analysis to apply to the raw data. The prototype tool is
called Fault injection and Analysis for Low Level Evaluation Suite.

Chapter 4: System dependability assessment. In this chapter new method-
ologies to perform assessment on the dependability levels of embedded de-
vices are explored. A survey on current practice is included with the con-
tributions of this thesis in the area of multi-level correlation for obtaining

5

Chapter 1. Introduction

(more) accurate early robustness verification results. The presented work
studies the relationships between different levels of abstraction in terms of
dependability assessment.

Chapter 5: Fault tolerance mechanisms. This chapter is devoted to fault
detection, diagnosis, mitigation and recovery. It surveys alternatives avail-
able in those areas, and states the problems and benefits of them. Later
it introduces the contributions presented in this work. These are mainly
centered in the fault models presented in previous chapters. Likewise, the
main technical implementation issues are discussed. Finally, testing of the
mechanisms for proper detection of fault models is discussed.

Chapter 6: Discussion and conclusions. Contributions of this work are
discussed in detail in this chapter, with a keen emphasis on the advances
and limitations. The degree of accomplishment of the goals is discussed.
Finally, some guidelines for future work are suggested to further enhance the
presented solutions or tackle some of their current limitations.

Chapter 7: Contributions. The main scientific contributions derived from the
work developed in this dissertation are listed in this section. The scientific
framework in which this work has been involved is also described, including
related research projects, international collaborations and awards.

Annexes: Papers

In the annexes each of the papers is reproduced, one per chapter. For a proper
understanding they are organized in thematic areas, where contributed areas are
mentioned.

Chapter A: Tolerating multiple faults with proximate manifestations in
FPGA-based critical designs for harsh environments.. In this chapter
an new model for faults is introduced where the increased rates observed in
most recent devices is introduced in the problem. A new mechanism to deal
with it in SRAM-based FPGAs is presented based in rewrite and relocation
actions among others. Contributes to Fault Modeling and Tolerance.

Chapter B: The Challenge of Detection and Diagnosis of Fugacious
Hardware Faults in VLSI Designs. In this chapter attention is focused
towards those short duration faults which until now were ignored due to being
time filtered, but which mean a good opportunity to improve dependability
of systems. They are named fugacious faults. A tailored fault model is pro-
posed, and the problems for effective detection and diagnosis are identified.
Contributes to Fault Modeling and Tolerance.

Chapter C: Increasing the Dependability of VLSI Systems Through
Early Detection of Fugacious Faults. In this chapter a complete fault

6

1.3 Structure of the thesis

detection and diagnosis mechanism is presented, to tackle fault models in-
troduced in the previous chapter. Alongside an implementation workflow
and helping tool is presented. Finally application to a small design provides
some measurements. Contributes to Fault Modeling and Tolerance.

Chapter D: An Aspect-oriented Approach to Hardware Fault Toler-
ance for Embedded Systems. The chapter explains how aspect oriented
programming can be employed to automatically deploy fault tolerance mech-
anisms in IP cores. A few different examples are shown to demonstrate the
feasibility. Contributes to Fault Tolerance.

Chapter E: Robust communications using automatic deployment of
a CRC-generation technique in IP-blocks. The chapter extends the
fault tolerance mechanisms presented as samples of possible automated ap-
plications to a communications targeted mechanism like custom CRC code
generation. Contributes to Fault Tolerance.

Chapter F: Towards Certification-aware Fault Injection Methodologies
Using Virtual Prototypes. This chapter presents a newly developed fault
injector named FALLES, and provides a sketch of what could be done with
virtual prototypes focused towards helping in safety certification. To do so
extensive injections using FALLES can help improve the accuracy of the
process. Contributes to Fault Injection and Dependability Assessment.

Chapter G: Analysis and RTL Correlation of Instruction Set Simula-
tors for Automotive Microcontroller Robustness Verification. In
this chapter a correlation is found for using instruction set simulators as
virtual prototypes and the dependability metrics involved in safety of auto-
motive microcontrollers. To do so permanent fault models have been injected
using FALLES to study the outputs and compare them with the information
available for the instruction set simulator. Contributes to Fault Injection and
Dependability Assessment.

Chapter H: Characterizing Fault Propagation in Safety-Critical Pro-
cessor Designs. In this paper a thorough analysis of propagation of faults
through the pipeline of a Leon3 processors is presented. The purpose is
to conclude whether injection at the architectural registers can capture the
information conveyed by injection results obtained at RTL. Contributes to
Fault Injection and Dependability Assessment.

7

Chapter 2

Faults Modeling

2.1 Pathology 2.4 Modeling

2.2 Manifestation 2.5 Summary

2.3 Propagation

This chapter is devoted to the study of faults in their whole dimen-
sion: their pathology, propagation, manifestation and central to this
work, modeling. A set of references and previous work is presented to-
gether with some views on the new trends and directions we can find
in novel technologies coming out in the market.

2.1 Pathology

Advances in the semiconductor industry have been following over the last 50 years
the well-known Moore’s law [115]. It states that, for the same die size, transistor
count will double every two years. The rule kept reasonably cheap to follow for
many years but, with the advent of deep sub-micron technology nodes, the game
changed completely. Alongside the benefits of doubled power and less consump-
tion, came an important aggravation of the already-known problems of reliability,
manufacturing defects, etc... which many practitioners have described [35, 3, 162,
154, 23]. The involved physical effects are Time Dependent Dielectric Breakdown
(TDDB), ElectroMigration (EM), Negative Bias Thermal Instability (NBTI) or
Hot Carrier Injection (HCI) to name a few. TDDB is a consequence of long term

9

Chapter 2. Faults Modeling

operation beyond specified voltages; EM is due to high currents carrying material
away from its original position; NBTI happens as a side consequence of dopants
introduced to reduce leakage current and causes increase in threshold voltage, and
HCI provokes charge carriers to get trapped in the gate dielectric hindering correct
operation of the MOSFET. The most dangerous in terms of long term reliability
can be the NBTI, but for high current devices EM can also pose severe design
constraints. TDDB comes next in importance and HCI is the least severe of the
mentioned effects.

While those are mainly intrinsic faults coming from inside the circuit or device,
they have had a replica in the extrinsic faults, originated in the external side.
Sadly enough, newer highly integrated technologies have turned more and more
sensitive to the so-called soft errors [101, 17], which are caused by charged particles
(α particles), neutrons reaching the silicon die and altering the logical value of an
electrical node. The energy exchange process is similar to a bullet of a certain
size hitting ever smaller targets. The critical charge required to ‘damage’ (upset)
a single node is smaller and smaller, thus smaller bullets will have effect on that
smaller target causing more upsets to appear. Additionally, sensitivity to power
supply noise [62] or Electro Magnetic Interference (EMI) [124], because of reduced
power budgets, has raised. To understand why, a quick look to energy consumption
growth and heat density inside die explains the need to operate with low voltage
power rails. Therefore logic levels are so close that fluctuations in the power
supply and small interferences can cause a value to change. Finally, crosstalk [31]
sensitivity has also raised dramatically, because an increase in switching speeds
also involves an increase in generated noise to the vicinity.

As a summary of different physical processes involved in faults, 2 different figures
in [66] were reproduced, one for permanent faults (Figure 2.1) and one for tran-
sient faults (Figure 2.2). In the figures, counterparts of the physical and electronic
processes as logic/RTL level fault models are also shown for reference. The pa-
rameter used for separation -the different manifestation type- is developed in the
next section.

2.2 Manifestation

All the previous section phenomena happen in different time spans. Some of them
only take place during temporary periods and later disappear –transient faults–
while others can only appear but never stop their unwelcome effect –permanent
faults [13]. Moreover, there is a special type of faults which appear and disappear
at random instants of time, i. e. they manifest themselves intermittently –the
intermittent faults [34, 37]. These intermittent manifestations in the same location
can be due to operational circumstances, which may eventually disappear, or be
caused by wearout processes or manufacture defects. In the latter case they are

10

2.2 Manifestation

Figure 2.1: Pathology of permanent faults [66]

Figure 2.2: Pathology of transient faults [66]

preclude of permanent manifestations which follow a growing trend in time and
intensity [159]. A table showing several of the physical processes which can lead
to intermittent faults is shown in Figure 2.3.

There exist several different manifestations the community has identified which,
up to day, are not well covered with current models, if covered at all. Such mani-
festations can happen in single or multiple fashion. In the latter case, for instance,
the combination of an intermittent manifestation which has not been cleared from

11

Chapter 2. Faults Modeling

Figure 2.3: Pathologies of faults manifested as intermittent [69]

the system together with (e.g.) an additional transient or permanent, pose a new
feasible threat to discuss. In fact, the same pathology can change its manifestation
according to differing base technologies. Truly some of the fault processes which
showed permanently under old ecosystems happen to manifest intermittently un-
der modern scenarios, only to turn to permanent behavior much later. An example
can be found in the ElectroMigration (EM) effect, which in time ends up break-
ing the physical continuity of a conductor but, in modern high frequency circuits,
and due to skin effect, can cause increased delays which would randomly show
an effect in the functionality. Only after an important lapse of time intermittent
manifestation would lead to permanent disconnection. Likewise, processes which
were responsible for transient faults, like crosstalk effects, have suffered a general
increase in severity. Closer, more packed metal interconnects become the main
reason after it. Therefore certain nodes can show now an intermittent manifesta-
tion, with a much higher potential of negatively impacting the system. The more
complex manifestations faults have means new complex responses must be placed
in order to adequately respond. Thus, mitigation techniques have to be revisited
to continuously adapt to those complex fault footprints.

Returning to the consequences of size miniaturization from the dependability point
of view, other notable facts must be underlined. Continuous tests show that, as
channel length sizes have been reduced, so have been the fault manifestations
when it comes to timespan. Measurements in laboratory conditions demonstrated
that, for the same energy of the offending abnormality (charged particle, EMI
interference, etc...), shorter transient faults were generated [60, 59, 43] and also
less energy was required to cause an upset of the logical values of the circuit [41]. As
narrowly shaped voltage variations have been traditionally filtered out, they have
received little attention. However, with the most advanced sub-micron technologies

12

2.3 Propagation

not only they become more frequent, but they can also reach propagation to further
logic stages.

2.3 Propagation

After an undesired alteration of the voltage has affected an electrical node, it
may or may not propagate through the circuit. Take for instance a fault causing
a pulse in a combinational node. If propagation is not hindered in any of the
ways explained next, the wrong value with traverse the logic path, reach into a
sequential element and possibly have a negative impact in the provided service
and therefore in the dependability level. However important filtering effects apply,
avoiding every single manifested error to propagate and disrupt correct operation.

If the reached voltage is lower than the voltage threshold of the technology Vth, or
the duration of the pulse is really small, it will not be able to switch the logical value
of the next gate, since not enough energy will have been accumulated/discharged
in the capacity associated to the affected node. Thus, an effect of electrical filtering
will happen (Figure 2.4). In the literature there are plenty of studies related to
the energy required to allow propagation but one of the most comprehensive can
be found in [59].

When the upset has reached enough energy to propagate ahead in the base tech-
nology, other effects can stop it from doing so. One of the most relevant is logic
filtering. The mechanism is simple: take for instance an AND gate, where one
of its inputs is logical ’0’. If any of the other inputs suffers an unexpected alter-
ation of its value, there will be no impact at the output of the gate, and thus no
propagation (Figure 2.5).

Once the upset has propagated all the way through the combinational logic down
to the sequential elements, there is still a very important filtering mechanism to
defeat: the temporal filtering. Any voltage value can be present at the input of a
sequential element, but the only value to be captured will be that which is applied
during the period in-between the set-up and hold associated to the capture clock
edge (Figure 2.6). In [25] an experimentation with laser beams shows that, for a
transient fault in combinational logic, there is great dependence on the frequency
of the circuit w.r.t. the errors which will be propagated to the sequential elements.
Conversely, upsets in the sequential elements will be totally independent from clock
frequency.

When an upset has reached a sequential element, it can further propagate to the
system or module outputs, (causing a failure) or not. But just as in the process
from the manifestation of a failure until an upset hits the sequential element,
filtering will apply. Hence, a complex function of system current state, inputs,
instant of execution and workload will define the reach a fault will have in its

13

Chapter 2. Faults Modeling

Cp

B'0'
ib

'1' '0'

VB

VOH

ViH

ViL

VOL

iB 0

VQ

iQ

VB

VOH

ViH

ViL

VOL

iB 0

VQ

iQ

Without electrical filtering

With electrical filtering

Figure 2.4: Electrical filtering effect

utmost consequences. Fault tolerance practitioners need tools to investigate those
effects well in advance of the availability of the silicon, for economical and technical
reasons, and the inputs to those tools will be models of the evaluated faults.

14

2.4 Modeling

Figure 2.5: Logical filtering effect

ts th

not filtered

Figure 2.6: Temporal filtering effect

2.4 Modeling

In order to know how faults behave, i.e. their impact in circuits and systems,
accurate models are required. With the purpose of providing such models, several
works have been studying fault models for dependability analysis [66, 136]. In
them, it is made clear how important models are to be able to study faults and
their effects. In that sense a simplification, or an adaptation of what is present
in the physical layer has to be done to suit the layer at which the model will be
used, with a keen emphasis in retaining an accurate representation of the effects
caused onto the target layer. It is a hot topic of research to explore the degree
of precision achieved in the current representations at different levels, of a process
occurring in the very physical level of a chip.

As the different levels of description entail different properties, those can make
advantages or disadvantages from the dependability assessment point of view.
In this section logic/RTL level is considered as the target level for a reason: it
is the closest representation to physical where valuable injection properties of

15

Chapter 2. Faults Modeling

repeatability, reproducibility, non-intrusiveness, representativity and reachability
(explained in following chapters) are attained at high levels.

The usual models for soft error effects are bit-flip if targeting sequential logic [75,
17] and pulse if combinational logic is the target [156, 59]. The only difference is
bit-flip keeps its erroneous value until a further rewrite operation takes place, while
pulse recovers previous value after a constrained amount of time. In addition, they
can also produce indeterminations if the threshold voltage value has not been fully
reached. In essence the previous are considered transient models.

When other processes need to be emulated, such as wear-out or manufacture de-
fects, permanent models are used. The usuals are stuck-at-1 and stuck-at-0, with
some other models in less occasions: open line, indeterminations or delays. Those
are derived from the physical processes effects shown in Figures 2.1 and 2.2. Ad-
ditionally, intermittent models can be injected to study wear-out effects in a pre-
mature stage, and some types of manufacturing defects only manifesting under
certain circumstances. The most popular are intermittent delay, intermittent in-
determination and intermittent pulse [64]. These are derived from processes shown
in Figure 2.3. Furthermore, other models with lower impact are shown in the 3
figures to explain additional physical phenomena happening at the real devices.

Apparently all expectable fault types should be covered, but due to the new chal-
lenges brought by technology, additional models are required to effectively describe
up to date reality, which otherwise could show unexpected behavior.

The usual fault hypothesis for long time has been a single fault in the system.
However, as technology progresses and with new areas of application being intro-
duced, it is no longer possible to consider just single faults as a safe hypothesis to
work with (see Chapter A). With that in mind additional fault hypotheses need to
be considered for detection, concocted out of measurements and observation. The
procedure thus is to focus into real devices in their application fields and check out
how faults/errors unveil to build an accurate model or hypothesis. In that sense
this thesis has pinpointed 2 new scenarios.

First of all is the situation where an accumulation of faults can take place, when
the system has not been able to clear a previous fault or it is in the middle of
that operation. It is important to distinguish this from a well known situation
of multi-bit upset (MBU) fault where a single radiation event can flip values of
several closely located sequential nodes. In that case the techniques to deal with
them vary from the techniques required for the proposed situation. Some inter-
twining or special arrangement of the information can diminish the effects of the
MBU faults. Conversely, when faults of different nature pile-up the story goes dif-
ferently. In such situations there is a special vulnerability; the existing potential
mitigation measures might be defeated and so it needs a special consideration. In
this work the name given to such fault models is faults with proximate mani-

16

2.4 Modeling

festations. Those faults refer to the affectation of a node of the circuit in which
another node was already affected and not recovered, in such a way that the second
hit can compromise the correct delivery of results even in a redundant configura-
tion. The typical context of application is that of an SRAM-based FPGA where
a reconfiguration engine can rewrite or relocate a subsection/replica of the design
or frame(s). Because that recovery operation takes some deterministic amount of
time, another error can hit the circuits during that time causing a different situa-
tion from the starting one which must be dealt with successfully. A model of them
is introduced plus a discussion on how to deal with their special characteristics
in Chapter A. The model accounts for all possible combinations where distance
between incidence is as stated smaller than the recovery period. In the
target technology, an SRAM-based FPGA, 2 planes can be affected by faults: the
configuration memory (CMEM) and the fabric of the device. Combinations of
different single faults in both planes were included in the model, and Table 2.1
summarizes the applied set, suitable for any SRAM FPGA.

Table 2.1: Considered combinations of faults with proximate manifestation

1st fault 2nd fault
Duration Target Duration Target
Transient Comb. (fabric) Transient Comb. (fabric)
Transient Comb. (fabric) Transient CMEM 1

Transient Comb. (fabric) Permanent Comb. (fabric) or CMEM
Transient CMEM 1 Transient Comb. (fabric)
Permanent Comb. (fabric) or CMEM Transient Comb. (fabric)
Transient CMEM 1 Transient CMEM 1

Permanent Comb. (fabric) or CMEM Permanent Comb. (fabric) or CMEM
1 Transient faults in CMEM manifest as permanent ones in design logic (fab-
ric) and can be assimilated to them from the logic point of view.

Secondly, as technology nodes enter the deep sub-micron realm, it has been men-
tioned a width reduction of the faults is noticed at the electronics level. For that
reason and due to the heavy filtering these faults suffer (the higher the lower
frequency of operation, which is not growing in recent years as steadily as be-
fore) new fault scenarios have appeared. To cope with the special nature of those
faults, a specific set of models has been defined: the fugacious faults. The most
characteristic feature is that their duration lasts less than a clock period. In the
past short spikes in voltage values were already accounted as glitches. Those were
randomly happening due to a reduced set of causes: occasional EMI, rebounds
in ill-designed lines, couplings... Fugacious faults are meant to include the set of
causes originating glitches, but broadening the scope to many additional patholo-
gies which also present those symptoms in recent technology nodes. Furthermore,
the notion of glitch does not take into account the nature of the fault which, as
explained, can be transient, permanent or intermittent. While up to day those
short length faults were ignored attending to their innocuousness, they bring an

17

Chapter 2. Faults Modeling

opportunity to take profit of them as beacons or early indicators that the inner or
outer situation around the system is changing. Modeling them allows to test for
reaction of systems when operating conditions evolve.

Three different categories of fugacious fault have been established: fugacious tran-
sient, fugacious intermittent and non-fugacious fault. The framework to distin-
guish one or another is the duration of a clock period. A fugacious transient fault
will activate only once in the clock period, and will remain active for less than a
clock period. A fugacious intermittent fault will activate more than once in the
clock period, and each activation will obviously remain active for less than a clock
period. Not every activation needs to be active the same amount of time, nor
the time between activations needs to be constant. A non-fugacious fault will be
categorized as any of those which is active for more than a clock period. More
information can be found in the appendices in Chapter B where focus is placed in
the models, and ChapterC, where the focus is placed in detection and diagnosis of
those faults.

2.5 Summary

In this chapter processes of fault generation, manifestation and propagation have
been analyzed from a physical and electrical point of view. Afterwards, models
for the physical/electrical phenomena to employ in logic/RTL abstraction levels
of design flow have been presented in the case of classical types. As contributions
2 new categories of fault models at that level are proposed, based in the observa-
tions at the newest technology nodes: faults with proximate manifestations and
fugacious faults. Fault models have a single purpose of existence: to be applied
-injected- to system models or prototypes in order to be able to accelerate their
occurrence rate (thus reducing experimental time) and study related reactions to
them, without loosing much representativeness in the process. That injection is
discussed in the next chapter.

18

Chapter 3

Fault Injection

3.1 Introduction 3.4 The FALLES tool

3.2 Injection methodologies 3.5 Summary

3.3 Injection tools

Every aspect related to hardware fault injection is covered in this
Chapter. With that purpose, the many available methodologies with
their pros and cons and the existing tools supporting them are exam-
ined. After discussion on gaps to cover, a newly developed tool is
introduced to the community, which enables the application of newly
presented fault models in addition to classical ones.

3.1 Introduction

Fault injection is the process devoted to evaluate by means of testing a design,
where the test vectors involve applying faults. The interest of fault injection resides
in the fact that a deep knowledge of the behavior of the system in presence of faults
can be attained by effective use of injection campaigns. In fact what is tested is
the fault, error, failure chain, i.e. whether a fault will turn into an error and later
cause a failure, somewhere in the midpoint or if it will have no effect at all.

The are 2 main categories of fault injection targets: software and hardware. Soft-
ware fault injection mainly consists in altering some pieces of code in the program

19

Chapter 3. Fault Injection

or data prior to execution, hence mimicking errors in the coding. Although soft-
ware fault injection falls out from the scope of this thesis interested readers can
refer to [98] for further insights on this type of fault injection. Hardware fault
injection is focused in the test of physical problems arising during the operation
of the device(s). Again, focusing in hardware fault injection several methodologies
can be used which will be commented in a further section.

In order to study and compare fault injection methodologies a first step is to
explain the parameters and the properties involved in fault injection processes, to
be evaluated later.1

3.1.1 Fault space: what, where, when

Faults are defined by a series of parameters that build a fault space: type, location
and time. The fault type responds to the question of what is going to be injected,
the fault model. Complete information on models has been provided in Section
2.4.

Regarding target locations, it is a topic widely studied since it encompasses with
problems such as intrusiveness which can limit the level of representativeness of
fault injection experiments. Different types of technology and devices suffer dif-
ferent types of faults. Hence, models are associated with distinct locations where
physical phenomena take place, and not others. For instance, bit-flips only apply
to standard sequential elements where no special structures have been added to
maintain captured value under threat. Conversely pulses can only apply to com-
binational elements. When soft errors are studied, it is known sequential elements
suffer greater susceptibility to them, so they must be included in the fault space
of such a study. Combinational signals do not show so much cross-section for soft
errors.

Time has an important influence in the fault space: the different injection instants.
If a benchmark is studied, to fully test the benchmark an injection in every cycle
and of every potential duration should be conducted for each location and model,
what cannot be executed for any design with a minimal size.

Summarizing, a fault can be defined by those 3 key parameters as shown in the
following function.

F(model, time, location) (3.1)

1It must be noted that a popular nomenclature to explain fault injection is the FARM model
[11], where ‘F’ stands for Fault set, ‘A’ for Activation, ‘R’ for Readouts and ‘M’ for Measures.
Fault set and their activation are described by the parameters, readouts refer to the results to
be analyzed and finally measures refer to the evaluated coverage values.

20

3.1 Introduction

It is very difficult to guarantee (if not impossible) that a fault space is complete
enough, i.e. that every relevant model, location and instant have been included
for testing. Obviously when testing a physical phenomenon best choice is to inject
all the potentially affected elements at all potential instants to perform a proper
analysis. But with complete designs doing so can take enormous amounts of time.
Many times previous experience or literature references indicate some guidelines to
follow. In any case, every fault space in literature employs the concept of sampling
[150, 18, 110].

The key of sampling is to select a subset of faults which maximizes coverage.
Generally speaking coverage (or system coverage) is defined as the percentage of
potential events analyzed (or the representativeness of them) with respect to those
the systems will face in its operational life [13]. As a matter of fact the perfect 100%
coverage is practically impossible, since unexpected events may affect the operation
of the system. However, a high enough value can be accepted as validation proof.

3.1.2 Properties of fault injection

The basic properties of a fault injection technique that can be highlighted are the
following.

• Reachability. It refers to the capability to reach the desired injection loca-
tions of the device implementing the design.

• Controllability. The concept can refer to space or time. The capability to
control the exact location for injection is the space controllability, whereas
the precise instant of injection is selected when there is good time controlla-
bility.

• Repeatability. It means the capability to repeat experiments in a very
similar way, i. e. with very well controlled time and space injections.

• Reproducibility. The meaning is the capability to obtain the same results
statistically speaking for a constant set-up. It is possible to have repro-
ducibility without repeatability, but the opposite is not true.

• Non-intrusiveness. This concept relates to the absence of effect of the
fault injection process in the behavior of the targeted system.

• Time measurability. The concept refers to the capability to acquire tim-
ings related to the injection process, such as latencies.

• Efficacy. The property to produce relatively high amount of significant in-
jections. This means few injection targets will remain unexcited or irrelevant
to the operation of the design.

21

Chapter 3. Fault Injection

The whole set of properties is desirable in an optimal fault injection method.
However, up to date there is no single methodology covering the whole spectrum.
Nevertheless, academia and industry keep making efforts to find improved injection
methodologies and tools.

3.2 Injection methodologies

Focusing on HW faults, different injection methods have been devised in literature
throughout the years, each with different injection properties to study. Further-
more, and in close connection to the injection process, a subsequent analysis of
results completes the functionality of the methods, providing valuable measure-
ments to process afterwards.

3.2.1 Physical fault injection methods

In this category, it is possible to include those methods which directly inject by
physical means in the target hardware. Three different types are commented.

First, heavy-ion radiation is a technique where a radiative source is used for at-
tacking the device. A possible procedure is as follows: a golden device is kept
functioning in a clean environment, while a device under test (DUT) is enclosed
in a case together with the radiative source and a shutter. Then the experiment
starts and the target device gets radiated while executing the workload [10]. The
properties of such technique are commented: the reachability is great, since the
device is attacked completely, the controllability is none in time of injection (it
follows a disintegration law) and low in space (coarse shielding can be used), the
repeatability is obviously none, reproducibility is good (it is statistical), the non-
intrusiveness is low since a special location must be set for the irradiated device,
time measurability would be very difficult since there is no controllability, and
efficacy would be high for adequate levels of radiated energy.

Second, pin-level injection employs external interface of the device as a method to
force values which are incorrect. The procedure is to enforce the pin to an incorrect
voltage by means of another IC. The properties of such a technique are: medium
reachability since only inputs/outputs are accessed, controllability is fairly good in
space and depends on the synchronizing capability in time, repeatability is good
provided synchronization was achieved, reproducibility is good, non-intrusiveness
is not perfect due to pin loading with extra capacitance, time measurability is
good and efficacy is very high.

Last but not least, electromagnetic interference (EMI) is applied using a probe or
plate connected to a burst generator. Its properties are: medium reachability since
coupling happens at the input/output pins or power pins, a low controllability both

22

3.2 Injection methodologies

in space and time since injections cannot be directed or easily synchronized with
execution, accordingly a low repeatability, reproducibility and time measurability,
a good non-intrusiveness and high efficacy.

Generally speaking, physical fault injection has the advantage of fidelity to the
real target. However, there are important drawbacks. Reachability is not as
good as desired, and to use heavy ion special facilities are needed, what is utterly
inconvenient. Besides not all of the potential faults worth to study can be injected
by physical methods.

3.2.2 Software-based fault injection methods

An additional method to inject faults in hardware is to use software as a means
to represent the effects of hardware errors, the so called Software Implemented
Fault Injection (SWIFI). The method consists in altering the values of register
contents or memory in data or instruction space, according to the fault models.
The alteration can be performed in compile-time or in run-time. When performed
in run-time an injection software must be run in parallel with the target code.

The properties of such a method are low reachability due to just SW-used registers
access, high controllability in space and time since the injection is previously in-
serted in the code, great repeatability and reproducibility, important intrusiveness
for run-time methods but low for compile-time methods, good time measurability
due to precise insertion point, and a low efficacy if no method is applied to reduce
injection targets to used points [151].

It is a low cost method in economic terms and time. However, it is severely limited
by the amount of different models to be injected. Its best advantage is to be able
to cope with very complex systems at design and final stages alike.

3.2.3 Emulation-based fault injection methods

In the SWIFI methods, the limitation to inject and observe combinational nodes
can be overcome by emulation methods. These consist in the use of hardware to
inject tailored models using specific methodologies. A popular way is to employ a
reconfigurable FPGA to perform injections by dynamically reconfiguring. Several
efforts have been done in the past to demonstrate the effectiveness of the method-
ology with golden runs executed previously, such as in [8], or simultaneously in
other device, as in [113]. Additionally it is possible to emulate faults by using the
debug interface of processors [158] at the advantage of greater portability.

The properties of those methods are a good reachability for FPGA-based way and
medium for debug interface, good controllability in space and time for both, great
repeatability and reproducibility, big intrusiveness for both due to the need to stop

23

Chapter 3. Fault Injection

execution briefly to perform required changes, fairly good time measurability, and
low efficacy if no previous analysis is performed to reduce injection to relevant
points [165].

The main drawbacks of these methodologies can be recognized as the intrusiveness,
and a lack of fine control for delay models.

3.2.4 Simulation-based fault injection methods

In simulation-based fault injection, the system description is simulated usually at
Logic/RTL level (but others can be used) and the different fault models injected
at runtime. Two techniques are differentiated to perform the process: simulation
commands and saboteurs [65]. While the first one only requires issuing special
commands to the simulator, the second needs the introduction of several modifica-
tions in the code. Therefore use of commands is simpler, faster and less intrusive.
The counterpart is the capability to apply complex multi-node models only by
means of saboteurs, though slowing down simulation.

The properties are as follows: reachability is excellent as every single element can
be targeted, controllability is excellent as well because simulation is rich in detail,
repeatability and reproducibility are also excellent as no variation should appear
among runs, intrusiveness is null, time measurability is also excellent and finally,
efficacy can be low if no previous restriction is performed in the number of target
nodes.

The best advantages are low economic cost and great capabilities. On the other
hand, the main disadvantage is the computational time required.

3.2.5 Analysis of injection results

The analysis of results can be performed in differing levels of detail. The possible
general concepts to be included in an analysis of results could match the following
classification, also known as failure modes:

• Silent / Not activated. The experiment has no impact in outputs or state
elements.

• Error. The experiment has upset at least one of the state elements.

Latent error. The experiment has upset at least one of the state
elements, and it has not been detected.

Detected error. The experiment has upset at least one of the state
elements, and it has been detected.

24

3.3 Injection tools

• Failure. The experiment has upset at least one output or it has stopped
execution prematurely.

Silent Data Corruption (SDC). The experiment has upset at least
one output or stopped execution prematurely and no detection mechanism
(if any) has noticed the problem.

Detected failure. The experiment has upset at least one output or
stopped prematurely and it has been detected by a detection mechanism.

It is interesting to mention that, beside those main metrics, other derived or
composed parameters can be provided.

Additionally, propagation latencies can also be measured and studied, what can
be very useful for real-time systems.

3.2.6 Summary of methods

In Table 3.1 a summary of different methods of injection is shown concerning
different qualitative properties of each.

Table 3.1: Evaluation of properties of different injection methodologies

Property Heavy-ion Pin-level EMI SWIFI Emulation Simulation
Reachability high medium medium low to medium medium to high high
Controllability (space) low high low high high high
Controllability (time) none low to medium low medium to high high high
Repeatability none to low medium to high none to low high high high
Reproducibility medium to high medium low high high high
Non-intrusiveness low medium high high medium to high high
Time measurability low to high medium low medium to high medium to high high
Efficacy high high high low low low

3.3 Injection tools

In order to implement the different injection methodologies, the scientific commu-
nity has been providing a set of different tools which enabled a wide spectrum of
injection possibilities.

25

Chapter 3. Fault Injection

3.3.1 Physical fault injection tools

In the realm of physical fault injection, several helping tools to perform pin-
injection are available. A few examples include MESSALINE [11], RIFLE [107] or
AFIT [111]. The supported fault models in all such tools are transient or perma-
nent stuck-at values in single or multiple pins. AFIT also supports intermittent
faults, and the other 2 can additionally inject open-line and bridging models. As
stated previously the reachability is limited, but those pins can mimic the effects
of internal faults.

Other physical techniques such as heavy ion radiation or EMI generation do not re-
quire of specifically designed tools, but instead use physical fixtures or commercial
devices.

3.3.2 SWIFI tools

A plethora of SWIFI tools have been developed by many universities and compa-
nies alike. The following is a reduced representative subset.

Among software implemented fault injection tools, there are 2 variants: compile-
time and run-time. Examples of the first type can be FIAT [153], or GOOFI-2
[158]. All these share many commonalities. In FIAT the task code is altered with
a collection of faults generated from a library, and later results are collected and
compared with a golden run. Validation of the inserted “bugs" w.r.t. the hard-
ware faults is left unexplored. In GOOFI-2 this mode is called “instrumentation",
and works by inserting special routines in the application code. In this case the
temporal intrusiveness can be very high, depending on the workload.

Moving to run-time, there are proposals like Ferrari [91], XceptionTM[38], BOND
[14], MAFALDA-RT [140], or GOOFI-2 again, in an exception based mode. Fer-
rari employs traps and system calls to inject and read results by using 2 concurrent
processes. Xception is one of the few commercially available and supported tools.
It works inserting exception calls to routines to inject bit-flips and analyze the con-
sequences and latency. BOND intersects the communications between application
and Windows OS to inject and read out the effects and also applies bit-flip models.
MAFALDA-RT targets to reduce the temporal intrusion by stopping the hardware
clock of Real Time (RT) systems, but it needs to use emulation for specific areas
of the design. None of them injects permanent faults.

26

3.3 Injection tools

3.3.3 Emulation-based injection tools

A good amount of recent tools in the community rely on emulation to perform
injection. Some of them modify the design to include HW injectors (instrumenting
the design), such as the one from Politecnico di Torino [32] or the Autonomous
Fault Emulation tool in [106]. Others take profit of dynamic partial reconfiguration
capabilities of SRAM FPGAs to apply changes in the designs, which mean more
types of faults can be injected. An incomplete list could include FLIPPER [4],
FADES [7], FT-UNSHADES2 [113], or others. Finally some tools can use a debug
interface such as Nexus to emulate faults, as is the case of GOOFI-2 or JTAG as
in the tool from U. Carlos III [130].

The tools which instrument designs have a greater intrusiveness, but allow for easy
controllability of the injection points and models regardless of the base technology.
The tool from Torino can operate in 2 modes depending on the detail desired for
analysis: one with error analysis and another without it, where analyzing take
longer executions. It stores golden run executions at the host machine. The
Autonomous Fault Emulation tool implements 3 different methods to instrument
the design, which are executed at the HW speed. The variety covers methods
to reduce area overhead of the golden circuit to only doubling the FFs, or to
increase execution speed. The goal was to avoid the bottleneck of constantly
communicating with the host.

For tools based in reconfiguration, there is a difference in the capabilities, since not
only the target design is tested against single event effects (SEE) like in previous
tools, but also the platform (SRAM FPGA) can be tested for weaknesses. In that
sense, FLIPPER can performs alterations of bits in the configuration memory
(CMEM) sequentially to check for effects at the design. Moreover, FADES adds
additional control on the modifications to implement a huge catalog of injectable
faults. It uses the package JBits [72] to gain access to precise bit positions coupled
to the target element to inject. The drawback is that it depends on the availability
of JBits to support any other base platform. FT-UNSHADES2 has been in use by
ESA to validate several designs due to its powerful features. The system comprises
5 FPGAs within 3 PCBs (or 3 FPGAs and 2 target ASICs). With this big amount
of HW, in can be target technology-independent, at the cost of supporting less fault
models, and especially not being able to inject in combinational logic. The speed
is very fast, reducing communication with host, unless latent errors analysis is
required –what turns the system slower.

Tools based in debug interfaces like GOOFI-2 can access more positions than
standard SWIFI, but cannot use as many fault modes as FPGA tools. Also, they
depend on the availability of a Nexus (or similar) interface. The more common
JTAG interface is employed by the tool from Carlos III.

27

Chapter 3. Fault Injection

As a bottom line, all these tools require a final implemented design which fits
comfortably into an FPGA supported by the tool or a design running in real
Nexus or JTAG enabled hardware.

3.3.4 Simulation-based injection tools

In the category of simulation-based tools, there are plenty of choices to mention.
An incomplete list can be the following: MEFISTO [86], VERIFY [157] or VFIT
[15] which operate at the register transfer level. Additionally, some variants operat-
ing at different levels include the tool used in [77], SWAT-Sim [103], or ASPHALT
[177] to name a few.

MEFISTO used the VHDL description in which commands were issued to inject
faults into variables and signals. It boasts the ability to use a network of worksta-
tions, but includes a limited set of fault models. Two variants were developed at
CHALMERS (Sweden), MEFISTO-C, and at LAAS-CNRS (France), MEFISTO-
L. VERIFY extends VHDL language to add descriptions of faults linked to a
specific component in a multi-threaded strategy. Its greater speed is penalized
with the need to modify the VHDL language itself. VFIT greatly extends the us-
able fault models. It also employs VHDL descriptions but implements 3 different
techniques: simulation commands, saboteurs and mutants. The main limitations
are the inability to handle medium-big complexity designs and the limited speed.

Among tools which do not operate at the RTL description, the one in [77] does it
at the microarchitectural description. This provides an enhanced degree of speed
at the cost of accuracy. However only the architectural elements are modeled what
means anything else is not accessible for injection or analysis. SWAT-Sim tries to
convey the best of both worlds by injecting at the gate level and then propagating
the information to the microarchitectural level in a hierarchical way. While this
works well for most types of faults, the issue is to find a proper boundary for the
exchange of information without loss of propagation details. ASPHALT on its side
mixes gate-level injections with RTL simulation, but with a tailor-made language
(ASPHALT itself). It shows great coverage of gate-level faults at the RTL, though
obviously requires the work of coding the design in its own language.

In summary there are tools to simulate gate-level, RTL, µarchitectural or a com-
bination of those to end up employing the highest possible abstraction for speed.
For an accurate and flexible evaluation of designs in the framework of this thesis,
low level injection was required. No tool provided that with adequate capability to
work with complex designs at an acceptable speed without loss of information. For
that reason a new development was built on the grounds of previously available
VFIT experience: the FALLES tool.

28

3.4 The FALLES Tool

3.4 The FALLES Tool

3.4.1 Presentation

In the present thesis, a new simulation tool was developed to support fault in-
jection and analysis of different designs with a specific set of requirements and
constraints in mind. Its name is FALLES for Fault injection and Analysis for
Low Level Evaluation Suite. It was designed to exploit the maximum perfor-
mance available in the computing platforms of either a modern workstation or a
cluster machine. As a simulation-based injector, it boasts all the properties from
which non-intrusiveness, reachability and measurability can be highlighted. The
infrastructure which supports the tool is a set of scripts developed in TCL and
AWK, which interact with an HDL simulator from Mentor Graphics (Questa).
The tool was presented in the paper in Chapter F of the appendix.

In terms of fault models, it supports the most common types of permanent, tran-
sient and intermittent categories plus the fugacious fault models, as shown in Table
3.2. The architecture is designed to ease the introduction of additional models,
since only minor modifications would be required to a few scripts. FALLES was
employed in Chapters G and H for conducting extensive injection campaigns where
injected models were stuck-at-1, stuck-at-0, open line and transient indetermina-
tion. The current implementation is limited to independent (i.e. not short circuits,
etc..) fault models as imposed by the use of simulation commands.

Table 3.2: Fault models currently supported by FALLES

Duration Model
Transient Pulse, bit-flip and transient indetermination

Permanent Stuck-at, permanent indetermination,
open line

Intermittent
Intermittent stuck-at, Intermittent pulse,
intermittent indetermination, and
intermittent open

Fugacious
Transient, permanent and intermittent set
of previous models in the fugacious time
frame

FALLES can work at RTL and gate level, conversely to previous tool VFIT which
could not manage the complexity of gate level or medium-big sized RTL descrip-
tions. When gate level is targeted the results can be as accurate as those obtained
by an emulation tool such as FADES, with the versatility, compatibility and ob-
servability of the simulation techniques. For the bigger designs it has been applied

29

Chapter 3. Fault Injection

in detailed synthesizable RTL descriptions with success, and for medium designs
gate level has also been targeted. Manageable designs do not have any theoretical
limitation further than physical resources. The tool helps to accelerate and auto-
mate extensive simulations, not forcing the user to employ sampling in mid-sized
designs. To reach that goal a cluster infrastructure is handled to support calcu-
lations, with different cluster management systems potentially supported (SGE
based, extensible to others).

In relation to the timing, the instant of injection can be very important. In
FALLES, it is possible to use a single instant of injection or, alternatively, choose
a normal distribution between two time points. For the case of intermittent faults,
different separation times between activations can be selected, from fixed to vari-
able in a normal distribution thus allowing for a more complete set of possible
models. To study different combinations of injection instant and targeted node,
the former can be assigned randomly or sequentially to the later to provide extra
flexibility.

3.4.2 Detailed operation

In Listing 3.1 a set of the main scripts participating in FALLES is shown, where
.do and .tcl extensions feature TCL code and .awk feature AWK code. TCL refers
to Tool Command Language and is widely used for engineering software scripting.
In this case it was chosen because Modelsim supports that scripting language.
AWK is a popular powerful text processing language for linux. It is installed in
most linux distributions and is widely used in that environment.

Listing 3.1: Main scripts comprising FALLES

simConfig.do simReadResults.awk
simFaultsMMP.tcl simAnalyseMMP.tcl
simFaultsCMP.tcl simAnalyseCMP.tcl
simFaultFree.do simbgexec1 .10. tcl
simFaultModel.do simInjections5.do
simGenerateNodes.do simInitModel.do

The names explain quite well the function of each of the files. The main files are
simFaults* and simAnalyse*, which are followed by MMP or CMP depending on
the variant for shared memory machine multi-processing or distributed memory
machine multi-processing (cluster). The main reason behind producing 2 variants
is the different management of the simulation tasks in those environments. The
shared memory version was produced for use in workstations, where smaller designs
can be perfectly managed. Once larger designs were considered, the need for
more power drove the development of a cluster version to exploit the available
computing resources of the university campus. Either way the procedure is the
same, only varying the management routines to start and gather simulation tasks.

30

3.4 The FALLES Tool

In this architecture it is possible to launch the injection followed by the analysis
or alternatively perform each in a separate operation.

Its workflow can be described in the following points, which are also pictured in
Figures 3.1 and 3.2:

1. Either the shared (MMP) or distributed memory version (CMP) is run from
TCL shell depending on the available platform.

2. Configuration is read from the configuration input file. Includes number
of cores and packets for injection, number of cores for analysis, choice to
perform analysis immediately after injection, filters to apply to trace data,
configuration of experiments campaign(s) such as fault model(s), duration,
injection instants, etc.. and component / level of description to inject with
the desired process corner(s) parameters.

3. A reader module builds the target nodes list if it was not already present
(allows to manually tweak it).

4. Golden run is executed until first injection instant, then checkpoint is saved,
then continues execution until end of workflow saving information of the
fault free trace and filtering it accordingly as defined in configuration.

5. To execute golden run, content to save to trace is initialized by reading it in
a specific input file.

6. Injections report is prepared

7. Distribution of injection experiments in multiple packets and processing cores
using background processes, and launch of executions from previous check-
point. Apply filtering as configured to saved traces.

8. When all cores are done, gather injection traces and reports into a centralized
location and report file

9. Repeat 4-8 for opposite process if both process corners evaluation for gate-
level is desired, i.e. if the first pass was performed using maximum delays
then repeat using minimum delays and vice-versa.

10. Launch analysis if configured that way by user.

Injection is carried out using force commands, where deposit or freeze variations
are applied depending on whether the target is a sequential or a combinational
element. If deposit is used the value is held until a new source drives the node,
whereas if freeze is used no driver will change the value of the node until the force

31

Chapter 3. Fault Injection

Read configuration

from file simConfig.do

Load design and use

simGenerateNodes.do to create

list of target nodes ‘simNodes.do’

in case it was not already present

Run

simFaultsMMP.tcl or

simFaultsCMP.tcl

from TCL shell

Figure 3.1: Workflow for FALLES, part1

32

3.4 The FALLES Tool

Call simFaultFree.do to

Simulate Golden Run until

1st injection instant, save

checkpoint and continue

saving trace until end of

execution. Later apply

filtering to data as needed.

Initialize content to save

for later analysis using

simInitModel.do

Prepare injections

report ‘Injections.log’

Distribute & launch background

execution of experiments in

multiple packets and processing

cores using simbgexec1.10.tcl and

simInjections5.do. Load previous

checkpoint at start. Apply filtering.

Wait and gather injection

traces and reports in a

centralized location

Repeat if corners

evaluation is desired

Launch analysis?

Figure 3.2: Workflow for FALLES, part2

33

Chapter 3. Fault Injection

command is revoked. The duration is calculated according to the configuration,
and the forced values can be ’1’, ’0’, high impedance ’Z’ or indetermination ’X’.

As stated there is an inherent parallelization of the execution of the injections
and analysis, which has been implemented for both multi-core and cluster (grid)
topologies for versatility. The total number of injections is divided into the max-
imum amount of cores and packets are created as convenient for later analysis.
For instance, 100 cores can be used for injection but 500 are available for analysis
(this can be a real situation provided simulator licenses are needed only for injec-
tion). Hence, each core creates 5 packets of trace data for later analysis and in
the analysis phase each core will take care of one packet, accelerating the latter
phase. Since code for management of parallel execution is located in a single file,
it is possible to adapt it to new clusters/platforms.

A possibility to filter results on the fly is included to restrict or reduce the required
data space. This enables, as an example, to observe only a subset of the bits of
the positions under analysis, or to perform some combination operation to reduce
the size of the saved traces. Storage has turned one of the most limiting factors
found in our research.

Finally, additional features are the possibility to inject sequentially the list of nodes
or randomly choose among them to create a more even distribution. Also option to
continue from the last injection if additional experiments are desired is included.
All the saved information is coded in plain text to ease the task of creating or
debugging personalized analysis algorithms.

3.4.3 Analysis in FALLES

The analysis of results can be performed in several ways, depending on the desired
measures to obtain. The needed step to achieve any measures is to get some
readouts to analyze, which in the case of FALLES are the traces with the selected
elements to capture. From there, if using the default analysis algorithms provided
with FALLES, experiments are classified according to predefined categories. Those
categories are related to those mentioned earlier in section 3.2. However, due to
the practical use of FALLES performed in this Thesis, a slight variation can be
appreciated. There was interest in a set of papers included in this Thesis, where
detection of errors at the superstructure is only possible at the output boundary
of the lower hierarchy block when a failure is present, to include the following
categories:

• Silent / Not activated. The experiment has no impact in outputs or
observed state elements.

• (Latent) Error. The experiment has upset at least one of the observed
state elements, but not the outputs.

34

3.4 The FALLES Tool

• Failure. The experiment has upset at least one output or it has stopped
execution prematurely.

Failure after error observed at the state elements. The experi-
ment has upset at least one output after at least one error has appeared in
the observed elements.

Failure without any error observed at the state elements. The
experiment has upset at least one output without showing error in the ob-
served state elements first. This means that, while an error must exist in the
system before failure, it was not reflected at the selected elements for obser-
vation, i. e. the error propagation did not impact the observed elements.

The analyzer can be adjusted to taste as per-case. For instance if a detection
architecture is studied a new category ‘detected’ can be included, or if correction
algorithms are present the same can apply for a ‘corrected’ category.

Additionally, in the default analyzer latency of propagation is also provided in
maximum and average values, plus histogram of hits. It is depicted in Figure 3.3.
It provides time elapsed between injection instant (A) and the moment an error or
failure first appears (can be observed, points B or C), and from first error (B) to
first failure instant (C). The value of these measures is most appreciated for real-
time systems where reaction time is tightly constrained, but it can be employed in
many ways. A last provided feature is the distribution of errors in different state
elements throughout the whole campaign (number of ’x’ in each S element). This
delivers valuable information on which elements are most susceptible of suffering
upsets, and thus perfect candidates for protection measures.

out

B A

n

C

 =p

 =r

 =q

t

AB

hits

max avg

max avg
t

BC

hits

S1

S2

S3

Figure 3.3: Latency analysis and error count in FALLES

35

Chapter 3. Fault Injection

3.5 Summary

In this chapter fault injection is dealt. Attention to several methodologies and
techniques to inject faults has been paid, identifying strengths and weaknesses for
each of them according to relevant properties. A study on a number of available
tools of different types presents the advantages each of them provides, and under-
lines the lack for a customizable well suited tool to perform research on very fine
time measurements or alternative fault models.

After study, a new fault injection tool, FALLES, is presented to fill the gaps iden-
tified in other solutions. Its capabilities and behavior are thoroughly explained.
The availability of such an injector is unleashed in the area of dependability as-
sessment, and more specifically in the robustness assessment, which is the target
of the following chapter.

36

Chapter 4

Dependability Assessment

4.1 Introduction 4.3 Multi-level correlation

4.2 Analysis of injection results
information

4.4 Summary

The following chapter covers the topics of how to perform proper
dependability assessment in the context of an ever increasing demand of
certifications compliance, and how to improve efficiency in this process
to reduce development cost and redesigns.

4.1 Introduction

Out of the dependability attributes, as defined by Avizienis [13], it is possible to
cite the 3 most relevant to embedded systems and their certification standards:
reliability, availability and safety. In all 3 attributes the important concept is the
justification that the intended characteristics are met, and how is that justification
achieved.

In dependability assessment, there are 3 different techniques to verify required
dependability attribute goals for standards certification have been met: analytical
study, field experimentation and fault injection testing. Each of them cannot be
applied at every design stage, but only at specific stages related to the technique,
nevertheless some of the techniques can be used in several stages. Fault injection,
explained in the previous chapter, is recommended for instance in the automotive

37

Chapter 4. Dependability Asessment

standard ISO26262 [81] Part 5 –safety requirements of hardware, where injection
into models is deemed appropriate whenever hardware fault injection becomes
specially difficult or ineffective (requiring irradiation tests, etc...).

The method requires realistic workloads to be applied, a non-interfering injection
system and a targeted analysis to extract the measurements which will provide the
cornerstone for obtaining useful dependability measures as required by standards.
There is yet a further matter to solve: are specifications towards dependability
correctly captured by the evaluated implementation or model? The following
sections deal with the opened questions.

4.2 Analysis of injection results

The results of injection during testing for dependability assessment must be care-
fully studied to discover potential system weaknesses, or dependability bottlenecks.
In the pursue of delivering accurate figures for reliability, safety and so on, a param-
eter which is considered fundamental is the percentage (or probability) of failures
observed at the boundaries of the element under analysis, as provided by the tool
presented in previous chapter 3.4. To get it an injection in all or a carefully se-
lected representative set has been performed. Later, with the combination of that
value and the expected raw rate of occurrence of faults in the system for the es-
tablished mission profile, a failure rate is obtained. That is the standard unit to
measure reliability, and is given in Failures in Time (FIT) where 1 FIT equals 1
failure every 10−9 hours.

The availability of a critical system plays an important role in the dependability
studies. There are distinctions for systems which imply continuous operation and
others which operate occasionally, mainly in the methodology for safety classifi-
cation. It is noteworthy that for systems operating continuously, the reliability
levels are remarkably more demanding.

In safety qualification, applicable standards such as the European IEC 61508 es-
tablish 4 different categories, or Safety Integrity Levels (SIL 1 - SIL 4) according
to maximum expected risk. Though some others use the opposite ranking, in IEC
61508 level 4 means the safest. This is valid through all the field specific stan-
dards derived from it: ISO26262 for automotive, EN50126 / EN50129, for railway
or IEC61511 for process industry, to name a few. In order to establish the tax-
onomy, there are separate tables for continuous operation systems and occasional
operation ones. The tables refer to figures of dangerous failures in time, which
relate to those figures obtained in reliability study, but with a special qualification
(not all failures may be dangerous/catastrophic to safety). The tables are 4.1 for
systems occasionally used, and 4.2 for systems continuously in use.

38

4.2 Analysis of injection results

Table 4.1: SIL levels for systems occasionally used

SIL PFD D-FIT
1 0.1 - 0.01 108 − 107

2 0.01 - 0.001 107 − 106

3 0.001 - 0.0001 106 − 105

4 0.0001 - 0.00001 105 − 104

PFD: Probability of Failure on Demand
D-FIT: Dangerous Failures In Time

Table 4.2: SIL levels for systems in continuous use

SIL PFH D-FIT
1 0.00001 - 0.000001 104 − 103

2 0.000001 - 0.0000001 103 − 102

3 0.0000001 - 0.00000001 102 − 10
4 0.00000001 - 0.000000001 10− 1
PFH: Probability of Failure per Hour
D-FIT: Dangerous Failures In Time

In the FALLES tool developed in the course of this thesis, it is possible to extract
information which helps to determine the number of failures which cause the sys-
tem to stop execution unexpectedly, what is presumably critical to safety. But not
only that information is available to the user. With additional analysis of selected
registers or components, the user can evaluate the effectiveness of deployed fault
tolerance mechanisms, or study the propagation characteristics of faults inside the
pipeline. In this sense, one of the types of analysis which is delivered by the tool
is a quantification of different propagation delays for faults. This allows to know,
for instance, how much execution time has passed from the moment some internal
value is upset until an erroneous output is delivered. Very popular automotive
microcontrollers, for instance, use lockstep architectures, where 2 replicas perform
the same operations on identical data and compare results at the outputs. If they
don’t match, a rollback and re-execution is launched. The delay that takes a wrong
value to reach any output can prove critical to real-time tasks to deliver correct
results and on time [78].

Another study enabled by the tool is the propagation of faults to a certain prese-
lected subset of elements, such as state elements. Using that capability, in Chapter
H a paper is presented where architectural registers are selected as the subset, out
of a real critical applications embedded processor pipeline. The focus is placed in

39

Chapter 4. Dependability Asessment

the results which would be obtained after injection in architectural level description
of the design. When a comparison of the results considering injection at the archi-
tectural level and injection at the full detail of RTL is performed, it is clear some
noticeable differences appear. The relevance of the result is that the estimated
FIT value for the design when architectural level is used will differ importantly
from the value obtained after RTL injections. This relates to the representative-
ness of fault injection results obtained at different abstraction levels. In essence,
this reduces the usability of the injection results at the architectural level. Sadly
enough, from a practical point of view the benefits of testing at a higher level of
abstraction are substantial. Mainly, higher speed of test due to faster simulations,
earlier availability in the design flow and hence the possibility to perform cheaper
redesigns. Therefore efforts were focused to investigate a multi-level correlation in
the testing process, in the sake of increasing confidence in the architectural level
injection results.

4.3 Multi-level correlation

When injecting faults for dependability verification or assessment, it is notable that
the closest to hardware the model to be injected, the more accurate the extracted
information on the system behavior is going to be. However, the capability to test
every fault model of interest in hardware is only reserved to the last stage of design
if possible at all. Hence, and as explained in the previous section it is convenient
in many ways to be able to perform accurate fault injection in the higher levels of
abstraction, making an effort to reach an acceptable degree of representativity.

Microarchitectural simulators, or instruction set simulators, can model a virtual
prototype with acceptable data and cycle accuracy, but neglecting most of the
underlying infrastructure (usually mainly because it is not yet defined at that
stage of design). They implement uniquely those elements that are defined in
the architecture and constitute a minimal set of features. The benefits are a
tremendous simplification in the simulations which means delivery of results is
quick enough to iterate as required during design phase. Beside that, they come
at zero cost, given the fact that software development also requires from that sort
of simulators so they are already available for the software team.

In the multi-level correlation topic, this thesis introduces some efforts which were
focused in a specific architecture but, without loss of validity, apply to any other.
To begin with, Chapter F presents the original idea of injecting at the RTL and
observing the propagation to those elements of the architectural description, and
Chapter G demonstrates a method to correlate the injection information obtained
at the RTL level with that available at the Instruction Set Simulator (ISS) for
automotive environment. The key is to establish a parameter extracted at the
ISS which conveys the failure probability obtained after injection at the RTL. The

40

4.3 Multi-level correlation

mentioned parameter was the instruction diversity. The tested fault models
were permanent, where existing correlation has been found with profiling of the
benchmarks as extracted by ISS. A statistic analysis concluded that the behavior of
the failure probability is logarithmically related to the instruction diversity value.
That means for those fault models that after a quick profiling of the software
to execute by ISS, to obtain the key instruction diversity parameter, and using
the curves obtained in the paper or the corresponding equation, it is possible to
provide a value for the probability of failure without even simulating. Such value
is a fair approximation to the final value obtained by RTL injection, but at a much
smaller time budget and without the need for an RTL description. The limitation
is the method is only validated for permanent fault models.

Several correlation efforts had already been presented before in literature, though
not providing the final figure for failures with such a direct approach. An inter-
esting work by Maniatakos et alt. [109] linked instruction level effects of low level
faults for permanent stuck at models and transient bit flip faults. It provided a
rough classification of unexpected effects at the instructions side. Another effort
by Li et alt. [103] focused in the results of injecting the same stuck-at and delay
models at gate and µArchitecture levels, where poor matching was found.

When targeting multi-level correlation for any fault model, a possible methodology
to ensure testing process at different levels represents the same physical reality is to
find common points to check for concordance, as in Chapter H. In it, architectural
registers were examined to determine, out of all the injections which had been
performed, how many had impacted those registers, and how many had not. In
that case the study focused in permanent fault models, but it has been further
extended in upcoming publications. Up to day additional investigations to be
published have demonstrated that, for permanent fault models, injection results
can be even more accurately estimated by employing a parameter called toggle
coverage. This relates to the utilization of each o the areas of the processor by
the tested benchmarks. The amount of failures not reflected at the architectural
elements of the system is important for permanent fault models, conversely to
what happens for transient fault models. In the latter, estimation using profiling
is rather inaccurate. Therefore, for transient fault models actual injection at the
architectural level is utterly recommended since (i) it is more precise than for
permanent fault models and (ii) the results cannot be estimated in advance by
instructions profiling.

41

Chapter 4. Dependability Asessment

4.4 Summary

In this chapter the assessment on the dependability of systems is studied. After
focusing in the fault injection testing methodology, an analysis of dependability
attributes obtainable by FALLES is presented. Critical products development
necessarily includes a testing stage to check those dependability attributes. Hence,
with the purpose of accelerating the design process while maintaining requested
dependability standards, multi-level correlation of injection results and profiling
information was studied to understand the attainable accuracy by employing early
(high level) fault injection testing methods.

The outcomes of such testing result often in the insufficient level of dependability
as required by specification. That means one or many fault tolerance mechanisms
need to be applied to increase the dependability level. Those need to be tailored
to the fault assumptions considered for the mission. The next chapter offers a
discussion on that topic.

42

Chapter 5

Fault Tolerance Mechanisms

5.1 Detection 5.4 Fault recovery

5.2 Error handling 5.5 Summary

5.3 Fault diagnosis

In this chapter, fault tolerance mechanisms for embedded systems
are covered. Within the concept are included the areas of fault and
error detection, error handling, fault diagnosis and recovery. Though
it is clear those are ample, cross-domain topics, the spectrum of this
work is restricted to hardware in the current and upcoming technology
generations. Previous work is mentioned along contributions to the
field within this thesis.

5.1 Detection

When it comes to error detection architectures, there exists a plethora of different
proposals to cope with the job. In the first place it is important to distinguish on-
line from off-line techniques. Traditionally off-line detection has been performed
as test vectors exercised right after manufacture, or as periodic checking routines
in critical systems. The target was to either detect potential design or manufac-
ture errors or to recover from errors in a gross time frame. Obviously in off-line
techniques a latency of detection applies, which may be unacceptably high for
that purpose. Consequently, on-line techniques are much more targeted towards

43

Chapter 5. Fault Tolerance Mechanisms

improving the robustness of system components against potential faults that may
affect its behavior at runtime. They become the adequate solution to applications
where no big detection latencies are acceptable. In essence, concurrent detection
provides the mentioned low latency of detection, as it happens during normal op-
eration of the system.They enable the system to react to errors, not originated by
ill-design but operating conditions, while running and in an automated or assisted
way. Different base techniques have been employed to perform detection concur-
rently: in space redundancy options are replicas comparison[20, 166] or tailored
function checkers [167, 173, 152], in information redundancy the use of coding [74,
19, 174, 21, 61, 179], and in temporal redundancy the re-execution and comparison
[93, 138, 47].

Some of the most widely used devices are SRAM based FPGAs, with an extraor-
dinary recent growth in capabilities. It is notable that for critical applications like
aerospace, defense, etc. special types of FPGA devices have been used over time.
Nevertheless commercial or industrial grade SRAM FPGAs are now finding their
way in those markets due to pricing and functionality. In this thesis attention
was paid to the use of those FPGAs in critical contexts. Because of their partial,
dynamic reconfiguration possibility, it is easy to foresee the situations where a
reconfiguration process is engaged due to a previously detected fault and a new
fault hits the system, or generally speaking the previous fault is being cleared
when a new one arrives. That has been named in this thesis “faults with prox-
imate manifestations” (see Chapter 2). Because when a reconfiguration process
is in operation the outcomes of the affected section are not under control, so in-
correct error masking could take place. Thus, it is important in order to avoid
safety hazards to detect that situation and react connecting or disconnecting the
erroneous section’s outputs accordingly.

One of the contributions of this thesis was to present and test a mechanism suit-
able to detect those complex situations, as proposed in the work of Chapter
A. By introducing a supporting finite state machine (FSM) combined with existing
spatial redundancy strategies, such higher complexity scenarios can be adequately
noticed. The mechanism is named TMR-MDR for triple modular redundancy with
module discard and repair. With the sole use of previously existing mechanisms
such as those earlier described, faults appearing in proximate instants of time could
not have been accurately detected, thus probably causing unexpected hazardous
situations. The working principle is to compare only those replicas which the FSM
has established to be reliable, disregarding incoming information from the others.
This qualified replicas keep changing with the recovery of correct operation in a
dynamic fashion.

Moving on, after extensive characterization of faults affecting deep sub-micron
technologies (see Chapter 2) the growingly important fugacious faults were tackled.
Contributions towards detection of such new fugacious fault models was first
proposed in Chapter B, where a schematic proposal was first presented. A further

44

5.1 Detection

contribution was to fully implement and test the proposal, as demonstrated in
Chapter C. The basis of the detection lies in the use of an observation circuit
which operates in the stability period of the set of signals in the bus. While
this would not be a novelty ([39]), the addition of an infrastructure to effectively
increase that stability period over which observations can be performed boosts its
effectiveness sharply. Such infrastructure operates equalizing propagation times
of combinational signals throughout the stage of the pipeline, so that switching
period of the total clock period is reduced. A methodology to apply such detection
method is also described, along some promising results of testing in small blocks.
The latter solution is not restricted to FPGAs like the first, but can fit any VLSI
design.

Beside the previous 2 contributions, where introduction of new applications and
technology are the driving cause of the efforts for enhanced detection of new fault
models, the commonplace for embedded systems’ dependability is also reviewed
for improvements. Truly, embedded systems can face changing operational con-
ditions and can be usually deployed in harsh environments. Hence, one of the
consequences is their communications can get corrupted fairly easily. To quickly
explore the design space and deploy tailored solutions to each detection problem,
a metaprogram -which defines a set of transformation rules from HDL code into
a different HDL code in this case- was developed for automated CRC hardware
block generation (Chapter E). That metaprogram matched an infrastructure called
CODESH (for open COmpilation process for Design of dEpendable and Secure
High-level HDL descriptions), created to enable the automated application of fault
tolerance and security strategies, by means of open compilation (Chapter D). The
advantages provided were ease of use and deployment and the lack of human in-
tervention, what ensures high quality results with virtually no mistakes. Other
detection strategies were developed as metaprograms to enable easy problem-free
deployment, such as re-execution and comparison or Hamming codification. The
novelty of these efforts was focused in the ability to automate the addition of
non-functional mechanisms to designs, enabling a low-cost and effort method
to adapt the system to operating conditions demands dynamically.

After effective detection of faults a proper recovery can result in improved availabil-
ity, reduced cost of operation or increased reliability. For the recovery of detected
errors proper handling is needed. Further on, if a correct diagnosis of the offend-
ing fault is available the recovery from it will be more efficient, durable and safe.
These topics are discussed next.

45

Chapter 5. Fault Tolerance Mechanisms

5.2 Error handling

Once errors are detected, fault tolerant embedded systems require some kind of
handling strategy to limit their unwanted effects. The concept of handling involves
avoiding the process of errors turning into failures (incorrect outputs of the service
under study).

In the sphere of error handling, there are 3 main known methodologies to apply:

• Rollback. To return to a previously saved correct state (checkpoint).

• Rollforward. To jump to a state without errors which should follow the
last correct state.

• Masking. To correct the erroneous data using redundant information in
the current state.

In terms of architectures to implement the methodologies, there are all sorts of pro-
posals exploiting different principles. In this work software level solutions are out
of the scope, hence placing the focus on hardware solutions. The most widespread
method across different systems to handle the effect of errors is physical replica-
tion for masking. The simplest form, triplication and voting, has been around for
some years and still provides one of the best error handling capabilities [20]. Some
automated tools for its deployment have been developed for FPGAs [188], or for
designs at the EDIF level [182]. In this work, an additional possibility is provided
as a contribution: to apply physical replication at design entry level (Chapter D)
by means of a specific metaprogram and easy-to-use configuration commands.

Other widely used technique (which is also extremely popular) is re-execution of
instructions, pipeline stages, etc... It saves valuable amounts of area to provide
error handling, but is ineffective for handling the errors caused by permanent faults
[120, 47]. A novel method to quickly apply temporal replication for re-execution
at entry level is featured in Chapter D, where a metaprogram is in charge of
performing the required transformations and addition of infrastructure towards
correct bug-free implementation of the architecture.

Error correction codes are a third way to handle errors. While these can be rather
flexible [148, 155], they provide a remarkable timing overhead for encoding/de-
coding procedures and an extra area occupation. Their suitability will depend on
the performance/sensitivity to errors relationship required. Again a novel flexible
method to apply Hamming code correction at entry level is presented in Chapter
D using metaprograms. Finally, combinations of different techniques can be found
throughout literature, many times using replication with comparison and addi-
tional re-execution as needed, or codification or a combination of all of them [105].
In that sense a contribution in this thesis in Chapter A provides error handling

46

5.3 Fault diagnosis

for specific degraded periods of operation in FPGAs, by means of combination of
area and time redundancy.

5.3 Fault diagnosis

Once a fault is detected, irrespective whether errors are effectively handled or
not, correct or mistaken diagnosis can make a huge difference in the job of a FT
strategy. Take, for instance, a quick analysis based in the dependability attribute of
reliability. If a transient fault appears in the system, and it is mistakenly diagnosed
as a permanent fault, it could well force a reset or power-cycle to unwillingly
recover from it. That causes a downtime which negatively impacts reliability.
If, on the contrary, permanent faults are taken as transient ones, the increase in
the probability of accumulation of faults in the system is noticeable. This yields
diagnosis is as important as detection in order to provide a complete optimal
solution for dependability.

Following the stated example, several previous works have provided good insight
distinguishing permanent from transient faults in the domain of VLSI systems [39].
This makes a good leap towards better dependability and use of resources. In this
thesis, the diagnosis method presented in Chapter A was based in the previous
reference, with added support for combinations of faults which coincide in time.
Nevertheless, intermittent faults were not included in the taxonomy considered in
that piece of work.

Much effort has been later put in properly diagnosing intermittent faults, as differ-
entiated from isolated transient faults [22, 37]. It is not a trivial problem, which is
dealt at the lowest level hardware in some solutions and at higher level controllers
in others. In any case adequate thresholds for the recurrence of faults in a certain
location are key to perform correct distinction. That information will be given by
experience, and always related to the base technology and operation environment.
In the framework of this thesis, attention to intermittent diagnostics at the low
level was placed in Chapter C. The contribution was to enable diagnosis of in-
termittent faults at a very small time frame, compared to the clock period.
While it is referred to the clock cycle time frame, other combinations of recur-
rence threshold and time frame may be equally valid, when adjusted to specific
technology and conditions. In the presented architecture, a repetition of 2 upsets
in a clock period is tagged as intermittent fault. At that time frame, diagnosis
information must be used as input to higher level managers which can consider
additional inputs to perform a more accurate diagnostic.

47

Chapter 5. Fault Tolerance Mechanisms

5.4 Fault recovery

After proper diagnosis, the next stage is to recover from faults. Fault recovery
refers to the application of changes in a faulty system devoted to return it to a
non-faulty state.

Recovery of faulty systems is performed when the fault is not leaving the system
on its own, i. e. it is not a transient fault which will disappear after some (short)
period of time. In SRAM based FPGAs, where this thesis has placed focus, it is
a powerful tool to increase dependability. For instance, when the fault affects the
configuration memory, where logic functions implemented by the device are set, the
problem will remain until a rewrite operation of that memory takes place. For that
reason modern FPGAs usually implement a scrubbing engine, which continuously
checks and rewrites as needed the different data frames to recover correct values
when these have been altered [19]. Likewise, a fault can also affect an element in
the fabric (logic) of the device. In any case, the faults can be usually corrected
using the previous technique when their nature is transient. However, permanent
faults will not be corrected by simply rewriting the configuration cells with the
proper value. In such cases relocation of the implemented function to a different
area in the device is the preferred choice [166]. To cope with both transient and
permanent faults, a combined recovery scheme was integrated in the architecture
presented in Chapter A. The contribution it makes is to use a reconfiguration
engine to rewrite on-demand, as opposed to blind scrubbing, the affected block
to save reaction time, and relocate that block when permanent faults have been
diagnosed, while concurrently providing detection of errors.

In the fugacious faults area, recovery is left for a higher level of decision. The
contribution of the presented work (see Chapter C) is to deliver new information
on detection and diagnosis to the higher level management block. With that
valuable input at hand, an adequate decision can be made on the recovery actions
to take in order to keep the dependability properties of the system within the
expected limits.

5.5 Summary

In this chapter the different fault tolerance aspects have been treated, from error
and fault detection to handling, diagnosis and recovery. Along the way different
well established techniques have been commented, with their known limitations.
A set of advances in those areas, performed in the framework of this thesis, have
been presented to tackle problems related to new technologies and applications.

The first effort was devoted to detect and recover from faults occurred proximate
in time in a design, in which recovery from first fault had not been completed

48

5.5 Summary

when a second is detected. Those scenarios were simulated and checked to behave
adequately by using a control FSM and specific partitioning of modified replicas,
which in turn could be rewritten or relocated as needed. The novelty was to
consider an new fault model: faults with proximate manifestations, to design an
architecture which provides a better coverage of those scenarios.

A second effort targeted the other presented fault model of fugacious faults, which
are expected to grow in number in modern technology nodes. As a contribution, a
detection and further diagnosis architecture was unveiled, together with a method-
ology to implement it in combinational stages. This novel architecture provides
a superior capability to capture those faults, as compared with what would be
obtained with prior techniques. The information is delivered to a higher level FT
manager which must take decisions accordingly.

49

Chapter 6

Discussion and Conclusions

6.1 Discussion 6.3 Guides for future work

6.2 Conclusion

In this chapter a global conclusion of the results given in this disser-
tation is presented. The chapter has been structured in three sections.
First, the main findings of this thesis are summarized with the lessons
learned and contributions to the field. Limitations of the methods pre-
sented in the previous sections are highlighted. Secondly, the main
conclusions of this work are presented and it is summarized how they
satisfy the objectives previously established. Finally, a third section is
dedicated to future research lines.

6.1 Discussion

The 3 main problems motivating this work, as explained in the introduction, were
the challenges posed by new complex fabrication technologies, the use of com-
mercial products in critical applications and the ever increasing requirements of
verification and validation mandated by standards. In light of the results pre-
sented in this thesis, a summary of the main contributions towards those problems
in their research context can be explained as follows.

51

Chapter 6. Fault Tolerance Mechanisms

6.1.1 Fault models

After analysis of the literature and study on the current technology trends, a
dissection of the different faults affecting deep sub-micron integrated circuits was
performed. Practical measurements in the most recent devices compel researchers
to face new reliability challenges, not only in those products deployed in critical
markets but also in consumer grade products. In that context, a part of this thesis
has explored the introduction of new fault models tailored to physical phenomena
occurring in embedded devices.

Classical models divided in transient and permanent fault models were taken as
the foundation for a new proximate manifestation fault model. Indeed, it refers
to the phenomenon which takes place when a fault is affecting the system or it is
undergoing recovery and another fault reaches or activates in the same operational
context. The model refers to a problem of different nature than single faults or
multiple faults as described in existing literature, since techniques well suited to
the former may not be able to cope with the introduced fault model. Though
it applies to both ASICs and FPGAs, impact is not the same in each of them.
In the case of ASICs, fault tolerance strategies might be defeated and incorrect
service provided for some time, whereas in (SRAM based) FPGAs the use of
reconfiguration or relocation as tolerance strategies can turn the situation into a
more frequent scenario, provided the time taken to partially reconfigure or relocate
can be high, where global reset or total reconfiguration would be required. With
the new model, currently deployed or newly designed fault detection and tolerance
structures can finally be tested to check whether the response is satisfactory in
terms of dependability or not.

A second model was introduced in the context of the thesis. After observation by
the research community of the reduction in the duration of faults, together with a
reduction of the maximum operating frequency in circuits due to power issues, a
new scenario was to be considered. In this case, faults would last appreciably less
than a clock period. The situation is distinct from a classic one where temporal
filtering has not such high impact. A new set of fault models was introduced to
the community: the fugacious faults models, with transient fugacious, intermittent
fugacious and non-fugacious (or permanent-like) variants. With these models, it
is possible to evaluate the suitability of fault tolerance techniques to properly deal
with the new challenging scenarios previously presented. When compared to tra-
ditional single event transients (SET), the concept of fugacious fault encompasses
faults of different nature and origin, which may well play the role of early indicator
of potential reliability degradation. Additionally, other situations can be reflected
in an increase of fugacious faults. It is known operational environment can change
widely in the life of embedded systems, eg. traverse harsh areas with increased
radiation levels, abnormal temperature, power instability etc... Those situations
would mean an increase in the fugacious faults rate at first, and probably clas-
sic fault conditions later on. By considering fugacious faults in the dependability

52

6.1 Discussion

strategy for the designs, a new tool comes at hand to gather information from the
environment and how it can affect the circuits.

6.1.2 Fault injections

For the analysis of robustness of designs, fault detectors or FT architectures, the
process of injection is mandatory. In the STF group, a preexisting tool named
VFIT (VHDL Fault Injection Tool) provided some valuable experience, but strong
limitations and poor performance invited to the development of a new flexible pow-
erful tool. Taking that previous experience as a basis, the FALLES tool developed
in this thesis delivers strong parallelization, performance optimizations and total
flexibility to apply a wide range of fault models to HDL designs. Furthermore, it
can analyze and extract useful information for dependability assessment in a quick
and convenient way. Compared to other tools in the field, it is focused in compre-
hensive simulations, whereas others provide reduced detail or use emulation which
does not allow the same degree of observability and controllability. With FALLES,
the capacity to employ from compact multi-core shared memory machines to highly
parallelized grid computers as computing base enables the simulation of real world
problems within a manageable time frame for both single workstation and enter-
prise frameworks. With single workstation version simplicity and speed can be
attained, for data movements between cluster and local machine are not required.
It is therefore adequate for small and mid sized campaigns. With the grid version,
big campaigns can benefit of an order of magnitude increase in speed, together
with an architecture designed to adapt to different clusters as needed with mini-
mal modifications of the code. This comes at the cost of the need of moving data
to/from the cluster and a more complex management of the parallel processing.

During development, a series of lessons have been learned. First, memory man-
agement is important in simulation structures, so making the best use of it can
provide a greater capability for bigger circuits. In fact, a bug in the simulator
caused memory leaks only solved by distributing the task in extra parallel pro-
cesses than the originally thought. Second, partitioning simulations must be done
with a speed criterion, in order to accelerate potentially long campaigns. Third, a
resuming capability is badly required to avoid costly re-simulations due to power
losses, etc. Fourth, saved information must be trimmed to the minimum possible,
otherwise it becomes unmanageable, for instance by only saving the significant bits
of a word for later analysis. Fifth, for the analysis phase any optimization causes
valuable time savings, but when properly debugged it takes much longer to simu-
late than to analyze the results. Sixth, partitioning the results helps tremendously
to find and organize the experiments. Seventh, making room for adaptation to
different hardware computing platform eases the deployability, what avoids extra
problems when working with data in sparse machines. Finally, for a tool to be us-
able by many, it must be fully documented and the code easy enough to read and

53

Chapter 6. Fault Tolerance Mechanisms

understand. Therefore, complete documentation and the full code can be found in
the public repository reachable at https://bitbucket.org/jaiesgar/falles.

6.1.3 Dependability assessment

In the dependability assessment area the thesis has contributed in a couple of
topics.

First, the characterization of permanent faults propagation through the pipeline
of a processor used in critical applications delivered information on how to inject
in order to maximize representativity and reduce the cost of injection. Besides,
knowledge was gained on the implications of injecting solely architectural registers,
leaving aside the non-architectural or implementation-linked ones. For establishing
an accurate safety integrity level, it was made clear an architectural injection is
not sufficient to provide accurate reliable results.

Second, multilevel correlation of injection results has set a path to robustness ver-
ification at early stages of design, since a stronger confidence can be placed in the
higher level injection. To do so, previous RTL injection was required for the archi-
tecture at a characterization stage but, once this has been performed, injection at
the Instruction Set Simulator can be carried out for new applications employing
previously gained information in a fast way. It can turn a very convenient method
to perform early checks at a very reduced cost. However it was only checked to
be true for permanent fault models, with transient fault models left for further
work. In any case correlation for permanents was found, what is a good basis to
think with some more research a better accuracy will be eventually reached, so as
to provide rough figures at early stages of design or be able to compare different
solutions in terms of dependability.

6.1.4 Fault Tolerance mechanisms

In terms of FT mechanisms, the proposals of the dissertation are focused to those
fault models introduced in it. In the field of multiple faults with proximate mani-
festations, an architecture focused towards fault mitigation in the case of FPGAs
has been presented. The assumptions were the utilization of commercial-grade
SRAM based FPGAs in harsh environments, where fault rates can be certainly
high. The proposed architecture TMR-MDR is capable of performing detection
and diagnosis of multiple faults with proximate manifestations, by combining spa-
tial and temporal redundancy. This maximizes reliability of the system since a
lower probability of failure is achieved, and availability since accurate diagnosis
allows to take relevant action avoiding extra hassle, as compared to other exist-
ing techniques. However, limitations apply in rare fault combinations where the
system might still be defeated. Additional limiting factors are those blocks that

54

https://bitbucket.org/jaiesgar/falles

6.1 Discussion

use hardwired elements of the FPGA which are not relocatable at will. The in-
troduction of those complicates routing of the relocated blocks, with the added
challenge of maintaining the system under timing specifications. In any case, the
proposal will become a good solution for several building blocks of today’s designs,
and a starting point towards availability of mechanisms well suited to any type of
structure.

Moving on to fugacious fault models, a tailored architecture for their detection and
diagnosis was presented, together with a deployment workflow. The case study
was applied to a 4 bit adder where injections showed the expected detection ca-
pabilities up to a limit imposed by the technology itself. Correct diagnosis was
also demonstrated with the same technological limitations as the detection. An
important fact of such a strategy is the enlargement or stretching of the observa-
tion period for detection of faults in the bus. Of course the longer the observation
period can be made, the higher probability to detect and correctly diagnose a
fugacious fault. What is important to mention is that the previous parameter
depends on the implementation method and also on the target circuit to be moni-
tored. Considering limitations, the advantage of such approach is that it can detect
many more fugacious faults that previous architectures at a cost relatively high for
smaller circuits, but with a sub-linear growth with circuit size. Besides, monitors
can be strategically placed throughout a design to gather supervisory information,
so their area cost is diluted among the covered region. With the monitoring infor-
mation obtained by means of the presented structure, a higher level FT manager
can take informed reaction to tackle any challenging situation to the dependability.
Indeed, when a high-radiation area is approached in a satellite, when a high elec-
tromagnetic field area is entered in a vehicle, when power source fluctuations start
to grow above normal operation and many other potentially challenging situations
take place, early reaction can make a difference to maintain safety levels. With
that goal, the FT manager could be a reconfiguration engine which, depending
on the design and platform, increases the number of replicas in a fault-tolerant
sphere of replication, applies time redundancy to recalculate results and compare
with previous iterations, programs a watchdog which resets partially or totally
the device after some threshold has been surpassed, sets an alarm which issues a
warning to the user application, etc... Establishing an adequate faults threshold
for different mission profiles is another research topic to investigate, depending
on the type of reaction to take. What is clear is that multi-level fault tolerance
structures which share information and collaborate –from the hardware level up to
applications– will become much more effective mechanisms to produce optimum
response to any challenge, improving availability, reliability, maintainability and
safety alike.

55

Chapter 6. Fault Tolerance Mechanisms

6.1.5 Fault tolerance implementation

Besides the previous architectures, well known FT structures can be a burden to
apply, or what is more dangerous can be applied incorrectly. If implementation
is carried out by non-experts, or if errors are accidentally introduced the final
result could present worse dependability properties than original structures. To
reduce or minimize implementation mistakes an automated system was devised.
The novelty was the use of pragmas in the HDL code to select and configure the
metaprogram to be used, which is chosen from a preexisting library implementing
different FT structures and applied by means of code transformations through an
open compilation process. That process converts a code in a language into another
code in the same or a different language. In this case the transformation goes from
VHDL into a different VHDL code. A clear benefit for its use is the capability to
completely transform or recreate the source code, enabling virtually every possible
change to be applied.

As an example, a new metaprogram was developed to apply CRC protection
scheme to a bus, where easy space exploration of structures allowed to select the
optimal polynomial and configuration for each application. With such fast error-
free technique to introduce FT into a circuit, design phase for FT is completely
transformed. Previously a strategy had to be chosen, implemented and tested to
validate its performance. When it was under specification, a new strategy had to
be reimplemented with associated time and financial loss. With automation, the
paradigm changes as several different implementations can be applied fast, which
could even work in parallel to provide functional diversity to a circuit. In the
CRC example, different blocks with hard-coded polynomials can be generated as
quickly and conveniently as it could be done in software. Other classical metapro-
grams benefit from open compilation. In the encoder/decoder, different hardware
codifications can be applied at will. In time redundancy, different hardware config-
urations allow for various levels of re-execution. Finally, additional FT strategies
can be quickly introduced thanks to the open compilation interface.

6.2 Conclusion

Embedded systems are gaining terrain in today’s world, as the number of smart
systems grows exponentially. Consulting firms like IDC reveal an expected turnover
of $1 trillion in 2019, with important increase in the manufacturing, transporta-
tion, smart homes and energy segments. Only year 2014 ended with a record
revenue of $755 billion, but more importantly it unveiled the outrageous impact
in human lifestyle they are going to have: Advanced Driver Assistance Systems
(ADAS), electric motors control systems, all-connected vehicles and smart mass
transportation systems in transportation sector, smart wearables, home appliances
or intelligent lighting devices in consumer sector and wearable health monitors

56

6.2 Conclusion

and diagnosis devices in healthcare. All those areas will be heavily dependent
on embedded systems, their continuity of service central to avoid catastrophic
consequences in many cases, and severe inconveniences in others.

Reliability of embedded systems has received a good deal of attention up to date,
and will require a much higher degree in forthcoming years. In fact, when failures
to provide service take place in traditionally critical markets no doubts remain
with respect to the negative consequences to life, business or mission it entails.
However, the same event applied to consumer products does not raise so many
concerns generally speaking. Beyond commercial damage to the brand supporting
the product, a fully connected world in the Internet of Things (IoT) will link in a
myriad of ways the devices around us, with potentially unexpected consequences.
Furthermore, though advised not to, people will gradually build confidence in
products which could not be designed with reliability as a primary concern.

Adding up to the presented issues, the need for extreme performance boost to sup-
port for those rich features, and the strict power consumption policies to provide
an affordable performance × watt ratio, place higher pressure in the specifica-
tions side. To cope with it, fabrication technology has to evolve at a hectic pace.
With every few technology nodes, a new set of dependability challenges appears,
some are tackled and disappear, and most well known simply worsen. That is
the reason why valid fault detection, mitigation, recovery, injection or analysis
techniques need to be revisited, updated, upgraded or completed with up-to-date
in-field gathered data.

The objectives in this thesis were focused to that end. In the next paragraphs
they are summarized.

Objective: Studying the current and upcoming faults affecting embedded systems
to understand their origin, evolution and consequences and provide new represen-
tative models whenever required.

After extensive study of literature and analysis of usual fault models, and cross-
checking with technology reports and studies, a new set of fault models has been
proposed. Faults with proximate manifestations model situations that are bound
to happen at up-to-date devices with increased fault rates, while undergoing re-
covery. That is specially relevant for SRAM based FPGAs. An additional set of
proposed fault models has been the fugacious faults, which are differentiated as
transient fugacious, intermittent fugacious or non-fugacious variations. With the
introduction of the latest, attention to forecasting and early detection of faults
is given the deserved importance, provided the fact that embedded systems turn
more and more adaptive over time.

Objective: Propose new fault tolerance mechanisms better suited to the current
technology and application trends

57

Chapter 6. Fault Tolerance Mechanisms

For the most recent faults which show proximate manifestations, a tolerance ar-
chitecture was devised, which mitigated faults and launched recovery, based on
temporal and spatial redundancy. The proposed architecture was focused towards
SRAM FPGAs, and it was demonstrated to improve availability and reliability of
existing solutions under the proximate manifestations fault models.

Changing to fugacious fault models, a detection and diagnosis architecture was
proposed, which exploited the idea of enlargement of the observation (stability of
the bus) period. The architecture and workflow for deployment were presented and
some testing demonstrated the feasibility of the approach. Though cost was still
somehow high, it is expected to diminish as the size of the target circuit increases.

As fault tolerance mechanisms are more and more required not only to cover new
fault paradigms but also classical ones, it is more interesting to employ auto-
mated deployment. This avoids implementation mistakes which would ruin the
increase of reliability. In this area an automated deployment methodology of non-
functional features was presented along with an example of fully configurable CRC
deployment.

Objective: Provide a fault injection and analysis tool capable of exploiting the
current computing state of the art and focused on efficiency

To fulfill this objective the tool Fault injection and Analysis for Low Level
Evaluation Suite (FALLES) was developed. Multi-core and multi-node capabili-
ties together with powerful analysis tools and flexibility are its main strengths. A
complete set of fault models has been implemented to allow for different type of
injections, where all the information is stored in plain text to enable custom trace
analysis. The tool is well suited for both research and production environments.

Objective: Develop a dependability assessment methodology which can cut devel-
opment time for the industry

For the optimization of dependability assessment procedure, a strong confidence
must be built in the tests carried on to ensure reliability, safety and other param-
eters of certification standards. The work presented in this thesis means a step
forward in the quest for providing trustworthy methods of testing for compliance
which are performed at earlier, more convenient stages in the design flow. While
this still needs to be validated along different architectures and implementations,
the obtained results are promising for the possibility to have accurate enough
assessment methodologies in those early descriptions, thus saving time and costs.

58

6.3 Future work

6.3 Future work

As future work there are several topics to continue working on, each one of those
treated in the thesis.

First, in the fault injection tool FALLES, a good bunch of improvements and
additional functions could be implemented. To name a few, a system to select the
type of coding for enumerated types in VHDL would save time in preparation of
design, a parser of EDIF format for instance could help distinguish sequential from
combinational elements, in order to apply proper fault models to each element.
New additional models could also be added, including delay or short (by adding a
new resolve function).

Second, in the multi-level correlation further steps can continue the study of the
relationship between injections at different levels. For instance by applying addi-
tional fault models for the correlation, or by studying the incidence of multi bit
upsets or multiple register upsets. Other studies could perform a cross-architecture
study to investigate to which extent the results for an architecture remain valid
throughout other existing architectures in the market. Likewise, the same can be
done for different implementations of the same architecture.

Third, in the architectures of tolerance for proximate manifestations, new state
machine definitions and codifications could increase robustness and/or reduce area
penalty. Further testing would also be interesting to check additional potentially
hazardous situations.

Fourth, in the detection and diagnosis of fugacious faults, a natural step is to scale
the solution to bigger blocks, analyzing the cost increase vs size increase of the
target. Additionally, a finer delay insertion could be investigated to achieve better
stability window enlargements. That would help overcome the process variation
spread, as well.

Fifth and finally, referring to open compilation for the addition non-functional fea-
tures, newer metaprograms could be implemented to provide additional functions
which have not been yet automated. Additional support for Verilog input would
also provide a wider possible application.

59

Chapter 7

Summary of contributions

7.1 Publications 7.3 Awards

7.2 Framework of the Dissertation

In this chapter the full set of contributions in the framework of this
thesis is gathered in short form, as a quick reference guide.

7.1 Publications

This thesis is supported by the publication of most of its content in reputed in-
ternational conferences, a national conference ,a book chapter, and an article in
review process of a high impact international journal.

7.1.1 Conferences

• Robust communications using automatic deployment of a CRC-
generation technique in IP-blocks [50], which is published in the Jor-
nadas de Computación Reconfigurable y Aplicaciones, 2011. This paper
demonstrated an application of open compilation technology to dependabil-
ity area by creating a tailored CRC-code infrastructure for transmissions.

• Tolerating multiple faults with proximate manifestations in FPGA-
based critical designs for harsh environments [51], which is published

61

Chapter 7. Fault Tolerance Mechanisms

in the Conference on Field Programmable Logic and Applications, 2012. This
work focused in providing coverage for faults occurred while the system is
undergoing a recovery, avoiding failures and maximizing availability. It was
demonstrated in a test case.

• The Challenge of Detection and Diagnosis of Fugacious Hardware
Faults in VLSI Designs [56], which appeared in European Workshop on
Dependable Computing, 2013. This publication modeled a new type of fault,
the fugacious fault, and analyzed and evaluated the different challenges and
difficulties to overcome in order to detect and diagnose such faults. Addi-
tionally it provided the outline of a methodology to achieve those goals.

• Analysis and RTL Correlation of Instruction Set Simulators for
Automotive Microcontroller Robustness Verification [53], which is
published in Design Automation Conference, 2015. This paper demonstrates
a correlation between robustness data extracted after RTL injection and
information available at the instruction level.

• Characterizing fault propagation in safety-critical processor de-
signs [54], which is published in International On Line Test Symposium,
2015. In this paper, an in-depth analysis on how faults propagate through
the pipeline of a safety-critical processor is performed. An idea on how much
information is lost by injecting only at the architectural level is derived from
the results obtained.

• Increasing the Dependability of VLSI Systems Through Early De-
tection of Fugacious Faults [52], which is published in European Depend-
able Computing Conference, 2015. This manuscript provided an architecture
and implementation flow towards early detection of fugacious faults, which
were modeled in previous work. The proof of concept was applied in an
arithmetic circuit.

• Towards Certification-aware Fault Injection Methodologies Using
Virtual Prototypes [57], which is published in Forum on Specification
and Design Languages, 2015. This work suggested methods to effectively
employ virtual prototypes for certification process. In it the FALLES tool
was presented and explained thoroughly.

62

7.2 Framework of the Dissertation

7.1.2 Journals

• On the potentials of Robustness Verification using Architectural
Registers-based Fault Injection. [55], which is sent for publication in
IEEE Transactions on Computer-Aided Design. This paper expands the
concepts of correlation between injections at RTL level and effects at the
microarchitectural level. It first shows propagation characteristics of faults.
Later, it introduces the utilization factor of different processor resources to
establish the potentiality to obtain accurate dependability information by
injection at the microarchitectural level.

7.1.3 Book chapters

• An Aspect-Oriented Approach to Hardware Fault Tolerance for
Embedded Systems [9], Publised in Handbook of Research on Embedded
Systems Design by IGI Global Publishers. In the chapter full detail in the
aspect oriented compilation process for non-functional features provision is
explained.

7.2 Framework of the Dissertation

The present dissertation was developed in the Fault Tolerant Systems Group at
the ITACA research institute (STF-ITACA), a part of Universitat Politècnica de
València. The group, leaded by Prof. Pedro Gil, has long experience in fault
injection, assessment and protection of critical systems.

7.2.1 Research projects

In the course of the thesis, there has been financial support from several public
research projects:

• Ministerio de Ciencia e Innovación.

Sistemas Empotrados seguros y confiables basados en componentes (SEMSE-
CAP).

From Jan. 1st, 2010 until Dec. 31st, 2012.

Budget: 205.821,01 e.

• Ministerio de Economía y Competitividad

Adaptive and resilient networked embedded systems (ARENES).

63

Chapter 7. Fault Tolerance Mechanisms

From Jan. 1st, 2013 until Dec. 1st, 2015.

Budget: 31.730,40 e.

• European Union and Ministerio de Economía y Competitividad

Verification and Testing to Support Functional Safety Standards (VeTeSS).

From May. 1st, 2012 until April. 31st, 2015.

EU Budget: 3.06 M e. National Budget: 6.08 M e.
Eligible Costs: 18.34 M e.

7.2.2 International research stays

The PhD. candidate has had the chance to work for 3 months in the University
of Edinburgh, at the System Level Integration Group in 2013. While there Prof.
Tughrul Arslan was his supervisor. The group is specialist in dynamic partial
reconfiguration in FPGAs for reliability in real-time systems, what provided an
invaluable academic experience. Important knowledge on the requirements and
behavior of reconfiguration engines was gained while in there.

7.2.3 Collaborations

In 2014 after being contacted by Dr. Hernandez from the CAOS group, a 3
month internship was carried out by the candidate at Barcelona Supercomputing
Center - Centro Nacional de Supercomputación (BSC-CNS). The goal was to pro-
vide knowledge in fault injection and assessment for a European FP7 Research
Project called VeTeSS. From this collaboration a paper [53] was published in the
world’s most important conference in its field. The internship received support
from HiPEAC association.

Later on, the BSC-CNS recruited the candidate for 4 additional months to con-
tinue research for VeTeSS (Verification and Testing to support functional Safety
Standards) project. From this period other 2 publications were developed [54, 57].
A journal article was started as well.

64

7.3 Awards

7.3 Awards

After the publication in DAC 2015 of a paper of relevance to the HiPEAC commu-
nity, a HiPEAC Paper Award was granted to the authors. The award distinguishes
European contributions to very important international conferences. A reference
can be found in:

https://www.hipeac.net/research/paper-awards/2015/

65

https://www.hipeac.net/research/paper-awards/2015/

Appendices

67

Appendix A

Tolerating multiple faults with
proximate manifestations in
FPGA-based critical designs for
harsh environments

Authors: Jaime Espinosa, David de Andrés, Juan Carlos Ruiz and Pe-
dro Gil

A.1 Introduction A.5 Case study

A.2 Faults in SRAM FPGAs A.6 Analysis of results

A.3 Fault tolerance for FPGA-
Based designs

A.7 Conclusions

A.4 A multiple fault tolerance
approach

Field-Programmable Gate Arrays (FPGA) have proven their value
over time as final implementation targets. Their singular architecture
renders them sensitive to a wide range of faults, specially to those caus-
ing multiple and non-simultaneous errors, that can result in silent data

69

Chapter A. Tolerating multiple faults with proximate manifestations...

corruption and also in structural changes in the hardware implemen-
tation. This papers presents and tests an approach to enable the con-
fident use of conventional (low-cost) FPGAs in hostile environments.
The design combines spatial and temporal redundancy with partial dy-
namic reconfiguration to increase the resilience of designs. The goal
is to tolerate the occurrence of single and multiple faults, even during
the reconfiguration process of FPGAs, while minimizing the impact of
the recovery process on system availability. Fault injection techniques
are used to experimentally evaluate various features of the approach.
Results are very promising and lead us to state that, although many
research is still required, the old idea of self-repairing HW designs is
closer today.

A.1 Introduction

Recently FPGAs have been moving from the prototyping arena to the core of final
products. The required evolvability of products has been well covered by low-cost
Static RAM (SRAM) models, which add the chance to reconfigure their function-
ality while running. On top of that, higher speeds and lower power consumption,
together with massive logic densities, foster the interest to expand their usage
to critical systems in harsh environments, where currently expensive anti-fuse or
rad-hard products are the only alternatives.

However, to achieve such powerful features SRAM FPGAs suffer higher fault
proneness [36]. This fact is further aggravated in environments where extreme
operational conditions may lead to the occurrence of multiple faults, whose re-
lated errors could manifest in so proximate instants of time that previous faults
have not been cleared from the system [13]. To our best knowledge, no specific
research has been conducted focusing on the impact of those combined effects on
the system reliability. It is well-accepted today that multiple errors rarely manifest
in the system at the same time, even when sharing a common fault origin. This
context legitimises the following questions: How do today’s FPGA-based fault tol-
erant (FT) designs cope with proximate manifestations of multiple faults? and,
which are the implications of a new fault manifestation while undergoing recovery
of a previous one? how to improve the resilience of conventional FT designs in
these situations? and at which cost? These are the basic questions addressed in
this paper.

The contribution is to attain an acceptable level of reliability to adopt the use of
low-cost FPGAs in scenarios demanding high dependability. Detection, masking
whenever possible and recovery triggering are the deployed functions. The intro-
duced penalty in terms of area and time period is also quantified to evaluate the
suitability of the approach.

70

A.2 Faults in SRAM FPGAs

The rest of the paper is structured as follows. Section A.2 presents basics on
faults in SRAM FPGAs, and Section A.3 deals with existing approaches for FT in
FPGAs. The proposed architecture to handle the occurrence of a set of represen-
tative faults, overcoming limitations derived from existing techniques, is detailed
in Section A.4. A case study is used in Section A.5 to show the feasibility and
usefulness of the proposed approach. Finally, Section A.6 presents and discusses
the obtained results, and Section A.7 concludes the paper.

A.2 Faults in SRAM FPGAs

Attending to modern SRAM-FPGAs architecture, faults can happen either in the
reconfigurable fabric or in the configuration memory (fabric and CMEM, from
now on). Faults targeting the fabric could be assimilated to those typically affect-
ing other VLSI systems, but the faults targeting the CMEM have further effects
than those affecting common SRAM memories, as they will change the underlying
hardware implementation of the considered design. For instance, when consider-
ing faults targeting the storage elements of FPGAs, FFs holding the design state
only account for 0.42% of the total number of memory bits, whereas the remain-
ing 99.58% is taken by the CMEM [88]. Hence, dealing with faults targeting the
CMEM is much more relevant for improving the final resilience of the system.
What is more, according to [70], faults targeting the CMEM affect the underlying
fabric in the following proportion: 63.3% target multiplexers selection, 15% change
the routing of the system, 10.6% affect control bits, 6.6% modify LUT’s contents,
3.26% affect buffers, and just 1.3% remain unclassified. As can be seen, faults
targeting the CMEM will mainly affect the routing and combinational functions
of the implemented design as routing elements and combinational logic dominate
the available area of modern FPGAs. Studying their behaviour in the presence of
faults is essential for the dependable use of FPGAs in harsh environments.

Table A.1: Considered single fault models

Target Duration Manifestation on fabric

Combinational
logic (fabric)

Transient Pulse, indetermination, and delay

Permanent Stuck-at, stuck-open, indetermination,
delay, short, open, and bridging

Sequential
logic (CMEM
& fabric)

Transient Transient stuck-at, bit-flip,
indetermination, delay, short, and open

Permanent Permanent stuck-at, indetermination,
delay, short, and open

71

Chapter A. Tolerating multiple faults with proximate manifestations...

Table A.2: Considered multiple fault models

1st fault 2nd fault
Duration Target Duration Target
Transient Comb. (fabric) Transient Comb. (fabric)
Transient Comb. (fabric) Transient CMEM 1

Transient Comb. (fabric) Permanent Comb. (fabric) or CMEM
Transient CMEM 1 Transient Comb. (fabric)
Permanent Comb. (fabric) or CMEM Transient Comb. (fabric)
Transient CMEM 1 Transient CMEM 1

Permanent Comb. (fabric) or CMEM Permanent Comb. (fabric) or CMEM
1 Transient faults in CMEM manifest as permanent ones in design logic (fab-
ric) and can be assimilated to them from the logic point of view.

Faults of interest in this work include both transient and permanent ones. Tran-
sient faults, due to cosmic radiation or capacitive coupling, for instance [101],
temporarily alter the voltage value of a certain element, which may recover its
right value after some time. Conversely, permanent faults relate to irreversible
physical defects due to the manufacturing process (e.g. contamination of silicon or
incorrect metallisation) or wear-out of the device (electromigration [3] or hot car-
rier injection [162], for instance). Recent studies even consider intermittent faults
as a new type of fault modelling system malfunctions activated by environmen-
tal conditions. Those due to wear-out typically derive in permanent faults while
those directly induced by operational conditions can be considered as transients
[36]. This is why we limit the purpose of our study to transient and permanent
faults. Table A.1 provides a comprehensive list of single transient and permanent
fault models considered as representative in dependability studies [66]. However,
recent evidences show that considering only single faults could be incomplete.

In modern devices, manufacturers provide accelerated life measurements [82],
which show permanent fault rates (hard errors) of approximately 20 FIT (fail-
ures in time = 109hours) during the expected life of the device under normal
conditions. While this might sound low, it has been demonstrated that under
extreme conditions of temperature, voltage and use the increased rate can yield a
lifespan as low as 1 year [163]. Adding to it the rates of transient faults caused by
neutrons and alpha particles in the CMEM for current technology (105 FIT/Mbit
as published for ground level), we justify the importance of developing mechanisms
to mitigate the effects of faults in both the CMEM and the fabric of FPGAs as
they appear. Beside the possibility of coincidence, other phenomena can lead to
multiple proximate manifestations. A fault which remains latent (inactive) for a
period of time can later activate causing the mentioned situation. Also, a single
harmful event can affect multiple signals [164] which are desynchronised at the
output. Thus, for the sake of completeness, we also consider in our study that (i)
several single faults can affect the system in proximate instants of time, and (ii)

72

A.3 Fault tolerance for FPGA-based designs

one single fault may lead to several manifestations that can also eventually affect
the system is proximate instants of time. Although differing in their causes, both
situations lead to similar consequences that will be modelled for the purpose of
this paper as listed in Table A.2. In this table, we can see that a multiple fault is
limited to the occurrence of two faults. Though no field data on the frequency of
impact is currently available, measurements show it grows dramatically in harsh
environments [133].

A.3 Fault tolerance for FPGA-based designs

The kind of fault tolerance mechanisms deployed for SRAM FPGA-based designs
pursue two different goals: i) detecting and masking the occurrence of faults,
and ii) correcting and recovering from their effects, which may be transient or
permanent.

In the first category, the most extended space redundancy approach is the popular
Triple Modular Redundancy (TMR). It is capable to mask any faults affecting the
output of only one replica at any time. Thus, complementary mechanisms are re-
quired to avoid faults build-up affecting other replicas. It is also the one requiring
more area, but as an advantage it is a generic approach. Among others, an al-
ternative method that exchanges area for performance is Time Redundancy [120].
It can only mask transient faults in fabric. Detection of permanent faults may
be achieved by re-executing the operation with re-encoded operands but strong
performance penalties are always applied and second fault may defeat it. A pro-
posed combination of modular redundancy (duplication) with time redundancy
[93] allows to reduce area and apply performance penalty only when needed. As
a drawback, it cannot tackle the occurrence of multiple faults.

As far as the recovery of transient faults is concerned, it is worth nothing that
though transient faults in fabric usually disappear after a short period of time,
this is not the case of those targeting the CMEM of the FPGA, which remain
until the affected area of CMEM is amended. Thus, scrubbing techniques [19]
traverse the whole CMEM periodically refreshing its contents with the original
configuration for the currently uploaded design. Accordingly, faults may remain
for a whole scrubbing cycle in the worst case. This time could be reduced by
using the technique of directly rewriting the affected location whenever detection
mechanisms provide it. The capability of partial dynamic reconfiguration (PDR)
of the FPGA is used to avoid stopping the system while immediately rewriting
affected areas [20, 166]. Minimisation of multiple faults incidence is achieved by
accelerating recovery in this way.

For the recovery of permanent faults, none of the presented mechanisms will be
successful, being relocation the only viable option. This approach takes benefit

73

Chapter A. Tolerating multiple faults with proximate manifestations...

of the reconfigurable nature of FPGAs to move the affected component from the
faulty area to a fault-free one. This is accomplished by rewriting the CMEM with
a new configuration file reflecting the new distribution of the design on the device.
Existing techniques [28] reserve internal spare resources and, upon the occurrence
of a fault, move the faulty element onto an spare. So, faults may be tolerated
as long as spare elements are available. Pre-compiled approaches are quick to
reconfigure, but they require large FLASH memories to store configurations. Con-
versely computing a suitable new configuration on-the-fly may greatly affect the
availability of the system. Nevertheless this approach is very flexible and a small
FLASH memory should be enough.

Altogether, just on their own, reconfiguration approaches are useless. They require
the combination of the previously presented detection and masking mechanisms to
determine the location affected by the fault, mask it when possible and pass this
information to the reconfiguration mechanisms in order to correct the problem,
while providing multiple fault tolerance. Those are therefore the duties of our
proposed approach.

A.4 A multiple fault tolerance approach

The proposed approach faces single and multiple proximate faults in FPGA-based
designs while reducing the downtime of the system. From now on, we will refer
to it as TMR-MDR for TMR-Module Discard and Repair approach. Next sections
explain in detail the architecture.

A.4.1 Global architecture

An overview of the proposed TMR-MDR architecture is depicted in Figure A.1.
It consists of two main hardware components: a regular FPGA with PDR capa-
bilities, and a highly robust FLASH memory to store the different configurations
to programme the FPGA with.

The design implemented in the FPGA includes space redundancy (TMR) to mask
the occurrence of any kind of single fault in the system, either at CMEM or fabric
level. The on-line fault detector (OFD) collects information provided by the design
logic and manages correction signals. Its modus operandi is simple: the first fault
detected is considered a transient and so proper output is selected on the fly. A
repeated error in the same location is acknowledged as permanent, and will trigger
the OFD notification for the reconfiguration circuit to restore the related portion
of CMEM. If the problem persists, relocation will be applied to heal from hard
errors. In case that a second fault occurs during the treatment of the first one,
the OFD will issue a stall period to freeze the system while the situation prevents
the system from obtaining a correct output.

74

A.4 A multiple fault tolerance approach

Partial
configuration 1

Partial
configuration 2

Partial
configuration N

…

FLASH memory

Field-Programmable Gate Array (FPGA)

Space redundant
application logic

Replica 1

Replica 2

Replica 3

On-line fault
detector (OFD)

Finite State
Machine

(FSM)
controller

FPGA
reconfigurator

Configuration
circuitry

Configuration
mechanism

Redundant
outputs

Start
reconfiguration

Reconfiguration
done

Get configuration X

Partial
configuration X

Rewriting or
reallocation

Output
selection /
re-execution

Proposed TMR-MDR architecture from an abstract viewpoint

Figure A.1: Global architecture of the proposed fault masking and correction mecha-
nism.

Reconfiguration employs built-in dedicated hardware in the FPGA [42]. To achieve
a fast reconfiguration time, pre-compiled configurations will be employed. The
number of configuration files required to deal with a set of m operative modules
and k spare locations is N = (m+ k)(m+ 1) plus an additional configuration file
for the static part of the design. This large number could be reduced following an
approach based on generic modules whose configuration file could be preprocessed
prior to placement [114]. As it may slow down the reconfiguration process, care
should be taken to the trade off between storage and speed. Next section describes
the structure of the protected design logic and OFD.

A.4.2 Detailed description

Due to the nature of the set of faults considered representative for FPGA-based de-
signs, this architecture is focused on protecting the internal routing and combina-
tional logic of the implemented design. After the previous study, space redundancy
appears as the most suitable approach to mask the effect of faults affecting these
components. Furthermore, three replicas is the minimum number admissible to
prevent the use of timing redundancy and then reduce its impact on performance.
Hence, the target component (if not the whole design) will be replicated 3 times.
However, instead of a majority voter the outputs of the replicas R0, R1, R2 will
be connected as depicted in Figure A.2 .

75

Chapter A. Tolerating multiple faults with proximate manifestations...

R0

R1

R2

Q

QGRB

CLR

D

Q

QGRB

CLR

D

Q

QGRB

CLR

D

0

1

0

1

0

1

O

O

O

Out0

Out1

Out2

FSM
(TMR)
FSM
(TMR)

FSM
(TMR)

Q

QGRB

CLR

D

Q

QGRB

CLR

D

Q

QGRB

CLR

D

Stall

/CLK

/CLK

/CLK

m

m

m

n

n

n

4

=

=

=

2

2

2

reg0

reg1

reg2

comp02

comp01

comp12

PRM0

PRM1

PRM2

mux0

mux1

mux2

=
2

compmux

PRMmux

Stall

O

CX
C02
C01
C12

Done Start

Next
pipeline stage

To PRMmux

To sequential logic

To reconfiguratorFrom reconfigurator

In0

In1

In2

Figure A.2: Detailed architecture of the proposed approach.

First of all, as dealing with combinational logic, and as recommended by PDR
flows, to avoid transient delays mismatching when checked intermediate registers
reg0, reg1 and reg2, sample data at the falling edge. So first half of the period is
used for calculation.

Once the outputs are registered, they are compared in pairs to check whether
there is none, one or more faulty outputs. The comparison is performed by dual-
rail Totally Self-Checking (TSC) comparators, thus ensuring self-testing and fault
secure properties. These comparators, named comp02, comp01, and comp12 in
Figure A.2, provide their result to a Finite State Machine (FSM), which manages
detection and correction in the second half of the period. The different cases
covered by the result of these comparisons are: i) all 3 comparators agree, so there
is no fault, ii) one of them disagrees, thus that comparator is faulty and should
be repaired, iii) only 1 comparator agrees, what determines that the unmatched
output is erroneous and the related replica is faulty, and iv) all 3 comparators
disagree, so a multiple fault has occurred either in the replicas and/or comparators.

As shown in Figure A.2, each replica and its associated register and comparator
are integrated into the same Partially Reconfigurable Module (PRM0, PRM1,
and PRM2). PRMs are the entities that could be reconfigured, either rewritten
or relocated, and so they must contain all the logic that should be reconfigured
together. A reconfiguration process affecting this PRMs will cause the system
to work on a duplication with comparison (DWC) fashion using the 2 remaining
replicas.

76

A.4 A multiple fault tolerance approach

After the comparison process, it is necessary to select the right output to be
provided to the system output or the next stage of the pipeline (depending on
the target element being a whole combinational system or just a combinational
part of the system). This selection is performed by the FSM, which controls
three different multiplexers (mux0, mux1, and mux2) that will pass the selected
output onto the final outputs, which are in turn compared in pairs to determine
whether any multiplexer is faulty. This comparison is also performed by another
dual-rail TSC comparator (compmux). The multiplexers and their comparators
constitute another PRM, named PRMmux, so any reconfiguration in this module
will prevent the system from providing an output and, hence, it should be stalled
for the duration of the reconfiguration process.

Finally, the FSM has been also protected under a TMR approach. Its design is
detailed in the next section.

A.4.3 Design of the FSM controller

According to the presented set of faults, eleven different situations have been
identified deriving from the occurrence of single and two consecutive faults, taken
as worst case.

Table A.3 summarizes the considered scenarios. It has been coded using 3-tuples
(D,L,E) where i) D = {T, P} states the duration type of the fault (P for perma-
nent, and T for transient), ii) L = {F,M} determines the location of the fault (F
for fabric, and M for CMEM), and iii) E = {R,C,X} states the affected element
(R for replica, C for comparator, and X for multiplexers). Consecutive faults
are separated by the ’→’ symbol, and the symbol ’?’ has been used to refer to
any applicable value. Additionally, scenarios which have already been covered by
other works have also been highlighted. Situations not comparable among different
architectures are marked with the ’—’ symbol.

The occurrence of simultaneous faults has not been considered as there already ex-
ist different techniques that could help alleviating this problem, like special place
and route processes [164] or bit scattering. Moreover, multiple faults simultane-
ously affecting any of the PRMs will manifest at their outputs and will be properly
treated as either a transient or permanent one. The different scenarios are further
described through illustrative examples.

A. No action: Whenever a transient fault targets the fabric affecting one of the
replicas (Ri), proper output is simply selected.

B. Rewriting: The CMEM must be rewritten to remove a transient fault that
may target i) the CMEM affecting any element of a PRMi (Ri or compi), or ii) the
fabric affecting a comparator (compi). The system could still provide the correct
output during the reconfiguration process in a DWC fashion.

77

Chapter A. Tolerating multiple faults with proximate manifestations...

C. Rewriting and one stall cycle: In case of a transient fault in fabric affecting
a given replica (Ri) and a second transient fault targeting either its comparator
(compi) or another replica (Rj), the CMEM must be rewritten and a stall cycle
should be issued to allow one transient to disappear. The occurrence of both
faults in consecutive clock cycles causes the first fault to be treated as a transient
fault in CMEM, thus requiring a rewriting. Furthermore, as both faults may
simultaneously generate a wrong output, the stall signal is required.

D. Rewriting and multiple stall cycles: The occurrence of a transient fault
affecting one the multiplexers (muxi), will require rewriting the CMEM to restore
the fault-free state for PRMmux module. Accordingly, the system will be stalled
meanwhile. This fault may either be single or preceded by any transient fault.

E. Relocation: A permanent fault targeting either fabric or CMEM, and affecting
either a replica (Ri) or its comparator (compi) may only be corrected by relocating
the PRMi module into a fault-free area of the FPGA. This fault may either be
single or preceded by a transient affecting the same module (Ri or compi). The
system will provide the correct output during the reconfiguration process in DWC.

F. Relocation and one stall cycle: This time first a permanent fault, which
targets a replica (Ri) or a comparator (compi), is followed by a transient one
targeting the fabric and affecting either another replica (Rj), in the first case, or
any replica or another comparator (compj) in the second case. As this second
fault will shortly disappear, just one stall cycle is needed.

G. Relocation and multiple stall cycles: Any fault manifesting as perma-
nent in PRMmux (transient in CMEM or permanent in either fabric or CMEM)
requires the relocation of this module. As in case D, it is necessary to stall the
system until process finishes. This case also includes preceding transient faults
affecting i) the fabric of any replica, comparator or multiplexer, or ii) the CMEM
and also manifesting at the PRMmux.

H. Multiple consecutive rewriting and one stall cycle: This is a particu-
lar case of consecutive transient faults targeting the fabric and affecting different
comparators (compi and compj). Due to the proposed specific architecture, the
system may provide the right output as long as the replicas and at least one com-
parator are fault-free. Accordingly, just 1 stall cycle is applied while providing the
right output during rewriting. (PRMi and PRMj).

I. Multiple consecutive rewriting and multiple stall cycles: There exist
different cases that prevent the system from providing a correct output and would
require rewriting the CMEM consecutively. They include, among others, transient
faults targeting the CMEM and affecting a replica (Ri) or comparator (compi),
followed by another transient in CMEM and targeting another replica (Rj), the
comparator of another module (compj) or the multiplexers (PRMmux), in the

78

A.4 A multiple fault tolerance approach

Table A.3: Considered scenarios and combination of faults

Scenario Single and Already covered
multiple faults in other works

A. No action (T,F,R) [26] [167]1[120] [93] [166]

B. Rewriting

(T,F,C) —
(T,M,?) [26] [167]1[120] [93] [166]
(T,F,Ri) → (T,F,Ri) [26] [167]1[166]
(T,F,Ci) → (T,F,Ci) —
(T,?,Ri) → (T,M,Ri) [26] [167]1[93] [166]
(T,?,Ci) → (T,M,Ci) —

C. Rewriting
and one stall
cycle

(T,?,Ri) → (T,F,Rj) [26] [167]1[93]1
(T,F,Ri) → (T,F,Ci) —
(T,M,Ci) → (T,F,Ri) —

D. Rewriting
and multiple
stall cycles

(T,?,X) —
(T,F,X) → (T,M,X) —
(T,F,Ri) → (T,?,X) —

E. Relocation
(P,?,{R,C}) [26] [167]1[120] [93] [166]
(?,?,Ri) → (P,?,Ri) [26]2[167]1[120]2[93]2[166]2
(?,?,Ci) → (P,?,Ci) —

F. Relocation and
one stall cycle

(P,?,Ri) → (T,F,Rj) —
(P,?,Ci) → (T,F,{Rj ,Cj}) —

G. Relocation
and multiple
stall cycles

(P,?,X) —
(P,?,X) → (T,?,X) —
(P,?,X) → (T,F,{R,C}) —

H. Multiple
consecutive
rewriting and
one stall cycle

(T,F,Ci) → (T,F,Cj) —

I. Multiple
consecutive
rewriting and
multiple stall
cycles

(T,?,C) → (T,?,X)
(T,F,Ri) → (T,M,Rj) [26]3[167]3[120]3[93]3[166]3
(T,M,Ri) → (T,M,{Ri,Rj}) [26]3[167]3[120]3[93]3[166]3
(T,M,Ri) → (T,?,Cj) —
(T,M,R) → (T,?,X) —
(T,?,Ci) → (T,M,Cj) —

J. Multiple
consecutive
relocations and
stall until finished

(P,?,Ri) → (P,?,{Rj ,Cj}) [26]3[167]3[120]3[93]3[166]3
(P,?,{R,C}) → (P,?,X) —
(P,?,Ci) → (P,?,Cj) —

K. Relocation
and rewriting
and multiple
stall cycles

(T,?,Ri) → (P,?,{Rj ,Cj}) [26]3[167]3[120]3[93]3[166]3
(T,F,Ci) → (P,?,Rj) —
(T,?,Ci) → (P,?,Cj) —
(T,?,C) → (P,?,X) —
(P,?,{R,C}) → (T,?,X) —
(T,M,R) → (P,?,X) —
(P,?,Ri) → (T,M,Cj) —

1 Detection only
2 Mask only
3 Do not cover faults targeting the same output on different replicas

79

Chapter A. Tolerating multiple faults with proximate manifestations...

first case, or another comparator (compj) or the multiplexers (PRMmux) in the
second one. Stall cycles will be signalled for the first rewriting process. As faults
affecting the multiplexers also impose a stall period, when the second fault targets
the multiplexers the first rewriting will be interrupted and faults will be treated
in the reverse order, thus reducing the downtime of the system.

J. Multiple consecutive relocations and stall until finished: This scenario
covers all those cases that require relocating two different modules in a consecutive
way, thus preventing the system from providing a correct output. They include
permanent faults, either in fabric or CMEM, affecting a replica (Ri) or compara-
tor (compi), followed by a similar fault affecting another replica (Rj), another
comparator (compj) or the multiplexers (PRM). The same policy described in
I will be applied here whenever the second fault targets the multiplexers, thus
minimising the stall period.

K. Relocation and rewriting and multiple stall cycles: This case also groups
a large number of possibilities, including permanent faults in fabric affecting a
replica (Ri) or a comparator(compi), combined with transient faults in CMEM
targeting another replica (Rj), another comparator (compj) or the multiplexers
(PRMmux). Like in scenarios I and J, faults in the multiplexers take precedence
to minimise the impact on performance.

To cope with all these scenarios, the FSM is implemented as a Mealy machine,
otherwise the control signals would be delayed one clock cycle. The FSM inputs
are the two-rail results of comparing the outputs of the replicas and the outputs of
the selection multiplexers, and the flag activated by the reconfiguration circuitry
when process is correctly finished. Functional interrupts could affect the mentioned
circuitry preventing a successful reconfiguration, so watchdogs to force a reset or
any other recovery technique should be applied in the future. Outputs of the FSM
drive the selection multiplexers, the stall signal, and the 4-bit signal pointing to
reconfigure PRMmux, PRM2, PRM1 or PRM0.

A.4.4 Summary

As can be seen, the proposed architecture covers a wide range of both single an
multiple faults. It is capable to provide correct output and, unlike the rest of
existing approaches, tolerate the occurrence of one fault while it is under reconfig-
uration. Furthermore, the number of required stalls has been carefully minimised
to reduce the downtime of the system whenever correct outputs cannot be pro-
vided.

80

A.5 Case study

A.5 Case study

A 32-bit floating point multiplier has been selected as the target design to show
the feasibility of the proposed approach, as it makes extensive use of both combi-
national logic and internal routing, the most abundant elements on an FPGA and
precisely those this mechanism has been designed for. To compare with other com-
mon techniques, a TMR mechanism enhanced with triple majority voter (eTMR)
has also been considered.

Both approaches have been modelled using the VHDL hardware description lan-
guage. These models have been implemented on a Virtex-6 (XC6VLX240T-1FFG1156)
using the tools provided by the manufacturer (ISE). In this way, a twofold study
can be conducted. On the one hand, the final implementation on a real FPGA
provides information about i) resource utilisation, which relates to the silicon area,
and ii) maximum clock frequency or longest combinational path, which estimates
throughput. On the other hand, fault injection could be used to determine the
behaviour of these systems in the presence of a representative set of faults, both in
terms of i) coverage, estimated by means of the percentage of experiments leading
to a failure, and ii) temporal intrusion, considering the percentage of experiments
leading to single and multiple stalls.

The selected workload consisted of a large set of randomly generated input operands,
thus allowing different data paths of the combinational multiplier to be activated.

Fault injection experiments were performed by means of VFIT [63], a VHDL-based
Fault Injection Tool. The fault load injected consisted in 6 different configurations
covering the models presented in Section A.2. Faults in CMEM were simulated
taking into account their effect on the implemented circuit signals. Delay faults,
however, were not injected as the models of the systems do not include the required
timing information. Faults were uniformly distributed among all the possible tar-
get signals. Finally to reduce the number of experiments required, the worst pos-
sible case was applied for consecutive faults, i.e. they occur within one clock cycle
delay between them. The total number of experiments was determined according
to Eq. A.1 to achieve statistical confidence on results. P stands for the probability
of a single element, for instance a FF or node, to be targeted by a fault (inverse
to the number of elements), and Q is the desired level of confidence. Accordingly,
in order to obtain a 95% of confidence that all the elements are targeted by at
least one fault, 18237 and 23563 experiments were required for the eTMR and the
TMR-MDR, respectively.

N =
ln(1−Q)

ln(1− P)
(A.1)

81

Chapter A. Tolerating multiple faults with proximate manifestations...

A.6 Analysis of results

Interesting results are commented next, where the enhanced TMR is taken as
comparison reference.

In terms of coverage and as expected, single faults still produce no failures since
TMR-MDR is based in TMR. The best improvement comes when a permanent
fault is followed by any other type of fault, where eTMR fails 17% of times,
whereas TMR-MDR does so in just only 0.09% of the cases. When the first fault
is transient a non-negligible improvement leads to just 0.01% of the experiments
failing. In global, 6% of all eTMR experiments failed versus 0.03% of TMR-MDR,
which clearly shows the great promise offered by this proposal for really harsh
environments, rendering an advantage in every case. The small percentage of
experiments leading to failure is related to i) two faults targeting different replicas
of the control FSM, protected by TMR, and ii) faults targeting the same output of
two different design replicas in the following fashion: the first fault remains silent
and thus undetected, and after the occurrence of the second fault, both faults
manifest and hence the system is unable to determine which is the right output
or faulty module.

Table A.4: TMR-MDR approach coverage

Faultload1
Enhanced TMR TMR-MDR approach

Number of
experiments

Number of
failures

Number of
experiments

Number of
failures

T 18237 0 (0.00%) 23563 0 (0.00%)
P 18237 0 (0.00%) 23563 0 (0.00%)
T + T 18237 83 (0.46%) 23563 2 (0.01%)
T + P 18237 113 (0.62%) 23563 2 (0.01%)
P + T 18237 3271 (17.94%) 23563 22 (0.09%)
P + P 18237 3085 (16.92%) 23563 22 (0.09%)
Total 109422 6552 (5.99%) 141378 48 (0.03%)
1 T stands for transient faults in fabric, whereas P stands for permanent
faults both in fabric and CMEM, and transient faults in CMEM which
manifest as permanent ones in design logic

Although the percentage of faults leading to a failure is very low, it is interesting
to determine how this mechanism is affecting the uptime of the system as a highly
unavailable system is equally useless. Table A.5 lists the number of experiments
causing single and multiple stalls to be introduced.

Results show that single stalls are mainly used to mask transient faults in fab-
ric. In 4.54% of all experiments just one stall applied. This figure reflects the
expected benefits because, as described in Section A.3, existing mechanisms re-
configure the affected module as soon as a fault is detected. It must be noted that,

82

A.6 Analysis of results

because 93.39% of transient faults generating a single stall targeted a replica and,
after implementation, each replica takes up to 27.66% of the occupied silicon area,
the uptime is increased avoiding unnecessary reconfigurations. Multiple stalls are
related to the actions which prevent the output to be correctly delivered. Exper-
iments affected by multiple stalls vary from 10% to a maximum of 62% in case
of 2 permanent faults. Our reference eTMR is defeated in several of the experi-
mented cases. It must be underlined that 32% of the faults resulting in multiple
stalls targeted the multiplexers and that, after implementation, this module takes
just 5% of the silicon area. This means i) the probability of a fault targeting this
module is relatively low, because of its low occupied area (5%), compared to that
of replicas (82.98%), and ii) anyway the reconfiguration file will be at most 5% of
the total size of the original system, thus the reconfiguration will be fast and the
number of stalls quite small. It is also worth mentioning that, according to the
considered experimental conditions, which represent the worst case scenario where
faults manifest in two consecutive cycles, reported results for experiments leading
to multiple stalls represent an upper bound.

Table A.5: Temporal intrusion of the TMR-MDR approach

Faultload1 Number of
experiments

Experiments leading
to single stalls

Experiments leading
to multiple stalls

T 23563 0 (0.00%) 2402 (10.19%)
P 23563 0 (0.00%) 3002 (12.74%)
T + T 23563 2084 (8.84%) 4849 (20.58%)
T + P 23563 115 (0.49%) 7387 (31.35%)
P + T 23563 4214 (17.88%) 10416 (44.20%)
P + P 23563 12 (0.05%) 14623 (62.06%)
Total 141378 6425 (4.54%) 42679 (30.19%)

1 T stands for transient faults in fabric, whereas P stands for permanent
faults both in fabric and CMEM, and transient faults in CMEM which
manifest as permanent ones in design logic

Finally, results obtained after the implementation of the system on the selected
FPGA are listed in Table A.6. It can be seen that the additional area required
with respect to the original non-protected system is relatively large. Likewise, the
attainable clock period is rather longer. However, if we compare to the eTMR
mechanism, the achievable benefits in terms of resilience greatly surpass the area
and clock penalty of just 12 and 20 additional percentage points, respectively.

83

Chapter A. Tolerating multiple faults with proximate manifestations...

Table A.6: Area required and clock period attained by the original, the eTMR and the
TMR-MDR versions of the target

System Area Overhead Clock period Overhead
Original 231 CBs — 25.613 ns —
Enhanced TMR 820 CBs 254% 30.864 ns 21%
TMR-MDR approach 846 CBS 266% 36.164 ns 41%

A.7 Conclusions

This paper has proposed an approach, combining space and time redundancy with
PDR, as a first step to enable the use of low-cost FPGAs in harsh environments.
The main benefit of this proposal is that, unlike existing approaches, the considered
fault hypothesis takes into account the occurrence of not only single but also
multiple proximate faults in time, even while under reconfiguration. The second
innovation is the distinction when dealing with transient and permanent faults,
which results in just one stall cycle instead of long periods of downtime due to
unnecessary reconfigurations.

The feasibility of this approach has been experimentally shown through a case
study consisting of a 32-bit floating point multiplier. Experiments were performed
in the worst case scenario, when two faults take place in consecutive clock cy-
cles. Even in such adverse scenario, results show the benefits of the TMR-MDR
approach compared to other common approaches, like the considered eTMR.

Nevertheless, there are still some issues requiring further research. As previously
stated there exist some combinations of faults that may result in a failure under
certain circumstances. This is really unlikely, in particular compared to the con-
sidered eTMR strategy, although possible, so future work will focus on reducing
even more the likelihood of this situation by improving the current resilience of the
FSM. Furthermore, as FPGA manufacturers do not provide tools for modifying
the state of sequential elements in fabric (FFs), restoring the state of a module
or synchronizing the state of replicas after relocation is a challenge that should
be faced for further work. Thus, the scalability of the system presents the same
issues of a TMR plus the addition that, in case of collision, an arbiter is required
for the reconfiguration circuit. A similar case happens with fixed logic blocks in
FPGAs (BRAMs, DSPs) as they cannot be rewritten. A different strategy has to
be devised to deal with this problem.

84

Appendix B

The Challenge of Detection and
Diagnosis of Fugacious Hardware
Faults in VLSI Designs

Authors: Jaime Espinosa, David de Andrés, Juan Carlos Ruiz and Pe-
dro Gil

B.1 Introduction B.3 Solutions for detection
and diagnosis

B.2 The problem of Fast Fault
Detection and Diagnosis

B.4 Ongoing Work

Current integration scales are increasing the number and types of
faults that embedded systems must face. Traditional approaches focus
on dealing with those transient and permanent faults that impact the
state or output of systems, whereas little research has targeted those
faults being logically, electrically or temporally masked -which we have
named fugacious. A fast detection and precise diagnosis of faults occur-
rence, even if the provided service is unaffected, could be of invaluable
help to determine, for instance, that systems are currently under the
influence of environmental disturbances like radiation, suffering from
wear-out, or being affected by an intermittent fault. Upon detection,
systems may react to adapt the deployed fault tolerance mechanisms to

85

Chapter B. The Challenge of Detection and Diagnosis of Fugacious Hardware Faults...

the diagnosed problem. This paper explores these ideas evaluating chal-
lenges and requirements involved, and provides an outline of potential
techniques to be applied.

B.1 Introduction

Current embedded VLSI systems are widespread and operate in multitude of ap-
plications in different markets, ranging from life support, industrial control, or
airborne electronics to consumer goods. It is unquestionable that the former re-
quire different degrees of fault tolerance, given the human lives or great investments
at stake, but it is not so obvious to admit that unexpected failures in consumer
products can undermine their success in the marketplace [118]. Hence, there is
great interest in protecting equipment from eventual faults, which in turn involves
providing a certain degree of service reliability over the whole lifetime. Specifically
this relies on controlled operation of both software and hardware. While it is clear
that potential programming bugs will affect the software behaviour, recent studies
on complete systems highlight the disastrous impact which even transient faults
happening in the hardware may have in the code execution of critical applications
[75]. Therefore in order to achieve dependable devices it is no longer possible to
preclude hardware implications from software design.

In the design stage of a product it is foreseeable an evolution in its operational
state, from an ideal scenario to another posing several dependability threats. Since
a set of specifications has to be met, a conservative approach is taken and security
margins are applied to compensate for expected negative effects which may hinder
correct service delivery. But that evolution can be no longer predicted accurately
enough [23], leaving the only alternative to adapt the system to unexpected changes
during its service lifetime. Hence, it is a growingly important requisite to create
an information flow from environment to hardware and finally software. A major
source of such sudden changes in a system is the occurrence of faults.

To explain why faults appear, there are a number of reasons to be mentioned.
For instance, manufacturing capabilities have been evolving at a fast pace, bring-
ing a new breadth of improvements to embedded systems in terms of logic den-
sity, processing speed and power consumption. However, those benefits become
threats to the dependability of systems, causing higher temperatures, shorter tim-
ing budgets and lower noise margins which increase fault proneness. In addition,
deep-submicron technologies have both decreased the probability of manufacturing
defect-free devices, and increased the likelihood of problematic events originated
by wear-out. Moreover, the susceptibility of extremely integrated electronics to
α-particles and neutrons, arriving from outer space or radioactive materials grows
steadily, yielding a non-negligible degree of so called soft errors [85], which affect
temporarily the correctness of processing.

86

B.2 The problem of Fast Fault Detection and Diagnosis

The mentioned faults can be classified in permanent or transient categories. Re-
search in the field has focused mainly in tackling permanent faults, disregarding
transient faults when their effect is not visible as errors in the captured data. For
instance, transient faults with short activation times (percentage of time in which
it is affecting the system relative to clock period), which have been shown difficult
to detect by conventional means [68], may not produce incorrect outputs at once,
but are a good indication of a problematic environment. We have named them
fugacious. According to [34], out-of-range supply voltages, abnormal noise, tem-
perature, etc. are triggers for such transient faults, which if repeated are called
intermittent faults. Whether the final nature of the fault is transient or intermit-
tent will depend on the wear-out conditions. For that reason we must make an
effort to be able to detect and diagnose such types of faults, because these will
provide valuable information when taking decisions for the evolution of the system.
An example would be to change the data codification in a bus to a more robust
scheme in the hardware, or to enable additional processing iterations or variable
checks in the software, for redundancy purposes. Studies devoted to detection and
diagnosis of fugacious faults are scarce or non-existent. However, certain known
detection techniques could be applied to fugacious faults with limited success [39],
since only a reduced period of time is monitored.

The contribution of this paper is based in 2 major points: (i) to identify and ponder
the challenges of detection and diagnosis of fugacious faults in VLSI systems and
(ii) to provide insight on methods and technologies to cover such challenges.

The rest of the paper is structured as follows. Section B.2 justifies the impor-
tance of on-line detection, and underlines the difficulties of detecting transient
and intermittent faults with short activation times. Furthermore it presents the
different fault models while providing an overview on diagnosis of such faults. A
set of methods and technologies is presented in Section B.3 to cope with the task.
Finally, Section B.4 indicates the following actions to be taken and related issues.

B.2 The problem of Fast Fault Detection and Diagnosis

According to Avizienis [13] the basic criterion to catalogue faults in permanent or
transient type is the persistence. This can however be an incomplete information
to comprise the whole picture and thus, activation reproducibility is the concept
introduced to better describe the observed situations. For permanent faults, dif-
ferent activation patterns lead to solid, hard faults when these are systematically
reproducible or to elusive, soft faults when they are not. Depending on circum-
stances those soft faults can be intermittent in time. For transient faults, elusive
activation is the most common but certain circumstances can likewise make them
manifest intermittently.

87

Chapter B. The Challenge of Detection and Diagnosis of Fugacious Hardware Faults...

Such differentiated activation patterns require tailored fault tolerant techniques
of detection and diagnosis for dependability threats caused by faults and errors.
In several situations including high availability or high performance systems, a
concurrent detection (on-line) becomes critical. Next the existing scenario related
to such concepts is explained.

B.2.1 On-line detection of faults and errors

In order to test proper development of the systems several methods have been
described. From post-manufacture checking by means of test vectors or burn-
in testing used to discard flawed units, to assigning slots of regular service time
for test, for instance, many off-line techniques are currently employed. But the
advantage of on-line detection is clear. A loose detection or notification latency,
can have disastrous consequences in certain situations [87]. Besides, the longer
a fault is present in the system without detection the higher the probability of
facing a multiple fault situation. Provided that the latter is a problem of increased
complexity we find justified interest in early detection.

There is long tradition in the dependability community to develop on-line error
detectors. Typically, they are based in the use of special data codification or in
the replication and comparison of outputs or state variables. But the relationship
between a fault occurred at the processing network and an error manifested in the
outputs or state variables is a limiting factor known as observability [21]. When
the observability in an output is null for a given fault, no matter which input
data combination was applied the fault will not show at the output. Likewise if
more than one output is observable for that fault, multiple alterations would be
detectable at those outputs. This can be specially important when using encoded
circuits, where several properties describe different types of such circuits according
to the consequences of a set of faults [67].

• Fault-Secure. Circuits where in presence of a fault either the outputs are
correct or they are not a valid code word.

• Self-Checking. If for every fault of the fault models and for every input either
the output is correct or it is detected as error.

• Self-Testing. Circuits in which for every fault of the fault set there is at least
one possible input which causes the error to be detected.

• Totally Self-Checking. Circuits that are simultaneously Fault-Secure and
Self-Testing.

• Code-disjoint. Circuits where a non-code word input generates a non-code
output. This allows detection of erroneous inputs or cascading of blocks.

88

B.2 The problem of Fast Fault Detection and Diagnosis

clk

inputs

internal1

internal2

out1

out2

out_r

faults not captured

BA

AoutPrev

intermittent_fault

transient_fault

transient_fault

transient_fault

Figure B.1: Temporal filtering of fugacious faults

Therefore when employing codification it will be desirable to maximise the observ-
ability in order to achieve a good fault coverage.

There are 3 possible causes for fault filtering: electrical, logical or temporal. When
dealing with permanent faults, temporal causes are discarded and due to the na-
ture of hard faults, logical filtering can only be short in time. For those reasons any
checking methodology will obtain positive results with hardly any misses mean-
while the observability is good enough.

Nevertheless, detection of transient or elusive and intermittent faults is not so
straightforward. On the one hand, and according to field data from digital sys-
tems [84], transient faults have been shown to account for up to 80% of failures.
These can be caused by several reasons as it is known. Among those reasons, the
arrival of α-particles, protons or neutrons from radiation is one of the most stud-
ied and popular. If we pay attention to the evolution of transient fault duration
produced by one of these particles impacting a CMOS node, the result is directly
proportional to the feature size of the electronics [41]. However, the operational
frequency of devices has not been following the historic monotonic growing trend,
due to well known power dissipation issues. Consequently transients produced by
radiated particles and charge build-ups are narrower and narrower compared to
the clock periods. This paves the way to believe that although the number of faults
affecting a system may be high, chances are these would not be easily captured
by clock edges at the storage elements (heavy temporal filtering, see Figure B.1) .
The derivatives of this are that the moment a fault is detected many more could
have already happened and the available time for reaction could be too short.
Therefore for self-awareness purposes it is desirable to detect them.

On the other hand, intermittent errors caused as studied by Nightingale [122] a
total of 39% of all hardware errors which, according to reports by Microsoft from

89

Chapter B. The Challenge of Detection and Diagnosis of Fugacious Hardware Faults...

950.000 computers, induced a crash in the operating system. This gives a hint
on the number of intermittent faults that can be happening in the system if we
consider that not all of them will end in an operating system crash. Other ex-
amples of can be found in certain cruise control modules for vehicles [96] which
hit a return rate of 96% due to undetected intermittent failures. These figures
can be uneven depending on the context of operation since, as distinguished by
Savir [152], random originated intermittent faults appear and disappear in an
unpredictable fashion whether systematic intermittent faults evolution can be nu-
merically characterized [37]. This enables a proper decision on the best moment
to apply recovery actions to maximise availability. Such systematic intermittent
faults start by small fluctuations which grow in time and intensity until their effect
is severe [159]. In order to set focus on the considered problem, a description of
fault models is required.

B.2.2 Considered fault models

According to the presented concept of activation time, and the activation repro-
ducibility described earlier, we have established the name of fugacious faults to
refer to a set of 3 different types of faults. The fugacious transient faults are de-
fined as those which remain active less than a clock cycle of the system. Likewise,
fugacious intermittent faults are those transient faults which activate at least twice
in a clock period. Finally, permanent faults are active the whole time span of the
clock period, that means for us a fault lasting more than one clock period will be
considered permanently active.

B.2.3 Fault diagnosis

Multiple efforts have been conducted towards an effective diagnosis of different
types of faults based on their activation reproducibility. As demonstrated in [160]
there are important benefits for the Mission Time Degradation and Mean Time
To Failure (MTTF) Degradation associated to correctly discriminating transient
from permanent faults. It is clear that no equal treatment has to be given to both
of them. For instance, transient faults will require no corrective action at all when
hardware redundancy provides a voted fault tolerance. Disregarding the affected
element for a certain period of time will negatively affect the dependability of the
system. Furthermore, given the nature of intermittent faults and their proneness
to become permanent, a proper distinction provides insight on the convenience to
isolate or recover the functional unit. Intermittent faults diagnosis is a hot-topic in
the field. An analytical model for a fault controller was presented in [22], using a
thresholds-based α count methodology to discriminate transient from intermittent
faults. Its Stochastic Activity Networks (SAN) analysis is specifically based on
the time step, where transient faults last for less than one step and intermittent
faults repeat their appearance in subsequent steps. Its drawbacks are it requires

90

B.3 Solutions for detection and diagnosis

a long latency to discriminate, and infrastructure to detect and accumulate the
respective faults. Other recent studies which also employ SAN with thresholds
[136] applied to real systems only consider intermittent errors captured in state
variables, which last more than one clock cycle.

In the case of fugacious faults, we take into account events of a quickly ’evanescent’
nature where the capture and diagnosis procedure must have intrinsically low
latency. It must be able to process two or more faults per cycle in order to
discriminate an intermittent activation from a transient activation, avoiding a
new constraint in the frequency requirements.

B.3 Solutions for detection and diagnosis

Our effort has been focused in two directions: determining an appropriate structure
to detect and diagnose the set of faults we have previously presented and defining
a procedure to apply such structure to the standard design flow.

B.3.1 Architecture of a faults detection and discrimination
system

In every VLSI circuit we can find combinational stages separated by registers.
Since the pursued goal is to have accurate and flawless computations, we will
require 2 conditions:

• To produce correct results.

• To sense any deviations in the datapath which may be out of reach by just
checking registered values.

The steps to take in order to reach these goals start by considering hardware repli-
cation and comparison. The large number of commercial systems utilizing such
technique tells about the effectiveness of the approach at the expense of important
amounts of hardware. The foremost advantage is quick on-line mitigation (when a
voter is included), and usually there is no need to include voters in every stage but
just in critical ones. Nevertheless, for detection and diagnosis a lighter, cheaper
technique would enable the possibility to deploy detection to a larger number of
partitions spread around the system. The use of codification may well fill the gap
and combine with replication in a wise manner.

An interesting feature of codification is that systematic codes do not require to
alter the original bits, thus alleviating the decoding of outputs in the datapath. In
order to minimise speed penalty applied to outputs, this makes a great advantage
[174]. Berger codes and parity groups are the most popular systematic codes and

91

Chapter B. The Challenge of Detection and Diagnosis of Fugacious Hardware Faults...

Logic

Detection Block

Original circuit

Diagnosis Block

in
in

in
out

in
in

in
in

ξ1

ξ2

COTS
decoder

Timing Control
Unit

Timing Control
Unit

FT Encoder

 clock

COTS
encoder

Figure B.2: Global scheme of the faults detection and diagnosis infrastructure. Timing
Control Unit handles temporisation of Detection decoder

have been profoundly studied. In [121] conditions for fault secureness in parity
predictors are derived. Furthermore [97] presents a generic optimisation technique
for parity prediction functions, to achieve quick and small circuits.

The envisioned topology using codification would follow that in Figure B.2. In
it, a Detection Block would receive inputs directly from partition input registers,
and also from outputs prior to registering. A properly selected codification could
reduce block area and optimise the speed. This block would include thus a set of
Commercial Off-The-Shelf (COTS) encoder and decoder which can be a single bit
parity prediction/decoding pair in its simplest form.

Is that enough to handle every type of fault? The answer is ’no’. Coding functions
are effective techniques to detect permanent errors, or transient errors which are
not time filtered. For effective detection of transient faults of a limited activation
time (smaller than a clock period in general), additional elements are required. An
example using triplication was presented in [39], where intermittent faults were not
considered at all, and the sensing time was rather reduced. On-line detection of
intermittent faults has been previously devised in different ways. One proposed

92

B.3 Solutions for detection and diagnosis

clk

inputs

out

out_monitored

out_r

t
3

observationoutputs changing

enlarged observation

BA

AoutYout

Figure B.3: Observation window enlarged by means of reducing period of signal switch-
ing

idea was to inject a carrier signal in the line under study and monitor the correct
behaviour of it [95]. Again, the cost is rather high: an injector and receiver for the
lines under analysis, plus extra wear-out due to increased switching of the lines.
A cheaper detection can be achieved by monitoring those coded lines devoted to
detection.

To avoid those shortcomings, an additional element included is the Timing Control
Unit (TCU). Its function is to adjust the timings of detection elements with one
goal in mind, i.e. to increase the observation window. The term refers to the
percentage of the clock period when the lines under study are monitored for any
potential faults. If we reduce the switching interval as opposed to the stability
interval of the signals, we will have increased the observation window and thus
the effectiveness of the detection (see Figure B.3). The reason for preferring this
method to the observation of a reduced period of time assuming equiprobable
distribution of faults is clear, i. e. to gain in speed of detection.

Finally once gathered, the detection information could be codified against faults
using a code (ξ1) and passed to a Diagnosis Block, where the same or a different
code (ξ2) can be used to notify the diagnosed output to a fault controller.

Inside the Diagnosis Block, inputs must be analysed and discriminated to offer 5
different output possibilities:

• Transient fault.

• Permanent fault.

• Intermittent fault.

• No fault.

• Error in diagnosis infrastructure.

To achieve the goal, the Diagnosis Block will be built using a fault-tolerant (FT)
encoder designed to minimise resources taken. By providing all these different

93

Chapter B. The Challenge of Detection and Diagnosis of Fugacious Hardware Faults...Specifications

Synthesis

Original design

Addition of
infrastructure

Modified design

Technology
files

Implementation

Gate Level

Physical

Check
against

constraints

&

refine

Specifications

Synthesis

Original design Addition of
infrastructure

Modified design

Technology
files

Implementation

Gate Level

Physical

Check
against

constraints

&

refine

Implementation

Gate Level

Physical

A

B

Design Entry

Figure B.4: Tools interaction

outputs and doing so in a fault tolerant codification, the most adequate decision
will be enabled to be taken at the fault controller. Hence, smart reactions can be
applied well in advance to an eventual collapse of fault tolerance infrastructure.

B.3.2 Workflow to apply in the proposed technique

In order to automate the process of deploying a detection and diagnosis infras-
tructure to a generic design block, a suggested procedure is shown in Figure B.4.
What is depicted is a typical semi-custom design flow for VLSI products, where
the standard steps are on the left hand side. Technology files can represent a
silicon foundry design kit or an FPGA manufacturer primitives library. Likewise,
Physical element can be a layout file or a programming bitstream for an FPGA.
On the right we find detail of 2 interventions in the flow.

A first intervention comes before the Synthesis and after Design Entry. This step
comprises an addition of required infrastructure in the Detection Block, i.e. the

94

B.4 Ongoing Work

COTS components and Timing Control Unit. Entry files are modified as required
and new timing constraints are generated for the TCU, to drive the remainder of
the design flow.

A second intervention happens in a loop between Gate-level and Physical stages
of the design. The purpose is to check timings against new constraints, mainly
affecting the TCU, and refine the implementation in a loop by tweaking in one of
the 2 re-entry points A or B. If path B is selected, a faster process will be obtained
as a result, but deep knowledge of the underlying technology will be required and
we will find a side effect of loss of portability. With path A, a more general solution
will be obtained at the cost of speed of implementation.

The challenge in the integration of processes is derived from the difficulty to achieve
the optimum observation window for the whole range of process variability. Other
difficulties can come from the capabilities and restricted information offered by
technology suppliers.

B.4 Ongoing Work

An initial implementation is currently under development, where an FPGA-based
design flow has been chosen to support initial testing. Following the presented
ideas, we have been able to develop first modification point working models. To
reach optimal performance, we need first is to maximise the detection capabilities
of the structure, both in area and time. This means achieving a high degree of
observability at the check lines.

As for the second modification our efforts are devoted to achieve low performance
penalty results and at the same time maximising the period in which lines are
under surveillance. We need the least possibly intrusive system in order not to
give in too much in exchange for detection. This is vital when applied to extreme
performance demanding systems.

Last but not least, keeping the additional area small can be complex in certain
circuits, if a powerful logic optimisation is not wisely applied. The upper limit will
be that imposed by pure replication but this should be perfectly reducible without
loosing much of the observability. An associated parameter to area increase is the
power drain due to new infrastructure. As usual in engineering, specifications and
market constraints drive the balance between detection and diagnosis capability
and power/area/performance penalty.

95

Appendix C

Increasing the Dependability of
VLSI Systems Through Early
Detection of Fugacious Faults

Authors: Jaime Espinosa, David de Andrés and Pedro Gil

C.1 Introduction C.5 First prototype and
case study

C.2 Fugacious fault models C.6 Results and discussion

C.3 Novel architecture for detect-
ing and diagnosing fugacious
faults

C.7 Conclusions

C.4 Proposed implementation flow

Technology advances provide a myriad of advantages for VLSI sys-
tems, but also increase the sensitivity of the combinational logic to
different fault profiles. Shorter and shorter faults which up to date had
been filtered, named as fugacious faults, require new attention as they

97

Chapter C. Increasing the Dependability of VLSI Systems Through Early Detection...

are considered a feasible sign of warning prior to potential failures.
Despite their increasing impact on modern VLSI systems, such faults
are not largely considered today by the safety industry. Their early
detection is however critical to enable an early evaluation of potential
risks for the system and the subsequent deployment of suitable failure
avoidance mechanisms. For instance, the early detection of fugacious
faults will provide the necessary means to extend the mission time of
a system thanks to the temporal avoidance of aging effects. Because
classical detection mechanisms are not suited to cope with such fuga-
cious faults, this paper proposes a method specifically designed to detect
and diagnose them. Reported experiments will show the feasibility and
interest of the proposal.

C.1 Introduction

In recent years, manufacturing capabilities have been evolving at a fast pace,
bringing a new breadth of improvements to embedded systems in terms of logic
density, processing speed and power consumption. However, those same benefits
also become threats to the dependability of systems by causing higher tempera-
tures, shorter timing budgets and lower noise margins, decreasing the probability
of manufacturing defect-free devices, and increasing the likelihood of failures orig-
inated by wear-out.

Examples of such threats include, among others, i) the growing susceptibility to α-
particles and neutrons arriving from outer space or radioactive materials, yielding
a non-negligible degree of so called soft errors [85], ii) the noise affecting power
supply lines which creates unexpected delays in critical paths [62], and iii) the
Electromagnetic Interference (EMI), which can be inserted in the system over
the air or through wires [76]. With increasing miniaturisation scales, a lesser
amount of energy is required for an upset to reach the voltage threshold of the
technology and generate a transient fault and, for the same amount of energy,
those faults are shorter in duration [60]. New fabrication techniques such as silicon-
on-insulator (SOI) follow this trend, with pulse widths decreasing from 250ps for
250nm feature sizes to 110ps for 100nm [41]. In the same way, the steady shrinking
of voltage thresholds and the dramatic increase of speed have allowed for the
propagation of shorter and shorter transient faults. For instance, the minimum
pulse width required for propagating a transient fault in SOI has been reduced
from 105ps for 350nm to a 40ps for 100nm sizes [41]. Finally, in high frequency
systems the occurrence of transient upsets increases linearly with the frequency
[25]. Altogether, these facts raise concern on the growing numbers and variety of
faults next generation systems must face effectively.

98

C.1 Introduction

clk

inputs

internal1

internal2

internal3

outputs_r

 T

t << T t << T t << T

t << T

t > T

A B

Fugacious_intermittent

AoutPrev

Fugacious transient

Non-fugacious

Figure C.1: Characterisation of fugacious faults

Research in the field has focused mainly on fault tolerance [13], i.e. preventing
the system from failing via error detection (identifying the presence of an error)
and system recovery (transforming the system state into one without errors and
without faults that can be activated again). In order to be effective, existing
techniques usually require errors to manifest in the state of the system, commonly
represented by the contents of its sequential logic. However, deep integration
scales are causing an increasing number of transient faults with shorter and shorter
activation times (with regards to the clock period), known as fugacious faults [56],
to be missed as they are not affecting the state of the system (they are not captured
by the sequential logic). Although this is the expected behaviour of common fault
tolerance mechanisms, the occurrence of fugacious faults is an excellent indicator
of harsh environments, wear-out conditions, ageing, extreme temperatures, etc.,
which may finally lead to a system failure. If such faults are properly detected and
diagnosed it could be possible for the system to face new operating conditions,
effectively adapting its hardware and software towards new intrinsic or extrinsic
demands, even enabling a forecast on future fault impact rates.

Some illustrative examples of the usefulness of an early detection and diagnosis of
such fugacious faults include i) a satellite suddenly crossing a high radiation level
area, which may trigger a reconfiguration process to increase the system redun-
dancy before the radiation level is high enough to cause a failure, ii) an intentional
EMI attack to break secrecy in an encryption core, allowing to change data codifi-
cation or deploy any other countermeasures, or iii) an ageing problem in a braking
control system of a train, which could well raise service alarms before total loss of
control. Accordingly, the proper detection and diagnosis of fugacious faults may
provide valuable information when taking decisions for the reconfiguration/evo-
lution of the system to keep or improve its safety. If faults are missed, or even
detected too late, they could well cause safety hazards, financial losses, or profit
drop.

99

Chapter C. Increasing the Dependability of VLSI Systems Through Early Detection...

Previous studies devoted specifically to detect and diagnose fugacious faults are
scarce or non-existent. Some works have mainly focused on characterising tran-
sient faults caused by radiation along different technologies [59]. However, they do
not deal with their detection and diagnosis in working circuits. To this end, cer-
tain known detection techniques could be applied to fugacious faults with limited
success [39], since only a reduced period of time (with respect to the clock period)
is monitored. Hence, new detection capabilities are key to tackle the ever-changing
profile of faults as technology advances.

A first step towards this goal was presented at [49], but this paper greatly extends
that work by presenting a novel architecture and methodology for the detection
and diagnosis of fugacious faults, which may be later used to trigger the system
reconfiguration, to keep or improve its dependability, based on fault forecasting.

The rest of the paper is structured as follows. Section C.2 defines the proposed
fault models for characterising fugacious faults. Section C.3 introduces the novel
architecture and methodology to provide early detection and diagnosis of fugacious
faults, and a suggested implementation flow is presented in Section C.4. The
selected case study to show the feasibility of the proposed approach is detailed in
Section C.5, whereas the obtained results are commented in Section C.6. Finally,
Section C.7 concludes the paper and presents some ideas for future research.

C.2 Fugacious fault models

Faults are commonly classified according to their persistence [13] divided then
into permanent faults, whose presence is continuous in time, and transient faults,
whose presence is bounded in time. With new integration scales, the classification
of transient faults was refined to characterise the particular behaviour of a new kind
of faults, the so called intermittent faults. They account for transient faults that
are repeated in the same area in a short period of time and due to the same cause
[34]. Whether the final nature of a fault is transient or intermittent will depend
on several factors, namely wear-out condition, ageing, extreme temperatures, etc.

This classical categorisation of faults required a further specialisation to account
for the particular behaviour of more frequent and shorter faults induced by increas-
ing integration scales. Accordingly, we propose a refinement of that classification
for the characterisation of fugacious faults. It must be noted that the prime char-
acteristic of a fugacious fault is its short duration, that may prevent the fault
from being captured by sequential elements. That is why, the system clock cycle
is taken as a reference for defining the models of fugacious faults. As such, faults
with the same duration could be considered as fugacious or not depending on the
system operation frequency. Figure C.1 illustrates the proposed fugacious fault
models.

100

C.2 Fugacious fault models

14th European Workshop on Dependable Computing

8

out out

in in

start

end Logic Logic

Parity

predictor

b l

ɸstart

ɸend

parity
upset

1

upset

2+
ɸend

ɸhalf

l

b

Line equaliser

Bus equaliser

Original circuit

Detection block

ɸpar

F(ɸhalf,ɸstart,ɸend)

Parity

error

Diagnosis block

ɸ

ɸ

ɸ

ɸend

ɸstart

ɸhalf

c Clock equaliser

Error

encoder

c
ɸparity

F (ɸhalf,ɸstart,ɸend)

Figure C.2: Low level schematic implementation of the proposed detection and diag-
nosis architecture

Transient fugacious faults are those with a duration shorter than a system clock
cycle and that occur just once during that clock cycle. Likewise, intermittent
fugacious faults also had a duration shorter than a system clock cycle but, on the
other hand, they appear more than once within the same clock cycle. As there
could exist different activation patterns (number of pulses in a burst, duration
of each pulse, and interval between pairs of pulses), this definition enables the
characterisation of all the different possibilities under a common term.

Finally, those faults with a duration longer than a clock cycle are considered
as non-fugacious from the perspective of fugacious faults. Being the scope of
fugacious faults limited to the current clock cycle, it is not possible to determine
the exact nature of the fault within that clock cycle, but it is necessary to observe
the behaviour of the signal along consecutive clock cycles. That is why, from
the perspective of fugacious faults, a very long pulse will be considered as a non-
fugacious fault, which could be classified as a transient, intermittent or permanent
fault from a higher level perspective.

Such differentiated activation patterns require tailored fault detection and diag-
nosis strategies for fugacious faults, as commonly used mechanisms rely on faults
being captured by sequential logic to be detected. Due to the quickly ’evanescent’
nature of fugacious faults, the latency of proposed mechanisms should be really
low and, what is more, they should be able to detect two or more faults per clock
cycle in order to discriminate intermittent from transient activations.

101

Chapter C. Increasing the Dependability of VLSI Systems Through Early Detection...

C.3 Novel architecture for detecting and diagnosing
fugacious faults

Many commercial systems make use of hardware replication and comparison, at
the expense of greatly increasing the area taken by the circuit and reducing its
clock frequency, to mitigate the effect of faults in the system [105]. Nevertheless,
for detection and diagnosis, lighter and cheaper techniques would enable the de-
ployment of detection schemes to a larger number of partitions spread around the
system, while relying on failure suspectors to trigger reconfiguration strategies to
prevent further faults from affecting the circuit. Next sections will show a high-
and low-level view of the proposed architecture.

A high-level perspective of the architecture could be roughly described as an error
detection code system, which runs in a timing controlled framework to provide
inputs to tailored diagnosis infrastructure. Careful selection of such code can
provide a number of advantages and literature on the field has been analysed.
Systematic codes, like Berger codes and parity groups, are very interesting as the
original bits are not altered, which alleviates the decoding of outputs in the original
datapath. Equally important, conditions for fault security in parity predictors
(outputs are either correct or form an invalid code word) were derived in [121],
and a generic optimisation technique for parity prediction functions to achieve fast
and small circuits was presented in [97].

Accordingly, a detailed low level view of the proposed architecture is depicted in
Figure C.2. The original circuit, comprising input and output registers and com-
binational logic, is highlighted in a diagonal patterned background. The detection
block, comprising the encoder or parity predictor, the decoder or parity error, the
detection auxiliary registers and the timing processing elements (for bus, line and
clock), is shown in plain white background. Finally, the diagnosis block which
consists of a fault tolerant encoder is depicted in vertical lines background. Inter-
connection double lines represent dual rail encoding to detect the occurrence of
single faults in the detection block, as valid data should be either (‘0’, ‘1’) or (‘1’,
‘0’).

The detection block receives its inputs directly from partition input registers and
from computed outputs just prior to registering. In first place, a parity predictor
is in charge of generating the expected output parity code from registered inputs.
This parity code is then stored in the parity auxiliary register on the φparity clock
edge. Particularly tailored codifications could reduce block area and optimise
speed, on a case per case basis.

In order to detect both transient (one pulse within one clock cycle) and intermit-
tent (more than one pulse within one clock cycle) fugacious faults, it is necessary
to continuously monitor computed outputs prior registering. However, it is not

102

C.3 Novel architecture for detecting and diagnosing fugacious faults

Table C.1: Diagnosis of fugacious faults*

Fault Start End Upset1 Upset2+
Non-fugacious ‘1’ ‘1’ ‘1’ ‘1’

Transient fugacious Any ‘0’ ‘1’ ‘0’
‘0’ ‘1’ ‘1’ ‘0’

Intermittent fugacious ‘1’ ‘0’ ‘1’ ‘1’
‘0’ Any ‘1’ ‘1’

None ‘0’ ‘0’ ‘0’ ‘0’
Diagnosis error Any other combination
* For simplicity, ‘1’ here means “00” or “11”, and ‘0’ means “10” or “01”.

possible to monitor those outputs during the whole clock cycle, since they intermit-
tently switch as the inputs are propagated through logic elements. The monitoring
process can take place once computed outputs are stable. Accordingly, just a small
fraction of the whole clock cycle could be monitored for fault detection by using
this approach.

To overcome those shortcomings, our proposal relies on including a novel element
into this architecture, a Timing Control Unit (TCU), represented by the clock
equaliser depicted in Figure C.2. Its function is simple: adjusting the timings
of detection elements (φparity, φstart, φend, φhalf) to stretch as much as possible
the stability period of the signals (observation window), and thus maximise the
probability of detecting any fault occurring during the clock cycle. Likewise, line
and bus equalisers are also used to selectively delay the required signals with the
same purpose.

The parity error decoder receives both the expected parity code and equalised
circuit outputs to generate a dual-rail code which is then fed to the diagnosis
block.

This code is then captured by different dual registers at different specific times.
Start registers capture at the beginning of the stability period (within the obser-
vation window) using clock φstart. End registers capture at the end of the stability
period (within the observation window) using clock φend.

Meanwhile, two sets of dual registers, upset1 and upset2+, are devoted to capture
upsets occurred during the whole stability period. To do so, φhalf which is half the
clock frequency keeps those registers switching each period. In the case of the up-
set1 registers, each register of the pair is fed by φhalf and not(φhalf), respectively,
using the φend clock edge. Accordingly, their state alternates between (‘0’, ‘1’)
and (‘1’, ‘0’) each clock cycle, ensuring they store a valid data code. The output
of the parity error decoder is connected to the set input of both upset1 registers,
thus causing an invalid (‘1’, ‘1’) data code whenever an upset is detected. The
initialisation of the upset2+ registers is performed through a combinational func-
tion that takes into account φhalf , φstart, and φend. This function and its inverse

103

Chapter C. Increasing the Dependability of VLSI Systems Through Early Detection...

are respectively connected to the set and reset inputs of one of the registers, and
to the reset and set inputs of the other register. This function will only activate
those signals outside the observation window. It will also ensure that the registers
will store a valid data word alternating between (‘0’, ‘1’) and (‘1’, ‘0’) each clock
cycle. Upon the occurrence of an upset, the output of the parity error decoder
will cause these registers to capture the current state of the upset1 registers. In
case of being the first upset during the clock cycle, they will receive a valid data
code. When further upsets are detected, they will store (‘1’, ‘1’), an invalid data
code signalling that two or more upsets have been detected.

All these data (the parity error at the beginning and end of the observation win-
dow, and the state of the upset1 and upset2+ registers) will be passed to the
encoder in charge of diagnosing the kind of fault, if any, that have been detected.
Table C.1 lists the different results of the diagnosis process according to the re-
ceived inputs. The encoder output is a 3-bit signal that guarantees fault security,
as only 4 different codes are required out of the 8 available. The result of the diag-
nosis process will be passed to a failure suspector that may trigger any corrective
measures if required (like reconfiguring the affected component to increase its fault
tolerance capabilities or relocating it to another fault free area of the device).

C.4 Proposed implementation flow

The typical semi-custom design flow for VLSI products should be adapted in order
to automate the process of deploying the proposed detection and diagnosis infras-
tructure. The left hand side of Figure C.3 depicts the common implementation
flow, where Technology files can represent a silicon foundry design kit or an FPGA
manufacturer primitives library. Likewise, Physical element can be a layout file
or a programming bitstream for an FPGA. The right side of the figure details
the required addition to that flow to support this novel detection and diagnosis
strategy.

The first intervention consists in introducing all the required infrastructure, as
previously presented in section C.3, to support the desired detection and diagnosis.
This is performed just before Synthesis and after Design Entry. Entry files are
modified as required and new timing constraints are generated for the Timing
Control Unit (TCU).

A second and more complex intervention takes place in a loop between Gate-
level and Physical stages of the design. Its purpose is to stretch the observation
window by checking timings against new constraints, mainly affecting the TCU,
and successively refining the implementation by tweaking in one of the 2 possible
re-entry points. Path B leads to a faster, more precise process, but requires a
deep knowledge of the underlying technology and reduces the portability of the

104

C.4 Proposed implementation flowSpecifications

Synthesis

Original design

Addition of
infrastructure

Modified design

Technology
files

Implementation

Gate Level

Physical

Check
against

constraints

&

refine

Specifications

Synthesis

Original design Addition of
infrastructure

Modified design

Technology
files

Implementation

Gate Level

Physical

Check
against

constraints

&

refine

Physical

A

B

Design Entry

Specifications

Synthesis

Original design
Addition of

infrastructure

Modified design

Technology
files

Implementation

Gate Level

Physical

Check
against

constraints

&

refine

Implementation

Gate Level

Physical

A

B

Design Entry

Implementation

Figure C.3: Proposed implementation flow

approach. A more general solution will be obtained using path A at the cost
of increasing the implementation time. This second intervention follows the flow
shown in Figure C.4.

The initial step tries to adjust the datapath to stretch the observation window
by selectively delaying the output and input lines. First, a bus delay equaliser
is used to reduce the dispersion of output paths delays reaching the detection
infrastructure (see Figure C.5). This is an iterative process in which the slowest
output will be preserved as reference, and the fastest output will be delayed by
inserting delay elements in its path. This process ends whenever the fastest output
is also the slowest one. Once bus outputs have been equalised, a further compaction
can be possibly achieved by applying a similar process to the inputs. This time
a line equaliser delay is applied to those inputs which appear quicker at the first
logic level (see Figure C.5), provided they do not violate the same conditions of
the bus equaliser. This guarantees that the maximum clock frequency attainable
is not affected.

105

Chapter C. Increasing the Dependability of VLSI Systems Through Early Detection...

Input involved in Max
datapath hasn’t changed and ≠ involved

in Min datapath ?

Compact switching by
delaying fastest output

Bus equaler

Compact switching by
delaying fastest input

Line equaler

Output involved in Max
datapath hasn’t changed and ≠ involved

in Min datapath ?

N

Y

Y

N

Min tend tick
close enough to
 min datapath?

Delay min tend tick
 until meeting target

Delay parity register tick
 until meeting target

FINISHED!

Delay max tbeg tick
until meeting target

Max datapath
Slower than

max parity reg. path?

N Y

Datapath
adj.

Tend adj.
► min
datapath is
quickest output
in fast process

Parity
regist. adj.

Tbeg adj.

N

Y

Parity reg. captures
Slowest parity

prediction path?

N

Y

Tbeg tick captures max
Datapath?

N

Y

Delay max tbeg tick
until meeting target

Tbeg tick captures max
Parity reg path?

N

Y

Figure C.4: Control flow for stretching the observation window

106

C.4 Proposed implementation flow

clk

inputs

out0

out1

out2

out_initial

out_beq0

out_beq1

out_beq2

out_beq

out_leq0

out_leq1

out_leq3

out_leq

encoded_par

stability periodoutputs changing

stability period

BA

Aout

Aout_par

outputs changing

outputs changing stability period

t.end t.startt.parity

Figure C.5: Stretching the observation window step by step

The next step dephases φend so that the clock edge is in close vicinity to end of
the stability period (the beginning of the switching period due to the quickest line
of the datapath in the fast process corner). By forcing this condition iteratively
the end of the observation window is pushed as late in time as possible.

The registers devoted to capture the predicted parity are tweaked in the third step.
The φparity clock is delayed as necessary to capture the slowest parity prediction
signal path. This is done iteratively to adjust the capture tick to the earliest
possible moment.

Finally the fourth step focuses on dephasing φstart so that the clock edge is located
at the beginning of the stability period (observation window). First, it is necessary
to determine whether the maximum propagation time of data feeding φstart is
longer than that of parity registers outputs feeding φstart. This clock tick will
be iteratively delayed to ensure that both data and parity registers outputs are
correctly captured.

In this way the switching period has been shrunk as much as possible, thus en-
larging the stability period, and the capture clock edge of all registers has been
carefully dephased to observe this whole period.

107

Chapter C. Increasing the Dependability of VLSI Systems Through Early Detection...

C.5 First prototype and case study

In order to test the functionality of the proposed architecture, a standard 4-bit
adder has been selected as a suitable candidate. This is a state of the art com-
binational circuit, used in multitude of designs, which can suffer from undetected
fugacious faults. Furthermore its simplicity eases the task of performing controlled
experiments (only a small amount of eligible fault injection points for the placed
and routed design) within a reasonable time frame.

As this circuit is modelled in Verilog, the required infrastructure to deploy the
proposed architecture is also described in this HDL language. This infrastructure
and the associated new timing constraints are manually inserted into the design
before synthesis, although the automation of this process is currently under devel-
opment. For its implementation, a Virtex-6 FPGA platform has been chosen due
to the ease and speed of deployment, the availability of information related to its
internal structure (XDL plain text files), and its partial dynamic reconfiguration
capabilities that could be exploited after detecting and diagnosing the occurrence
of faults. For the first prototype of a tool supporting this methodology, a publicly
available toolset named TORC [161] has been used to interface with the manu-
facturer tools, which present certain limitations in the routing side hindering the
required equalisation and dephasing. As the goal of this first implementation is
just showing the feasibility of the proposed approach, it does not tune inserted
delays in the finest possible way, so the observation window is not stretched to its
physical limits.

The procedure for inserting delays in a target path is based on selecting an in-
termediate point between origin and destination, for the path to pass through.
The location of that intermediate point is determined according to the algorithm
shown in Figure C.6. This algorithm, based on geometrical principles takes into
account different possible cases. Initially, if the delay to be introduced is very
small, a position next to the origin or destination points is selected. For small and
medium delays, the position is selected somewhere midway between origin and
destination, modifying the total path distance according to the required delay.
For bigger delays and also when origin and destination points are too close, the
intermediate point is placed around a circumference, which includes both origin
and destination, whose radius is modulated by the required delay.

This pass-through element can be a simple buffer in ASIC, or a Look-Up Table
(LUT) implementing the identity function in an FPGA platform. In the latter
case, when the chosen LUT is busy a spiral shaped search for a free close-by LUT
is initiated until one is found or a new intermediate position is recalculated. Future
work will focus on improving this implementation.

The controlled injection of fugacious hardware faults on an FPGA is also quite
difficult. That is why, to test the detection and diagnosis capabilities of the pro-

108

C.5 First prototype and case study

If (Rdelay < 0.5) then

 (Xi,Yi) = (Xa, Ya-1)

else if (Rdelay < 1) then

 Xi = (Xa + dx(a,b)/2)

 Yi = (Ya + dy(a,b)/2)

else if (Rdelay < 2) and (d(a,b) > dmin) then

 α = Rdelay*π/2

 k = atan (dy(a,b)/dx(a,b))

Xi = Xa + d(a,b)/2 *cos(α + k)

Yi = Ya + d(a,b)/2 *sin(α + k)

else

 α = Rdelay*π/10

 k = atan (dy(a,b)/dx(a,b))

Xi = Xa + (d(a,b)/2 +Rdelay*10) *cos(α + k)

Yi = Ya + (d(a,b)/2 +Rdelay*10) *sin(α + k)

d

(a,b)

(X
b
,Y

b
)

b

a

(Xa,Ya)

(Xi,Yi)

i

X
 Y

d

(i,b)

d

(a,i)

Figure C.6: Strategy for locating delay pass-through elements (Xi, Yi), showing physical
distances inside device. Delays are expressed in relative units.

posed architecture, fugacious faults will be injected in the post-place and route
model of the system following a model-based fault injection technique. A number
of Tcl scripts have been developed to ease the injection of different fugacious and
non-fugacious faults using the Modelsim simulator [71]. Next section reports on
the results obtained from experimentation.

109

Chapter C. Increasing the Dependability of VLSI Systems Through Early Detection...

C.6 Results and discussion

The first set of experiments is devoted to test the minimum pulse width that
could be correctly detected as a transient fugacious fault. Table C.2 lists whether
detection is achieved for shorter and shorter pulses in both fast and slow corners
of the technology.

Table C.2: Minimum width of fugacious transient faults for correct detection

Pulse width Detected in Fast Detected in Slow
T=10ns Process Corner Process Corner
0.5·T 3 3

0.1·T 3 3

0.05·T 3 3

0.01·T 7(a) 3

0.005·T 7(a) 3

0.001·T 7(a) 3

The narrowest pulses present a pulse swallowing effect, annotated as (a) in the
table. In this cases, the physical limitation of the technology applies, as pulses
are not wide enough to be propagated through the logic elements. This prevents
those faults from being detected. Curiously enough, simulations do not feature this
behaviour in the slow process corner, but common sense dictates it will happen at
a certain moment. The proper characterisation of this behaviour requires further
research.

The second set of experiments aims at determining the minimum separation (in-
activity time) between consecutive pulses within a burst to properly detect it as
an intermittent fugacious fault. In this case, two pulses with fixed width of 0.05 ·T
are injected with decreasing inactivity time. Table C.3 lists whether faults are
correctly detected, for fast and slow process corners, with decreasing inactivity
time.

Table C.3: Minimum inactive time of intermittent fugacious faults for correct detection

Inactivity time width Detected in Fast Detected in Slow
T=10ns Process Corner Process Corner
0.5·T 3 3

0.2·T 3 3

0.15·T 3 3

0.1·T 3 7(a)
0.05·T 3 7(a)
0.01·T 7(a) 7(a)
0.005·T 7(a) 7(a)

As focusing on detecting faults with very short duration, in case that the total
length of the burst is longer than one clock cycle, then several transient faults
could be reported instead (not shown in the table). On the other hand, technology

110

C.6 Results and discussion

Table C.4: Check all diagnosis cases in all eligible fault injection points

Fault type Injected Number of Correctly Incorrectly Error in Not
value injections detected detected diagnosis detected

Transient fugacious Low pulse 9 6 0 0 3 (b)
High pulse 9 2 0 0 7 (b)

Intermittent fugacious Low pulse 9 6 0 0 3 (b)
High pulse 9 2 0 0 7 (b)

Non-fugacious Low pulse 9 2 5 (b) 0 2 (b)
High pulse 9 0 6 (b) 0 3 (b)

limitations (pulse swallowing) appear again in those cases marked with (a). It is
remarkable that for a slow process corner longer inactivity periods will be required
as compared to fast process corner, where correct detection can be achieved for
closer pulses within a burst.

Once the technological limitations imposed by the selected Virtex-6 platform are
known, a new set of experiments is performed to check the different entries of the
diagnosis table (see Table C.1) on all the 9 eligible fault injection points of the
circuit selected as case study. Table C.4 details the results of this experimentation,
reporting the number of faults correctly and incorrectly detected, or not detected
at all. It must be noted that, as pulses width has been carefully selected according
to the previous experiments, results are exactly the same for both fast and slow
process corners, so they are just reported once on the table.

The first unexpected, but foreseeable result, is that non-fugacious faults are first
detected as transient fugacious faults. This makes sense, as those faults last more
than one clock cycle and there occurrence will be reported as transient faults during
this first cycle. However, on the next clock cycle, they will be correctly diagnosed
as non-fugacious faults. Accordingly, failure suspectors should take into account
this phenomenon to wait for the next clock cycle before taking any decision and
action.

Likewise, it can be noted that there exists a big number of not detected faults,
marked as (b) on the table. After carefully analysing the simulations, we can
conclude that this is the result of logic filtering. For instance, injecting a logic
‘0’ in a node holding this same value, or injecting a logic ‘1’ to the input of
an AND logic gate when some other input holds a ‘0’, prevents the fault from
being propagated and thus detected. When this logic filtering is applied to non-
fugacious faults, they will be probably detected as transient fugacious faults when
the affected line should be switching along consecutive clock cycles. Obviously,
the erroneous value should appear during two consecutive clock cycles at least to
be correctly diagnosed. As in this case non-fugacious faults have been injected for
1.3 · T , they are mostly erroneously detected or not detected at all.

Finally, the overhead induced by the required detection and diagnosis infrastruc-
ture is shown in Table C.5.

111

Chapter C. Increasing the Dependability of VLSI Systems Through Early Detection...

Table C.5: Overhead induced in terms of area and clock period

Design Area utilisation Clock period
Original with I/O registers 6 Slices 1.83 ns
Protected with infrastructure 36 Slices 3.49 ns

Although the extra area for the required infrastructure could seem a bit too high
in comparison with that required by the original circuit (about six times more), it
must be noted that this is really a very small circuit. Furthermore, the Virtex-6
slice is huge in size (4 LUTs, 8 FFs, plus infrastructure) and those 30 additional
slices are mostly using a small fraction of the available resources (< 30%), so there
is plenty of room for further circuit packing.

Finally, the attained clock period is not as close to that of the original circuit as
desired. This is due to the tools used for the bus, line, and clock equalisation
processes, which did not allow a fine control of the extra delay to be inserted. For
the future it is intended to switch to a different more controlled method to add
finely measured delays, taking into account manufacturing dispersions.

C.7 Conclusions

This paper presents a novel methodology to detect and diagnose a specific type of
previously neglected faults, the so called fugacious faults. They are described as
faults whose active period is smaller than the clock period of the system and they
are not usually captured by the sequential logic of the system. Accordingly, they
have been usually neglected, but their proper detection and diagnosis could be of
great use to foresee the the proximity of harsh environments or the occurrence of
wear-out mechanisms. The proposed approach appears as an effective method to
quickly detect and diagnose such faults.

From the set of experiments performed to shown the feasibility of this approach, a
number of lessons has been learned. First and foremost is that technology limits set
a barrier against the quickest detectable upset in the circuit, which applies to each
single pulse or the separation between pulses in the same burst. Another important
fact is that logic filtering limits the observability of faults, so it makes sense to pay
attention exclusively to output lines. Additionally, although its implementation
in a modern FPGA may seem costly in terms of area penalty, if applied to large
blocks or critical circuits cost versus benefit ratio is greatly improved.

Future research will focus on improving the equalisation tools to fine tune the
insertion of controlled delays into the system, thus increasing the observation win-
dow and reducing the clock period penalty to the minimum possible. Likewise, the
inclusion of a failure suspector in conjunction with the dynamic partial reconfig-

112

C.7 Conclusions

uration capabilities of FPGA will greatly increase the safety of the target system
through its adaptation to face the unexpected events that may arise.

113

Appendix D

An Aspect-oriented Approach to
Hardware Fault Tolerance for
Embedded Systems

Authors: David de Andrés, Juan Carlos Ruiz, Jaime Espinosa and Pe-
dro Gil

D.1 Introduction D.4 Dealing with white
and black box IP cores
as case studies

D.2 Related work D.5 Analysis of results and
discussion

D.3 Metaprogramming the design
of dependable and secure
HDL-based embedded systems

D.6 Conclusions and open
challenges

The steady reduction of transistors size has brought embedded solu-
tions into everyday life. However, the same features of deep-submicron
technologies that are increasing the application spectrum of these so-
lutions are also negatively affecting their dependability. Current prac-
tices for the design and deployment of hardware fault tolerance and
security strategies remain in practice specific (defined on a case-per-

115

Appendix D. An Aspect-oriented Approach to Hardware Fault Tolerance for Embedded Systems

case basis) and mostly manual and error prone. Aspect orientation,
which already promotes a clear separation between functional and non-
functional (dependability and security) concerns in software designs, is
also an approach with a big potential at the hardware level. This chap-
ter addresses the challenging problems of engineering such strategies in
a generic way via metaprogramming, and supporting their subsequent
instantiation and deployment on specific hardware designs through open
compilation. This shows that promoting a clear separation of concerns
in hardware designs, and producing a library of generic, but reusable,
hardware fault and intrusion tolerance mechanisms is a feasible reality
today.

D.1 Introduction

Current embedded VLSI (Very Large Scale Integration) systems are widespread
and operate in multitude of applications in different markets, ranging from life sup-
port, industrial control, or avionics to consumer electronics. Benefits of current
manufacturing capabilities, in terms of attainable logic density, processing speed
and power consumption, become threats to systems dependability, causing higher
temperatures, shorter timing budgets and lower noise margins [118]. In addition,
deep-submicron technologies have both decreased the probability of manufactur-
ing defect-free devices, and increased the likelihood of wear-out related problems
and the susceptibility to radiated particles [36]. Likewise, communications among
devices expose hardware embedded systems to a number of external threats, espe-
cially when they are manufactured as an aggregation of off-the-self (OTS) Intel-
lectual Property (IP) cores developed by third, and sometimes untrusted, parties.
Nonetheless, reusing these components offers a reduction in time-to-market costs
and a rapid integration of technology innovations while minimizing the risk of de-
signs that integrate millions of gates [1, 176]. It is unquestionable that critical
systems require different degrees of fault and intrusion tolerance, given the human
lives or great investments at stake. However, nowadays, the consideration of re-
silience in modern VLSI designs, understood as the ability of the system to ensure
acceptable levels of dependability and security despite changes, is a requirement
even in the industry of non-critical applications, as the occurrence of unexpected
failures in consumer products may negatively affect the reputation of manufactur-
ers and undermine the success of new products in the market. The dependability
and security communities widely accept that involving unskilled designers in the
development of non-functional strategies (such as fault- and intrusion-tolerance
and security) may actually have a negative impact on the global resilience of the
deployed solution [58]. There is therefore an emerging requirement for frameworks
supporting the separate design of non-functional and system core (functional)
mechanisms, and their subsequent integration. In other words, fault and intru-
sion tolerance mechanisms must be developed by experts, but hardware designers

116

D.1 Introduction

with limited expertise in dependability and security must be able to integrate
such mechanisms in their designs to make them resilient to faults and attacks.
How to support such separation of concerns during the design of dependable VLSI
solutions remains an open challenge today. Aspect orientation [94] provides inter-
esting means to cope with this issue from the first steps of the system design flow,
when integrated circuit models become available. The vast majority of modern
solutions to digital circuit design revolve around the use of HDL (Hardware De-
scription Language) models. Using such languages, hardware designers program
circuits in a modular and hierarchical way. By modifying such models, related cir-
cuits can be accordingly adapted and evolved. The notion of metaprogramming,
defining programs that automatically reason about and customize the structure
of other programs, encompasses this idea. If this customization is specialized for
fault tolerance [170], metaprogramming becomes a valuable technique to develop
dependable strategies, which can be later (automatically and transparently) de-
ployed onto HDL models following an open compilation process. This chapter
explains how an open compilation process can be established to support i) the
implementation of fault tolerance and security techniques as metaprograms, and
ii) their subsequent application to HDL-based models of integrated circuits. Ad-
ditionally, this process must be seamlessly integrated into the regular design flow
typically followed for HDL-based hardware systems, thus offering a great potential
to increase the productivity of designers and reduce their error proneness. Other
asset is that it can be applied as soon as a model is ready to simulate, even if
it is not synthesizable yet. Hence, this opens the chance to study the impact of
the applied modifications in the early stages of the design cycle, thus reducing
the costs associated to late corrections. By enabling the automated integration
of non-functional mechanisms and system functional mechanisms, the old idea of
providing libraries of dependability and security mechanisms that could be reused
in different contexts and deployed on different components could become a reality.
The rest of the chapter introduces first the basic concepts about aspect orienta-
tion and metaprogramming, and existing approaches to translate those concepts
into hardware design in general, and the deployment of fault tolerance and se-
curity strategies in particular. After that, an already existing framework is used
to describe a procedure for metaprogramming hardware fault tolerance and its
integration into the hardware design flow. Taking this procedure as a guide, two
examples of different metaprograms implementing time-redundant and symmet-
ric encryption mechanisms are detailed in depth. The feasibility of the proposed
approach is demonstrated by automatically deploying the implemented strate-
gies onto a PIC microcontroller core and analyzing both the benefits obtained in
terms of dependability and security, and the cost to pay in terms of silicon area,
throughput and energy consumption overhead. Finally, different open challenges
for further research are discussed.

117

Appendix D. An Aspect-oriented Approach to Hardware Fault Tolerance for Embedded Systems

D.2 Related Work

Although aspect orientation and metaprogramming have been applied to the de-
velopment of fault-tolerant software during years, they have not been fully con-
sidered yet for their integration in the regular hardware design flow. Academia
and industry research has mainly focused on metaprogramming a restricted num-
ber of commonly used fault tolerance strategies, but no framework supporting the
metaprogramming of any required type of fault and intrusion tolerance mechanism
has been considered yet. These concepts and current efforts towards provisioning
metaprogramming and aspect orientation to hardware design are next presented.

D.2.1 Metaprogramming and aspect orientation

“Computational reflection is an activity performed by a system when doing com-
putation about (and by that possibly affecting) its own computation” [108]. When
reflection is applied to compilers, it is possible to modify the code analysis per-
formed at compile-time and influence the code generation process, i.e. programs
(named metaprograms or aspects in this context) can analyze and customize the
structure of conventional programs as needed. This idea was initially applied to
compilers by [29] and later by [94] as a mean to express and deploy transversal
(non-functional) mechanisms on object-oriented programs. As a result, a metapro-
gram is associated to a compiler in order to customize its compilation process
through a number of analysis and transformation rules. An exchange of informa-
tion thus takes place at compile-time between the compiler and its metaprogram.
The compiler reifies structural information about the input program, let’s name
it P, to the metaprogram. That metaprogram then uses intercession mechanisms
to apply code modifications resulting from the analysis and customization process
it carries out. This is how the input program P is transformed into a different
output program, named P ′. By default, the metaprogram applies an identity
transformation to the input program P , i.e. the output program P ′ is equivalent
to P . However, the user can modify such behavior by refining the implementation
of the default metaprogram, i.e. by adapting existing or specifying new transfor-
mation rules. Such compilers are called open compilers (OC) after their ability to
modify the default compilation rules by means of metaprograms. It is worth men-
tioning that in aspect-oriented programs, metaprograms are named aspects, since
they express cross-cutting features of programs, and open compilers are called
weavers, since they weave the functional code provided by programs with the non-
functional one provided by aspects. Despite the difference of notation, the goal of
both metaprogramming and aspect-oriented programming remains the same, i.e.
promote a clear separation of mechanisms in programs. What is important in this
chapter is that the underlying specialization process can be applied to generate a
library of mechanisms that, if focused on providing fault and intrusion tolerance,

118

D.2 Related Work

can constitute a library of resilience mechanisms like those created for software
systems [5, 58].

D.2.2 Hardware fault and intrusion tolerance automation

Due to current stringent time-to-market constraints, the traditional manual de-
velopment, adaptation, and deployment of the required mechanisms is no longer
an option. Therefore, it seems just natural that both academia and industry had
devoted great efforts towards defining methodologies and tools for the automatic
generation and deployment of fault detection and tolerance mechanisms into hard-
ware designs. One of such suitable methodologies relies on aspect-oriented pro-
gramming (AOP) concepts that, although being applied to object-oriented high-
level programming languages for years, have been seldom used for hardware design
[45]. This survey constitutes a seminal work that identifies crosscutting concerns
in hardware descriptions and provides a first definition of possible join-points and
pointcuts for HDLs. Other preliminary works applying AOP concepts to the de-
sign of digital hardware focused on the design of a SystemC-based synthesizable
resource scheduler at RTL [116], and the definition of an aspect-oriented extension
of VHDL, named AspectVHDL [112]. As can be seen, the adoption of AOP con-
cepts for hardware design is still in its infancy and, to the best of our knowledge,
no work has focused yet on the application of AOP for the provision of fault detec-
tion and tolerance capabilities for hardware designs. Other methodology consists
in providing separation of concerns implemented via metaprogramming for the
design of customizable components [168]. This work discussed the use of just the
target HDL or in combination with another metalanguage as metaprogramming
paradigms for higher flexibility, reusability and customizability. These paradigms
enabled the massive hardware replication through Triple Modular Redundancy
(TMR) and error detection/correction codes for registers protection [46], and tol-
erating single bit-flips in a state register and multiple faults in the next state
computation logic [102]. The automatic insertion of detection and fault tolerance
mechanisms in high-level HDL descriptions, like Finite State Machines (FSM)
or Register-Transfer Level (RTL), instead of at a lower (gate) level, allowed the
early insertion and validation of the considered mechanisms at the cost of los-
ing control over the generated hardware and increasing the overhead in terms of
area, performance, and power consumption. Following this paradigm, a number
of different tools have emerged to provide alternative solutions for improving the
dependability and security of hardware designs. vMAGIC (VHDL Manipulation
and Generation Interface) constitutes an automatic code generation tool, devel-
oped by the University of Paderborn, that makes use of a Java library to read,
manipulate, and write VHDL code [128]. Although it has not been specifically
designed with dependability in mind, the inclusion of this tool in the hardware
design flow improves code reliability and reduces the development time. A similar
approach, but dealing with EDIF (Electronic Design Interchange Format) netlists

119

Appendix D. An Aspect-oriented Approach to Hardware Fault Tolerance for Embedded Systems

instead of VHDL code, is implemented by the BYU EDIF Tools [182]. These tools
work at a lower level, thus circumventing all the issues related to the optimiza-
tions performed by synthesis tools during the implementation process, although
a high level of expertise is required to precisely define the required transforma-
tions to obtain the desired circuit. This set of tools includes an Automated TMR
application to automatically deploy hardware replication. This same idea of pro-
viding a library of already defined fault detection and tolerance components and
mechanisms is exploited by CODESH [146], an open compilation process for the
design of dependable and secure high-level HDL descriptions. The default library
provided by CODESH contains the N-Modular Redundant hardware replication
strategy [144], and an error detection and correction Hamming approach for infor-
mation stored on registers [143]. It is to note that this is the only recent tool from
academia specifically developed to define and automatically deploy components
and mechanisms for dependability and security. On the industry side and with
TMR as its main dependability strategy too, XTMR Tool was the first commer-
cial development tool to address the special requirements of programmable logic
devices in high-radiation environments [188]. It automatically builds TMR into
Xilinx FPGA (Field-Programmable Gate Arrays) designs, thus increasing designer
productivity but limiting its applicability to just this particular strategy and only
for Xilinx products. Mentor Graphics Precision Hi-Rel [119] offers a more generic
approach by automatically adding TMR or safe FSM encoding at synthesis time,
so targeting a wide variety of devices and manufacturers. However, it has been
deemed International Traffic in Arms Regulation (ITAR) controlled by the US De-
partment of State, so it can only be provided to United States Persons within the
United States. This brief survey seems to support the notion that “AOP is a goal,
for which reflection (metaprogramming) is a powerful tool” [94]. Indeed, Kiczales
et al. (1996) started by developing simple metaobject protocols with which pro-
totype imperative language aspect programs. Later, with a better knowledge of
what the aspect programs should do, more explicit aspect language support was
developed. This empirical process exactly describes how academia and industry
are adopting the AOP concepts for the automatic development of hardware sys-
tems. Nowadays, and as previously presented, the stronger current still focuses on
metaprogramming the required rules to customize components and systems to in-
clude predefined components and mechanisms for dependability and security. The
next and more ambitious step of developing HDL extensions for AOP support, not
just for dependability but also for any other non-functional concerns, still requires
further research to reach a stage mature enough to transfer this approach to the
industry. Accordingly, next sections will unfold the details of how to articulate a
metaprogramming approach for the design of hardware systems as implemented
by CODESH, the most up to date non-commercial tool that specifically focuses
on the definition and deployment of fault detection and tolerance components and
mechanisms.

120

D.3 Metaprogramming the design of dependable and secure HDL-based embedded systems

D.3 Metaprogramming the design of dependable and
secure HDL-based embedded systems

HDLs are description languages specifically designed to model the behavior of
synchronous digital circuits in terms of the flow of information between hardware
registers (Register Transfer Level), or specify the behavior of the circuit by means
of logic equations or logic gates and their interconnections (Gate level). Similarly
to other programming languages, HDL models are processed by specific design
compilers, called synthesizers, in charge of transforming the HDL code listing into
a physically realizable gate netlist. This netlist can take one of many forms, like a
simulation-oriented netlist with gate delay information, or a standard EDIF for-
mat, which can be later used to either implement the design on reconfigurable
hardware devices like FPGAs or manufacture silicon-based circuits. Hence, as
hardware faults occur at the physical level, it is necessary to understand how
these faults manifest at higher HDL levels (gate or RTL) to determine the kind of
fault detection and tolerance mechanisms that could be considered and how they
could be deployed into the HDL model of the system. As different types of faults
can induce the same type of errors, it is enough that these faults induce similar
behaviors (fault models). Transient faults appear during the normal operation
of the circuit for a short period of time after which they disappear again. They
usually result from the interference or interaction of the circuitry with its physical
environment [92], such as transients in power supply, crosstalk, electromagnetic
interferences, temperature variation, alpha and cosmic radiation, etc. The result-
ing fault models at RTL and gate levels are the bit-flip (reverses the logic state of
a memory cell), pulse (reverses the logic state of a combinational logic element),
indetermination (undetermined logic value between the high- and low-logic thresh-
olds), and delay (increases propagation delay of a line). Permanent faults are due
to irreversible physical defects in the circuit. They usually appear as a result of
the manufacturing process or the normal operation of the system. In this latter
case, sometimes they initially reveal as intermittent faults until some long-term
wearout mechanisms cause the occurrence of a permanent fault [66]. The fault
models derived at RTL and gate level include the stuck-at (fixes the logic value of
a logic element), stuck-open (fixes the logic value of a logic element for a retention
time, and to ’0’ afterwards), short (short-circuits two lines), open-line (splits a line
into two parts), bridging (special combination of open-line and short), indetermi-
nation and delay. Accordingly, the challenge of metaprogramming the design of
dependable HDL-based hardware systems is two-folded. On the one hand, it is
necessary to articulate the metaprogramming approach to ease the definition and
deployment of RTL and gate level fault tolerance mechanisms as metaprograms.
On the other hand, this process should be engineered in such a way that it could be
easily integrated in the common design flow for both programmable logic devices
and standard cells. CODESH [146], a framework providing an open compilation

121

Appendix D. An Aspect-oriented Approach to Hardware Fault Tolerance for Embedded Systems

process for the design of dependable and secure HDL-based systems, will be taken
as an example of how to meet these two requirements.

D.3.1 Open compilation to support the customization of
hardware systems

The common open compilation flow has been customized by CODESH to ease
the definition and deployment of dependable and secure components and mecha-
nisms for HDL-based hardware designs. The resulting open compilation process
is depicted in Figure D.1.

Figure D.1: Open compilation process defined by CODESH

The very first step consists in processing the input HDL model to obtain an ab-
stract tree-form representation, or Abstract Syntax Tree (AST), of all the HDL
constructs occurring in that model. Each node of this tree embeds the informa-
tion related to the particular HDL construct it represents. For instance, an AST
node for the component instantiation statement shown in the Input HDL Model of
Figure D.1 will provide syntactical information about the instantiated unit (Hal-
fAdder), its name (ha1), and the mapping established between its ports (a, b, c,
and s) and the signals they connect to (a, b, carry1, and sum). In particular,
CODESH has been developed using ANTLR [126] and thus all AST nodes inherit
from the CommonNode class, which is specialized for each existing HDL construct.
Once the AST generated, a parser is in charge of walking through the obtained
data structure. For each identified construct (component instantiation statement,
for instance), a metaprogram has the chance of analyzing and customizing the AST
representation of such construct (step 2 in Figure D.1). The communication be-

122

D.3 Metaprogramming the design of dependable and secure HDL-based embedded systems

tween the open compiler and the metaprogram is performed through a well-known
interface implemented by the Metainterface class. Metaprograms must implement
that part of the Metainterface related to those constructs they are willing to cus-
tomize. The AST node representing the construct to be handled is systematically
provided to the suitable metaprogram, which is thus activated (step 3 in Figure
D.1). The variety of actions a metaprogram can carry out, defined by means of
analysis and transformation rules, will obviously vary according to the considered
resilience strategy. In fact, the implementation of the default metaprogram follows
a neutral transformation approach, meaning that no actual transformation takes
places onto the original HDL construct represented by the input AST. This behav-
ior can be specialized through inheritance, so non-neutral metaprograms should
overload those methods required for their specific purpose, such as removing con-
structs or modifying their internal structure, either by changing their internal
elements (like identifiers or types) or by introducing new ones. It must be noted
that the way in which analysis and transformation rules are applied to input HDL
models also rely on the structure of such models. Accordingly, as each metapro-
gram could customize just a particular construct of the input HDL model, a whole
set of metaprograms could be required to implement a given fault tolerance mech-
anism. In fact, these rules can be viewed as templates that are used to adapt the
implementation of resilience mechanisms to each particular hardware component
structure. Hence, each newly defined metaprogram, or set of metaprograms, in-
tegrates CODESH library of components and mechanisms for dependability and
security. The customized AST node resulting from applying those analysis and
transformation rules implemented by the metaprogram is finally returned back to
the open compiler (step 4 in Figure D.1), thus replacing the original AST. Once
this approach is recursively applied to all the nodes in the AST, the open com-
piler finally generates an output file reflecting all model transformations (step 5 in
Figure D.1).

As an example, Figure D.2 details the process followed for replacing a non-fault-
tolerant component by its Triple Modular Redundant (TMR) version. TMR is a
well-known strategy consisting in physically replicating the hardware component to
be protected, and obtaining the right output of the system by majority voting the
outputs of all the replicas [12]. The leftmost column of the figure lists the structural
definition of a FullAdder in terms of two internal HalfAdders. The AST obtained
after parsing the VHDL model (step 1 in Figure D.2 is shown in the second column
of the figure, with arrows mapping VHDL statements to AST nodes. Steps 2 to
4 apply a TMR strategy to ha2 HalfAdder through transformations (a) and (b),
thus affecting different nodes of the AST (shown in boldface in the third column of
the figure). Finally, the rightmost column in Figure D.2 lists the TMR enhanced
version of the original model after step 5 takes place. This schema tolerates any
number of transient faults, as long as they affect just one replica at a time and
disappear before any other fault occurs, and just one permanent fault affecting one
replica. This approach is greatly favored when protecting hardware components

123

Appendix D. An Aspect-oriented Approach to Hardware Fault Tolerance for Embedded Systems

Figure D.2: CODESH Open compilation process in action: a TMR case

due to its simplicity and good tolerance capabilities, although it has a large cost
in terms of silicon area, making it more suitable to critical-systems rather than
consumer electronics.

D.3.2 Architecting hardware fault tolerance mechanisms as
metaprograms

Currently, CODESH library of fault tolerance mechanisms contains a set of metapro-
grams enabling i) the deployment of spatial redundancy through N-Modular Re-
dundancy [144], ii) the detection and correction of errors on registers via Hamming
codes [143], and iii) the detection of errors on buses through Cyclic Redundant
Checks [50]. After careful analysis, experience has demonstrated that fault toler-
ance strategies for hardware designs can be defined as metaprograms responsible
for i) generating the required logic infrastructure, ii) encapsulating this logic with
the original core within a new component, and iii) integrating this new compo-

124

D.3 Metaprogramming the design of dependable and secure HDL-based embedded systems

nent into the original model. Any fault tolerance or security strategy for hard-
ware systems needs to make use of multitude of different common components
used in hardware design, like registers or multiplexers, and specific components to
detect or tolerate faults, like comparators or majority voters. Particular metapro-
grams should be developed in order to generate this infrastructure according to
the requirements of the given strategy. Once developed, these metaprograms will
integrate the library of predefined components and strategies for fault tolerance,
so they could be reused by any other strategy requiring them. It must be noted
that metaprogramming the whole HDL model of any new component (a majority
voter, for instance) is not a simple task. That is why it is recommendable to reuse
the proposed open compilation approach to define some HDL templates. These
templates (input HDL models in this case) should contain as much as possible of
the required structure and only those parts that must be adapted to the partic-
ular strategy or hardware under consideration will be dynamically generated by
means of smaller and much simpler metaprograms (like the size of the input/out-
put ports, for instance). After the required infrastructure has been generated,
it is usually encapsulated with the original target component (or system), which
retains its original functional capabilities, to introduce the new non-functional
capabilities (fault detection and tolerance in this case). This can be seen as a
kind of wrapper producing a fault-tolerant and/or secure version of the original
component. Metaprograms will be in charge of i) configuring and instantiating as
many components as required, and ii) interconnecting all these elements to imple-
ment the selected strategy. To achieve this goal it is essential to parameterize the
whole process according to the particular strategy and, in many cases, the target
component. When those components are delivered in the form of HDL models
(soft IP cores), or when reusing components developed in-house, it is possible
to access their internal structure (white box approach) and precisely determine
the required customizations. However, third party cores are usually delivered as
hard IP cores, which are already implemented (synthesized, placed and routed)
and ready for manufacturing. This black box approach prevents designers from
getting any knowledge about the internals of the component, thus limiting the
available information to that provided by the manufacturer. Newer approaches
enabling and easing the reflection on hard IP cores are then in need. Finally,
once the fault-tolerant and/or secure version of the target component has been
obtained, another metaprogram will replace the original component by this cus-
tomized version. In case the target component was the top-level component of the
system, there is no replacement, but the new component is the one to be used
from now on in the rest of the design process.

125

Appendix D. An Aspect-oriented Approach to Hardware Fault Tolerance for Embedded Systems

D.3.3 Integration within the regular hardware design flow

The common digital hardware design process, depicted in Figure D.3, involves
several steps to obtain a final product from initial specifications. Verification is
usually performed after each step of the design (considering a respectable design
size) to prevent any undetected error from causing further delays. This general
design flow has been enriched to include the open compilation process required to
introduce metaprogramming as a technique to generate and deploy fault detection
and tolerance mechanisms in the model of the system under development. The
newly added steps shown in Figure D.3 are highlighted in light grey to ease their
identification.

The first step takes a set of functional and non-functional specifications to act
as an input for the design of a system meeting these requirements. From these
specifications, an HDL model describing the behavior and/or structure of the final
system is defined. The design entry, although mostly done using HDL files, could
also take into account acquired off-the-shelf components, which are integrated with
other hand-coded components in a hierarchical style. Step 2 in Figure D.3 per-
forms functional simulations of the HDL model of the system to verify its proper
behavior in terms of service delivery. It must be noted that, as non-functional
mechanisms have not been deployed yet, this simulation just verifies that the cor-
rect functionality has been implemented. At this point (step 3 in Figure D.3), fault
injection could be a useful mean to determine the sensitivity of each component
to the fault models considered representative of each particular system. The aim
of this process is to determine which mechanisms should be applied, and where
they should be deployed, to meet dependability and security requirements. Fault
injection may take place at this stage, using a simulation-based tool like VFIT
[65]. Any problem reported during simulation or fault injection will feedback the
design process, thus modifying the HDL model to correct any deviation from the
specification. Provided that end users of CODESH will be HDL designers, and
assuming that this community is not intended to know about the subtleties of
open compilation and its implementation, an easy to use approach has been im-
plemented to help them to specify where and how to deploy a given metaprogram
(dependability and security mechanism) into the system model. This approach
consists in inserting a number of HDL comment lines with a special format that
has a particular meaning to the CODESH parser (step 4 in Figure D.3). The spe-
cific comment lines and related parameters for the customization of the deployed
components and mechanisms are documented for each metaprogram available in
the library. When running the open compiler, comment lines are first parsed to
determine which metaprograms must be applied for each HDL construct. The
main benefit of this approach is that hardware designers are already familiar with
it to specify synthesis directives in commercial products, like Synopsys’ Design
Compiler [187]. Furthermore, as it makes use of actual HDL comments, any Elec-
tronic Design Automation (EDA) tool may implement the original model of the

126

D.3 Metaprogramming the design of dependable and secure HDL-based embedded systems

Figure D.3: Integrating the proposed open compilation process into the regular hard-
ware design flow

127

Appendix D. An Aspect-oriented Approach to Hardware Fault Tolerance for Embedded Systems

system as it is, ignoring those comments that are only meaningful for CODESH.
It is at this point that CODESH open compiler takes the incoming HDL model,
which includes all the special comments specifying the parameterization of the
different fault tolerance and intrusion mechanisms to be deployed, and applies all
the required metaprograms to generate the output HDL model following the pre-
viously explained procedure (step 5 in Figure D.3). This new model can be then
simulated and subjected to fault injection as in the previous step to confirm that
all the (functional and non-functional) requirements are still met (steps 6 and 7
in Figure D.3). This output model is the one re-injected into the regular design
flow for its implementation. The common hardware design flow typically continues
with synthesis (step 8 in Figure D.3), which uses specific libraries for the final im-
plementation technology selected (like FPGAs or Standard Cells) and generates a
gate-level design adapted to the end target. Following stages (step 9 in Figure D.3)
include map and place and route to achieve a physical tape-out or configuration
file. Finally, the implemented design is simulated again (step 10 in Figure D.3), in-
cluding extracted timings, to check that the functional requirements are still met.
Likewise, emulation-/prototype-based fault injection (step 11 in Figure D.3) may
be also considered to validate the non-functional requirements [8, 90, 127]. Any
deviations from the specifications should be corrected by either parameterizing the
implementation (synthesis, mapping, and place and route) process or modifying
the HDL model. This may lead to iterate through the design flow until the re-
quirements are finally met. As shown, the metaprogramming approach followed
by CODESH can be seamlessly integrated into the regular hardware design flow.
Next section will describe, by means of two case studies, how far more ambitious
fault tolerance mechanisms than those commonly considered can be engineered
while facing the problem of dealing with white and black box approaches.

D.4 Dealing with white and black box IP cores as case
studies

As previously presented, third party components could be troublesome, as their
degree of openness could limit the visibility of its internal structure and thus the
flexibility metaprograms will have to deal with them. To illustrate both cases and
show the feasibility of metaprogramming to deploy fault tolerance and security
mechanisms, two different cases studies have been considered. The first metapro-
gram will define a fault tolerance strategy to tolerate transient faults via temporal
redundancy for white box combinational components. Later on, a second metapro-
gram will enable the integration of a qualified black box encryption core into an
embedded component to secure its communications with other components.

128

D.4 Dealing with white and black box IP cores as case studies

D.4.1 White box IP cores: tolerating transient faults via
temporal redundancy

Temporal redundancy involves the use of additional time to perform tasks related
to both software and hardware fault tolerance. It usually requires the repetition
of a failed execution using the same resources involved in the initial one. This
simple approach may tolerate the occurrence of timing or transient faults, as long
as the causes of that fault are already absent prior to the re-execution of the failed
task. Otherwise, the re-execution will lead to a failure again. Hence, temporal
redundancy could be a suitable solution for those systems that cannot afford the
extra cost of including redundant logic but may easily neglect longer execution
times, like mission-critical systems [132]. Although latency-critical applications,
like many of those that can be found in nowadays mobile devices, are not so
eager to trade timing for area, the inclusion of a hardware core implementing this
mechanism in the integrated circuited will alleviate the temporal cost of applying
a software-based approach. Figure D.4 shows the generation and customization
processes that should be applied to the original model of the system in order
to deploy a temporal redundancy mechanism. Solid black lines represent data
lines, solid gray lines depict control lines, whereas dotted lines are used for the
clock signal distribution. The different generation and customization rules devised
for the automatic deployment of such mechanism are described in the following
sections.

Figure D.4: Metaprogramming temporal redundancy

129

Appendix D. An Aspect-oriented Approach to Hardware Fault Tolerance for Embedded Systems

Generating the required infrastructure

Adapting an existing component to exhibit temporal redundancy capabilities in-
volves the generation of some generic infrastructure to store and compare interme-
diate results (see Figure D.4a). As demonstrated in [144], the generation of voting
infrastructures (voters) can be accomplished via metaprogramming. Accordingly,
and following a similar approach, the generation of generic comparators can be
easily accomplished. Finally, [143] showed how generic pre-designed registers can
serve as temporal data storage. All these elements are kept in the CODESH li-
brary once generated. Hence, as many different instances of these components
as required can be used to enhance the selected target component with temporal
redundancy capabilities.

Encapsulating the temporal redundancy mechanism

Providing temporal redundancy relies on processing the incoming inputs a given
number of times in order to compare the different outcomes obtained and deter-
mine the correct one when discrepancies appear. Figure D.4b depicts all the logic
required and its interconnection to a given component, in order to expand the
non-functional aspects of that component with temporal redundancy capabilities.
It is to note the importance of the component’s nature when applying that kind of
approach. The outputs provided by a combinational component only depend on its
current inputs. Accordingly, it is necessary to feed the combinational component
with the same inputs for each required re-execution. However, when dealing with
a sequential component, the obtained outputs not only depend on its current in-
puts, but also on its current state. Hence, when in a black box approach, sequential
components should provide intercession capabilities to enable the system to obtain
its current state (getState) and restore it later (setState) for each re-execution. In
case those intercession capabilities are absent from the component’s interface, it
will not be possible to deploy the desired temporal redundancy mechanism. Then,
this constraint must be taken into account when designing sequential components
that could be considered as candidates for temporal redundancy techniques. If a
white box approach is used, intercession could be implemented by inserting in the
output of each register a structure as the one surrounded by thick dashed lines
(register + multiplexer) in Figure D.4b. As this technique can always be applied to
combinational components, the description of the proposed approach will consider
that kind of component as target. Following the approach commonly used in the
design of digital circuits, all the logic required to control the previously described
infrastructure and the different re-execution stages is implemented by means of
a FSM. This FSM will comprise a number of states equal to the number of re-
executions (usually an odd number). In this example, the FSM consists of three
(3) different states, and the activation of the signals it controls for each state is
listed in the table depicted in Figure D.4b. As FSM are synchronous elements that

130

D.4 Dealing with white and black box IP cores as case studies

require a clock signal in order to activate the transition from one state to another,
when dealing with combinational components it will be required to include a clock
input port to the interface of the new customized component. During the first
state incoming inputs are registered, so the following re-executions may use these
very same data for their operation. Hence, each input of the target component is
associated to a register. In this first state, the target component directly operates
with these incoming data, not the registered ones, to avoid delaying the operation
one clock cycle. The outcome of the computation is also stored in another register
for later use. As several re-executions will take place after this first one, the rest
of the system should suspend its normal operation to wait for the right outcome
to be provided. Hence, a new stall output port should be included to the interface
of the customized component. This signal is now activated by the FSM, which
proceeds to its second state. From the second state and on, the target component
must operate with the data stored in the incoming registers. Hence, the FSM
activates the control signal of those multiplexers in charge of feeding the target
component. The outcome of this operation is also stored on a dedicated register.
Once more than half of the required re-execution have already been performed (3
for 5 executions, 4 for 7 executions, etc.), it is possible to optimize the performance
of this component: if all operations have provided the very same result, it is not
necessary to continue with the rest of re-executions, since this will be the right
outcome for the considered inputs. Accordingly, a comparator is used to determine
whether all the previously stored outcomes and the current one are equal. If this
is the case, the current outcome is passed onto the outputs of the component, the
stall signal is deactivated so the system may resume its normal operation, and
the FSM proceeds to its first state again. Otherwise, the FSM proceeds to its
next state (third state in the figure). Upon reaching the last (third in the exam-
ple) state, the last re-execution is performed. As it is not necessary to store the
outcome of this operation, a register is not required. This outcome, along with
those previously stored, are fed to a voter to determine the correct output of the
component. Finally, the FSM deactivates the stall signal to allow the system to
resume its operation, and proceeds to its first state. In summary, and following
this reasoning, to re-execute n times the operation of a given component with k
inputs, a FSM with n states will be in charge of controlling: k registers to store
the original inputs, n-1 registers to store the computed outputs, k+1 multiplexors,
an (n+1)/2 comparators to optimize the performance of the component, and an
n-inputs voter. In addition, a stall signal will control the execution flow of the rest
of the system to wait for the correct outcome. A metaprogram is in charge of de-
ploying and interconnecting all these elements to generate the temporal redundant
version of the target component.

131

Appendix D. An Aspect-oriented Approach to Hardware Fault Tolerance for Embedded Systems

Inserting the new component into the original model

The inclusion of the new (customized) component into the original model is usually
quite straightforward, just replacing the original component by an instantiation
of this new component. However, several other considerations must be taken into
account to deploy a temporal redundancy strategy (see Figure D.4c). In first
place, the clock signal must also be connected to the clock input port of the cus-
tomized component. This should not pose any problem, except when the original
component (SomeComponent in the figure) is combinational (asynchronous). In
this case, an input clock port must also be added to the interface of that com-
ponent, which should be connected to the clock signal of the component on the
next (higher) level of the hierarchy. In case the whole system exclusively consists
of asynchronous logic, this fault tolerance mechanism cannot be applied. The sec-
ond problem appears when considering that the new component may suspend the
execution of the rest of components to synchronize them with the computation of
the correct output. The best situation is faced when all components have been
designed with a stall input port. In this case, the current connection of each stall
input port may be OR-ed in order to be activated by either the normal flow of
the execution or the customized component. This is the approach shown in Figure
D.4c. If this stall port is missing in any of the components, things get a bit more
complex. One possible solution is determined by the existence of a write enable
input port in these components. If they are designed in such a way that disabling
that signal prevents the contents of all their registers from being updated, then
this write enable port may be also AND-ed with the NOT stall signal. Otherwise,
the last resort is to apply clock gating techniques [44]. In this case, clk AND NOT
stall is added to the clock tree to prevent those components from receiving a clock
edge, thus keeping their state until the stall signal is deactivated. This is the less
desirable method because of possible race conditions generated in the path. As an
example of how all these considerations are taken into account to customize the
original model of the system, Table D.1 specifies, in a Java-like pseudo code, the
metaprogram interface that implements this approach (Table D.1a) and all the
required transformation rules (Table D.1b).

D.4.2 Black box IP cores: integrating third party cores for
symmetric encryption

An IP core providing symmetric encryption [16] has been selected to show the
feasibility of using metaprogramming to enhance the non-functional capabilities
(security) of a given design and ease the integration of the core in further designs.
Let us assume that the outgoing data of very same component previously studied
should be encrypted in order to ensure its privacy. Figure D.5 shows the generation
and customization processes that should be applied to the original model to deploy

132

D.4 Dealing with white and black box IP cores as case studies

Table D.1: Metaprogram interface (a) and transformation rules (b) required to insert
the new component into the original model (customize the core structure)

133

Appendix D. An Aspect-oriented Approach to Hardware Fault Tolerance for Embedded Systems

the requested data encryption mechanism provided by the third party IP core. All
the rules devised for the automatic integration of such core are next described.

Figure D.5: Metaprogramming the integration of a third party core providing symmet-
ric data encryption into a given model

Generating the required infrastructure

As Figure D.5a shows, the main infrastructure required is just the IP core to
integrate into the system. This is somewhat different from what happens when
adding redundancy mechanisms to a target core, which usually require lots of
other elements to implement the desired non-functional aspect. In this case, the
symmetric encryption mechanism is already implemented by the selected IP core
and, hence, very little additional infrastructure is needed.

Encapsulating the third party core

The usefulness of a third party core, in addition to its intended functionality, relies
on its ability to be easily introduced into any kind of systems. Therefore, ana-
lyzing and enhancing the interface of a given IP core may contribute to ease its
reusability and extend its context of use. For instance, the following assertion may
be found in the documentation of the selected symmetric encryption core: “The
reset signal is used to set all internal signals to a known state and prepare the

134

D.4 Dealing with white and black box IP cores as case studies

core for operation. It should be strobed high at least once after power on and be-
fore attempting the first cryptographic operation.” [16]. Accordingly, the system
integrator should take it into account to feed the reset signal of that component
with the expected high logic level. However, it could happen that the original
reset signal of the system is active low, or even worse, that it consists of pure
combinational logic and so no reset signal is available. In any case, it seems highly
convenient to provide the third party core with a parameter (rst_ctrl) that can
be used to control whether this component will receive an active high or low reset
signal, or it should internally generate a reset to initialize the core. That is the
purpose of the 3-to-1 multiplexer and the finite state machine depicted in Fig-
ure D.5b. This new control signal will prevent system integrators from forgetting
to properly feed the reset signal of the third party core, as no input maybe left
unconnected and only meaningful values like ACTIVE_HIGH, ACTIVE_LOW,
and RST_NOT_AVAILABLE, are accepted. Something similar can be said about
the clock signal. In this case, no information can be found on the documentation
stating whether the symmetric encryption core operates on rising or falling edges.
After checking the core’s behavior (black box approach), and determining that it
operates on rising edges, a 2-to-1 multiplexer has been included to take care of
passing the right edge to the core. As in the previous example, it will be manda-
tory to activate the related control signal (clk_ctrl) with one of the two eligible
values (RISING_EDGE, FALLING_EDGE). Another interesting case is related
to the ds signal. According to the documentation: “the DS signal is the data
strobe. When momentarily strobed high, it indicates the input data set is valid,
and signals the core to start a cryptographic operation. Only the rising edge of
this signal has meaning: all other states are ignored.” [16]. A singular prob-
lem arises from the fact that, probably, the system integrating this core does not
present any ready signal in charge of notifying when new data is available on the
output port. One possible solution consists in making use of another component
(ValueChangeDetector on Figure D.5b) that provides a rising edge whenever the
data to be cyphered/deciphered changes. Accordingly, the ds_ctrl signal will con-
trol whether the ds input (DS) or the ValueChangeDetector (VALUE_CHANGE)
will trigger the encryption/decryption operation. The development of metapro-
grams to wrap third party cores in the required additional infrastructure may not
only help system integrators, but will enable other metaprograms to automatically
deploy these cores into the target model.

135

Appendix D. An Aspect-oriented Approach to Hardware Fault Tolerance for Embedded Systems

Inserting the new component into the original model

Once encapsulated, this customized core may be easily integrated into the orig-
inal model. As this component was not present in the model, it is necessary to
include its declaration (interface) and insert a new instantiation to establish the
connections among its input/output ports and the rest of signals and ports of the
system. In the example depicted in Figure D.5c this is quite simple, since the data
to be ciphered comes from the target component, and the actual output of the
system is now computed by the symmetric encryption core. The clock and reset
signals are directly connected to the corresponding core ports. As the original
component do not provide any output ready signal, all the rdy output ports of
the core are left unconnected (open). The last step is properly parameterizing
the control signals that have been added to the customized third party core to
ease its interconnection. In this example, the clk and rst signals of the system
follow the same specification as noted in the documentation of the encryption/de-
cryption core and, thus, its corresponding control signals are set accordingly (RIS-
ING_EDGE and ACTIVE_HIGH, respectively). As the component must encrypt
the incoming data, the cipher port is set to CIPHER. The target component does
not provide any information related to new data being available on its output
and, hence, the ds activation signal must be internally generated by checking the
incoming data (ds is set to ’0’ and ds_ctrl to VALUE_CHANGE). Finally, the
key used to encrypt/decrypt the incoming data must be passed to the inkey port
(X“1234567890ABCDEF” in the figure). The model resulting from the application
of the generation rules defined in the proposed metaprogram to automatically in-
tegrate the symmetric encryption mechanism is depicted in Figure D.6. In this
way, the privacy and confidentiality of outgoing data is easily ensured by reusing
existing qualified components.

D.5 Analysis of Results and Discussion

A structural HDL model of a PIC (Programmable Intelligent Computer) 16C5X
microcontroller [142], whose family is representative of those commonly used in
embedded applications, has been selected to show the feasibility of the proposed
approach. The generated metaprograms will be applied to that microcontroller to
automatically deploy i) a temporal redundancy mechanism to tolerate transient
faults in combinational logic, and ii) a symmetric encryption mechanism to ensure
the privacy of data sent by its output ports. The rest of this section presents the
considered experimental setup, the proposed solution to be automatically applied
by the metaprograms, and the analysis of computed results.

136

D.5 Analysis of Results and Discussion

Figure D.6: Metaprogram generation rule required to integrate the symmetric data
encryption third party component.

137

Appendix D. An Aspect-oriented Approach to Hardware Fault Tolerance for Embedded Systems

D.5.1 Experimental setup

In order to perform a fair comparison between the original model of the system
and the automatically generated fault-tolerant and secure models, the same imple-
mentation technology should be used for all of them. Field-Programmable Gate
Arrays (FPGAs), which are very useful for prototyping and testing HDL models
in the field, seem a good implementation choice since all these models follow a
synthesizable VHDL description. FADES [8], an FPGA-based Framework for the
Analysis of the Dependability of Embedded Systems, appears as a suitable frame-
work for implementing the models on a programmable device and injecting faults
during the experiments execution to analyze the sensitivity and final robustness
of the resulting system. The selected workload consists in a quicksort algorithm,
which could be representative of those control algorithms typically executed, for
instance, in automotive applications [33]. Temporal redundancy can deal with
transient faults and, as previously stated, this case study specifically focuses on
those faults affecting the combinational logic of the system. Hence, the consid-
ered faultload comprises pulses, transient indeterminations, and transient delays
[66], with just a single fault being injected in each experiment. The number of
experiments is determined according to the silicon area devoted to implement the
combinational logic of the target component and, thus, the relative area exposed
to the considered faults. The set of considered measures to estimate the robustness
of the system includes the percentage of faults being masked, remaining latent or
leading to a failure. Other measures related to cost or performance are the silicon
area, clock frequency and energy consumption. The detailed process of how to
extract all these measures from the observed measurements is described in [6]. In
a first stage, the design is implemented and prototyped, and faults are injected
using the aforementioned fault models to obtain a sensitivity analysis of each avail-
able component. This initial study revealed that the most suitable candidate to
improve its dependability via temporal redundancy is the control unit, whereas
communications from input output ports should be encrypted. Therefore, these
are the target components for the proposed metaprograms. Modified designs are
subjected to a new fault injection campaign to assess the improvements, proper
functioning and overhead of the inserted strategies. The results from this experi-
mentation are reported in next section.

D.5.2 Analysis of results

For each fault model, a number of 330 experiments were injected during the sen-
sitivity analysis of the original control unit, and 850 more were required after its
customization. As the goal of the encryption mechanism is to ensure the privacy
of the generated data, it makes no sense to inject accidental faults into that ver-
sion of the system. Dependability/security improvements usually come at a price,
in terms of increased silicon area, reduced throughput and increased power con-
sumption. The comparison of these results for the original IP core (PIC), the

138

D.5 Analysis of Results and Discussion

version enhanced with a temporally redundant control unit (TR), and the version
encrypting the outputs (DES) is presented in Table D.2.

Table D.2: Comparison of the original (PIC), temporally redundant (TR), and secured
(DES) cores in terms of failures, area, throughput, and energy consumption.

A. Impact of faults
IP core Pulses leading to failure Transient indeterminations leading to failure Transient delays leading to failure
PIC 9.7% 6.6% 0.9%
TR 3.7% 2.8% 1.3%
B. Area estimation
IP core Number of Flip-Flops Number of Look-up tables Number of slices Equivalent logic count Area increment
PIC 752 457 629 18362 –
TR 880 720 772 20979 +14%
DES 1006 1002 984 24051 +31%
C. Throughput estimation
IP core Clock period (ns) Number of clock cycles Execution time (us) Throughput (executions/s) Throughput reduction
PIC 33.232 1722 57.225 57.225 –
TR 43.691 3344 146.102 146.102 -61%
DES 33.922 1722 58.413 58.413 -2%
D. Energy consumption estimation
IP core Power consumption (mW) Execution time (us) Energy consumption (mW·s) Energy consumption increment
PIC 366 57.225 0.0209 –
TR 257 146.102 0.0375 +79%
DES 399 58.413 0.0233 +11%

As can be expected, the impact of transient faults on the combinational logic of
the system (see Table D.2a) is quite low since they can be electrically, temporally
and logically masked. Nevertheless, nearly a 10% of pulses and a 7% of indeter-
minations lead the system to a failure. This rate is reduced to just a 1% in the
case of transient delays. After protecting the system with the temporal redun-
dancy mechanism, the occurrence of any transient fault within the control unit
is completely tolerated. However, the whole set of logic that has been added in
order to deploy this mechanism is not protected against these faults and, thus, the
percentage of faults leading to a failure (on the whole) is decreased to just near
a 4% and 3% for pulses and indeterminations, respectively. The case of transient
delays is somewhat special. As the impact of delays is so low, the large amount
of additional unprotected logic included is negatively affecting the robustness of
the system, and no benefit can be obtained from this strategy. Moreover, the
registers introduced to hold input data may suffer other faults that have not been
tested but could add a minor impact in the system. That shows the importance of
performing a previous sensitivity analysis to accurately determine which strategies
to deploy and which components to target. However, these benefits in terms of
dependability and security do not come for free. As can be seen in Table D.2b,
and as can be expected, the original core is the one requiring the smallest amount
of silicon area for its final implementation. This area, estimated by the number
of logic gates required to build and equivalent circuit, increases a 14% when con-
sidering the fault tolerance mechanism (additional logic required to store inputs
and intermediate results, and to control the re-execution of the operations) and
a 31% for the security mechanism (additional logic required to keep tables with
information for the next encryption round and to execute the operation in 16
rounds). This somehow estimates the increased cost related to the larger quantity
of resources (flip-flops and look-up tables to implement the sequential and combi-

139

Appendix D. An Aspect-oriented Approach to Hardware Fault Tolerance for Embedded Systems

national logic of the system, respectively) required for implementing any of these
mechanisms. The number of times the system can execute the selected workload
per second (throughput) is also estimated in Table D.2c. The original core presents
the highest clock frequency and the lowest execution time, leading to the highest
throughput. As could be expected, deploying the fault tolerance mechanism onto
the control unit is highly impacting the critical path of the core and, hence, in-
creasing its clock period. Furthermore, as each instruction of the workload must
be executed at least twice, the finally obtained throughput is reduced a 61% with
respect to the original core. On the other hand, as the third party encryption core
has been designed with a 16-stages pipeline structure, its insertion in the original
model barely affects the finally obtained throughput (-2%). This variation is not
significant and maybe attributed to the non-deterministic implementation process.
The energy consumed by the three considered versions is reported in Table D.2d.
Once again, the original core obtains the best results, since it requires the smallest
quantity of resources to be implemented, and presents the lowest clock frequency
and the shortest execution time for the selected workload. The inclusion of the
temporal redundancy mechanism reduces the power consumption of the core, as
half of the time most of its components are stalled to recompute the output sig-
nals of the control unit. However, the so long execution time counterbalances this
result, leading to an increase in the energy consumption of a 79%. Although the
original core and the version improved with a security mechanism present very sim-
ilar clock frequency and execution times, the latter consumes an 11% more energy
due to the larger amount of physical resources required for its implementation. It
must be noted that all these overheads are inherent to the insertion of the different
fault tolerance and security mechanisms considered, and are not due to their def-
inition and deployment via metaprogramming. These overheads are very similar
to those that can be expected when implementing the very same mechanisms by
hand. Finally, experimental results validate the metaprogram-generated imple-
mentation and deployment of both mechanisms. Temporal redundancy increases
the robustness of the system against transient faults targeting its combinational
logic at the cost of greatly reducing the expected throughput and increasing its
energy consumption. Symmetric encryption enhances the security (privacy) of the
system by using a large number of physical resources for its implementation and
slightly increasing its energy consumption. This hinders malicious attacks based
on eavesdropping.

140

D.6 Conclusions and Open Challenges

D.6 Conclusions and Open Challenges

Increasing integration scales, time to market pressure and the use and re-use of
third party cores are greatly increasing the likelihood of occurrence of faults in
hardware embedded systems. Although once reserved for safety-, mission-, and
business-critical systems, fault tolerance and security strategies are nowadays a
requirement even to consumer electronics. Accordingly, both academia and in-
dustry are currently moving towards the provision of tools for automating the
implementation of fault-tolerant and secure components and their subsequent de-
ployment in hardware systems. This chapter has shown that aspect orientation
concepts, which have been successfully used for software development, can also
be applied to hardware development. The most common approach to support
the separation between functional and non-functional concerns in hardware design
is based on metaprogramming and open compilation. In concrete, CODESH, an
open compilation process for the design of dependable and secure high-level HDL
descriptions, has been used to illustrate how metaprograms could support the
design of fault-tolerant and secure hardware by i) developing the required basic
infrastructure, ii) encapsulating these elements to define a new fault-tolerant or se-
cure component, and iii) integrating it into the original HDL model. The proposed
open compilation approach is seamlessly integrated into the regular hardware de-
sign flow, thus enabling hardware designers to apply different fault tolerance and
security strategies to any HDL-based design within minutes and avoiding error
prone procedures. The feasibility of the approach has been proved through two
different case studies, which also showed the importance of properly analyzing
the weaknesses of the system so as not to incur in large overheads with negligi-
ble benefits. Despite metaprogramming and open compilation provide a highly
flexible approach for the generic development and automatic deployment of fault
tolerance and security mechanisms, its use requires a deep technical knowledge of
HDL, the metalanguage (Java in the case of CODESH), and the API reflecting
the structure of the input HDL model. Latest research in this domain is focusing
on instantiating all the concepts related to aspect orientation, like join points, ad-
vices and pointcuts, in the domain of HDL. In this way, common HDLs could be
extended to support the definition of fault tolerance and security mechanisms as
aspects using the same language hardware designers usually employ. The applica-
bility of this methodology may also be hindered by the openness (white box and
black box) of the considered models. Soft cores, with a white box approach, can
usually be analyzed and modified as desired and, thus, it is possible to add the
logic needed to implement the intended functionality. However, performing this
analysis to understand the implemented functionality, and modify it accordingly,
is not always as straightforward as it could seem. The definition of precise design
guidelines to help open compilers and metaprograms to reason about the input
model and locate the critical infrastructure necessary to implement the desired
interface is necessary. This is very similar to hardware design guidelines to help
synthesizers to obtain the right circuit from the input HDL model. When dealing

141

Appendix D. An Aspect-oriented Approach to Hardware Fault Tolerance for Embedded Systems

with hard cores, with a black box approach, and even under grey box approaches,
all the implementation details are hidden from the metaprogram and, thus, the
responsibility for implementing and properly documenting the required interfaces
falls again upon the core designer. This problem could be alleviated by designers
adhering to standards supporting the definition of buses for easing the intercon-
nection of cores, and thus their reuse, such as the Advanced Microcontroller Bus
Architecture [183], the Wishbone architecture [181], and the OpenCore Protocol
architecture [186]. Thus, components could be provided with a common interface
allowing their easy interconnection and interrogation about their configuration pa-
rameters and capabilities. Another interesting point is related to the composition
of mechanisms. Up to now, research has mainly focused on showing the feasibil-
ity of using open compilers and metaprogramming to automatically deploy fault
tolerance and security mechanisms into a given hardware system but, however,
the implications derived from its composition have not been considered yet. Ob-
viously, faults will affect differently a spatially redundant and secure component
and a secure and spatially redundant component. So, it could be very interesting
to study the composition of available mechanisms, how to deploy them in an ef-
ficient and automatic way, the effect of faults and attacks on these combinations
and, also, how they impact the area, throughput and energy consumption of the
final system. From this study, and by analyzing all the possible combinations
with HDL models considered representative of different application contexts (like
automotive, aircraft, or consumer electronics), it could be possible to obtain a
rough estimation of the benefits and drawbacks of each combination in each ap-
plication context. This could assist the open compiler user when deciding which
mechanisms to deploy on a given system according to cost, performance, and de-
pendability requirements. Finally, this kind of approaches may be of great interest
for the development of adaptive hardware systems. Let us assume, for instance,
that to protect a system against faults a Triple Modular Redundancy mechanism
is deployed, thus increasing the required area for a simple (non-protected) system
by around 200% (note again that this overhead is intrinsic to the mechanism and
is not due to its metaprogramming). In case a permanent fault occurs, the faulty
module is removed from the system and a Dual System with Comparison is used
instead. Now, when results do not match, they are re-executed once more. This
system would increase, with respect to the simple system, the required area by
a 100% and the execution time by 100%, but only in presence of faults. In case
another permanent fault is detected, the remaining fault-free component can be
encapsulated into a Temporal Redundancy mechanism, which will increase the ex-
ecution time by a 200%. If another permanent fault is detected, the system will
fail. Although a metaprogram could be developed to handle the deployment of all
three mechanisms at once, with the logic required to switch from one mechanism
to another, the cost in terms of area, performance and energy consumption will
be enormous. However, reconfigurable devices like FPGAs could be used not only
as prototyping platforms, but also as the implementation technology for the final
system. In this way, the hardware system could change from one defined config-

142

D.6 Conclusions and Open Challenges

uration to another as faults occur, but also as dependability, area, performance,
or energy consumption requirements change. For instance, if the reconfigurable
device is required to implement a given function, the system could move to a re-
duced area implementation (like the temporal redundancy mechanism) sacrificing
performance and dependability in favor of area. Once this additional function is no
longer needed, the system can change into a more dependable but otherwise con-
servative configuration, such as the comparison with detection. Finally, when the
device detects that the likelihood of occurrence of faults is high, it may switch into
a fully dependable configuration in spite of the area taken. As shown, the powerful
automation capabilities provided by metaprogramming and open compilation may
pave the way towards the actual use of adaptive resilience mechanisms, whose per-
formance and dependability capabilities could evolve depending on faults, attacks
and changes in the operation environment.

143

Appendix E

Robust communications using
automatic deployment of a
CRC-generation technique in
IP-blocks

Authors: Jaime Espinosa, David de Andrés, Juan Carlos Ruiz and Pe-
dro Gil

E.1 Introduction E.4 Case study

E.2 Research context E.5 Results and discussion

E.3 CRC as a metaprogram E.6 Conclusions

Electronic systems manage their complexity and reduce their time-
to-market throughout designs integrating off-the-shelf IP cores. As
fabrication scales are reduced, interactions between such cores become
more sensitive to accidental faults. A typical strategy to cope with such
problem is the use of Cyclic Redundancy Checks (CRC). In most of the
cases, CRC are manually designed for each system by engineers with
limited dependability skills. Consequently, the reusability of resulting
mechanisms is limited and their proneness to design bugs is not negligi-
ble. This paper investigates the use of metaprogramming techniques to
design generic and reusable CRC that can be automatically specialised

145

Chapter E. Robust communications using automatic deployment of a CRC-generation...

through open compilation attending to the particular features of each IP
core design. The various parametrisation decisions that must be consid-
ered to obtain CRC instances with a good balance between performance
and dependability are also reported and experimentally assessed.

E.1 Introduction

Miniaturisation in electronics has enabled the production of more powerful and
tiny HW designs whose complexity and time-to-market are handled through the
use of off-the-shelf building blocks, named IP cores. However, the barrier of one
micron sized gates in integrated transistors was long trespassed and associated
negative dependability side-effects have come into play [36]. Today, not only harsh
environment or mission critical elements can benefit from fault-tolerant techniques
but also consumer electronics which are in the need of robustness to maintain a
high quality standard and brand reputation [118].

One important aspect relating to CMOS shrinking is the number and potential
impact of accidental faults, such as single/multiple bit-flips and burst errors, in
inter IP core digital data communications. Cyclic redundancy checks (CRC) [139,
178] are privileged means to tolerate such faults. Although other fault-tolerant
mechanisms such as error-correcting codes can also solve the problem, the infor-
mation and computational overhead they induce is bigger than the one related to
CRC [171].

The problem handled in this paper is how to develop and deploy a CRC strategy to
promote their reusability in IP core-based HW designs. The idea is to enable the
use of such mechanisms even to designers with limited dependability skills, which
are those that are more prone to introduce a bug in the design of fault tolerance
mechanisms. This goal yields to consider design mechanisms promoting a clear
separation between the functional and non-functional (in our case CRC-based fault
tolerance) features of each IP core [145].

To cope with such separation of concerns, the considered CRC strategy has been
designed in a generic way as a metaprogram, applying on IP cores’ HDL (Hard-
ware Description Language) models a set of analysis and transformation rules to
produce specific CRC instances suitable for each IP-core. The reusability of such
metaprograms is promoted through the use of open compilation tools [146, 144,
143], which enables the automatic deployment of the metaprograms on concrete
IP core models. Finally, fault injection techniques are used to assess the level of
fault tolerance attained by resulting HW designs.

The rest of the paper structures as follows. Section E.2 presents the context of
this research. Section E.3 reports on the design of a CRC metaprogram, which

146

E.2 Research context

is later deployed on real case study in Section E.4. Results and conclusions are
finally detailed in Sections E.5 and E.6.

E.2 Research context

This section presents the basic notions about CRC mechanisms, metaprogram-
ming of dependability mechanisms and their automatic deployment using open
compilation.

E.2.1 CRCs and fault tolerance

CRC fitted transmitters send original data with extra bits calculated from applying
a generator polynomial. In the receiver an identical calculation is performed to the
original+extra bits received to obtain a match signal indicating no bit has been
altered. If the result is negative, the packet has to be retransmitted.

Crc strategies

Serial

Asynchronous

Frame size

Flags

Time out

Synchronous

Frame size

Flags

Time out

Parallel

Figure E.1: Transmission CRC strategies

Different transmission strategies are candidate to include CRCs (see Figure E.1).
They are classified into serial or parallel i/o structures. Further on, serial structures
comprise synchronous or asynchronous modes, depending on whether a clock line
is transmitted alongside the data line. Likewise, control blocks can command
checksums to be sent following, among others, i) a frame size strategy, which
transmits the checksum after a fixed number of data words, ii) a flags strategy,
which transmits the checksum after an end-of-frame flag, or iii) a time-out strategy,
which transmits the checksum after a fixed period of inactivity.

The degree of resilience provided by the mechanism will depend on the generator
polynomial [171, 89]. Koopman studies the theoretical properties of a huge set of
polynomials in [99], and highlights the importance of parameters like Hamming
Distance (HD) -minimum amount of bits to be changed to miss detection for a
given message size-, and Hamming Weight (HW) -number of combinations for a

147

Chapter E. Robust communications using automatic deployment of a CRC-generation...

specific amount of wrong bits in a fixed message size which would go undetected.
The first HW 6= 0 is the HD for that message.

Balancing the error detection capabilities and data overhead of a CRC, in different
contexts of use, will require the parametrisation of the polynomial in use and the
message size.

In the root of this paper, our research is focused on deploying CRC detection
mechanisms on serial asynchronous frame size based components. There are some
noteworthy constraints to be taken into account: i) the serial asynchronous frame
size strategy has been chosen due to its simplicity and common use in UAR-
T/USART protocols, but an extension to include other strategies is present in our
roadmap, ii) only the transmitter is implemented, iii) an enable input signal must
be activated every clock cycle data has to be sent, and iv) no start/end bits are
supported yet. The aforementioned mechanism will be defined as a metaprogram.

E.2.2 Metaprograms and open compilation

Open compilation approaches enable the application of program source to source
transformations. Those programs driving such transformation process are called
metaprograms.

For the sake of illustrating the concepts of open compilation and metaprogramming
with a concrete example, let us consider the CODESH tool, which provides an open
COmpilation process for the design of DEpendable and SEcure Hdl-based systems.

The workflow of this tool is depicted in Figure E.2. First, the comments grammar
parses the input file extracting any CODESH commands and parameters it may
contain. After that, the syntax grammar parses the code and creates a struc-
tured representation -abstract syntax tree (AST)- of that file. The AST is then
walked through and the identified language statements are sent to the selected
metaprogram, which analyses and transforms them according to its parametri-
sation and code. If no specific transformation is defined, then the statement is
not modified. CODESH embeds by default a neutral metaprogram providing no
transformations to input HDL models. Those metaprograms in the Metaprogram
Library change such default behaviour, by instrumenting HDL models to deploy
non-functional (in our case fault tolerance and security) strategies. For each state-
ment, the metaprogram applies the required transformations and returns the mod-
ified AST version of the statement to the open compiler, which translates it back to
the considered model. This is basically how the metaprogram is able to produce
a fault-tolerant/secure version of an input HDL model using open compilation
techniques. Next section describes how to metaprogram a CRC strategy.

148

E.3 CRC as a metaprogram

6. Output file generation
(AST to HDL conversion)

5. Customized AST

3. Apply Mechanisms (AST)

Input HDL
Model

Output HDL
Model

Customized AST
representation of
the input HDL model

AST Parser

AST representation of
the input HDL model

Default Meta-program
(Neutral code transformations)

AST HandleStatement(AST in){
return in;

}

User-defined Meta-programs
(Transformations for

fault tolerance or security)

AST HandleStatement(AST in){
AST out =

Analyze_and_Customize (in);
return out;

}

specializes …

(Metaprograms and

templates)

2. Input code parsing
(HDL to AST conversion)

4. Statement analysis and transformation

1. Input comments parsing
(Parameter extraction)

Directives
Parser

saved at…

M
e
t
a
i
n
t
e
r
f
a
c
e

CODESH Library

Figure E.2: CODESH workflow

E.3 CRC as a metaprogram

The general procedure designers should follow to develop new fault tolerance/se-
curity strategies as metaprograms for CODESH comprises three different phases:
phase 1) generating the required infrastructure, phase 2) generating the new pro-
tected component by encapsulating the original component and the generated
infrastructure, and phase 3) integrating the protected component into the given
design. Figure E.3 details the model of the considered input component (see Orig-
inal component).

E.3.1 Phase 1: Infrastructure generation

Following a bottom-up process, the deployment of a CRC mechanism first requires
the generation of some basic infrastructure. As depicted in Figure E.3, the cre-
ation of a CRC-protected component involves the development of a suitable CRC
generator block, a custom control block, and some combinational logic.

Reuse of tested blocks is a convenient and robust design technique and, thus,
mature serial and parallel structures have been picked for the CRC generator.
These blocks have been downloaded from the open source OpenCores website
[125] and included in the CODESH library, however any valid implementation can
be used.

149

Chapter E. Robust communications using automatic deployment of a CRC-generation...

Original Component

reset tx_over_run
txclk tx_buf_empty
ld_tx_data tx_out
tx_data tx_empty
tx_enable

Crc_adapted block

Combinational logic

Out_sel_cn tx_out_o
Crc_cn
tx_out_i

Crc generator

rst_i

clk_i

clken_i

data_i match_o

flush_i crc_o

Crc_protected component

Control block

rst_i tx_enable_o

tx_clk_i tx_crc_en_o

tx_enable_i flush_o

tx_empty_i out_sel_o

Figure E.3: A CRC-protected block structure showing relevant interconnections

Conversely the control block, which is in charge of generating control signals to
drive the CRC generator block and the output combinational logic, greatly depends
on the kind of transmitter being protected. This is why it must be custom gener-
ated during the deployment of the CRC strategy. CODESH provides two different
paths for metaprograms to generate custom blocks: i) starting them from scratch,
or the chosen ii) using pre-designed templates and customise them attending to
the input commands. New metaprogram rules may later adapt the control block
to accept start/stop bits or different transmit enable schemes. Combinational logic
to control output is also custom generated.

150

E.3 CRC as a metaprogram

Generation Rule g7:

Step 1 - Parameter fetch

 Output data port

 Reset port

 Enable port

 Empty port

 Clock port

 Strategy
Step 2 – Customisation of
connections and name of
crc_adapted block

Generation Rule g5:

Step 1 - Parameter fetch

 Strategy
Step 2 – Name customisa-
tion of declared component

Generation Rule g4:

Step 1 - Parameter fetch

 Init value

 Reset sync

 Polynomial

 Frame size

 Word size

Step 2 – Addition of values

of parameters.

Generation Rule g1:
Step 1 - Original Compo-
nent entity elements fetch
Step 2 – Customisation of
entity name & introduction
of other elements

Generation Rule g2:

Step 1 Customisation of

architecture name

Encapsulated uart_buf_crc1021.vhd
(CRC_protected: Original+CRC_adapted)

Template Encapsulator_crc.vhd
(from CODESH library)
library ieee;
 use ieee.std_logic_1164.all;
 USE ieee.numeric_std.ALL;

entity replace is
 port(
 reset :in std_logic;);
end replace;

architecture rtl of replace is

 constant POLYNOMIAL : std_logic_vector := x"8005";
 constant INIT_VALUE : std_logic_vector := x"FFFF";
 constant RESET_SYNC : integer range 0 to 1 := 0;
 constant FRAME_SIZE : integer := 2;
 constant WORD_SIZE : positive := 8;
 signal tx_out_cn, tx_empty_cn, tx_enable_cn :std_logic;

 component crc_adapted_STRATEGY is
 generic (
 POLYNOMIAL : std_logic_vector;
 INIT_VALUE : std_logic_vector;
 RESET_SYNC : integer range 0 to 1;
 FRAME_SIZE : integer;
 WORD_SIZE : positive);
 port (
 reset, txclk, tx_enable_i, tx_out_i :in std_logic;
 tx_enable_o, tx_out_o, tx_empty_o : out std_logic;
 tx_empty_i : in std_logic;
 match_o : out std_logic);
 end component;

begin

myCrc_adapted : crc_adapted_STRATEGY
 generic map(
 POLYNOMIAL => POLYNOMIAL,
 INIT_VALUE => INIT_VALUE,
 RESET_SYNC => RESET_SYNC,
 FRAME_SIZE => FRAME_SIZE,
 WORD_SIZE => WORD_SIZE)
 port map(
 reset => resetOC,
 txclk => txclkOC
 tx_enable_i => tx_enableOC,
 tx_enable_o => tx_enable_cn,
 tx_out_i => tx_out_cn,
 tx_out_o => tx_outOC,
 tx_empty_i => tx_empty_cn,
 tx_empty_o => tx_emptyOC,
 match_o => open);

end rtl;

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity uart_buf_crc1021 is
 port (
 reset, txclk, ld_tx_data, tx_enable : in std_logic;
 tx_data : in std_logic_vector(7 downto 0);
 tx_out, tx_empty : out std_logic;
 tx_over_run tx_buf_empty: out std_logic;);
end uart_buf_crc1021;

architecture rtl of uart_buf_crc1021 is

 component uart_buf is
 port (
 reset, txclk, ld_tx_data, tx_enable : in std_logic;
 tx_data : in std_logic_vector(7 downto 0);
 tx_out, tx_empty : out std_logic;
 tx_over_run tx_buf_empty: out std_logic;);
 end component uart_buf;

 constant POLYNOMIAL : std_logic_vector := x"1021";
 constant INIT_VALUE : std_logic_vector := x"FFFF";
 constant RESET_SYNC : integer range 0 to 1 := 0;
 constant FRAME_SIZE : integer := 4;
 constant WORD_SIZE : positive := 8;
 signal tx_out_cn, tx_empty_cn, tx_enable_cn :std_logic;

 component crc_adapted_FSser is
 generic (
 POLYNOMIAL : std_logic_vector;
 INIT_VALUE : std_logic_vector;
 RESET_SYNC : integer range 0 to 1;
 FRAME_SIZE : integer;
 WORD_SIZE : positive);
 port (
 reset, txclk, tx_enable_i, tx_out_i :in std_logic;
 tx_enable_o, tx_out_o, tx_empty_o : out std_logic;
 tx_empty_i : in std_logic;
 match_o : out std_logic);
 end component crc_adapted_FSser;

begin

 OrigComp : component uart_buf
 port map (
 reset => reset,
 txclk => txclk,
 ld_tx_data => ld_tx_data,
 tx_data => tx_data,
 tx_enable => tx_enable_cn,
 tx_out => tx_out_cn,
 tx_empty => tx_empty_cn,
 tx_over_run => tx_over_run,
 tx_buf_empty => tx_buf_empty);

 myCrc_adapted : component crc_adapted_FSser
 generic map (
 POLYNOMIAL => POLYNOMIAL,
 INIT_VALUE => INIT_VALUE,
 RESET_SYNC => RESET_SYNC,
 FRAME_SIZE => FRAME_SIZE,
 WORD_SIZE => WORD_SIZE)
 port map (
 reset => reset,
 txclk => txclk,
 tx_enable_i => tx_enable,
 tx_enable_o => tx_enable_cn,
 tx_out_i => tx_out_cn,
 tx_out_o => tx_out,
 tx_empty_i => tx_empty_cn,
 tx_empty_o => tx_empty,
 match_o => open);

end architecture rtl;

Generation Rule g6:

Step 1 - Parameter fetch

 Output data port

 Reset port

 Enable port

 Empty port

 Clock port
Step 2 – Instantiation of
original component with
customized connections

Generation Rule g3:

Step 1 – Original component

declaration

Step 2 – Generation of orig.

component declaration

Original vhd module
--* CODESH ON

--* CODESH (...)

--* CODESH OFF

(...)

Metaprogram input
parameters

COMPONENT => uart_buf
INSTANCE => UART1
OUTPUT_DATA_PORT => tx_out
ENABLE_PORT => tx_enable
EMPTY_PORT => tx_empty
CLOCK_PORT => txclk
RESET_PORT => reset
STRATEGY => FSser
POLYNOMIAL => x"1021"
INIT_VALUE => x"FFFF"
RESET_SYNC => false
FRAME_SIZE => 4
WORD_SIZE => 8

Parameter

extraction

performed

by Me-

taprogram

Metaprogram Rules

Figure E.4: Phase 2, encapsulation of the new CRC-protected component using tem-
plate

E.3.2 Phase 2: Component encapsulation

After generating the required infrastructure, it must be encapsulated with the
original component into a new CRC-protected component following the schema
depicted in Figure E.3.

The CRC generator, custom control block and combinational logic are first joined
within a new CRC_adapted block. Then, a new CRC_protected component is
generated, for the CRC_adapted block to process the output of the original com-
ponent. The encapsulation of these elements is performed using a set of rules as
shown in the example in Figure E.4.

151

Chapter E. Robust communications using automatic deployment of a CRC-generation...

Customisation rule c1:
Step 1 - Parameters fetch

 Component name

 Polynomial
Step 2 - Original Compo-
nent declaration fetch
Step 3 – Generation of new
component declaration

Customisation rule c2:

Step 1 - Parameter fetch

 Instance name

 Component name

 Polynomial
Step 2 – Change of de-
clared original instance
name

Customised top_FT.vhd module Original top.vhd module
--* CODESH ON
--* CODESH MECHANISM => CRC
--* CODESH COMPONENT => uart_buf
--* CODESH INSTANCE => UART1
--* CODESH OUTPUT_DATA_PORT => tx_out
--* CODESH ENABLE_PORT => tx_enable
--* CODESH EMPTY_PORT => tx_empty
--* CODESH CLOCK_PORT => txclk
--* CODESH RESET_PORT => reset
--* CODESH STRATEGY => FSser
--* CODESH POLYNOMIAL => x"1021"
--* CODESH INIT_VALUE => x"FFFF"
--* CODESH RESET_SYNC => false
--* CODESH FRAME_SIZE => 4
--* CODESH WORD_SIZE => 8
--* CODESH OFF

library ieee;
 use ieee.std_logic_1164.all;
 use ieee.numeric_std.ALL;

entity top is
 port(reset, txclk, ld_tx_data, tx_enable : in std_logic;
 tx_data : in std_logic_vector (7 downto 0);
 tx_out,tx_empty,tx_over_run,tx_buf_empty:out std_logic;);
end top;

architecture rtl of top is

 component uart_buf is
 port (reset, txclk, ld_tx_data, tx_enable : in std_logic;
 tx_data : in std_logic_vector(7 downto 0);
 tx_out, tx_empty: out std_logic;
 tx_over_run, tx_buf_empty: out std_logic);
 end component uart_buf;

begin
 UART1 : component uart_buf
 port map (
 reset => reset,
 txclk => txclk,
 ld_tx_data => ld_tx_data,
 tx_data => tx_data,
 tx_enable => tx_enable,
 tx_out => tx_out,
 tx_empty => tx_empty,
 tx_over_run => tx_over_run,
 tx_buf_empty => tx_buf_empty
);

end architecture;

library ieee;
 use ieee.std_logic_1164.all;
 use ieee.numeric_std.ALL;

entity top is
 port (reset, txclk, ld_tx_data, tx_enable :in std_logic;
 tx_data :in std_logic_vector (7 downto 0);
 tx_out, tx_empty, tx_over_run, tx_buf_empty :out
std_logic;);
end top;

architecture rtl of top is

 component uart_buf is
 port (reset, txclk, ld_tx_data, tx_enable : in std_logic;
 tx_data : in std_logic_vector(7 downto 0);
 tx_out,tx_empty,tx_over_run,tx_buf_empty:out std_logic);
 end component uart_buf;

 component uart_buf_crc1021 is
 port (reset, txclk, ld_tx_data, tx_enable : in std_logic;
 tx_data : in std_logic_vector(7 downto 0);
 tx_out, tx_empty: out std_logic;
 tx_over_run, tx_buf_empty: out std_logic);
 end component uart_buf_crc1021;

begin
 UART1 : component uart_buf_crc1021
 port map (
 reset => reset,
 txclk => txclk,
 ld_tx_data => ld_tx_data,
 tx_data => tx_data,
 tx_enable => tx_enable,
 tx_out => tx_out,
 tx_empty => tx_empty,
 tx_over_run => tx_over_run,
 tx_buf_empty => tx_buf_empty
);

end architecture;

Automatic Para-

meters extraction

Metaprogram Rules

Figure E.5: Phase 3, integration of the CRC-protected component into the target
system.

E.3.3 Phase 3: Component integration

Finally those instances of the original component to be protected must be re-
placed by instances of the CRC_protected component obtained in the previous
phase. Likewise, the new component declaration must be included in the affected
component. This procedure is represented in Figure E.5.

E.3.4 Bridging mechanism deployment and VHDL coding

In order to simplify the deployment of the presented analysis and transformation
processes, the behaviour of CODESH is parametrised by inserting specific tags into
the HDL code to provide CODESH with all the required information. So as not
to interfere with synthesizers, these tags are formatted as special HDL comments
(see Figure E.5, Automatic parameter extraction). The required information is
the name of relevant ports, strategy of implementation, generator polynomial,
initialisation value, type of reset, and additional strategy-dependent parameters.

An example of application is shown in Figure E.5, where the original HDL module
includes all the information required to make the output of a given component
CRC-protected.

152

E.4 Case study

E.4 Case study

This section shows how the proposed approach applies on the transmitter section
of a simple UART providing serial asynchronous communication capabilities. Next
sections describe the cores under study, the selected test bed and its parametrisa-
tion.

E.4.1 CRC-protected UART transmitter

The UART transmitter, downloaded from OpenCores [125], was modified to i)
introduce a buffer acting like a FIFO in full-featured UARTs to avoid wasted
clock cycles, and ii) disable any start/stop bits until they can be handled by the
mechanism. It fits the model presented in Figure E.3 as Original component.

Thanks to CODESH, and once the metaprogram was developed, the generation
and deployment of the CRC mechanisms for protecting the transmitter was accom-
plished in no time with negligible effort. Hence, different CRC-protected UARTs
were automatically generated to check the correctness and robustness of resulting
solutions.

Selected data sizes were those of commercial standards like XMODEM or CAN,
CRC sizes were those of XMODEM, ISDN or USB header packets, and polynomials
were chosen after Koopman [99]. The considered configurations are listed in Table
E.1.

The target system was a protected component transmitting a given frame to a
receiver which featured the very same CRC to compute the check once the frame
was received.

E.4.2 Faultload

The resilience capabilities provided by the deployed mechanism can be determined
by observing the behaviour of the system in the presence of a representative set of
faults. The number of experiments was determined to obtain an statistical quality
of a 95% as stated in [172]. Table E.1 list the number of experiments carried out
and the considered fault models.

Single and multiple bit and burst faults are considered as fault models. Single bit
faults represent value switches in the serial output that may affect any bit in a
packet. Burst faults were emulated by: i) flipping all burst bits, and ii) fixing all
burst bits to a given value. Burst length was fixed to 16-bits for the purpose of
the present experimentation. Finally, multiple bit faults were injected to check i)
the HD claimed by the polynomials and ii) the announced HW. For the former
all possible combinations of HD - 1 bits of the packet should be considered, thus

153

Chapter E. Robust communications using automatic deployment of a CRC-generation...

Table E.1: Number of experiments for the selected configurations

Data size CRC size

(bits) (bits) Single bit Burst Multiple bit

16 x"A7D3" x"A7D3" -----

8 x"D5" x"D5" x"D5" | x"39"

5 x"05" x"05" -----

16 x"90D9" x"90D9" -----

8 x"9B" x"9B" -----

5 x"05" x"05" -----

16 x"2D17" x"2D17" -----

8 x"2F" ----- x"2F" | x"39"

5 x"05" ----- -----

Data size CRC size Polynomial

(bits) (bits) (hexadecimal) Single bit Burst Multiple bit

16 x"A7D3" 3115 3067 -----

8 x"D5" | x"39" 3091 3043 10000 |1000

5 x"05" 3082 3034 -----

16 x"90D9" 239 191 -----

8 x"9B" 215 167 -----

5 x"05" 206 158 -----

16 x"2D17" 95 47 -----

8 x"2F" | x"39" 71 ----- 7888 | 1826

5 x"05" 62 ----- -----

64

16

1024

64

16

Fault model

Fault model

1024

yielding a sheer amount of experiments to be computed. Hence just 16-bits data /
8-bits CRC configurations, requiring a smaller number of experiments, were chosen
to demonstrate the importance of selecting a suitable polynomial. For the latter,
1024-bits data / 8-bits CRC configuration were selected, as polynomials present
equal HD with considerably different HW. In this case, a limited number of runs
was carried out due to computational limitations.

E.4.3 Experimental procedure

For each configuration, a fault-free experiment were carried out and results were
used as comparison reference. Then, fault injection experiments were performed
using the VFIT tool [65] the number of times established in table E.1 following a
uniform random distribution in time.

Results provided by fault injection experiments where classified attending to three
different failure modes: i) data corruption, if the CRC mechanism correctly detects
that the received data do not match the original payload, ii) checksum corruption,
if the mechanism detects a problem in the received packet and asks for a retrans-
mission (data was valid but the CRC was not), and iii) missed corruption, if the
CRC mechanism incorrectly signals a right check after receiving corrupted data.

154

E.5 Results and discussion

E.5 Results and discussion

As shown in Table E.2, and as could be expected, 100% of single fault were cor-
rectly detected.

Table E.2: Results for single bit faults

Data size

(bits)

CRC Size

(bits)

Data

corruption

CRC

corruption

Missed

corruption

16 98,39% 1,61% 0,00%

8 99,13% 0,87% 0,00%

5 99,35% 0,65% 0,00%

16 82,01% 17,99% 0,00%

8 90,23% 9,77% 0,00%

5 94,66% 5,34% 0,00%

16 63,16% 36,84% 0,00%

8 76,06% 23,94% 0,00%

5 88,71% 11,29% 0,00%

1024

64

16

Although all selected CRC sizes were fit to detect single bit faults, bigger sizes
increase the probability of faults affecting the CRC and thus provoking spurious
retransmissions (CRC corruption causes right data to be discarded). This increases
the transmission delay in addition to the overhead introduced by the CRC section
of the packet. A further analysis reveals that the percentage of CRC corruptions
is strongly dependent on the ratio between data and CRC sizes. Figure E.6 illus-
trates that, for reasonable spurious retransmission rates, this ratio has to be kept
moderately low.

0,00%

5,00%

10,00%

15,00%

20,00%

25,00%

30,00%

35,00%

40,00%

1 2 3,2 4 8 12,8 64 128 204,8

Sp
u

ri
o

u
s

re
tr

an
sm

is
si

o
n

s

Data size/crc size

Figure E.6: Relation between the spurious retransmission rate and the data/CRC size
ratio

155

Chapter E. Robust communications using automatic deployment of a CRC-generation...

Burst faults are fully detected by CRCs with the same length as the burst. For
longer bursts, the probability of missed detection is 2−g, where g is the degree
of the polynomial. So, as shown in Table E.3, it is not easy to find a burst
combination which misses detection.

Table E.3: Results for 16-bits burst faults

Data size

(bits)

CRC Size

(bits)

Data

corruption

CRC

corruption

Missed

corruption

16 99,84% 0,16% 0,00%

8 100,00% 0,00% 0,00%

5 99,57% 0,00% 0,43%

16 96,86% 3,14% 0,00%

8 100,00% 0,00% 0,00%

5 96,84% 0,00% 3,16%

16 16 91,49% 8,51% 0,00%

1024

64

Although no 16-bits burst led to a missed corruption for 8- and 16-bits CRC,
both burst fault models caused missed corruptions for 5-bits CRC. Hence, as the
probability of undetected bursts is only related to the CRC size, if frequent long
burst faults are expected the use of longer CRCs together with shorter data is
strongly recommended.

Two different polynomials have been considered to analyse the HD for sparse
multiple bit faults. Results listed in Table E.4 demonstrate that 0x2F correctly
detects any combination of up to 3 erroneous bits, whereas only single bit faults
are detected by 0x39 (good and bad polynomials according to [99]).

Table E.4: Results for multiple bit faults: HD

2-bits 3-bits 4-bits

x"2F" (HD=4) 100,00% 100,00% 99,80%

x"39" (HD=2) 99,52% 100,00% -----
16 / 8

Detected faultsPolynomial

(hexadecimal)

Data/CRC size

(bits)

Table E.5: Results for multiple bit faults: HW

Expected Experimental

x"D5" (HD=2) 5214 0,995% 0,96%

x"39" (HD=2) 30810 5,882% 6,00%
1024 / 8

Data/CRC size

(bits)

Polynomial

(hexadecimal)

Hamming

weight

Missed 2-bits faults

156

E.6 Conclusions

The HW importance has been studied using two polynomials with a poor HD = 2,
but with a 5.9 ratio between their HW. This translates to a missed detections ratio
of nearly 6. Experimental results listed in Table E.5 present a fairly good match,
although only a 10% of the required number of experiments were performed due
to computational constraints.

Experiments have demonstrated i) the correctness of the transformations applied
to obtain a CRC-protected component, and ii) the importance of choosing a good
polynomial to improve detection capabilities at no extra cost.

E.6 Conclusions

This paper proposes a new approach to develop generic and reusable CRC protec-
tion mechanisms as metaprograms. Open compilation techniques were required
to automate the deployment and adaptation of such mechanisms attending to the
particular features of each component. Fault injection techniques are finally nec-
essary to check the correctness of, and assess the level of dependability finally
attained by metaprogram deployments.

As discussed, the reuse of metaprograms eases their debugging and testing, thus
making generated mechanisms less prone to incorporate design bugs. Likewise,
automating the generation of CRC instances has a very positive impact on i) the
time-to-market and cost of resulting products, ii) the exploitation of the approach
by non-skilled engineers, and iii) the reduction of the effort required to produce and
evaluate different alternatives attending, for instance, to existing parameters and
their impact on the final system performance, dependability, power consumption
and cost.

A subset of serial asynchronous communication schemes has been chosen to show
the feasibility of the proposal. The fault tolerance capabilities of the automatically
generated CRC instances, and the impact of data and CRC sizes, and generator
polynomials, has been studied using a real design in the presence of different types
of faults. This opens the door to design adaptive schemes of protection, which
may select the right configuration on the fly among those previously generated
by the tool, in response to environmental changes. It is also important to extend
the coverage of the strategy to support more transmissions schemes, such as those
with other serial asynchronous control protocols and those with synchronous and
parallel transmitters.

157

Appendix F

Towards Certification-aware Fault
Injection Methodologies Using
Virtual Prototypes

Authors: Jaime Espinosa, David de Andrés, Juan Carlos Ruiz, Carles
Hernández and Jaume Abella

F.1 Introduction F.4 FALLES:Fault injection
and Analysis for Low
Level Evaluation Suite

F.2 Related work F.5 Experimental results

F.3 Certification-aware fault in-
jection in virtual prototypes

F.6 Conclusions

Safety-critical applications are required today to meet more and
more stringent standards than ever. In the need of reducing the costs
associated with the certification step, early robustness evaluation can
provide valuable information, as long as it is fast and accurate enough.
Microarchitectural simulators have been employed for testing reliability
properties in several domains in the past, but their use in the process of
robustness verification of safety critical systems has not been validated
yet, as opposed to RTL or gate-level simulations. In the present work,
we propose a methodology to improve the accuracy of fault-injection re-

159

Chapter F. Towards Certification-aware Fault Injection Methodologies Using Virtual...

sults when targeting robustness verification, by using microarchitectural
simulators and virtual prototypes for an early estimation of deviations
with respect to the certification standards.

F.1 Introduction

To cope with the increasing functionality demands coming from the safety-critical
systems industry processor designs offering more computation power are required.
However, the growing complexity together with the requirement for adhering to
certification standards causes processor designs targeting safety critical markets
rarely achieve reduced time to market. In that context, new verification and test
methodologies and tools have to be devised for a quick and cost-effective way to
check whether robustness properties are achieved throughout the whole design flow
on top of complex processor designs.

Simulation-based fault injection is regarded as a suitable methodology for the
robustness verification process, as quick and cheap corrections on misbehavior can
be made. Unfortunately, fault injection experiments are often carried out at gate
level, and so the testing process becomes excruciatingly slow. This problem is
alleviated when fault-injection is applied at a higher level of abstraction like the
Register Transfer Level (RTL). Verification at the RTL level reduces the burden
but still results can get too slow for repeated use in the context of complex designs.

Software-based fault injection techniques and in particular fault-injection experi-
ments using virtual prototypes (or microarchitectural simulators) are a potential
candidate to reduce the costs associated with the robustness verification process
[123][175]. The main benefits of these approaches with respect to RTL-based fault
injections are the simulation speed and the possibility to anticipate deviations
w.r.t. the safety requirements before having an actual implementation of the sys-
tem. Note that the effort required to have a virtual prototype [169][104] of the
system is much lower than the one required to have an RTL processor descrip-
tion1. However, for these approaches to be employed in the robustness verification
process of safety critical processors their accuracy must be proven. It is important
to mention that fault-injections using microarchitectural simulators are typically
restricted to the register file [77][150] and the different memory structures [149][2].
The reason is that the majority of the potential injection nodes that are present
at more detailed abstraction levels like RTL or gate-level are missing at this level
of abstraction.

In this context, estimating accurate failure rate metrics using virtual prototypes is
challenging. On one hand, implementation details of virtual prototypes provided

1In fact virtual prototypes are already needed to enable software developers to test their
software before the actual processor is shipped.

160

F.2 Related Work

with commercial tools [169] are typically protected. On the other hand, even if
implementation details were available, the existing information in virtual proto-
types implementation is reduced in comparison to other detailed implementations
like RTL. Taking these facts into account, obtaining failure metrics as the ones
required by safety critical systems certification standards [81][134] using virtual
prototypes is a complex task. Our hypothesis is that for virtual prototypes to
be considered for the robustness verification process, results obtained at this level
must be correlated with the ones obtained at lower levels of abstraction like the
RTL or gate-level as fault-injection at these lower abstraction levels has already
been shown to provide accurate enough results [135].

In this paper we propose a methodology that increases the confidence on fault
injection experiments into virtual prototypes by using some key information ex-
tracted from more detailed levels of abstraction (say for instance RTL or Gate
Level). In particular, we are interested in knowing the likelihood that a fault in
any [169] possible processor net, gate, or flip/flop, propagates to the register file,
system registers or the different memory structures existing in the CPU virtual
prototype. Note that this architectural information represents the minimum im-
plementation details that need to be available in any virtual prototype and visible
to the user.

The rest of the paper is organized as follows. Section F.2 reviews the state-of-the
art in fault injection related to the certification of safety-critical systems. Section
F.3 presents the problem in detail and the proposed methodology towards enabling
the use of Virtual Prototypes for injection. The employed tool is presented in
Section F.4. Section F.5 shows the preliminary evaluation data and finally, in
Section F.6 some conclusions are drawn.

F.2 Related Work

Several techniques exist to perform RTL level fault injection. A widely-used
method is the injection in the HDL through simulator commands [86], which
works well for most of the fault models described in the literature. In fact,
some unconventional fault models such as those involving several injection points
–short-circuit, multi-bit injection– can be applied if the more intrusive technique
of saboteurs is used [15], but an instrumentation of the model –and the consequent
decrease in simulation speed– is entailed.

Fault models representativeness has been validated for logic/RTL levels [66]. On
the contrary, for higher abstraction levels like the microarchitectural one, some
works have pointed out the difficulties of correlating these results with the ones
obtained at the physical level [103]. In [30], a quantitative analysis on the diver-
gences was presented, though restricted to bit-flip models injected in flip-flops.

161

Chapter F. Towards Certification-aware Fault Injection Methodologies Using Virtual...

CPU Baseline RTL
Implementation

Inject Faults

IP Protected
VP Implementation

A
rc

h
it

e
ct

u
ra

l

 R

e
g
is

te
rs

M
E
M

Inject Faults
in Registers
using RTL info

CPU Virtual Prototype

Figure F.1: Proposed methodology

Further analysis on the impact at instruction level of low-level (RTL and gate
level) faults was presented in [109]. In that work, stuck-at and bit-flip models are
injected to profile higher-level implication, but injections are limited to the control
logic and a reduced set of it in the case of gate level.

F.3 Certification-Aware Fault Injection in Virtual
prototypes

In this paper we present a methodology that targets performing meaningful fault-
injection experiments using virtual prototypes. The proposed methodology con-
sists of two separate steps: (1) a characterization of the fault propagation in an
RTL description of the processor, and (2) the actual injection in the virtual pro-
totypes.

F.3.1 Characterizing Fault behaviour at RTL level

We are interested in analyzing the influence of faults in the system towards the
incorrect delivery of results, i.e. the appearance of failures, and the moment at
which those failures may appear. To characterize fault propagation we propose
a methodology that consists of injecting faults in all possible nets of an RTL
processor description, using the tool FALLES described in Section F.4.

From the injectable nets we have excluded the register file and cache memory
structures due to the following reason: errors occurring within these structures
are effectively detected and/or corrected by employing redundancy mechanisms
(e.g., error correction codes) and this is the case in most of the processors targeting

162

F.3 Certification-Aware Fault Injection in Virtual prototypes

safety-critical applications [185][83]. Moreover, available nets in these structures do
not realistically represent their area. Memory structures are typically implemented
using SRAM cells to minimize area and power and the RTL includes only an
instantiation of these components as a black box and/or its behavioral description.

For every fault injection where a net has been forced to a given value, we compare
the outputs of architectural registers (general purpose and control registers) and
the data and address buses of the core at the on-chip boundaries to the ones ob-
tained with a fault-free simulation. Furthermore, we account for the time elapsed
between a mismatch appearing in any of those architectural registers and the
subsequent mismatch in the buses which appears in some cases. Gathering this
information enables, for instance, detecting the most sensitive registers, which
may be ideal candidates for mitigation, or the average time it takes to show erro-
neous state to the buses, which can be used to determine the maximum detection
timespan in lockstep systems [77]. More importantly, we can match it with the
information available at the architectural level to increase the accuracy of the in-
jections at such level [53]. In depth, if the propagation information –the number of
injected faulty nodes which reflect the wrong value in any architectural register or
memory position– is used to inject precisely those nodes of the virtual prototype
(see Figure F.1), an increase in the accuracy of the high-level injection should be
attained.

F.3.2 Fault injection at Virtual prototypes

Typically, a CPU virtual prototype consists of two differentiated parts: the func-
tional emulator and the timing simulator. Depending on the tool and the targeted
CPU, the details of the implementation for both the timing simulator and the
functional emulator might be not accessible. A functional emulator is able to run
application code that has been compiled for a particular architecture and to per-
form its execution in such a way that the memory data and architectural registers
contain an exact representation of the real processor state. Precisely, the infor-
mation of the processor state has to be disclosed to allow compilers and system
software to use the modeled CPU. In that respect, we propose a fault-injection
approach that uses only architectural registers and memory contents to minimize
the intrusiveness of the fault injection in the virtual prototype. Additionally, as
mentioned before, to accurately capture the behavior of the faults affecting the
different processor nets, fault-injections at the virtual prototype must be enriched
with meaningful information from the RTL. For example, in line with the results
shown in [54], if fault injections target architectural registers only it is important
to know the percentage of total processor faults that are represented by such fault-
injection strategy. We let as future work the definition of the suitable injection
strategies in the virtual prototype.

163

Chapter F. Towards Certification-aware Fault Injection Methodologies Using Virtual...

F.4 FALLES: Fault injection and Analysis for Low Level
Evaluation Suite

The tool FALLES is an injection and analysis tool comprising a set of TCL and
AWK scripts. It is designed to operate with low level descriptions of a system,
mainly RTL and Gate Levels, by using the technique of simulation commands [86].
To do so, it currently supports Modelsim [71] tool to perform the simulation.The
reason of its existence is accelerating the costly process of simulating a complex
system running a realistic workload. The methods to achieve the improvement are
quite straightforward. First of all, it trims all the simulation generated outputs to
the minimum required amount of data, offering the possibility to apply any type
of post-processing to them. Second it exploits massive parallelism of multi-core or
grid computers to run up to several thousand concurrent threads. Third, it uses
highly optimized text parser AWK to process the results.

When using a tool like FALLES, maintainability, extendability, ease of use and
versatility are paramount. It can perform cycle-accurate simulations or, for an
implemented design in Gate level, optionally accept Standard Delay Files (SDF)
as inputs to study process corners. If such type of simulation is performed clusters
or grids are the preferred option to exploit a huge amount of cores. Up to now
Oracle Sun Grid Engine (SGE) management system [180] is supported, but it is
very easy to add support for other grid managers.

Regarding the injectable fault models, stuck at 1 or 0, open line, indetermination,
pulse or bit-flip are supported, in the variations of transient, intermittent or per-
manent duration. New fault models can be added at will just editing some TCL
code.

F.5 Experimental Results

In this section we present some preliminary results of the characterization of how
faults in any of the available nets in the processor propagate to the architectural
registers. The results presented in this section correspond with fault injections
performed in a CPU RTL description and focus on the propagation of faults in
every processor net to the processor architectural registers. In fact, this informa-
tion is the one that will be used in the future to feed fault injections in the virtual
prototype.

164

F.5 Experimental Results

Leon3

Integer
 Unit

Data
Cache

Inst
cache

M
em

o
ry

Data

Address

Fault Injection Analysis

FALLES tool

System
Registers Register

File

Figure F.2: RTL robustness verification framework

F.5.1 Experimental Setup

For the experimentation a 32-bit LEON3 SparcV8 microcontroller is selected,
mainly because an RTL model is available along a microarchitectural description,
and it is a processor used in safety-critical systems [184]. The LEON3 comprises
mainly a 7-stage pipeline for integer operations (integer unit, IU) plus data and
instruction caches. Since a minimal configuration of the processor has been chosen
to limit the cost of RTL simulations, all instructions use all pipeline stages, and
there is no floating point unit. The style of RTL description is homogeneous in the
integer unit, which is described in a structural synthesizable VHDL. Such IU unit
has been chosen as the target of injections, in a test framework as described by
Figure F.2. Injection and analysis points have been selected according to Section
F.3. To enable analysis of register faults in a timely manner LEON3 has been
configured to use a flat register file2 as this reduces the number of total registers
that need to be studied in every simulation.

The workload chosen for investigation includes programs from 2 different bench-
mark suites: the Mälardalen WCET group suite [73], suitable to test real-time
system properties and the EEMBC Autobench suite [129], which reflects realistic
tasks of some automotive safety-critical systems. The selected programs are: a
finite impulse response filter over a 700 items long sample (fir), a matrix multipli-
cation of 4x4 size (matmult), a road speed calculator (rspeed), a CAN bus reader
(canrdr) and a tooth-to-spark task, which locates the engine’s cog when the spark
is ignited (ttsprk).

2Note that a typical SPARC configuration uses a windowed register file configuration with
around 144 32-bit registers. Tracking the contents of 144 32-bit registers even for relatively small
benchmarks is currently unfeasible.

165

Chapter F. Towards Certification-aware Fault Injection Methodologies Using Virtual...

Regarding the faultload, several permanent hardware fault models have been cho-
sen, specifically single stuck-at-1, stuck-at-0 and open line. These have been in-
jected using simulator commands as in [86]. The campaign for each fault model
and workload has consisted of one experiment per injection node (since perma-
nent faults are applied), totaling 5,246 nodes. As the focus of the experiments is
to classify fault propagation, each experiment applies a single injection in a fixed
instant: just before the execution of the main procedure, after the initialization.

F.5.2 Results

After injections, Figure F.3 shows the distribution of different errors in the register
file (’user registers’) and control registers (’system registers’) of the integer unit.
The axis shows the percentage of total injected faults which propagated to the
registers to become errors, for the specified fault models. Only one of the different
benchmarks, ttsprk, is shown for space reasons. As observed, with the FALLES
tool we have determined the information regarding how are faults propagated
throughout the circuits to reach when applicable the analyzed registers, where the
critical positions of the register file appear to be numbers 15 and 129 for such
benchmark.

0,0%

2,0%

4,0%

6,0%

8,0%

10,0%

12,0%

r.
f.

p
c

r.
d

.c
w

p

r.
a.

ct
rl

.t
t

r.
a.

e
t

r.
e

.ic
c

r.
m

.y

r.
x.

n
p

c

r.
w

.s
.t

b
a

r.
w

.s
.w

im

r.
w

.s
.p

il

r.
w

.s
.e

c

r.
w

.s
.e

f

r.
w

.s
.p

s

r.
w

.s
.s

r.
w

.s
.a

sr
1

8

rf
d

(8
)

rf
d

(9
)

rf
d

(1
0

)

rf
d

(1
1

)

rf
d

(1
2

)

rf
d

(1
3

)

rf
d

(1
4

)

rf
d

(1
5

)

rf
d

(1
6

)

rf
d

(1
7

)

rf
d

(1
8

)

rf
d

(1
9

)

rf
d

(2
0

)

rf
d

(2
1

)

rf
d

(2
2

)

rf
d

(2
3

)

rf
d

(2
4

)

rf
d

(2
5

)

rf
d

(2
6

)

rf
d

(2
7

)

rf
d

(2
8

)

rf
d

(2
9

)

rf
d

(3
0

)

rf
d

(3
1

)

rf
d

(1
2

8
)

rf
d

(1
2

9
)

rf
d

(1
3

0
)

rf
d

(1
3

1
)

rf
d

(1
3

2
)

rf
d

(1
3

3
)

rf
d

(1
3

4
)

rf
d

(1
3

5
)

%
 E

xp
e

ri
m

e
n

ts
 w

it
h

 e
rr

o
r

System registers User registers

Stuck-at-1

Stuck-at-0

Open line

Figure F.3: Errors distribution in system and user registers, ttsprk

0
20
40
60
80

100
120
140
160
180
200
220

0

1
3

7
,5

2
7

5

4
1

2
,5

5
5

0

6
8

7
,5

8
2

5

9
6

2
,5

1
1

0
0

1
2

3
7

,5

1
3

7
5

1
5

1
2

,5

1
6

5
0

1
7

8
7

,5

1
9

2
5

2
0

6
2

,5

2
2

0
0

2
3

3
7

,5

2
4

7
5

2
6

1
2

,5

2
7

5
0

2
8

8
7

,5

3
0

2
5

3
1

6
2

,5

3
3

0
0

3
4

3
7

,5

3
5

7
5

3
7

1
2

,5

3
8

5
0

3
9

8
7

,5

4
1

2
5

4
2

6
2

,5

4
4

0
0

4
5

3
7

,5

4
6

7
5

4
8

1
2

,5

4
9

5
0

5
0

8
7

,5

5
2

2
5

5
3

6
2

,5

5
5

0
0

5
6

3
7

,5

5
7

7
5

5
9

1
2

,5

6
0

5
0

6
1

8
7

,5

6
3

2
5

6
4

6
2

,5

6
6

0
0

an
d

 m
o

re

H
it

s

Latency (ns)

Stuck-at-1

Stuck-at-0

Open line

Figure F.4: Histogram of propagation latencies from error to failure, ttsprk

In addition, Figure F.4 shows the histogram of the distribution of latencies for the
same ttsprk benchmark for the 3 fault models. The shown latencies account for
the time spent since the first moment an architectural register is altered until a
mismatch is detected at any of the peripheral buses (data or address). Taking into

166

F.6 Conclusions

account that the clock cycle of the considered system was 10 ns, we can tell the
number of cycles it takes to propagate an error to a failure (considering the buses
as outputs) is mainly under 138, with some sparse cases taking longer time. This
latency information is helpful when assessing the behavior of real time systems
such as those meant to be certified.

F.6 Conclusions

The use of virtual prototypes has recently arised as a promising approach to reduce
the costs associated with the robustness verification of safety critical processors.
However, for this low-cost simulation approach to be adopted its accuracy must
be validated. In this paper we presented a methodology to increase the confi-
dence on the fault injection experiments using virtual prototypes. The proposed
methodology uses some meaningful information that is extracted from fault injec-
tion experiments at the RTL to enrich the fault injections at the virtual prototype.
In the proposed methodology fault injections in the virtual prototype target only
memory and architectural registers of the CPU to minimize its intrusiveness. The
actual definition of the fault injection strategies in the virtual prototypes is let as
future work.

167

Appendix G

Analysis and RTL Correlation of
Instruction Set Simulators for
Automotive Microcontroller
Robustness Verification

Authors: Jaime Espinosa, Carles Hernández, Jaume Abella, David de
Andrés and Juan Carlos Ruiz

G.1 Introduction G.4 Experimental Validation

G.2 Towards Simulation-based
Robustness Verification

G.5 Related Work

G.3 Correlating RTL with ISS
fault injection

G.6 Conclusions

Increasingly complex microcontroller designs for safety-rele–vant au-
tomotive systems require the adoption of new methods and tools to en-
able a cost-effective verification of their robustness. In particular, costs
associated to the certification against the ISO26262 safety standard
must be kept low for economical reasons. In this context, simulation-
based verification using instruction set simulators (ISS) arises as a
promising approach to partially cope with the increasing cost of the
verification process as it allows taking design decisions in early de-

169

Chapter G. Analysis and RTL Correlation of Instruction Set Simulators for Automotive...

sign stages when modifications can be performed quickly and with low
cost. However, it remains to be proven that verification in those stages
provides accurate enough information to be used in the context of au-
tomotive microcontrollers. In this paper we analyze the existing corre-
lation between fault injection experiments in an RTL microcontroller
description and the information available at the ISS to enable accurate
ISS-based fault injection.

G.1 Introduction

An increasing number of complex functionalities in automobiles rely on electronic
components such as airbag modules, electronic parking brakes, etc [100, 141].
Thus, modern cars may include up to 100 million lines of code that need to be
integrated into the least number of Electronic Control Units (ECUs) for cost con-
tention [27]. Moreover, the amount of software in cars is expected to further
increase in the future. Hence, more powerful and complex microcontrollers imple-
mented with more integrated and less reliable technology are needed to respond
to this increasing performance demand. However, hardware complexity challenges
V&V processes to adhere to safety standards.

Complex and error-prone microcontrollers require the adoption of new meth-
ods and tools to enable a cost-effective robustness verification of safety-relevant
systems. With the adoption of safety-related certification standards like ISO-
26262 [81] in the automotive domain robustness verification has become one of the
fundamental stages in the certification process for any new design. Robustness
verification is carried out at different stage levels by performing intensive fault in-
jection experiments [18]. Complex microcontroller verification challenges product
design cycles, what can lead to financial loss and severe delays especially if left
for the final production stages (i. e. hardware prototypes). Hence, designers have
been striding to move this procedure towards the early stages of design, in order
to detect design flaws or safety threats in a timely (and low-cost) manner.

Simulation-based verification has been shown to reduce costs associated with the
robustness verification process as any misbehavior or defect can be corrected early.
Unfortunately, simulation-based verification is often carried out at the gate level,
and so the testing process is extremely time-consuming. With a higher level of
abstraction such as RTL, the burden is reduced but it is still overwhelming for
repeated use. This fact renders impractical fault injection after each design modi-
fication. Thus, a sheer increase in simulation speed is needed while still obtaining
acceptably accurate results. Simulation-based verification using Instruction-Set
Simulators (ISS) arises as one of the most promising approaches to partially cope
with the increasing complexity of the verification and test process of complex sys-
tems. The main benefits of this low-cost verification step are (1) the reduction of

170

G.2 Towards Simulation-based Robustness Verification

the verification time and (2) the ability to start the verification process long before
having the RTL description of the processor, thus saving costs.

However, performing meaningful fault injection experiments using an ISS simulator
is challenging as the modeled processor lacks most of the information required for
accurately injecting faults. In fact, the majority of the potential injection nodes
that are present at more detailed abstraction levels like RTL or gate-level are
missing. For example, typical ISS-based fault injection experiments that rely on
injecting faults in the register file [77][150] cannot be used to estimate failure rate
metrics as required by certification standards if it is not possible to determine the
probability that a given fault present at any possible microcontroller net or gate
propagates to the register file.

In this paper we increase the confidence in the fault injection experiments per-
formed with an ISS by carrying out a thorough correlation of the fault injection
experiments in an RTL microcontroller description with the information available
at the ISS. In particular, we propose instruction’s diversity as a metric to enable
a coarse-grain correlation of the probability that faults injected in the RTL prop-
agate to the system outputs (i.e. the probability that a fault becomes a failure).
Instruction’s diversity is computed as the number of unique instruction types (op-
codes) used by the application and represents the area the application exercises
by assuming all instructions make a uniform use of microcontroller resources. Fur-
thermore, for permanent fault models – the scope of this work – it is independent
of the particular order in which instructions within this application are executed.
This information is crucial to perform efficient fault injection campaigns that sim-
ulate programs exercising only the hardware components that have been modified1

so that impact of faults can be understood with a limited number of short sim-
ulations. While data reported does not include latent errors not manifested at
off-core boundaries, mechanisms such as LiVe [77] can be used in the context of
lockstep processors for safety-critical systems to enforce latent errors to manifest at
off-core boundaries, where errors are detected by lockstep execution (and reported
as failures in our work).

G.2 Towards Simulation-based Robustness Verification

In the safety-related hardware development process, fault injection is a valuable
method for the verification of hardware design in the automotive domain as indi-
cated in ISO26262 Part 5 clause 7.4.4.1 [81] for ASIL B, C and D2. During the
development phase, simulation-based fault injection methods are typically em-

1Input data triggering injected faults depends on the programs used. Devising software-based
tests [131] with specific coverage for the particular processor evaluated is beyond the scope of
this work, so we use performance benchmarks.

2ASIL stands for Automotive Safety Integrity Level. There are four levels, from A to D,
being D the highest one.

171

Chapter G. Analysis and RTL Correlation of Instruction Set Simulators for Automotive...

Integer Unit

Oper.
REGS

State
REGS

Mem
Glue
Logic

ALU

Result
REG

Processor Description

Cache Memory

Functional Emulator

Timing Simulator

Mem REGS

ISA

Pipeline Caches

Queues BUS

Instruction Set Simulator

(a) (b)

Figure G.1: (a) RTL processor description (b) Microarchitectural processor description

ployed instead of physical-based methods –such as injecting disturbance in power
lines, electromagnetic interference (EMI), etc.– due to their repeatability, control-
lability and cost. Fault injection using simulation can be performed using different
levels of abstraction like functional, RTL, or gate-level. The current state of prac-
tice uses RTL and gate-level experiments to test hardware robustness as these
methodologies have been shown to provide good accuracy [123]. A commonality
of every simulation methodology is that it has to be related with the techniques
used at silicon level for validation. For proper use of ISS to that end, these must
be qualified in the same way.

G.2.1 Fault injection at the RTL

A circuit described at the functional level does not provide information on the
internal components, but only an method to obtain outputs from inputs. Con-
versely, RTL description of a circuit comprises contents of registers and combi-
national logic, expressed in terms of logic functions and connections as shown in
Figure G.1(a). Specifically, the detail on the intermediate steps in terms of inter-
nal signals and operands, which allows for later synthesis of the design, renders
it an ideal candidate for fault injection. Two are the main benefits. First, it is
the lowest level –most detailed– and closest to the level where faults happen in
the real system –the physical level– which, without loss of generality, achieves a
good degree of representativity. Second, since the next level in detail –the gate
level– does include the implementation technology in the description of the system,

172

G.2 Towards Simulation-based Robustness Verification

results of injection in RTL stay valid across different implementations, platforms,
etc.

G.2.2 Fault injection at the ISS Level

Typically, an ISS consists of two differentiated parts: the functional emulator and
the timing simulator (see Figure G.1(b)). The functional emulator contains the
full description of the instruction set architecture (ISA) and keeps the architectural
state of the processor (i.e. architectural registers and memory data). A functional
emulator is able to run application code that has been compiled for a particular
architecture and to perform its execution in such a way that the memory data and
architectural registers contain an exact representation of the real processor state.
In other words, the functional emulator is the interpreter. The timing simulator
interacts with the functional emulator and mimics with some degree of accuracy
the timing behavior of the different instructions during their execution. To do
so, the timing simulator models the cache memories, the processor pipeline, the
register file structure, and several other queues and structures depending on the
target degree of accuracy. Thus, it allows computing information like the number
of execution cycles, cache hits/misses and the like. Some implementations of an
ISS may have functional and timing simulation integrated, although this typically
challenges their flexibility.

In this paper we focus on the functional part of the ISS given that it is the highest
(and so the cheapest) abstraction level. This is a necessary step to validate the
suitability of an ISS for the robustness verification of safety-relevant processors.
We consider little timing information (basically instructions latency). Moreover,
by working mostly with the functional part of the ISS results mainly depend on
the actual ISA used and remain valid for any implementation of such ISA (or the
method can be ported easily). Of course, this comes at the expense of trading off
some accuracy. Still, as we show later, the functional part of an ISS already pro-
vides highly-valuable information to characterize the behavior of microcontrollers
in presence of faults.

G.2.3 ISS-based Verification

Safety-relevant systems need to go through a certification process. In automotive
systems the ISO26262 functional safety standard [81] specifies the safety require-
ments that the different system components need to fulfill in relation with the
overall system’s safety. Simulation-based fault injection is one of certification-
friendly methodologies for the safety requirements verification when analytical
methods are not considered to be sufficient as specified in ISO26262 Part 5 Table
3. Note that this is the case for complex hardware components verification like
a microcontroller. Current practice on simulation-based verification is performed

173

Chapter G. Analysis and RTL Correlation of Instruction Set Simulators for Automotive...

at the RTL and gate-level descriptions of the circuit as these methodologies have
been shown to provide good accuracy in automotive microcontrollers [175].

The use of an ISS for verification in the context of ISO26262 is challenging as the
correlation of the experiments at this abstraction level with the physical level tests
is not a straightforward task [103]. In this sense, a first step in that direction is to
correlate with a closer level such as RTL.

Robustness verification using ISS brings several benefits that can significantly con-
tribute to the cost and complexity reduction of the verification process. We target
the achievement of the following three main benefits of using ISS-based robustness
verification: (B1) Fast simulation time, (B2) Detection of safety misbehavior at
very early design stages of product development and (B3) Improvement of the
hardware/software integration.

B1 speaks about the need for reducing simulation time to be able to perform the
verification of increasingly complex circuits. Furthermore, increasing the simula-
tion speed also allows the validation of more significant workloads where not only
functional deviations related to safety can be detected, but also timing-related de-
viations [77]. Speeding up this process helps microcontroller designers evaluate the
impact on safety of modifications quickly (e.g., adding new instructions). Differ-
ently, B2 refers to the economical gain associated to the early detection of design
malfunctions which is specially significant in the case of ISS-based simulation, as
it does not require the actual microcontroller to be fully described. Instead, a
complete definition of the ISA (or the subset of the ISA to be analyzed) suffices to
perform this step. Finally, B3 talks about the benefits of enabling ISS-based sim-
ulations in the safety-related software development. On one hand, ISS-based fault
injection will help improving the modeling of the hardware/software interactions
with respect to the system’s safety as defined in [81]. On the other hand, as system
software development relies mainly on the information available at the ISS (e.g., ar-
chitectural and system registers), being able to perform meaningful fault injection
experiments at the ISS level also opens the door to meaningful reliability analysis
of the software components and layers long before the actual microcontroller has
been deployed. Thus, software and hardware development and verification can
occur in parallel to some degree, hence reducing the time-to-market, which is a
key metric in the automotive domain.

174

G.3 Correlating RTL with ISS fault injection

G.3 Correlating RTL with ISS fault injection

In this paper we consider the probability of failure Pf as the probability that a
fault is propagated to off-core boundaries. We have selected off-core boundaries as
the point of failure manifestation as this is the exact point at which light-lockstep
cores outputs are compared for error detection purposes. Microcontrollers im-
plementing light-lockstep compare any off-core activity (i.e., memory read/write,
I/O read/write), but cannot detect faults that do not propagate outside cores (e.g.,
latent faults in registers or cache memories). Microcontrollers implementing light-
lockstep like the Infineon AURIX [83] and the STMicroelectronics SPC56XL60/54
family [147] are widely used for safety-relevant applications in the automotive
domain.

To correlate RTL fault injection experiments with the ISS we analyze the infor-
mation from the applications that are executed in the microcontroller that can be
used to approximate failure manifestation probability. As the ISS decodes all in-
structions of the executed applications, information is available at the granularity
of instructions. In this regard, we make the following hypothesis: the probability
that a fault present in the microcontroller becomes a failure when executing a
given set of instructions Is is a function of the actual executed instructions Is,
their input data, and the temporal behavior of the executed instructions. Thus,
Pf = f(Is, inputs, time). Is temporal behavior includes the instruction depen-
dences and their latency, as well as the exact point in time at which faults are
present in the microcontroller. Note that our initial hypothesis about the fact
that the failure probability depends on the microcontroller’s spatial and tempo-
ral vulnerability, is in line with the traditional analysis of processor vulnerability
factors [117] in the high-performance domain, where processors are indeed more
complex than microcontrollers used in the automotive domain. In the previous
Pf expression, Is and input data determine the processor’s spatial vulnerability,
whereas the Is temporal behavior defines the microcontroller’s temporal vulnera-
bility.

However, expressing Pf as a function of Is, its input data, and Is temporal behavior
is still an overly complex function due to the value space for input data (e.g. 232

different values for a 32-bit input). To reduce the problem space we consider that
the data’s universe can be restricted and/or upper bounded if, either we are able to
introduce enough data variability, or we use corner cases for the applications’ input
data. Instructions temporal behavior can be captured using ISS by annotating
the exact cycle at which the different instructions in a given Is enter and leave a
given microcontroller unit. However, in this paper we remove the dependence on
the temporal utilization of the failure probability by focusing on permanent fault
models, e.g. stuck-at-1, stuck-at-0 and open-line. We focus on permanent faults
not only to remove the temporal variable but also because the number of injections
to perform in every node in order to obtain significant results for transient faults

175

Chapter G. Analysis and RTL Correlation of Instruction Set Simulators for Automotive...

is extremely high. For example, the determination of single-point fault and latent
fault metrics as required by ISO26262 [81] hardware certification typically relies
on the use of software-based tests (SBT) [131] and stuck-at fault models. Note
that the huge execution time SBT require to achieve high coverage precludes the
use of fault-models requiring very large number of fault injections.

With the assumptions above Pf can be reformulated as Pf = f(Is). This simple
definition of Pf implies that the probability of an injected fault to become a failure
depends on the set of instructions exercised regardless of the order in which they
are executed and the particular existing dependences across instructions. In other
words, our hypothesis is that the probability that a failure is triggered by a given
set of instructions Is is proportional to the processor utilization (in terms of area).
This hypothesis translates the problem of determining the failure manifestation
probability in the problem of determining what is the processor utilization that a
given set of instructions makes.

Determining Microcontroller’s Utilization. We introduce the diversity met-
ric to determine the processor utilization for a given application. To relate instruc-
tion’s diversity with the area exercised we consider these items:

1) The probability that a given instruction triggers a failure depends on the number
of functional units a given instruction exercises. For example, all instructions
have the same probability of triggering a failure at decode and fetch stages as
these stages are used by every instruction [137]. On the contrary, different type
of instructions, like logical and arithmetic instructions, do not necessarily use the
same functional units.

2) Different functional units have different area occupation. From an RTL per-
spective this means that the number of fault injection points in a given functional
unit is not the same for all of them and that the number of fault injection points is
not necessarily proportional to the occupied area. The first concept speaks about
the fact that in homogeneously detailed RTL representations of functional units
the number of fault injection nodes is closely related to the area of a given compo-
nent. The latter concept is related to the fact that heterogeneously detailed HDL
descriptions of functional units lead to a decoupled relationship between injectable
nodes and area occupancy.

To be able to deal with the heterogeneous processor utilization originated due to
(1) and (2), diversity is computed for the the different functional units. Instruc-
tion’s diversity of the mth functional unit, Dm, can be computed using the ISS by
dumping instructions information and finding the number of accesses to any of the
available functional units for each instruction. Finally, Dm has to be related with
the failure probabilities for the different processor functional units. The probabil-
ity of failure of the mth processor unit Pm

f can be computed using the following
equation:

176

G.4 Experimental Validation

Leon3

Integer
 Unit

Data
Cache

Inst
cache

M
e
m

o
ry

Data

Address

Fault Injection Analysis

RTL verification tool

Figure G.2: RTL robustness verification framework

Pf =

Nmod∑
m=1

αm ∗ Pm
f (G.1)

In this equation Nmod is the number of processor components and αm is used to
ponderate the effect of the heterogeneity in detail. αm is in the range [0, 1] and
represents the fraction of the total area occupied by the processor unit m.

It is important to remark that the diversity metric inherently assumes that the
utilization of resources within a given functional unit that instructions make is
uniform.

Note that the area exercised by different instructions can be partially overlapped.
Hence, executing different instruction types when few of them have been executed
is likely to increase Pf , whereas executing them when many of them have been
executed is less likely to increase Pf because the units accessed have been probably
accessed by previous instruction types.

G.4 Experimental Validation

G.4.1 Experimental Setup

In this section we analyze how accurately RTL fault injection experiments can
be reproduced using a microcontroller ISS. To do so, we inject faults in the RTL
microcontroller model and measure the percentage of injected faults propagating
to failures. Any mismatch detected when writing to memory is considered a sys-

177

Chapter G. Analysis and RTL Correlation of Instruction Set Simulators for Automotive...

Benchmarks
Automotive Synthetic

Instructions puwmod canrdr ttsprk rspeed membench intbench

Total 111866 96492 96053 75058 19908 2621

Integer Unit 111862 96488 96049 75054 19908 2621

Memory 40613 33766 34905 25155 4385 19

Diversity 47 48 47 47 18 20

Table G.1: Benchmarks characterization

tem failure. Figure G.2 illustrates the fault injection methodology followed in this
paper. For the analysis and correlation we use the 32-bit Leon3 sparcv8 micro-
controller as both the ISS and RTL description of this circuit are available [184].
This microcontroller consists of a 7-stage pipeline for integer operations (IU). In
this microcontroller all instructions use all pipeline stages. The RTL processor
description follows the structural VHDL design guidelines and it models the IU
and the cache memory (CMEM) as separate components.

In this study we inject faults using simulation commands as described in [86]. The
choice of injected faultload is single hardware faults of permanent type, targeted
to VHDL signals, ports and variables which appear at a fixed injection instant
and cause either stuck-at-1, stuck-at-0 or an open line. It has been applied to all
available points from the IU and CMEM microcontroller units.

For the workload in this study we use the EEMBC Autobench suite [129] which
reflects current real-world demand of some automotive CRTES and 2 synthetic
benchmarks, which have been designed to use intensively memory instructions or
integer instructions, and provide additional diversity values. Table G.1 shows the
benchmarks analyzed.

G.4.2 Experimental Results

In this section we proceed incrementally to validate the hypothesis made in the
previous section. First, we show that the impact of inputs data variability in
the probability of failure is captured for applications executing a large number of
instructions. Later, we analyze the effect of the instructions temporal behavior.
Finally, we show the existing correlation between the processor’s utilization and
the probability of failure.

178

G.4 Experimental Validation

Application’s data. We analyze the impact of input data variation on the prob-
ability of failure making two different experiments. For the first experiment we
have injected faults in short excerpts of 2 different subsets (consisting of 3 different
applications each) of EEMBC benchmarks. The selected excerpts represent the
initialization phase of the benchmarks where the data to be used in the experi-
ment are read and allocated in memory. All three applications within a subset
have identical code and the only difference among them comes from the different
input data they require. Each subset of applications consists of a different Is.
Figure G.3 shows the effect of input data variability in the probability of failure
(as Is is fixed). Differences across benchmarks are meaningful, up to 4 percentage
points (pp), so in principle the impact of data variability cannot be neglected for
short applications.

We have performed a second experiment to show that input data effect can be
removed when benchmarks execute a significant number of instructions. To do
so, we have injected faults in the microcontroller’s IU and run benchmarks with
different number of iterations (2, 4 and 10 iterations). Figure G.4 shows results for
the rspeed application. As shown, Pf remains constant regardless of the executed
iterations meaning that the effects of new realistic data exercised in the subse-
quent iterations are already included in the data space covered with 2 iterations.
Further, Pf is exactly the same for the other benchmarks that use the same type
of instructions. Therefore, we can conclude that for sufficiently long benchmarks,
inputs is no longer needed in Pf = f(Is, inputs, time). Regarding fault detection
latency, maximum latency grows with the number of iterations (see plot (b)) due
to those faults affecting data that is not used until the last part of the program,
after the iterations, in line with the observations in [77]. Thus, 2 iterations provide
the same information as 10, but allow reducing fault injection and analysis time.

Temporal Behavior. The next independent variable to clear from equation
Pf = f(Is, inputs, time) is time. In the case of permanent faults one expects a
fault to become a failure regardless of when it is triggered. In order to prove this,
we have evaluated ttsprk and puwmod benchmarks that have exactly the same
diversity, so they execute the same type of instructions, but they execute them
in different order. As shown in Figure G.5, the percentage of propagated faults for
both benchmarks is roughly identical for different types of permanent faults. A
different case would happen with transient faults, as their impact can vary greatly
depending on the instructions being executed at the moment faults hit the system.
We let the analysis of the impact of transient faults as future work.

Microcontroller Utilization. Finally, we check the hypothesis that the proba-
bility of failure mainly depends on the instruction set (Is) used in the benchmark.
To do so, we study the correlation between utilization of the different instructions
– which relates to the spatial utilization of the microcontroller – and Pf . Further-
more, we also check that the correlation holds when applied to the IU and CMEM

179

Chapter G. Analysis and RTL Correlation of Instruction Set Simulators for Automotive...

0%

2%

4%

6%

8%

10%

12%

14%

16%

a2time ttsprk bitmap

%
 P

ro
p

ag
at

e
d

 f
au

lt
s

to
 f

ai
lu

re
s

Benchmark excerpt

0%

5%

10%

15%

20%

25%

rspeed tblook basefp

%
 P

ro
p

ag
at

e
d

 f
au

lt
s

to
 f

ai
lu

re
s

Benchmark excerpt

(a) 8 types of instructions (b) 11 types of instructions

Figure G.3: Input data variation in 2 sets of benchmark excerpts with uniform instruc-
tion types and numbers, using stuck-at-1 injections at integer unit

0%

5%

10%

15%

20%

25%

30%

35%

rspeed2 rspeed4 rspeed10

%
 P

ro
p

ag
at

ed
 f

au
lt

s
to

 f
ai

lu
re

s

Benchmark iterations

0

500

1000

1500

2000

2500

rspeed2 rspeed4 rspeed10

M
ax

. p
ro

p
ag

at
io

n
 la

te
n

cy
 (
μ

s)

Benchmark iterations

(a) (b)

Figure G.4: Input data variation impact analyzed with 2, 4, and 10 full iterations of
benchmark rspeed using stuck-at-1 injections at integer unit

modules separately. We identify instruction diversity as the appropriate metric
to determine the processor’s spatial utilization.

Figures G.5 and G.6 present RTL injection results for the IU and CMEM, respec-
tively for stuck-at-0, stuck-at-1, and open-line fault models. The first observation
is that, for the automotive benchmarks, Pf is almost constant despite the fact
that the executed benchmarks present different number and distribution of the
executed instructions (see Table G.1). However, if we pay attention to the instruc-
tion diversity we realize that these 4 benchmarks use almost the same number of

180

G.4 Experimental Validation

0%

5%

10%

15%

20%

25%

30%

35%

40%

%
 P

ro
p

ag
at

ed
 f

au
lt

s
to

 f
ai

lu
re

s

Automotive Benchmarks

Stuck-at-1

Stuck-at-0

Open line

Synthetic Benchmarks

Figure G.5: Fault injection experiments for different benchmarks and fault models at
IU nodes.

different instructions as given by the diversity factor. To prove that Pf is coupled
with the instruction diversity we also used two different synthetic benchmarks.
As these benchmarks are designed to used different Is we observe some variability
in the Pf .

Finally, Figure G.7 correlates Pf for the different benchmarks used in this study
with the instruction diversity. To increase the number of points in the plot we
also consider the benchmarks excerpts shown before. In these benchmarks the
effect of input data variability is minimized by including the Pf value of all 3
benchmarks of each subset.

Simulation time.In order to obtain the fault injection data for the complete
benchmark executions, up to 25,478 hours of computing time have been employed,
distributed in 2 massively-parallel clusters and 2 powerful workstations.In contrast,
less than 300 computing hours on a single workstation is enough for performing
the same number of experiments with an ISS. This illustrates the importance of
qualifying low-cost methods of achieving accurate results.

181

Chapter G. Analysis and RTL Correlation of Instruction Set Simulators for Automotive...

0%

5%

10%

15%

20%

25%

%
 P

ro
p

ag
at

e
d

 f
au

lt
s

to
 f

ai
lu

re
s

Automotive Benchmarks

Stuck-at-1
Stuck-at-0
Open line

Synthetic Benchmarks

Figure G.6: Fault injection experiments for different benchmarks and fault models at
CMEM nodes.

G.5 Related Work

Fault injection methodologies are widely employed for the microcontrollers ro-
bustness verification in the automotive domain [123]. Fault injection experiments
can be performed at several abstraction levels to exploit the existing accuracy
cost trade-off [175]. RTL and gate-level fault injection experiments are the most
adopted approaches to perform the certification of hardware products against cer-
tification standards [81]. Practitioners have performed fault injection at the logic
and RTL levels using different techniques. A widely-used method is the injection in
the HDL through simulator commands [86], which works well for most of the fault
models described in the literature. Furthermore, some additional fault models,
such as those involving several injection points – short-circuit, multi-bit injection
– can be applied if the more intrusive technique of saboteurs is used [15] where an
instrumentation of the model – and the consequent decrease in simulation speed
– is required.

Fault models representativeness was validated for logic/RTL levels [66]. For higher
abstraction levels like the ISS previous work pointed out the difficulties of correlat-
ing the results with experiments at the physical level [103]. The majority of works
at the ISS level focus on processor’s reliability estimation, which is obtained by the
determination of the architectural vulnerability factor (AVF) [117]. The AVF is
determined by the fraction of the architectural bits contributing to the processor’s
reliability. A similar approach is the one in [24] where the concept of instruction
vulnerability factor (IVF) is proposed to evaluate how faults in every instruction
affect the final application output. Likewise, in [137] the IVF is used to define a

182

G.6 Conclusions

y = 0.0838ln(x) - 0.0191
R² = 0.9246

0%

5%

10%

15%

20%

25%

30%

35%

0 10 20 30 40 50

%
 P

ro
p

ag
at

e
d

 f
au

lt
s

to
 f

ai
lu

re
s

Instruction diversity

Figure G.7: Propagated faults in terms of instruction diversity for the stuck-at-1 model
in IU.

compilation process taking into account ISS reliability information. An attempt
of correlating ISS and logic/RTL was done in [109] focusing on the correspondence
between instruction and low-level fault models. In this paper we focus on showing
the correlation of results of RTL fault injection and the data available at the ISS
level.

G.6 Conclusions

Microcontroller verification based on fault-injection is a key approach in the auto-
motive domain, specially for the most critical functionalities as detailed in ISO26262.
However, early detection of design flaws is incompatible with having a detailed de-
scription of the microcontroller such as RTL or gate-level ones. Moreover, fault
injection in RTL or gate-level designs is painfully slow. Therefore, there is a need
for having low-cost models of hardware that can be had at early stages of the
design and provide accurate-enough information. The ISS is one of those as it is
needed to allow software providers to start their developments before the hardware
is ready.

In this paper we apply correlation between fault injection in the ISS and in the
RTL showing that highly accurate results can be had for different permanent fault
models. In the study we prove that the order of instructions in the execution
and their input data are roughly irrelevant for permanent faults. Instead, the
different types of instructions exercised by the benchmarks run in the ISS are the
key difference towards measuring fault propagation.

183

Appendix H

Characterizing Fault Propagation
in Safety-Critical Processor Designs

Authors: Jaime Espinosa, Carles Hernández, Jaume Abella

H.1 Introduction H.4 Experimental results

H.2 Background on simulation-based
robustness verification

H.5 Conclusions

H.3 Characterizing fault propagation

Achieving reduced time-to-market in modern electronic designs tar-
geting safety critical applications is becoming very challenging, as these
designs need to go through a certification step that introduces a non-
negligible overhead in the verification and validation process. To cope
with this challenge, safety-critical systems industry is demanding new
tools and methodologies allowing quick and cost-effective means for ro-
bustness verification. Microarchitectural simulators have been widely
used to test reliability properties in different domains but their use
in the process of robustness verification remains yet to be validated
against other accepted methods such as RTL or gate-level simulation.
In this paper we perform fault injections in an RTL model of a pro-
cessor to characterize fault propagation. The results and conclusions
of this characterization will serve to devise to what extent fault injec-

185

Appendix H. Characterizing Fault Propagation in Safety-Critical Processor Designs

tion methodologies for robustness verification using microarchitectural
simulators can be employed.

H.1 Introduction

Increasingly complex modern electronic designs for safety-critical markets must ad-
here to the strict requirements of functional safety standards. Thus, those designs
have to undergo an expensive and time-consuming certification process, which is
against the always stringent need to reduce the time to market. In that context,
new tools and procedures have to be devised for a quick and cost-effective way to
test whether robustness properties are achieved throughout the whole design flow.

Simulation-based fault injection is considered a suitable methodology for the ro-
bustness verification process, as quick and cheap corrections on misbehavior can
be made. Unfortunately, such fault injection is often carried out at the gate level,
and so the testing process can be excruciatingly slow and requires unduly high
computing resources. When applied at a higher level of abstraction such as Reg-
ister Transfer Level (RTL), the burden is reduced but it is still overwhelming for
repeated use. This fact renders impractical fault injection after each design mod-
ification. If designers are intended to verify each modification, a sheer increase in
simulation speed is needed while still obtaining acceptably accurate results. Con-
sidering the constraints mentioned above, microarchitectural simulators arise as
one of the most promising approaches to partially cope with the increasing com-
plexity of the verification and test process of complex systems. The main benefits
of this low-cost verification step reside on the reduction of the verification time
and on the ability to start the verification process long before having the RTL
description of the processor, thus saving costs.

The use of microarchitectural simulators to estimate failure rate metrics is chal-
lenging as the modelled processor lacks most of the information required for accu-
rately injecting faults. In fact, the majority of the potential injection nodes that
are present at more detailed abstraction levels like RTL or gate-level are missing.
Typically, fault injection experiments using microarchitectural simulators focus on
the register file [77][150] and on the different memory structures [149][2]. How-
ever, these fault injection experiments, while useful to test the effectiveness of
fault-tolerant capabilities and the like, are not suitable to estimate failure rate
metrics as required by certification standards. For this to happen it is required to
quantify how likely is that a fault present at any possible processor net, gate, or
flip/flop propagates to the register file or the different memory structures.

In this paper we focus on the characterization of processor fault’s behavior as
a first step towards increasing the confidence on failure rate estimates given by
microarchitectural simulations. In particular, we focus on how faults propagate

186

H.2 Background on Simulation-based Robustness Verification

to the different system’s outputs and how many of these faults propagate to the
processor register file and/or control/status registers. For the characterization of
fault propagation, faults have been injected in an RTL description of the LEON3
processor [184] using simulation commands as described in [86].

Results in this paper show that even though a significant fraction of the faults
originated in the core show up in the register file and/or control/status registers,
injecting faults only in such registers is not enough to accurately model the impact
of core faults, since a considerable amount of system failures are not preceded by
any error manifestation in the mentioned registers.

The rest of the paper is organized as follows. Section H.2 reviews the state-of-the
art in fault injection in the RTL and microarchitectural simulators. Sections H.3
and H.4 present the methodology used in this paper for characterizing processor’s
fault propagation and the results of such analysis, respectively. Finally, in Section
H.5 some conclusions are drawn.

H.2 Background on Simulation-based Robustness
Verification

Safety-relevant systems need to go through a certification process. For instance,
in automotive systems the ISO26262 functional safety standard [81] specifies the
safety requirements that the different system components need to fulfil in rela-
tion with the overall system’s safety. In the case of avionics systems the standard
that defines the methods and tools to certify electronic products is the DO-178B
[134]. Regardless of the application domain, simulation-based fault injection is
a certification-friendly methodology for the safety requirements verification when
analytical methods are not considered to be sufficient. This is, for instance, speci-
fied in the case of automotive systems in ISO26262 Part 5 Table 3. Note that this
is the case for complex hardware components verification like a microcontroller.
Fault injection through simulation can be performed using different levels of ab-
straction like functional, RTL, or gate-level. The current state of practice uses
RTL and gate-level experiments to test hardware robustness as these methodolo-
gies have been shown to provide enough accuracy when related to the silicon level
[123]. In the same way, if microarchitectural simulators are to be considered for
the robustness verification process, results obtained at this level must be correlated
with the ones obtained at lower levels of abstraction like the RTL or gate-level. In
this paper we focus on relating RTL fault injection to experiments carried out at
the microarchitectural level.

Several techniques exist to perform RTL level fault injection. A widely-used
method is the injection in the HDL through simulator commands [86], which works
well for most of the fault models described in the literature. In fact, some addi-

187

Appendix H. Characterizing Fault Propagation in Safety-Critical Processor Designs

Integer Unit

Oper.
REGS

State
REGS

Mem
Glue
Logic

ALU

Result
REG

Processor Description

Cache Memory

Functional Emulator

Timing Simulator

Mem REGS

ISA

Pipeline Caches

Queues BUS

Instruction Set Simulator

(a) (b)

Figure H.1: (a) RTL processor description (b) Microarchitectural processor description

tional fault models such as those involving several injection points –short-circuit,
multi-bit injection– can be applied if the more intrusive technique of saboteurs is
used [15], but an instrumentation of the model –and the consequent decrease in
simulation speed– is entailed.

Fault models representativeness has been validated for logic/RTL levels [66]. On
the contrary, for higher abstraction levels like the microarchitectural one some
works have pointed out the difficulties of correlating these results with the ones
obtained at the physical level [103]. The majority of works carried out with mi-
croarchitectural simulators focus on processor’s reliability estimation. Processor’s
reliability is estimated by the determination of the architectural vulnerability fac-
tor (AVF) [117]. The AVF is determined by the fraction of the architectural bits
contributing to the processor’s reliability. A similar approach is the one in [24]
where the concept of instruction vulnerability factor (IVF) is proposed to evaluate
how faults in every instruction affect the final application output. Likewise, in
[137] the IVF is used to define a compilation process taking into account ISS re-
liability information. Finally, a truly existing correlation between fault injections
experiments performed in an RTL processor description and the information avail-
able at the ISS was shown in [48] for the case of permanent fault models, though
limited to final number of failures. Other detailed studies targeted to soft error
models did not find such correlation by using single bit-flip injections in registers,
suggesting other fault models should be devised for high-level injections [30].

188

H.2 Background on Simulation-based Robustness Verification

H.2.1 Fault injection at the RTL

A circuit described at the functional level does not provide information on the
internal components, but only a method to obtain outputs from inputs. Con-
versely, RTL description of a circuit comprises contents of registers and combi-
national logic, expressed in terms of logic functions and connections as shown in
Figure H.1(a). Specifically, the detail on the intermediate steps in terms of internal
signals and operands, which allows for later synthesis of the design, renders it an
ideal candidate for fault injection. Two are the main benefits:

• First, it is the lowest level –most detailed– and closest to the level where
faults happen in the real system –the physical level– which, without loss of
generality, achieves a good degree of representativity.

• Second, since the next level in detail –the gate level– does include the im-
plementation technology in the description of the system, results of injection
in RTL stay valid across different implementations, platforms, etc.

H.2.2 Fault injection at the ISS Level

Typically, a microarchitectural simulator consists of two differentiated parts: the
functional emulator and the timing simulator (see Figure H.1(b)). The functional
emulator contains the full description of the instruction set architecture (ISA) and
keeps the architectural state of the processor (i.e. architectural registers and mem-
ory data). A functional emulator is able to run application code that has been
compiled for a particular architecture and to perform its execution in such a way
that the memory data and architectural registers contain an exact representation
of the real processor state. In other words, the functional emulator is the inter-
preter. The timing simulator interacts with the functional emulator and mimics
with some degree of accuracy the timing behavior of the different instructions dur-
ing their execution. To do so, the timing simulator models the cache memories,
the processor pipeline, the register file structure, and several other queues and
structures depending on the target degree of accuracy. Thus, it allows comput-
ing information like the number of execution cycles, cache hits/misses and the
like. Some implementations of an ISS may have functional and timing simulation
integrated, although this typically challenges their flexibility.

Therefore, fault injection in a ISS needs to be typically performed in registers and
memory in the emulator, and propagation information can be obtained, including
its timing, based on the event modeled by the timing simulator.

189

Appendix H. Characterizing Fault Propagation in Safety-Critical Processor Designs

H.3 Characterizing Fault Propagation

As mentioned before, in this paper we want to show to what extent microarchi-
tectural simulators can be employed in the robustness verification flow of safety-
critical systems. In particular, we elaborate on the potentials of injecting faults
in the processor architectural registers. The emulator part of a microarchitec-
tural simulator only includes registers (inside the cores) and memory (outside the
cores). Therefore, our view is that by characterizing which faults that reach core
boundaries are reflected, either in the general purpose registers and/or in the con-
trol/status registers, we will know to what extent core faults behavior can be
captured using the emulator part only.

Throughout the paper we use the common nomenclature to distinguish between
faults, errors, and failures. We consider faults those upsets that can take place
at any point of the design and are actually what is being injected; errors, the
mismatches in the values of user registers (stored in the register file) or system
registers in this case, and failures, the mismatches at the considered outputs. In
our case, address and data buses are taken as system outputs. Note that this
is the exact point at which light-lockstep cores outputs are compared for error
detection purposes. Microcontrollers implementing light-lockstep compare any off-
core activity (i.e., memory read/write, I/O read/write), but cannot detect faults
that do not propagate outside cores . Processors implementing light-lockstep like
the Infineon AURIX [83] and the STMicroelectronics SPC56XL60/54 family [147]
are widely used for safety-relevant applications in the automotive domain.

We are interested in analyzing the influence of faults in the system towards the
incorrect delivery of results, i.e. the appearance of failures. As studied earlier in
literature, determining how faults in a system propagate through logic paths is
not a straightforward task. The relationship between faults and errors depends on
several factors. First of all, the actual implementation of the processor determines
heavily which nodes are connected with which others, so that a path for propaga-
tion exists. Second, the system architecture according to the executed instructions
and data determines the paths that are exercised and thus can propagate faults in
nets to other structures and/or system outputs. Finally, in case faults are tran-
sient, the exact point in time when the fault occurs is also very relevant to have
an error captured that can later potentially become a failure. In fact, the shorter
the fault duration the lower the probability that it will be captured at a sequential
element due to time filtering. In this study to facilitate the analysis we consider
only permanent faults. However, we strongly believe that main conclusions drawn
for permanent faults will remain also valid in the case of transient faults but the
confirmation of this hypothesis is let as future work.

To characterize fault propagation we follow a methodology that consists of inject-
ing faults in all possible nets of an RTL processor description. From the injectable

190

H.3 Characterizing Fault Propagation

IF D E M W

IC DC

Memory

RF

On-chip bus

I-
ca

ch
e

D
-c

a
ch

eRegister File

Figure H.2: Generic processor pipeline scheme. IF (instruction fetch), D (decode), E
(execution), M (Memory), W (Write-back).

nets we have excluded the register file and cache memory structures due to the
following reason: errors occurring within these structures are effectively detected
and/or corrected by employing redundacy mechanims (e.g., error correction codes)
and this is the case in most of the processors targeting safety-critical applications
[185][83]. Moreover, available nets in these structures do not realistically represent
their area. Memory structures are typically implemented using SRAMs cells to
miminimize area and power and the RTL includes only an instantiation of these
components as a black box and/or its behavioural description.

For every fault injection where a net has been forced to a given value, we compare
the outputs of architectural registers (general purpose and control registers) and
the data and address signals of the core at the on-chip boundaries to the ones
obtained with a fault-free simulation.

In typical processor architectures memory operations are performed reading or
writting architectural registers. Based on this, an inmediate hypothesis that can
be drawn is that roughly all errors that will be visible at the on-chip bus bound-
aries will also be reflected in the register file and/or control/status registers. If
this hypothesis is confirmed it would mean that faults in the core can be eas-
ily mimicked using microarchitectural simulators or even functional simulators as
both types of simulator tools have access to the architectural register file of the
processor. However, if we pay attention to a typical core pipeline implementation
we realise that correlating fault injections performed at RTL nets using only the
architectural registers might not be a straightforward task and, in fact, it might
even be unfeasible. Figure H.2 shows a schematic of a generic processor pipeline

191

Appendix H. Characterizing Fault Propagation in Safety-Critical Processor Designs

and its interface with the on-chip bus to reach main memory. Note that, while in
a typical processor pipeline all memory operations are performed through writing
and reading general-purpose registers, the actual implementation makes on-chip
bus communication to occur through D-cache and I-cache modules in the fetch and
memory stages, respectively. The previous implementation view illustrates that
not all faults affecting core nets will reach the architectural registers as some of
these nets have logic paths that go directly to the on-chip bus. In the next section
we analyze and evaluate in detail fault propagation for the faults occuring within
the core and show the exact fraction of faults that can be covered by performing
error injection at the architectural registers.

H.4 Experimental Results

In this section we present results characterizing fault propagation in order to con-
firm the hypothesis presented in the previous section.

H.4.1 Experimental Setup

For our experiments we use an RTL model of a 32-bit LEON3 SparcV8 micro-
controller, since it is used in the context of safety-relevant systems and both the
microarchitectural simulator and the RTL description of this processor are avail-
able [184]. The LEON3 processor consists mainly of a 7-stage pipeline for integer
operations (integer unit, IU) plus data and instruction caches. In this processor
all instructions use all pipeline stages, since we use a minimal configuration where
a floating point unit is not present. The RTL processor description follows the
structural VHDL design guidelines and it models our target of injection (IU) as
an entity. The test framework used in the paper is the one shown in Figure H.3.
Injection and analysis points in this framework are consistent with the methodol-
ogy explained in Section H.3. To make analysis costs of register faults affordable
we have used the LEON3 with a flat register file configuration1 as this reduces the
number of total registers that need to be tracked in every simulation.

The workload chosen for investigation includes programs from 2 different bench-
mark suites: the Mälardalen WCET group suite [73], suitable to test real-time
system properties and the EEMBC Autobench suite [129], which reflects current
real-world demand of some automotive CRTES. The selected programs are: a finite
impulse response filter over a 700 items long sample (fir), a matrix multiplication
of 4x4 size (matmult), a matrix initialization of 20 elements (initmat), a vehicle
speed calculator (rspeed) and a CAN bus reader (canrdr).

1Note that a typical SPARC configuration uses a windowed register file configuration with
around 144 32-bit registers. Tracking the contents of 144 32-bit registers even for relatively small
benchmarks is unfeasible.

192

H.4 Experimental Results

Leon3

Integer
 Unit

Data
Cache

Inst
cache

M
em

or
y

Data

Address

Fault Injection Analysis

RTL verification tool

System
Registers Register

File

Figure H.3: RTL robustness verification framework

Regarding the faultload, several permanent hardware fault models have been se-
lected, specifically single stuck-at-1, stuck-at-0 and open line. These have been
injected using simulator commands as in [86]. The campaign for each fault model
and workload has consisted of one experiment per injection node in the IU (since
permanent faults are applied), totaling 5,246 nodes. As the focus of the experi-
ments is to characterize fault propagation, each experiment applies a single injec-
tion in a fixed instant: just before the execution of the main procedure, after the
initialization.

H.4.2 Results

Capturing failure probability. Figure H.4 shows the percentage of experiments
ending in failure, broken down into those that showed a previous error –in the
register file or system registers– and those that did not. This result is specially
important as it provides relevant information about how accurately we can capture
the behavior of faults occurring within the core pipeline by injecting errors in the
architectural registers of a microarchitectural simulator. Plots in the first row (so
(a), (b) and (c)) show the percentages of experiments ending in failure when faults
are injected in all the nets available in the LEON3 IU . As shown in these plots
a non-negligible number of failures (dashed lines) were not preceded by an error.
The percentage of experiments not showing an error that ended in a failure ranges
from 13% (stuck-at-1 faults in rspeed) to just 2% (open line faults in matmult).

This indicates that the effect of faults within the core cannot be captured with
register-based error injection solely. Furthermore, we note that in all core nets in
the IU also the inputs to the Data cache and Instruction cache modules are being
injected directly. To weight the impact this fact causes we remove these nets from

193

Appendix H. Characterizing Fault Propagation in Safety-Critical Processor Designs

0%

5%

10%

15%

20%

25%

30%

35%

fir matmult initmat rspeed canrdr

%
 F

au
lt

s
p

ro
p

ag
at

e
d

 t
o

 f
ai

lu
re

s

Benchmark

No Previous Error
After Error

(a) Stuck-at-1

0%

5%

10%

15%

20%

25%

30%

35%

fir matmult initmat rspeed canrdr

%
 F

au
lt

s
p

ro
p

ag
at

e
d

 t
o

 f
ai

lu
re

s

Benchmark

No Previous Error
After Error

(b) Stuck-at-1, No cache inputs

0%

5%

10%

15%

20%

25%

30%

35%

fir matmult initmat rspeed canrdr

%
 F

au
lt

s
p

ro
p

ag
at

e
d

 t
o

 f
ai

lu
re

s

Benchmark

No Previous Error
After Error

(c) Stuck-at-0

0%

5%

10%

15%

20%

25%

30%

35%

fir matmult initmat rspeed canrdr

%
 F

au
lt

s
p

ro
p

ag
at

e
d

 t
o

 f
ai

lu
re

s

Benchmark

No Previous Error
After Error

(d) Stuck-at-0, No cache inputs

0%

5%

10%

15%

20%

25%

30%

35%

fir matmult initmat rspeed canrdr

%
 F

au
lt

s
p

ro
p

ag
at

e
d

 t
o

 f
ai

lu
re

s

Benchmark

No Previous Error
After Error

(e) Open line

0%

5%

10%

15%

20%

25%

30%

35%

fir matmult initmat rspeed canrdr

%
 F

au
lt

s
p

ro
p

ag
at

e
d

 t
o

 f
ai

lu
re

s

Benchmark

No Previous Error
After Error

(f) Open line, No cache inputs

Figure H.4: Percentage of failures in the experiments according to whether they caused
a prior error or not.

the injection in the plots shown in the second row ((d), (e) and (f)). As expected,
the number of failures not reflected in architectural register errors decreases.

In particular, the fraction of these failures decreases by around 1 to 3 percentage
points with respect to the case when all nets are injected. Thus, the number
of remaining failures without error is still significant. Even more important, the
fraction of failures without error changes across benchmark and does not correlate
with the number of failures with error. For instance, the fraction of failures without
error for rspeed w.r.t. the failures with error or w.r.t. the total number of injections
is much higher than for initmat for all fault types. This indicates that injecting
faults only in the register file with a simulator does not provide information about
failures without error and such information cannot be inferred indirectly.

194

H.4 Experimental Results

Error’s profile. After injection and analysis we find the percentage of faults that
are propagated to errors for each campaign. Figure H.5 shows the percentage of
faults that cause one or more errors for the 3 fault models considered in this study.
As shown in the figure, the percentage of faults that propagate to errors is slightly
superior to the percentage of faults that propagate to failures through errors –
black columns in Figure H.4 (a), (c) and (e) – which agrees with the expected fact
that some error manifestations do not end up causing a system failure. In any case,
the fraction of experiments with errors not causing system failure is always below
7%, meaning that for the selected fault models most of the bits in the exercised
registers become critical.

0%

5%

10%

15%

20%

25%

30%

35%

fir matmult initmat rspeed canrdr

%
 F

au
lt

s
p

ro
p

ag
at

e
d

 t
o

 e
rr

o
rs

Benchmarks

Stuck-at-1
Stuck-at-0
Open line

Figure H.5: Percentage of experiments which cause 1 or more errors in the registers

Figure H.6 shows the error distribution across the processor architectural registers
for two of the benchmarks analyzed. As expected the program counter (r.f.pc) is
one of the registers that accumulates more errors. This is a consequence of two
factors: (1) regardless of the benchmark executed the program counter is always
severely exercised and (2) a significant number of logic paths exist between IU
nets and the program counter. On the contrary, in the case of general purpose
registers the benchmark exercised determines the exact registers to which faults
are propagated. In the example of the plot canrdr concentrates a large fraction
of the errors in two registers while in initmat those (several) registers frequently
written during the execution accumulate a significant fraction of errors.

Another important conclusion that holds for the case of permanent faults is that
the probability of failure does not depend on how errors reach architectural reg-
isters, i.e. how likely registers are affected by an error, but only on the type and
amount of instructions that are exercised. In fact, this is in line with the work
in [48] that showed that the probability of failure for permanent faults can be

195

Appendix H. Characterizing Fault Propagation in Safety-Critical Processor Designs

0,0%
2,0%
4,0%
6,0%
8,0%

10,0%
12,0%
14,0%
16,0%
18,0%
20,0%
22,0%

r.
f.

p
c

r.
d

.c
w

p

r.
a.

ct
rl

.t
t

r.
a.

e
t

r.
e

.ic
c

r.
m

.y

r.
x.

n
p

c

r.
w

.s
.t

b
a

r.
w

.s
.w

im

r.
w

.s
.p

il

r.
w

.s
.e

c

r.
w

.s
.e

f

r.
w

.s
.p

s

r.
w

.s
.s

r.
w

.s
.a

sr
1

8

rf
d

(8
)

rf
d

(9
)

rf
d

(1
0

)

rf
d

(1
1

)

rf
d

(1
2

)

rf
d

(1
3

)

rf
d

(1
4

)

rf
d

(1
5

)

rf
d

(1
6

)

rf
d

(1
7

)

rf
d

(1
8

)

rf
d

(1
9

)

rf
d

(2
0

)

rf
d

(2
1

)

rf
d

(2
2

)

rf
d

(2
3

)

rf
d

(2
4

)

rf
d

(2
5

)

rf
d

(2
6

)

rf
d

(2
7

)

rf
d

(2
8

)

rf
d

(2
9

)

rf
d

(3
0

)

rf
d

(3
1

)

rf
d

(1
2

8
)

rf
d

(1
2

9
)

rf
d

(1
3

0
)

rf
d

(1
3

1
)

rf
d

(1
3

2
)

rf
d

(1
3

3
)

rf
d

(1
3

4
)

rf
d

(1
3

5
)

%
 E

xp
e

ri
m

e
n

ts
 w

it
h

 e
rr

o
r

System registers User registers

Stuck-at-1

Stuck-at-0

Open line

(a) initmat

0,0%
2,0%
4,0%
6,0%
8,0%

10,0%
12,0%
14,0%
16,0%
18,0%
20,0%
22,0%

r.
f.

p
c

r.
d

.c
w

p

r.
a.

ct
rl

.t
t

r.
a.

e
t

r.
e

.ic
c

r.
m

.y

r.
x.

n
p

c

r.
w

.s
.t

b
a

r.
w

.s
.w

im

r.
w

.s
.p

il

r.
w

.s
.e

c

r.
w

.s
.e

f

r.
w

.s
.p

s

r.
w

.s
.s

r.
w

.s
.a

sr
1

8

rf
d

(8
)

rf
d

(9
)

rf
d

(1
0

)

rf
d

(1
1

)

rf
d

(1
2

)

rf
d

(1
3

)

rf
d

(1
4

)

rf
d

(1
5

)

rf
d

(1
6

)

rf
d

(1
7

)

rf
d

(1
8

)

rf
d

(1
9

)

rf
d

(2
0

)

rf
d

(2
1

)

rf
d

(2
2

)

rf
d

(2
3

)

rf
d

(2
4

)

rf
d

(2
5

)

rf
d

(2
6

)

rf
d

(2
7

)

rf
d

(2
8

)

rf
d

(2
9

)

rf
d

(3
0

)

rf
d

(3
1

)

rf
d

(1
2

8
)

rf
d

(1
2

9
)

rf
d

(1
3

0
)

rf
d

(1
3

1
)

rf
d

(1
3

2
)

rf
d

(1
3

3
)

rf
d

(1
3

4
)

rf
d

(1
3

5
)

%
 E

xp
e

ri
m

e
n

ts
 w

it
h

 e
rr

o
r

System registers User registers

Stuck-at-1

Stuck-at-0

Open line

(b) canrdr

Figure H.6: Errors distribution in system and user registers for different benchmarks

approached by knowing how diverse the set of instructions exercised by a given
benchmark is.

H.5 Conclusions

The use of microarchitectural simulators has recently arised as a promising ap-
proach to reduce the costs associated with the robustness verification of safety
critical processors. However, for this low-cost simulation approach to be adopted
its accuracy must be validated. In this paper we characterize fault propagation
for those faults occurring within the core in order to understand to a what extent
microarchitectural simulators can be used in the robustness verification process.
To do so, we have injected faults in an RTL processor description and analyze the
percentage of faults propagating to errors and failures.

Results in this paper show that while a significant number of faults originated
within the core can be covered with verification methodologies focusing on error
injection in architectural registers, the achieved coverage is not enough to provide
very accurate results. A potential candidate to increase the confidence on verifi-
cation methodologies using microarchitectural simulators is the use of a combined
approach and perform error injection in both cache modules and architectural
registers. The immediate practical consequence of this is that functional emula-

196

H.5 Conclusions

tors only are not sufficient to mimic the behavior of all potential core faults and
thus, more detailed simulation tools like microarchitectural (timing) simulators
are required. We let as future work the validation of the combined error injection
approach.

While the results in this work have been obtained for a specific architecture, it
includes similar features to the bulk of architectures in the domain, so conclusions
can be easily extrapolated to other safety-critical architectures.

197

Bibliography

[1] In: Integr. VLSI J. 37.4 (2004). issn: 0167-9260 (cit. on p. 116).

[2] J. Abella et al. “RVC-based time-predictable faulty caches for safety-critical
systems”. In: On-Line Testing Symposium (IOLTS), 2011 IEEE 17th In-
ternational. 2011, pp. 25–30. doi: 10.1109/IOLTS.2011.5993806 (cit. on
pp. 160, 186).

[3] S.M. Alam et al. “Reliability computer-aided design tool for full-chip elec-
tromigration analysis and comparison with different interconnect metal-
lizations”. In: Microelectronics Journal 38.4-5 (2007), pp. 463–473 (cit. on
pp. 9, 72).

[4] M. Alderighi et al. “Evaluation of Single Event Upset Mitigation Schemes
for SRAM based FPGAs using the FLIPPER Fault Injection Platform”. In:
Defect and Fault-Tolerance in VLSI Systems, 2007. DFT ’07. 22nd IEEE
International Symposium on. 2007, pp. 105–113. doi: 10.1109/DFT.2007.
45 (cit. on p. 27).

[5] R. Alexandersson and P. ’́Ohman. “On Hardware Resource Consumption
for Aspect-Oriented Implementation of Fault Tolerance”. In: Dependable
Computing Conference (EDCC), 2010 European. 2010, pp. 61–66. doi: 10.
1109/EDCC.2010.17 (cit. on p. 119).

[6] D. de Andres, J.-C. Ruiz, and P. Gil. “Using Dependability, Performance,
Area and Energy Consumption Experimental Measures to Benchmark IP
Cores”. In:Dependable Computing, 2009. LADC ’09. Fourth Latin-American
Symposium on. 2009, pp. 49–56. doi: 10.1109/LADC.2009.17 (cit. on
p. 138).

[7] D. de Andres et al. “FADES: a fault emulation tool for fast dependability
assessment”. In: Field Programmable Technology, 2006. FPT 2006. IEEE

199

http://dx.doi.org/10.1109/IOLTS.2011.5993806
http://dx.doi.org/10.1109/DFT.2007.45
http://dx.doi.org/10.1109/DFT.2007.45
http://dx.doi.org/10.1109/EDCC.2010.17
http://dx.doi.org/10.1109/EDCC.2010.17
http://dx.doi.org/10.1109/LADC.2009.17

Bibliography

International Conference on. 2006, pp. 221–228. doi: 10.1109/FPT.2006.
270315 (cit. on p. 27).

[8] D. de Andres et al. “Fault Emulation for Dependability Evaluation of VLSI
Systems”. In: Very Large Scale Integration (VLSI) Systems, IEEE Transac-
tions on 16.4 (2008), pp. 422–431. issn: 1063-8210. doi: 10.1109/TVLSI.
2008.917428 (cit. on pp. 23, 128, 138).

[9] David de Andrés et al. “An Aspect-Oriented Approach to Hardware Fault
Tolerance for Embedded Systems”. In: Handbook of Research on Embedded
Systems Design (2014), p. 123 (cit. on p. 63).

[10] J. Arlat et al. “Comparison of physical and software-implemented fault
injection techniques”. In: Computers, IEEE Transactions on 52.9 (2003),
pp. 1115–1133. issn: 0018-9340. doi: 10.1109/TC.2003.1228509 (cit. on
p. 22).

[11] J. Arlat et al. “Fault injection for dependability validation: a methodology
and some applications”. In: Software Engineering, IEEE Transactions on
16.2 (1990), pp. 166–182. issn: 0098-5589. doi: 10.1109/32.44380 (cit. on
pp. 20, 26).

[12] Algirdas Avizienis. “Design Methods for Fault-Tolerant Navigation Com-
puters”. In: Jet Propulsion Laboratory (1969) (cit. on p. 123).

[13] Algirdas Avizienis et al. “Basic Concepts and Taxonomy of Dependable
and Secure Computing”. In: IEEE Trans. Dependable Secur. Comput. 1 (1
2004), pp. 11–33. issn: 1545-5971 (cit. on pp. 10, 21, 37, 70, 87, 99, 100).

[14] A. Baldini et al. “ldquo;BOND rdquo;: An interposition agents based fault
injector for Windows NT”. In: Defect and Fault Tolerance in VLSI Systems,
2000. Proceedings. IEEE International Symposium on. 2000, pp. 387–395.
doi: 10.1109/DFTVS.2000.887179 (cit. on p. 26).

[15] J.-C. Baraza et al. “Enhancement of Fault Injection Techniques Based on
the Modification of VHDL Code”. In: IEEE Transactions on VLSI 16.6
(2008), pp. 693–706. issn: 1063-8210. doi: 10.1109/TVLSI.2008.2000254
(cit. on pp. 28, 161, 182, 188).

[16] Basic DES Cryptography Core. [Online] Opencores. 2010 (cit. on pp. 132,
135).

200

http://dx.doi.org/10.1109/FPT.2006.270315
http://dx.doi.org/10.1109/FPT.2006.270315
http://dx.doi.org/10.1109/TVLSI.2008.917428
http://dx.doi.org/10.1109/TVLSI.2008.917428
http://dx.doi.org/10.1109/TC.2003.1228509
http://dx.doi.org/10.1109/32.44380
http://dx.doi.org/10.1109/DFTVS.2000.887179
http://dx.doi.org/10.1109/TVLSI.2008.2000254

Bibliography

[17] R. Baumann. “Soft errors in advanced computer systems”. In: Design Test
of Computers, IEEE 22.3 (2005), pp. 258–266. issn: 0740-7475. doi: 10.
1109/MDT.2005.69 (cit. on pp. 10, 16).

[18] Alfredo Benso and Paolo Prinetto. Fault Injection Techniques and Tools
for Embedded Systems Reliability Evaluation. Kluwer Academic Publishers,
2003. isbn: 1402075898 (cit. on pp. 21, 170).

[19] M. Berg et al. “Effectiveness of Internal Versus External SEU Scrubbing
Mitigation Strategies in a Xilinx FPGA: Design, Test, and Analysis”. In:
IEEE Transactions on Nuclear Science 55 (4 2008), pp. 2259–2266 (cit. on
pp. 44, 48, 73).

[20] C. Bolchini, A. Miele, and M.D. Santambrogio. “TMR and Partial Dynamic
Reconfiguration to mitigate SEU faults in FPGAs”. In: IEEE International
Symposium on Defect and Fault-Tolerance in VLSI Systems. 2007, pp. 87–
95 (cit. on pp. 44, 46, 73).

[21] Cristiana Bolchini, Fabio Salice, and Donatella Sciuto. “Fault Analysis
for Networks with Concurrent Error Detection”. In: IEEE Des. Test 15.4
(1998), pp. 66–74. issn: 0740-7475. doi: 10.1109/54.735929 (cit. on pp. 44,
88).

[22] Andrea Bondavalli et al. “Threshold-Based Mechanisms to Discriminate
Transient from Intermittent Faults”. In: IEEE Trans. Comput. 49.3 (2000),
pp. 230–245. issn: 0018-9340. doi: 10.1109/12.841127 (cit. on pp. 47,
90).

[23] S. Borkar. “Designing reliable systems from unreliable components: the
challenges of transistor variability and degradation”. In: Micro, IEEE 25.6
(2005), pp. 10 –16. issn: 0272-1732. doi: 10.1109/MM.2005.110 (cit. on
pp. 9, 86).

[24] Demid Borodin and Ben H.H. Juurlink. “Protective Redundancy Overhead
Reduction Using Instruction Vulnerability Factor”. In: CF. 2010 (cit. on
pp. 182, 188).

[25] S. Buchner et al. “Comparison of error rates in combinational and sequential
logic”. In: Nuclear Science, IEEE Transactions on 44.6 (1997), pp. 2209–
2216. issn: 0018-9499. doi: 10.1109/23.659037 (cit. on pp. 13, 98).

[26] Carl Carmichael. Triple Module Redundancy Design Techniques for Virtex
FPGAs. Tech. rep. Xilinx Corporation, 2006 (cit. on p. 79).

201

http://dx.doi.org/10.1109/MDT.2005.69
http://dx.doi.org/10.1109/MDT.2005.69
http://dx.doi.org/10.1109/54.735929
http://dx.doi.org/10.1109/12.841127
http://dx.doi.org/10.1109/MM.2005.110
http://dx.doi.org/10.1109/23.659037

Bibliography

[27] R.N. Charette. “This Car Runs on Code”. In: IEEE Spectrum online. 2009
(cit. on p. 170).

[28] J.A. Cheatham and J.M. Emmert. “A Survey of Fault Tolerant Method-
ologies for FPGAs”. In: ACM Transactions on Design Automation of Elec-
tronic Systems 11.2 (2006) (cit. on p. 74).

[29] Shigeru Chiba. “A Metaobject Protocol for C++”. In: Proceedings of the
Tenth Annual Conference on Object-oriented Programming Systems, Lan-
guages, and Applications. OOPSLA ’95. Austin, Texas, USA: ACM, 1995,
pp. 285–299. isbn: 0-89791-703-0. doi: 10.1145/217838.217868 (cit. on
p. 118).

[30] Hyungmin Cho et al. “Quantitative evaluation of soft error injection tech-
niques for robust system design”. In:Design Automation Conference (DAC),
2013 50th ACM / IEEE. 2013, pp. 1–10 (cit. on pp. 161, 188).

[31] P Civera, L Macchiarulo, and M Violante. “A simplified gate-level fault
model for crosstalk effects analysis”. In: 17th IEEE International Sympo-
sium On Defect And Fault Tolerance In Vlsi Systems, Proceedings. 2002,
pp. 31–39. isbn: 0-7695-1831-1 (cit. on p. 10).

[32] Pierluigi Civera et al. “FPGA-based fault injection techniques for fast eval-
uation of fault tolerance in VLSI circuits”. In: Field-Programmable Logic
and Applications. Springer. 2001, pp. 493–502 (cit. on p. 27).

[33] The Embedded Microprocessor Benchmark Consortium. AutoBench?1.1
Benchmark Software. 2013 (cit. on p. 138).

[34] C. Constantinescu. “Intermittent faults and effects on reliability of inte-
grated circuits”. In: Proceedings of the 2008 Annual Reliability and Main-
tainability Symposium. Washington, DC, USA: IEEE Computer Society,
2008, pp. 370–374. isbn: 978-1-4244-1460-4. doi: 10.1109/RAMS.2008.
4925824 (cit. on pp. 10, 87, 100).

[35] Cristian Constantinescu. “Impact of Deep Submicron Technology on De-
pendability of VLSI Circuits”. In: Proceedings of the 2002 International
Conference on Dependable Systems and Networks. DSN ’02. Washington,
DC, USA: IEEE Computer Society, 2002, pp. 205–209. isbn: 0-7695-1597-5
(cit. on p. 9).

[36] Cristian Constantinescu. “Trends and Challenges in VLSI Circuit Reliabil-
ity”. In: IEEE Micro 4.23 (2003), pp. 14–19 (cit. on pp. 70, 72, 116, 146).

202

http://dx.doi.org/10.1145/217838.217868
http://dx.doi.org/10.1109/RAMS.2008.4925824
http://dx.doi.org/10.1109/RAMS.2008.4925824

Bibliography

[37] A. Correcher et al. “Intermittent Failure Dynamics Characterization”. In:
Reliability, IEEE Transactions on 61.3 (2012), pp. 649 –658. issn: 0018-
9529. doi: 10.1109/TR.2012.2208300 (cit. on pp. 10, 47, 90).

[38] Diamantino Costa et al. “XceptionTM: A Software Implemented Fault Injec-
tion Tool”. English. In: Fault Injection Techniques and Tools for Embedded
Systems Reliability Evaluation. Ed. by Alfredo Benso and Paolo Prinetto.
Vol. 23. Frontiers in Electronic Testing. Springer US, 2003, pp. 125–139.
isbn: 978-1-4020-7589-6. doi: 10.1007/0-306-48711-X_8 (cit. on p. 26).

[39] Sergio D’Angelo, Giacomo R. Sechi, and Cecilia Metra. “Transient and Per-
manent Fault Diagnosis for FPGA-Based TMR Systems”. In: Proceedings of
the 14th International Symposium on Defect and Fault-Tolerance in VLSI
Systems. DFT ’99. Washington, DC, USA: IEEE Computer Society, 1999,
pp. 330–338. isbn: 0-7695-0325-X (cit. on pp. 45, 47, 87, 92, 100).

[40] DO-254 Design Assurance Guidance for Airborne Electronic Hardware.
RTCA, 2000 (cit. on p. 3).

[41] P. E. Dodd et al. “Production and Propagation of Single-Event Transients
in High-Speed Digital Logic ICs”. In: IEEE Transactions on Nuclear Science
51 (2004), pp. 3278–3284. doi: 10.1109/TNS.2004.839172 (cit. on pp. 12,
89, 98).

[42] David Dye. Partial Reconfiguration of Xilinx FPGAs Using ISE Design
Suite. Tech. rep. WP374 (v1.1), 2011 (cit. on p. 75).

[43] P. Eaton et al. “Single event transient pulsewidth measurements using a
variable temporal latch technique”. In: Nuclear Science, IEEE Transactions
on 51.6 (2004), pp. 3365–3368. issn: 0018-9499. doi: 10.1109/TNS.2004.
840020 (cit. on p. 12).

[44] Frank Emnett and Mark Biegel. Power Reduction Through RTL Clock Gat-
ing By. 2000 (cit. on p. 132).

[45] Michael Engel and Olaf Spinczyk. “Aspects in Hardware: What Do They
Look Like?” In: Proceedings of the 2008 AOSD Workshop on Aspects, Com-
ponents, and Patterns for Infrastructure Software. ACP4IS ’08. Brussels,
Belgium: ACM, 2008, 5:1–5:6. isbn: 978-1-60558-142-2. doi: 10 . 1145 /
1404891.1404896 (cit. on p. 119).

203

http://dx.doi.org/10.1109/TR.2012.2208300
http://dx.doi.org/10.1007/0-306-48711-X_8
http://dx.doi.org/10.1109/TNS.2004.839172
http://dx.doi.org/10.1109/TNS.2004.840020
http://dx.doi.org/10.1109/TNS.2004.840020
http://dx.doi.org/10.1145/1404891.1404896
http://dx.doi.org/10.1145/1404891.1404896

Bibliography

[46] Luis Entrena, Celia L?z, and Emilio Ol? “Automatic generation of fault
tolerant VHDL designs”. In: in RTL? in: Forum on Design Languages
(FDL?001. 2001 (cit. on p. 119).

[47] Dan Ernst et al. “Razor: circuit-level correction of timing errors for low-
power operation”. In: IEEE Micro 6 (2004), pp. 10–20 (cit. on pp. 44, 46).

[48] J. Espinosa et al. “Analysis and RTL Correlation of Instruction Set Sim-
ulators for Automotive Microcontroller Robustness Verification”. In: DAC.
http://people.ac.upc.edu/jabella/DAC2015BSC.pdf. 2015 (cit. on
pp. 188, 195).

[49] J. Espinosa et al. “Ideas Towards Early Detection of Fugacious Faults for
Increased Safety of VLSI Systems”. In: ITACA WIICT - Workshop on Inno-
vation on Information and Communication Technologies. Valencia, Spain,
2014, pp. 25–34 (cit. on p. 100).

[50] J. Espinosa et al. “Robust communications using automatic deployment
of a CRC-generation technique in IP-blocks”. In: XI Jornadas de Com-
putaci?Reconfigurable y Aplicaciones (JCRA). 2011. isbn: 978-8-46148-8-
148 (cit. on pp. 61, 124).

[51] J. Espinosa et al. “Tolerating multiple faults with proximate manifesta-
tions in FPGA-based critical designs for harsh environments”. In: Field
Programmable Logic and Applications (FPL), 2012 22nd International Con-
ference on. 2012, pp. 292–299. doi: 10.1109/FPL.2012.6339195 (cit. on
p. 61).

[52] Jaime Espinosa, David de Andrés, and Pedro Gil. “Increasing the Depend-
ability of VLSI Systems Through Early Detection of Fugacious Faults”.
In: Proceedings of the 11th European Dependable Computing Conference
(EDCC11) Paris, France. 7-11 September 2015. 2015 (cit. on p. 62).

[53] Jaime Espinosa et al. “Analysis and RTL Correlation of Instruction Set Sim-
ulators for Automotive Microcontroller Robustness Verification”. In: Pro-
ceedings of the 52Nd Annual Design Automation Conference. DAC ’15. San
Francisco, California: ACM, 2015, 40:1–40:6. isbn: 978-1-4503-3520-1. doi:
10.1145/2744769.2744798 (cit. on pp. 62, 64, 163).

[54] Jaime Espinosa et al. “Characterizing fault propagation in safety-critical
processor designs”. In: Proceedings of the 21st International Online Testing
Symposium (IOLTS15) pages=144–149, Elia, Halkidiki, Greece. 6-8 July
2015. IEEE. 2015 (cit. on pp. 62, 64, 163).

204

http://people.ac.upc.edu/jabella/DAC2015BSC.pdf
http://dx.doi.org/10.1109/FPL.2012.6339195
http://dx.doi.org/10.1145/2744769.2744798

Bibliography

[55] Jaime Espinosa et al. “On the potentials of Robustness Verification us-
ing Architectural Registers-based Fault Injection”. In: Design Test, IEEE
TBA.TBA (2015), TBA (cit. on p. 63).

[56] Jaime Espinosa et al. “The Challenge of Detection and Diagnosis of Fuga-
cious Hardware Faults in VLSI Designs”. In: Dependable Computing. Ed. by
Marco Vieira and Jo?oCarlos Cunha. Vol. 7869. Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 2013, pp. 76–87. isbn: 978-3-642-38788-
3. doi: 10.1007/978-3-642-38789-0_7 (cit. on pp. 62, 99).

[57] Jaime Espinosa et al. “Towards Certification-aware Fault Injection Method-
ologies Using Virtual Prototypes”. In: Proceedings of the Forum on specifi-
cation & Design Languages (FDL2015) Barcelona,Spain. 14-16 September
2015. 2015 (cit. on pp. 62, 64).

[58] J.-C. Fabre and T. Perennou. “A metaobject architecture for fault-tolerant
distributed systems: the FRIENDS approach”. In: Computers, IEEE Trans-
actions on 47.1 (1998), pp. 78–95. issn: 0018-9340. doi: 10.1109/12.
656088 (cit. on pp. 116, 119).

[59] V. Ferlet-Cavrois, L.W. Massengill, and P. Gouker. “Single Event Transients
in Digital CMOS -A Review”. In: Nuclear Science, IEEE Transactions on
60.3 (2013), pp. 1767–1790. issn: 0018-9499. doi: 10.1109/TNS.2013.
2255624 (cit. on pp. 12, 13, 16, 100).

[60] V. Ferlet-Cavrois et al. “Direct measurement of transient pulses induced
by laser and heavy ion irradiation in deca-nanometer devices”. In: Nuclear
Science, IEEE Transactions on 52.6 (2005), pp. 2104–2113. issn: 0018-9499.
doi: 10.1109/TNS.2005.860682 (cit. on pp. 12, 98).

[61] P. Fiser, P. Kubalik, and H. Kubatova. “An Efficient Multiple-Parity Gen-
erator Design for On-Line Testing on FPGA”. In: Digital System Design
Architectures, Methods and Tools, 2008. DSD ’08. 11th EUROMICRO Con-
ference on. 2008, pp. 96–99. doi: 10.1109/DSD.2008.46 (cit. on p. 44).

[62] J. Freijedo et al. “Impact of Power Supply Voltage Variations on FPGA-
Based Digital Systems Performance”. In: Journal of Low Power Electronics
6.2 (2010), pp. 339–349. doi: doi:10.1166/jolpe.2010.1076 (cit. on
pp. 10, 98).

[63] D. Gil et al. “Fault Injection Techniques and Tools for Embedded Systems
Reliability Evaluation”. In: ed. by Alfredo Benso and Paolo Prinetto. Kluwer
Academic Publishers, 2003. Chap. 4, pp. 159–176 (cit. on p. 81).

205

http://dx.doi.org/10.1007/978-3-642-38789-0_7
http://dx.doi.org/10.1109/12.656088
http://dx.doi.org/10.1109/12.656088
http://dx.doi.org/10.1109/TNS.2013.2255624
http://dx.doi.org/10.1109/TNS.2013.2255624
http://dx.doi.org/10.1109/TNS.2005.860682
http://dx.doi.org/10.1109/DSD.2008.46
http://dx.doi.org/doi:10.1166/jolpe.2010.1076

Bibliography

[64] D. Gil et al. “Injecting intermittent faults for the dependability validation
of commercial microcontrollers”. In: High Level Design Validation and Test
Workshop, 2008. HLDVT ’08. IEEE International. 2008, pp. 177–184. doi:
10.1109/HLDVT.2008.4695899 (cit. on p. 16).

[65] D. Gil et al. “VHDL Simulation-Based Fault Injection Techniques”. In: Fault
Injection Techniques and Tools for Embedded Systems Reliability Evalua-
tion. Ed. by A. Benso and P. Prinetto. Vol. 23. Springer US, 2004, pp. 159–
176 (cit. on pp. 24, 126, 154).

[66] Pedro Gil et al. Fault Representativeness. Tech. rep. DBench project, IST
2000-25425 [Online]. Available: http://www.laas.fr/DBench, 2002 (cit. on
pp. 10, 11, 15, 72, 121, 138, 161, 182, 188).

[67] Michael Goessel et al. New Methods of Concurrent Checking (Frontiers in
Electronic Testing). 1st ed. Springer Publishing Company, Incorporated,
2008. isbn: 1402084196, 9781402084195 (cit. on p. 88).

[68] Joaquin Gracia-Moran et al. “Experimental validation of a fault tolerant
microcomputer system against intermittent faults”. In: DSN. 2010, pp. 413–
418 (cit. on p. 87).

[69] J. Gracia et al. “Analysis of the influence of intermittent faults in a mi-
crocontroller”. In: Proceedings of the 2008 11th IEEE Workshop on Design
and Diagnostics of Electronic Circuits and Systems. Washington, DC, USA:
IEEE Computer Society, 2008, pp. 1–6. isbn: 978-1-4244-2276-0 (cit. on
p. 12).

[70] P. Graham et al. “Consequences and Categories of SRAM FPGA Con-
figuration SEUs”. In: Military and Aerospace Programmable Logic Devices
International Conference. 2003, pp. 1–9 (cit. on p. 71).

[71] Mentor Graphics. Modelsim. 2014 (cit. on pp. 109, 164).

[72] Steve Guccione, Delon Levi, and Prasanna Sundararajan. “JBits: Java based
interface for reconfigurable computing”. In: 1999 (cit. on p. 27).

[73] Jan Gustafsson et al. “The Mälardalen WCET Benchmarks – Past, Present
and Future”. In:WCET2010. Ed. by Björn Lisper. Brussels, Belgium: OCG,
2010, pp. 137–147 (cit. on pp. 165, 192).

[74] R.W. Hamming. “Error detecting and error correcting codes”. In: Bell Sys-
tem Technical Journal 29 (1950), pp. 147–160 (cit. on p. 44).

206

http://dx.doi.org/10.1109/HLDVT.2008.4695899

Bibliography

[75] Olof Hannius and Johan Karlsson. “Impact of Soft Errors in a Jet Engine
Controller”. In: Computer Safety, Reliability, and Security. Ed. by Frank
Ortmeier and Peter Daniel. Vol. 7612. Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 2012, pp. 223–234. isbn: 978-3-642-33677-5.
doi: 10.1007/978-3-642-33678-2_19 (cit. on pp. 16, 86).

[76] Y. Hayashi et al. “Intentional electromagnetic interference for fault analysis
on AES block cipher IC”. In: Electromagnetic Compatibility of Integrated
Circuits (EMC Compo), 2011 8th Workshop on. 2011, pp. 235–240 (cit. on
p. 98).

[77] C. Hernandez and J. Abella. “LiVe: Timely error detection in light-lockstep
safety critical systems”. In: DAC. 2014 (cit. on pp. 28, 160, 163, 171, 174,
179, 186).

[78] C. Hernandez and J. Abella. “Timely Error Detection for Effective Recov-
ery in Light-Lockstep Automotive Systems”. In: Computer-Aided Design
of Integrated Circuits and Systems, IEEE Transactions on 34.11 (2015),
pp. 1718–1729. issn: 0278-0070. doi: 10.1109/TCAD.2015.2434958 (cit.
on p. 39).

[79] IEC 61511 Functional safety - Safety instrumented systems for the process
industry sector. IEC, 2004 (cit. on p. 3).

[80] IEC 62278 Railway applications - Specification and demonstration of reli-
ability, availability, maintainability and safety (RAMS). IEC, 2002 (cit. on
p. 3).

[81] ISO 26262 Functional Safety - Road Vehicles. ISO (cit. on pp. 3, 38, 161,
170, 171, 173, 174, 176, 182, 187).

[82] Xilinx Inc. Device Reliability Report. Tech. rep. UG116 (v8.1), 2011 (cit. on
p. 72).

[83] Infineon. AURIX - TriCore datasheet. Highly Integrated and Performance
Optimized 32-bit Microcontrollers for Automotive and Industrial Applica-
tions. https://www.infineon.com/dgdl?folderId=db3a304412b407950112b409ae660342&
fileId=db3a30431f848401011fc664882a7648. 2012 (cit. on pp. 163, 175,
190, 191).

[84] R. K. Iyer and D. J. Rossetti. “A statistical load dependency model for
cpu errors at SLAC”. In: Fault-Tolerant Computing, 1995, ’ Highlights

207

http://dx.doi.org/10.1007/978-3-642-33678-2_19
http://dx.doi.org/10.1109/TCAD.2015.2434958
https://www.infineon.com/dgdl?folderId=db3a304412b407950112b409ae660342&fileId=db3a30431f848401011fc664882a7648
https://www.infineon.com/dgdl?folderId=db3a304412b407950112b409ae660342&fileId=db3a30431f848401011fc664882a7648

Bibliography

from Twenty-Five Years’., Twenty-Fifth International Symposium on. 1995,
p. 373 (cit. on p. 89).

[85] JEDEC. “Measurement and reporting of alpha particle and terrestrial cos-
mic ray-induced soft errors in semiconductor devices”. In: JEDEC Standard
JESD89A. JEDEC, 2006 (cit. on pp. 86, 98).

[86] E. Jenn et al. “Fault injection into VHDL models: the MEFISTO tool”. In:
FTCS. 1994 (cit. on pp. 28, 161, 164, 166, 178, 182, 187, 193).

[87] C.W. Johnson and C.M. Holloway. “The Dangers of Failure Masking in
Fault-Tolerant Software: Aspects of a Recent In-Flight Upset Event”. In:
System Safety, 2007 2nd Institution of Engineering and Technology Inter-
national Conference on. 2007, pp. 60 –65 (cit. on p. 88).

[88] E. Johnson et al. “Accelerator validation of an FPGA SEU simulator”. In:
Nuclear Science, IEEE Transactions on 50.6 (2003), pp. 2147 –2157. issn:
0018-9499. doi: 10.1109/TNS.2003.821791 (cit. on p. 71).

[89] H. S. Warren Jr. “Hacker’s Delight”. In: Addison-Wesley Professional, 2003.
Chap. 14. isbn: 0201914654 (cit. on p. 147).

[90] L. Kafka, M. Danek, and O. Novak. “A Novel Emulation Technique that
Preserves Circuit Structure and Timing”. In: System-on-Chip, 2007 Inter-
national Symposium on. 2007, pp. 1–4. doi: 10.1109/ISSOC.2007.4427437
(cit. on p. 128).

[91] G.A. Kanawati, N.A. Kanawati, and J.A. Abraham. “FERRARI: a flexi-
ble software-based fault and error injection system”. In: Computers, IEEE
Transactions on 44.2 (1995), pp. 248–260. issn: 0018-9340. doi: 10.1109/
12.364536 (cit. on p. 26).

[92] T. Karnik and P. Hazucha. “Characterization of soft errors caused by single
event upsets in CMOS processes”. In: Dependable and Secure Computing,
IEEE Transactions on 1.2 (2004), pp. 128–143. issn: 1545-5971. doi: 10.
1109/TDSC.2004.14 (cit. on p. 121).

[93] Fernanda Gusmao de Lima Kastensmidt et al. “Designing Fault-Tolerant
Techniques for SRAM-Based FPGAs”. In: IEEE Des. Test 21 (6 2004),
pp. 552–562. issn: 0740-7475 (cit. on pp. 44, 73, 79).

208

http://dx.doi.org/10.1109/TNS.2003.821791
http://dx.doi.org/10.1109/ISSOC.2007.4427437
http://dx.doi.org/10.1109/12.364536
http://dx.doi.org/10.1109/12.364536
http://dx.doi.org/10.1109/TDSC.2004.14
http://dx.doi.org/10.1109/TDSC.2004.14

Bibliography

[94] G. Kiczales. “Aspect-oriented Programming”. In:ACM Comput. Surv. 28.4es
(1996). issn: 0360-0300. doi: 10.1145/242224.242420 (cit. on pp. 117, 118,
120).

[95] C. Kim. “Detection and location of intermittent faults by monitoring carrier
signal channel behavior of electrical interconnection system”. In: Electric
Ship Technologies Symposium, 2009. ESTS 2009. IEEE. 2009, pp. 449 –
455. doi: 10.1109/ESTS.2009.4906550 (cit. on p. 93).

[96] K Kimseng et al. “Physics-of-failure assessment of a cruise control module”.
In: Microelectronics Reliability 39.10 (1999), pp. 1423 –1444. issn: 0026-
2714. doi: 10.1016/S0026-2714(99)00018-9 (cit. on p. 90).

[97] Seok-Bum Ko and Jien-Chung Lo. “Efficient Realization of Parity Predic-
tion Functions in FPGAs”. In: J. Electron. Test. 20.5 (2004), pp. 489–499.
issn: 0923-8174. doi: 10.1023/B:JETT.0000042513.15382.e7 (cit. on
pp. 92, 102).

[98] M. Kooli et al. “Software testing and software fault injection”. In: Design
Technology of Integrated Systems in Nanoscale Era (DTIS), 2015 10th In-
ternational Conference on. 2015, pp. 1–6. doi: 10 . 1109 / DTIS . 2015 .
7127370 (cit. on p. 20).

[99] P. Koopman and T. Chakravarty. “Cyclic Redundancy Code (CRC) Poly-
nomial Selection For Embedded Networks”. In: IEEE International Con-
ference on Dependable Systems and Networks. 2004, pp. 145–154 (cit. on
pp. 147, 153, 156).

[100] G. Leen and D. Heffernan. “Expanding Automotive Electronic Systems”.
In: IEEE Computer 35.1 (2002) (cit. on p. 170).

[101] A. Lesea et al. “The rosetta experiment: Atmospheric soft error rate test-
ing in differing technology FPGAs”. In: IEEE Transactions on Device and
Materials Reliability 5.3 (2005), pp. 317–328 (cit. on pp. 10, 72).

[102] R. Leveugle. “Automatic modifications of high level VHDL descriptions for
fault detection or tolerance”. In: Design, Automation and Test in Europe
Conference and Exhibition, 2002. Proceedings. 2002, pp. 837–841. doi: 10.
1109/DATE.2002.998396 (cit. on p. 119).

[103] Man-Lap Li et al. “Accurate microarchitecture-level fault modeling for
studying hardware faults”. In: HPCA. 2009 (cit. on pp. 28, 41, 161, 174,
182, 188).

209

http://dx.doi.org/10.1145/242224.242420
http://dx.doi.org/10.1109/ESTS.2009.4906550
http://dx.doi.org/10.1016/S0026-2714(99)00018-9
http://dx.doi.org/10.1023/B:JETT.0000042513.15382.e7
http://dx.doi.org/10.1109/DTIS.2015.7127370
http://dx.doi.org/10.1109/DTIS.2015.7127370
http://dx.doi.org/10.1109/DATE.2002.998396
http://dx.doi.org/10.1109/DATE.2002.998396

Bibliography

[104] LiP6. SoCLib. http://www.soclib.fr/trac/dev. 2003-2012 (cit. on p. 160).

[105] Fernanda de Lima Kastensmidt, Luigi Carro, and Ricardo Reis. Fault-
Tolerance Techniques for SRAM-based FPGAs. Vol. 32. Frontiers in Elec-
tronic Testing. Springer, 2006 (cit. on pp. 46, 102).

[106] C. Lopez-Ongil et al. “Autonomous Fault Emulation: A New FPGA-Based
Acceleration System for Hardness Evaluation”. In: Nuclear Science, IEEE
Transactions on 54.1 (2007), pp. 252–261. issn: 0018-9499. doi: 10.1109/
TNS.2006.889115 (cit. on p. 27).

[107] Henrique Madeira et al. “RIFLE: A General Purpose Pin-level Fault In-
jector”. In: Proceedings of the First European Dependable Computing Con-
ference on Dependable Computing. EDCC-1. London, UK, UK: Springer-
Verlag, 1994, pp. 199–216. isbn: 3-540-58426-9 (cit. on p. 26).

[108] Pattie Maes. “Concepts and Experiments in Computational Reflection”.
In: Conference Proceedings on Object-oriented Programming Systems, Lan-
guages and Applications. OOPSLA ’87. Orlando, Florida, USA: ACM, 1987,
pp. 147–155. isbn: 0-89791-247-0. doi: 10.1145/38765.38821 (cit. on
p. 118).

[109] M. Maniatakos et al. “Instruction-Level Impact Analysis of Low-Level Faults
in a Modern Microprocessor Controller”. In: Computers, IEEE Transactions
on 60.9 (2011), pp. 1260–1273. issn: 0018-9340. doi: 10.1109/TC.2010.60
(cit. on pp. 41, 162, 183).

[110] Michail Maniatakos et al. “AVF Analysis Acceleration via Hierarchical Fault
Pruning”. In: 16th European Test Symposium, ETS 2011, Trondheim, Nor-
way, May 23-27, 2011. 2011, pp. 87–92. doi: 10.1109/ETS.2011.42 (cit.
on p. 21).

[111] R. J. Mart?z et al. “Dependable computing for critical applications”. In: ed.
by A. Avizienis, H. Kopetz, and J. C. Laprie. Vol. 12. Dependable comput-
ing and Fault-Tolerant Systems 7. ISBN : 0-7695-0284-9. IEEE Computer
Society Press, 1999. Chap. Experimental Validation of High-Speed Fault-
Tolerant Systems Using Physical Fault Injection, pp. 249–265 (cit. on p. 26).

[112] Matthias Meier, Stefan Hanenberg, and Olaf Spinczyk. “AspectVHDL Stage
1: The Prototype of an Aspect-oriented Hardware Description Language”.
In: Proceedings of the 2012 Workshop on Modularity in Systems Software.
MISS ’12. Potsdam, Germany: ACM, 2012, pp. 3–8. isbn: 978-1-4503-1217-
2. doi: 10.1145/2162024.2162028 (cit. on p. 119).

210

http://dx.doi.org/10.1109/TNS.2006.889115
http://dx.doi.org/10.1109/TNS.2006.889115
http://dx.doi.org/10.1145/38765.38821
http://dx.doi.org/10.1109/TC.2010.60
http://dx.doi.org/10.1109/ETS.2011.42
http://dx.doi.org/10.1145/2162024.2162028

Bibliography

[113] J.M. Mogollon et al. “FTUNSHADES2: A novel platform for early evalua-
tion of robustness against SEE”. In: Radiation and Its Effects on Compo-
nents and Systems (RADECS), 2011 12th European Conference on. 2011,
pp. 169–174. doi: 10.1109/RADECS.2011.6131392 (cit. on pp. 23, 27).

[114] David P. Montminy et al. “Using Relocatable Bitstreams for Fault Toler-
ance”. In: Proceedings of the Second NASA/ESA Conference on Adaptive
Hardware and Systems. Washington, DC, USA: IEEE Computer Society,
2007, pp. 701–708. isbn: 0-7695-2866-X (cit. on p. 75).

[115] Gordon Moore. “Cramming more components onto integrated circuits”. In:
Electronics 38.8 (1965), p. 114. doi: 10.1109/JPROC.1998.658762 (cit. on
p. 9).

[116] T.R. Muck et al. “A Case Study of AOP and OOP Applied to Digital Hard-
ware Design”. In: Computing System Engineering (SBESC), 2011 Brazilian
Symposium on. 2011, pp. 66–71. doi: 10.1109/SBESC.2011.23 (cit. on
p. 119).

[117] S.S. Mukherjee et al. “A Systematic Methodology to Compute the Archi-
tectural Vulnerability Factors for a High-Performance Microprocessor”. In:
MICRO. 2003 (cit. on pp. 175, 182, 188).

[118] V. Narayanan and Y. Xie. “Reliability Concerns in Embedded Systems
Design”. In: IEEE Computer 1.39 (2006), pp. 118–120 (cit. on pp. 86, 116,
146).

[119] New tool for FPGA designers mitigates soft errors within synthesis. [Online]
Available at DSP-FPGA.com Magazine. 2011 (cit. on p. 120).

[120] M. Nicolaidis. “Time Redundancy Based Soft-Error Tolerance to Rescue
Nanometer Technologies”. In: IEEE VLSI Test Symposium. 1999, pp. 86–
94 (cit. on pp. 46, 73, 79).

[121] M. Nicolaidis, S. Manich, and J. Figueras. “Achieving Fault Secureness
in Parity Prediction Arithmetic Operators: General Conditions and Im-
plementations”. In: Proceedings of the 1996 European conference on Design
and Test. EDTC ’96. Washington, DC, USA: IEEE Computer Society, 1996,
pp. 186–. isbn: 0-8186-7423-7 (cit. on pp. 92, 102).

[122] Edmund B. Nightingale, John R. Douceur, and Vince Orgovan. “Cycles,
cells and platters: an empirical analysisof hardware failures on a million
consumer PCs”. In: Proceedings of the sixth conference on Computer sys-

211

http://dx.doi.org/10.1109/RADECS.2011.6131392
http://dx.doi.org/10.1109/JPROC.1998.658762
http://dx.doi.org/10.1109/SBESC.2011.23

Bibliography

tems. EuroSys ’11. Salzburg, Austria: ACM, 2011, pp. 343–356. isbn: 978-
1-4503-0634-8. doi: 10.1145/1966445.1966477 (cit. on p. 89).

[123] J.-H. Oetjens et al. “Safety Evaluation of Automotive Electronics Using
Virtual Prototypes: State of the Art and Research Challenges”. In: DAC.
2014 (cit. on pp. 160, 172, 182, 187).

[124] C. Oliveira et al. “Reliability analysis of an on-chip watchdog for embedded
systems exposed to radiation and EMI”. In: Electromagnetic Compatibility
of Integrated Circuits (EMC Compo), 2013 9th Intl Workshop on. 2013,
pp. 89–94. doi: 10.1109/EMCCompo.2013.6735179 (cit. on p. 10).

[125] OpenCores. [Online] Available: www.opencores.org. 2011 (cit. on pp. 149,
153).

[126] Terence Parr. The Definitive ANTLR 4 Reference. The Pragmatic Pro-
grammers, 2013 (cit. on p. 122).

[127] Ab?o Parreira, J. P. Teixeira, and Marcelino Santos. “A Novel Approach to
FPGA-Based Hardware Fault Modeling and Simulation”. In: Proc. of the
Design and Diagnostics of Electronic Circuits and Syst. Workshop. 2003,
pp. 17–24 (cit. on p. 128).

[128] Christopher Pohl, Carlos Paiz, and Mario Porrmann. “vMAGIC - Auto-
matic Code Generation for VHDL”. English. In: International Journal of
Reconfigurable Computing, Hindawi Publishing Corporation, 2009.Article
ID 205149 (2009), pp. 1–9. issn: 1687-7195. doi: 10.1155/2009/205149
(cit. on p. 119).

[129] J. Poovey. Characterization of the EEMBC Benchmark Suite. North Car-
olina State University. 2007 (cit. on pp. 165, 178, 192).

[130] M. Portela-Garcia et al. “Fault Injection in Modern Microprocessors Using
On-Chip Debugging Infrastructures”. In: Dependable and Secure Comput-
ing, IEEE Transactions on 8.2 (2011), pp. 308–314. issn: 1545-5971. doi:
10.1109/TDSC.2010.50 (cit. on p. 27).

[131] M. Psarakis et al. “Microprocessor Software-Based Self-Testing”. In: Design
Test of Computers, IEEE 27.3 (2010), pp. 4–19. issn: 0740-7475. doi: 10.
1109/MDT.2010.5 (cit. on pp. 171, 176).

212

http://dx.doi.org/10.1145/1966445.1966477
http://dx.doi.org/10.1109/EMCCompo.2013.6735179
http://dx.doi.org/10.1155/2009/205149
http://dx.doi.org/10.1109/TDSC.2010.50
http://dx.doi.org/10.1109/MDT.2010.5
http://dx.doi.org/10.1109/MDT.2010.5

Bibliography

[132] Laura L. Pullum. Software Fault Tolerance Techniques and Implementation.
Norwood, MA, USA: Artech House, Inc., 2001. isbn: 1-58053-137-7 (cit. on
p. 129).

[133] Heather Quinn et al. “Radiation-Induced Multi-Bit Upsets in SRAM-Based
FPGAs”. In: IEEE Transactions on Nuclear Science 52.6 (2005), pp. 2455–
2461 (cit. on p. 73).

[134] RTCA and EUROCAE. DO-178B / ED-12B, Software Considerations in
Airborne Systems and Equipment Certification. 1992 (cit. on pp. 161, 187).

[135] P. Ramachandran et al. “Statistical Fault Injection”. In:Dependable Systems
and Networks With FTCS and DCC, 2008. DSN 2008. IEEE International
Conference on. 2008, pp. 122–127. doi: 10.1109/DSN.2008.4630080 (cit.
on p. 161).

[136] Layali Rashid, Karthik Pattabiraman, and Sathish Gopalakrishnan. “In-
termittent hardware errors and recovery: modelling and evaluation”. In:
International Conference on Quantitative Evaluation of Systems (QEST).
2012 (cit. on pp. 15, 91).

[137] S. Rehman et al. “Reliable software for unreliable hardware: Embedded code
generation aiming at reliability”. In: CODES+ISSS. 2011 (cit. on pp. 176,
182, 188).

[138] D. A. Reynolds and G. Metze. “Fault Detection Capabilities of Alternating
Logic”. In: IEEE Trans. Comput. 27 (12 1978), pp. 1093–1098. issn: 0018-
9340 (cit. on p. 44).

[139] GmbH Robert Bosch. CAN Specification 2.0. Robert Bosch, GmbH, 1991
(cit. on p. 146).

[140] M. Rodriguez, A. Albinet, and J. Arlat. “MAFALDA-RT: a tool for depend-
ability assessment of real-time systems”. In: Dependable Systems and Net-
works, 2002. DSN 2002. Proceedings. International Conference on. 2002,
pp. 267–272. doi: 10.1109/DSN.2002.1028909 (cit. on p. 26).

[141] S. Rohr et al. “An Integrated Approach to Automotive Safety Systems”.
In: SAE Automotive Engineering International magazine (2000) (cit. on
p. 170).

[142] E. Romani. Structural PIC165X microcontroller, The Hamburg VHDL Archive.
2007 (cit. on p. 136).

213

http://dx.doi.org/10.1109/DSN.2008.4630080
http://dx.doi.org/10.1109/DSN.2002.1028909

Bibliography

[143] J.-C. Ruiz, D. de Andrés, and P. Gil. “Design and Deployment of a Generic
ECC-based Fault Tolerance Mechanism for Embedded HWCores”. In: IEEE
International Conference on Emerging Technologies and Factory Automa-
tion. Mallorca, Spain, 2009, pp. 3956–3964 (cit. on pp. 120, 124, 130, 146).

[144] J.-C. Ruiz et al. “Generic Design and Automatic Deployment of NMR
Strategies on HW Cores”. In: IEEE Pacific Rim Int. Symp. on Depend-
able Computing. Taipei, Taiwan, 2008, pp. 265–272 (cit. on pp. 120, 124,
130, 146).

[145] J.-C. Ruiz et al. “Reflective Fault-Tolerant Systems: From Experience to
Challenges”. In: IEEE Transactions on Computers 52.2 (2003), pp. 237–
254. issn: 0018-9340 (cit. on p. 146).

[146] J.-C. Ruiz et al. “Using Open Compilation to Simplify the Design of Fault-
Tolerant VLSI Systems”. In:Workshop on Compiler and Architectural Tech-
niques for Application Reliability and Security. 2008, B14–B19. isbn: 978-
1-4244-2398-9 (cit. on pp. 120, 121, 146).

[147] STMicroelectronics. 32-bit Power Architecture microcontroller for automo-
tive SIL3/ASILD chassis and safety applications. 2014 (cit. on pp. 175,
190).

[148] Luis-J. Saiz-Adalid et al. “Flexible Unequal Error Control Codes with Se-
lectable Error Detection and Correction Levels”. In: Proceedings of the 32Nd
International Conference on Computer Safety, Reliability, and Security -
Volume 8153. SAFECOMP 2013. Toulouse, France: Springer-Verlag New
York, Inc., 2013, pp. 178–189. isbn: 978-3-642-40792-5. doi: 10.1007/978-
3-642-40793-2_17 (cit. on p. 46).

[149] Daniel Sánchez et al. “Modeling the Impact of Permanent Faults in Caches”.
In: ACM Trans. Archit. Code Optim. 10.4 (2013), 29:1–29:23. issn: 1544-
3566. doi: 10.1145/2541228.2541236 (cit. on pp. 160, 186).

[150] B. Sangchoolie et al. “A Study of the Impact of Bit-Flip Errors on Programs
Compiled with Different Optimization Levels”. In: EDCC. 2014 (cit. on
pp. 21, 160, 171, 186).

[151] Behrooz Sangchoolie et al. “A Comparison of Inject-on-Read and Inject-on-
Write in ISA-Level Fault Injection”. In: Dependable Computing Conference
(EDCC), 2015 Eleventh European. 2015, pp. 178–189. doi: 10.1109/EDCC.
2015.24 (cit. on p. 23).

214

http://dx.doi.org/10.1007/978-3-642-40793-2_17
http://dx.doi.org/10.1007/978-3-642-40793-2_17
http://dx.doi.org/10.1145/2541228.2541236
http://dx.doi.org/10.1109/EDCC.2015.24
http://dx.doi.org/10.1109/EDCC.2015.24

Bibliography

[152] J. Savir. “Detection of Single Intermittent Faults in Sequential Circuits”.
In: IEEE Trans. Comput. 29.7 (1980), pp. 673–678. issn: 0018-9340. doi:
10.1109/TC.1980.1675642 (cit. on pp. 44, 90).

[153] Zary Segall et al. “FIAT-fault injection based automated testing environ-
ment.” In: FTCS. IEEE Computer Society, 1988, pp. 102–107. isbn: 0-8186-
0867-6 (cit. on p. 26).

[154] Krishna Seshan, Timothy J. Maloney, and Kenneth J. Wu. “The Qual-
ity and Reliability of Intel’s Quarter Micron Process”. In: Intel technology
Journal (1998) (cit. on p. 9).

[155] S. Shamshiri and Kwang-Ting Cheng. “Error-locality-aware linear coding
to correct multi-bit upsets in SRAMs”. In: Test Conference (ITC), 2010
IEEE International. 2010, pp. 1–10. doi: 10.1109/TEST.2010.5699220
(cit. on p. 46).

[156] P. Shivakumar et al. “Modeling the effect of technology trends on the soft
error rate of combinational logic”. In: Proceedings of the 2002 International
Conference on Dependable Systems and Networks. 2002, pp. 389–398 (cit.
on p. 16).

[157] V. Sieh, O. Tschache, and F. Balbach. “VERIFY: evaluation of reliability
using VHDL-models with embedded fault descriptions”. In: Fault-Tolerant
Computing, 1997. FTCS-27. Digest of Papers., Twenty-Seventh Annual In-
ternational Symposium on. 1997, pp. 32–36. doi: 10.1109/FTCS.1997.
614074 (cit. on p. 28).

[158] D. Skarin, R. Barbosa, and J. Karlsson. “GOOFI-2: A tool for experimental
dependability assessment”. In: Dependable Systems and Networks (DSN),
2010 IEEE/IFIP International Conference on. 2010, pp. 557–562. doi: 10.
1109/DSN.2010.5544265 (cit. on pp. 23, 26).

[159] B.A. Sorensen et al. “An analyzer for detecting intermittent faults in elec-
tronic devices”. In: AUTOTESTCON ’94. IEEE Systems Readiness Tech-
nology Conference. ’Cost Effective Support Into the Next Century’, Confer-
ence Proceedings. 1994, pp. 417 –421. doi: 10.1109/AUTEST.1994.381590
(cit. on pp. 11, 90).

[160] Janusz Sosnowski. “Transient Fault Tolerance in Digital Systems”. In: IEEE
Micro 14.1 (1994), pp. 24–35. issn: 0272-1732. doi: 10.1109/40.259897
(cit. on p. 90).

215

http://dx.doi.org/10.1109/TC.1980.1675642
http://dx.doi.org/10.1109/TEST.2010.5699220
http://dx.doi.org/10.1109/FTCS.1997.614074
http://dx.doi.org/10.1109/FTCS.1997.614074
http://dx.doi.org/10.1109/DSN.2010.5544265
http://dx.doi.org/10.1109/DSN.2010.5544265
http://dx.doi.org/10.1109/AUTEST.1994.381590
http://dx.doi.org/10.1109/40.259897

Bibliography

[161] University of South California. Tools for Open Reconfigurable Computing.
2014 (cit. on p. 108).

[162] J Srinivasan et al. “The impact of technology scaling on lifetime reliability”.
In: 2004 International Conference On Dependable Systems And Networks,
Proceedings. 2004, pp. 177–186. isbn: 0-7695-2052-9 (cit. on pp. 9, 72).

[163] Suresh Srinivasan et al. “FLAW: FPGA lifetime awareness”. In: Proceedings
of the 43rd annual Design Automation Conference. DAC ’06. San Francisco,
CA, USA: ACM, 2006, pp. 630–635. isbn: 1-59593-381-6 (cit. on p. 72).

[164] L. Sterpone and M. Violante. “A New Reliability-Oriented Place and Route
Algorithm for SRAM-Based FPGAs”. In: IEEE Transactions on Computers
55 (6 2006), pp. 732–744 (cit. on pp. 72, 77).

[165] L. Sterpone and M. Violante. “A new analytical approach to estimate the
effects of SEUs in TMR architectures implemented through SRAM-based
FPGAs”. In: Nuclear Science, IEEE Transactions on 52.6 (2005), pp. 2217–
2223. issn: 0018-9499. doi: 10.1109/TNS.2005.860745 (cit. on p. 24).

[166] M. Straka, J. Kastil, and Z. Kotasek. “Fault Tolerant Structure for SRAM-
Based FPGA via Partial Dynamic Reconfiguration”. In: Euromicro Con-
ference on Digital System Design: Architectures, Methods and Tools. 2010,
pp. 365–372 (cit. on pp. 44, 48, 73, 79).

[167] M. Straka, Z. Kotasek, and J. Winter. “Digital Systems Architectures Based
on On-line Checkers”. In: EUROMICRO Conference on Digital System De-
sign Architectures, Methods and Tools. 2008, pp. 81–87 (cit. on pp. 44, 79).

[168] Vytautas Štuikys et al. “Soft IP Design Framework Using Metaprogram-
ming Techniques”. In: In. Kluwer Academic Publishers, 2002, pp. 257–266
(cit. on p. 119).

[169] Synopsys. Platform Architect. http: // www. synopsys. com/ Prototyping/
ArchitectureDesign/ Pages/ platform-architect. aspx (cit. on pp. 160,
161).

[170] F. Taïani, J.-C. Fabre, and M.-O. Killijian. “A multi-level meta-object pro-
tocol for fault-tolerance in complex architectures”. In: Dependable Systems
and Networks, 2005. DSN 2005. Proceedings. International Conference on.
2005, pp. 270–279. doi: 10.1109/DSN.2005.10 (cit. on p. 117).

216

http://dx.doi.org/10.1109/TNS.2005.860745
http://www.synopsys.com/Prototyping/ArchitectureDesign/Pages/platform-architect.aspx
http://www.synopsys.com/Prototyping/ArchitectureDesign/Pages/platform-architect.aspx
http://dx.doi.org/10.1109/DSN.2005.10

Bibliography

[171] A. S. Tanenbaum. Computer Networks. Prentice Hall, 2002. Chap. 3.2. isbn:
9780130661029 (cit. on pp. 146, 147).

[172] Pascale Thévenod-Fosse and Hélène Waeselynck. “An Investigation of Sta-
tistical Software Testing”. In: Softw. Test., Verif. Reliab. 1.2 (1991), pp. 5–
25 (cit. on p. 153).

[173] J. Tobola et al. “Online Protocol Testing for FPGA Based Fault Toler-
ant Systems”. In: Digital System Design Architectures, Methods and Tools,
2007. DSD 2007. 10th Euromicro Conference on. 2007, pp. 676–679. doi:
10.1109/DSD.2007.4341541 (cit. on p. 44).

[174] Nur A. Touba and Edward J. McCluskey. “Logic Synthesis of Multilevel
Circuits with Concurrent Error Detection”. In: IEEE TRANS. CAD 16.7
(1997), pp. 783–789 (cit. on pp. 44, 91).

[175] VeTeSS project: www.vetess.eu. ARTEMIS Joint Undertaking (cit. on pp. 160,
174, 182).

[176] A. Vörg. http://toolip.fzi.de. ToolIP- Tools and Methods for IP (cit. on
p. 116).

[177] C.R. Yount and D.P. Siewiorek. “A methodology for the rapid injection
of transient hardware errors”. In: Computers, IEEE Transactions on 45.8
(1996), pp. 881–891. issn: 0018-9340. doi: 10.1109/12.536231 (cit. on
p. 28).

[178] A. Youssef et al. “Communication Integrity in Networks for Critical Control
Systems”. In: European Dependable Computing Conference. 2006, pp. 23–34
(cit. on p. 146).

[179] Chaohuang Zeng, Nirmal Saxena, and E.J. McCluskey. “Finite State Ma-
chine Synthesis with Concurrent Error Detection”. In: International Test
Conference. 1999, pp. 672–679 (cit. on p. 44).

[180] http://www.oracle.com/us/products/tools/oracle-grid-engine-
075549.html. Sun Grid Engine. Oracle (cit. on p. 164).

[181] http://opencores.org/opencores,wishbone. Wishbone System-on-Chip
(SoC) Interconnect Architecture for Portable IP Cores. OpenCores (cit. on
p. 142).

217

http://dx.doi.org/10.1109/DSD.2007.4341541
http://dx.doi.org/10.1109/12.536231
 http://www.oracle.com/us/products/tools/oracle-grid-engine-075549.html
 http://www.oracle.com/us/products/tools/oracle-grid-engine-075549.html
http://opencores.org/opencores,wishbone

Bibliography

[182] http://reliability.ee.byu.edu/edif/. BYU EDIF Tools Home Page.
Brigham Young University, FPGA Reliability Studies (cit. on pp. 46, 120).

[183] http://www.arm.com/products/system-ip/amba. CoreLink System IP
and Design Tools for AMBA. ARM Ltd. (cit. on p. 142).

[184] http://www.gaisler.com/cms/index.php?option=com_content&task=
view&id=13&Itemid=53. Leon3 Processor. Aeroflex Gaisler (cit. on pp. 165,
178, 187, 192).

[185] http://www.gaisler.com/index.php/products/processors/leon3ft.
Leon3 fault-tolerant Processor. Aeroflex Gaisler (cit. on pp. 163, 191).

[186] http://www.ocpip.org. Open Core Protocol International Partnership
(OCP-IP). OpenCores (cit. on p. 142).

[187] http://www.synopsys.com/Tools/Implementation/RTLSynthesis/
Pages/default.aspx. Accelerate Design Innovation with Design Compiler.
Synopsys Inc. (cit. on p. 126).

[188] http://www.xilinx.com/ise/optional_prod/tmrtool.htm. XTMR
Tool. Xilinx, Inc. (cit. on pp. 46, 120).

218

http://reliability.ee.byu.edu/edif/
http://www.arm.com/products/system-ip/amba
http://www.gaisler.com/cms/index.php?option=com_content&task=view&id=13&Itemid=53
http://www.gaisler.com/cms/index.php?option=com_content&task=view&id=13&Itemid=53
http://www.gaisler.com/index.php/products/processors/leon3ft
http://www.ocpip.org
http://www.synopsys.com/Tools/Implementation/RTLSynthesis/Pages/default.aspx
http://www.synopsys.com/Tools/Implementation/RTLSynthesis/Pages/default.aspx
http://www.xilinx.com/ise/optional_prod/tmrtool.htm

	Agraïments
	Sumari
	Sumario
	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Objectives
	1.3 Structure of the thesis

	2 Faults Modeling
	2.1 Pathology
	2.2 Manifestation
	2.3 Propagation
	2.4 Modeling
	2.5 Summary

	3 Fault Injection
	3.1 Introduction
	3.1.1 Fault space: what, where, when
	3.1.2 Properties of fault injection

	3.2 Injection methodologies
	3.2.1 Physical fault injection methods
	3.2.2 Software-based fault injection methods
	3.2.3 Emulation-based fault injection methods
	3.2.4 Simulation-based fault injection methods
	3.2.5 Analysis of injection results
	3.2.6 Summary of methods

	3.3 Injection tools
	3.3.1 Physical fault injection tools
	3.3.2 SWIFI tools
	3.3.3 Emulation-based injection tools
	3.3.4 Simulation-based injection tools

	3.4 The FALLES Tool
	3.4.1 Presentation
	3.4.2 Detailed operation
	3.4.3 Analysis in FALLES

	3.5 Summary

	4 Dependability Assessment
	4.1 Introduction
	4.2 Analysis of injection results
	4.3 Multi-level correlation
	4.4 Summary

	5 Fault Tolerance Mechanisms
	5.1 Detection
	5.2 Error handling
	5.3 Fault diagnosis
	5.4 Fault recovery
	5.5 Summary

	6 Discussion and Conclusions
	6.1 Discussion
	6.1.1 Fault models
	6.1.2 Fault injections
	6.1.3 Dependability assessment
	6.1.4 Fault Tolerance mechanisms
	6.1.5 Fault tolerance implementation

	6.2 Conclusion
	6.3 Future work

	7 Summary of contributions
	7.1 Publications
	7.1.1 Conferences
	7.1.2 Journals
	7.1.3 Book chapters

	7.2 Framework of the Dissertation
	7.2.1 Research projects
	7.2.2 International research stays
	7.2.3 Collaborations

	7.3 Awards

	Appendices
	A Tolerating multiple faults with proximate manifestations in FPGA-based critical designs for harsh environments
	A.1 Introduction
	A.2 Faults in SRAM FPGAs
	A.3 Fault tolerance for FPGA-based designs
	A.4 A multiple fault tolerance approach
	A.4.1 Global architecture
	A.4.2 Detailed description
	A.4.3 Design of the FSM controller
	A.4.4 Summary

	A.5 Case study
	A.6 Analysis of results
	A.7 Conclusions

	B The Challenge of Detection and Diagnosis of Fugacious Hardware Faults in VLSI Designs
	B.1 Introduction
	B.2 The problem of Fast Fault Detection and Diagnosis
	B.2.1 On-line detection of faults and errors
	B.2.2 Considered fault models
	B.2.3 Fault diagnosis

	B.3 Solutions for detection and diagnosis
	B.3.1 Architecture of a faults detection and discrimination system
	B.3.2 Workflow to apply in the proposed technique

	B.4 Ongoing Work

	C Increasing the Dependability of VLSI Systems Through Early Detection of Fugacious Faults
	C.1 Introduction
	C.2 Fugacious fault models
	C.3 Novel architecture for detecting and diagnosing fugacious faults
	C.4 Proposed implementation flow
	C.5 First prototype and case study
	C.6 Results and discussion
	C.7 Conclusions

	D An Aspect-oriented Approach to Hardware Fault Tolerance for Embedded Systems
	D.1 Introduction
	D.2 Related Work
	D.2.1 Metaprogramming and aspect orientation
	D.2.2 Hardware fault and intrusion tolerance automation

	D.3 Metaprogramming the design of dependable and secure HDL-based embedded systems
	D.3.1 Open compilation to support the customization of hardware systems
	D.3.2 Architecting hardware fault tolerance mechanisms as metaprograms
	D.3.3 Integration within the regular hardware design flow

	D.4 Dealing with white and black box IP cores as case studies
	D.4.1 White box IP cores: tolerating transient faults via temporal redundancy
	D.4.2 Black box IP cores: integrating third party cores for symmetric encryption

	D.5 Analysis of Results and Discussion
	D.5.1 Experimental setup
	D.5.2 Analysis of results

	D.6 Conclusions and Open Challenges

	E Robust communications using automatic deployment of a CRC-generation technique in IP-blocks
	E.1 Introduction
	E.2 Research context
	E.2.1 CRCs and fault tolerance
	E.2.2 Metaprograms and open compilation

	E.3 CRC as a metaprogram
	E.3.1 Phase 1: Infrastructure generation
	E.3.2 Phase 2: Component encapsulation
	E.3.3 Phase 3: Component integration
	E.3.4 Bridging mechanism deployment and VHDL coding

	E.4 Case study
	E.4.1 CRC-protected UART transmitter
	E.4.2 Faultload
	E.4.3 Experimental procedure

	E.5 Results and discussion
	E.6 Conclusions

	F Towards Certification-aware Fault Injection Methodologies Using Virtual Prototypes
	F.1 Introduction
	F.2 Related Work
	F.3 Certification-Aware Fault Injection in Virtual prototypes
	F.3.1 Characterizing Fault behaviour at RTL level
	F.3.2 Fault injection at Virtual prototypes

	F.4 FALLES: Fault injection and Analysis for Low Level Evaluation Suite
	F.5 Experimental Results
	F.5.1 Experimental Setup
	F.5.2 Results

	F.6 Conclusions

	G Analysis and RTL Correlation of Instruction Set Simulators for Automotive Microcontroller Robustness Verification
	G.1 Introduction
	G.2 Towards Simulation-based Robustness Verification
	G.2.1 Fault injection at the RTL
	G.2.2 Fault injection at the ISS Level
	G.2.3 ISS-based Verification

	G.3 Correlating RTL with ISS fault injection
	G.4 Experimental Validation
	G.4.1 Experimental Setup
	G.4.2 Experimental Results

	G.5 Related Work
	G.6 Conclusions

	H Characterizing Fault Propagation in Safety-Critical Processor Designs
	H.1 Introduction
	H.2 Background on Simulation-based Robustness Verification
	H.2.1 Fault injection at the RTL
	H.2.2 Fault injection at the ISS Level

	H.3 Characterizing Fault Propagation
	H.4 Experimental Results
	H.4.1 Experimental Setup
	H.4.2 Results

	H.5 Conclusions

	Bibliography

