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Abstract

The behavior of buried masonry arches is studied in this article using

the Discontinuous Deformation Analysis (DDA), a numerical method that

allows for the physical simulation of the intrinsic structure discontinuities

since it is based on contact and friction among pseudo–rigid blocks. Two

types of arches (or vaults) are studied with a specially developed computer

program, one of semicircular and another of ovoidal shape. The loads are self–

weight, lateral filling, embankment thrusts and concentrated (through a short

distribution) forces close to the peak. These loads are transformed into point

forces applied to the center of gravity of each block with simple formulae from

classical mechanics. Equilibrium is reached in the whole structure through

contact forces calculated with a standard contact algorithm: penalty plus

Coulomb friction.

DDA–macroblocks composed of linked (through penalty contact springs)
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pseudo–rigid blocks are formulated. This linkage allows for the simulation of

collapse by instability or by stress compressive failure more accurately than

traditional DDA analyses, for instance funicular polygons.

The numerical results are compared with those of the experiments taken

from the literature with, for most cases, very good agreement given the uncer-

tainties on geometry and material properties and given the intrinsic quality

dispersion of masonry structures. Collapse loads as function of number of

joints, safety factors and limit point forces from the numerical and experi-

mental results are compared. The hinges that appear prior to collapse are

also compared, obtaining again for most cases very good agreement.

Keywords: Dry Masonry, Discontinuous Deformation Analysis, Contact,

Friction, Oval Arch, Vault, Collapse, Hinges.

1. Introduction

There exist a large building and civil structure heritage in many countries

to be evaluated, maintained and preserved. In particular, masonry arches are

one of the most ancient structural solutions, probably due to their simple ge-

ometry and construction and their intrinsic capability of making its material

to work in compression. Masonry structures in general are composed of

blocks whose stability is achieved by direct dry contact and friction among

each other, or indirectly through a thin interface of elastoplastic material.

Therefore, as a consequence of contact they show complex nonlinear and dis-

continuous behavior; analytical formulations or graphical methods are not

able to completely model such behavior and it is necessary to use numerical

even for the simplest geometries and loads.
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The masonry arch as an architectonic solution was already widespread

during roman times for above-ground or buried buildings, for which the struc-

ture is subjected to lateral thrust; the romans even constructed very large

vaults (longitudinal arches) or domes without semicircular shape. The first

attempts to analyze the behavior of masonry could date from the early exper-

imental works of Vitrubio in the first century B.C. Many years later, others

were focused on stability analysis, Leonardo da Vinci (circa 1500). But only

at the beginning of the XIX century geometrical methods started to be used

to properly design these structures. Recently, theoretical developments such

as those of the classical reference [1] considered masonry as a rigid continuum

and did not take into account its weak resistance under tension or tangen-

tial stresses. Analytical methods from [2], [3] were developed during WWII

to reach the maximum load carrying capacity of bridges under the weight

of armored vehicles. The main shortcoming of most of the design methods,

including some of the modern numerical ones, is that they consider the arch

as a continuum, see [4], [5].

The pioneer articles that modeled masonry with the Finite Element Method

(FEM), [6], [7], did again not consider the discontinuity of the blocks. Ref-

erences [8], [9] combined FEM with more advanced models based on ho-

mogenization techniques and obtained fairly good results. More advanced

approaches take into account the discontinuities using contact mechanics,

[10] or fracture mechanics, [11] either for static analysis or [12] for dynamic.

These techniques are expensive since the number of nodes necessary to model

contacts and blocks is relatively large.

Due to the possible high number of discontinuities in masonry struc-
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tures, the Discrete Deformation Analysis (DDA) is particularly well suited

for their study, see [13]. DDA can model the discontinuities simulating the

more or less constant layer of mortar using the numerical contact parameters

(impenetrability, friction, cohesion etc.) without the addition of new nodal

unknowns although introducing non–linearities. In addition, DDA is well

suited because is based on a displacement formulation more compatible with

the targeted type of problems. Other methods such as the Discrete Element

(DEM) or Non–Smooth Contact Dynamics, [14], [15], were designed as ex-

plicit dynamic, requiring very small time steps and artificial damping; their

stability and convergence present problems for static or quasi–static cases.

Both methods were applied to the dynamic analysis of masonry structures

under earthquake loads, [15], [16] and [17]. The comparison between DEM

and FEM approaches is discussed in [18], where the difficulties of FEM with

a high number of contacts and the necessity of an accurate description of

geometry and constitutive parameters for DEM are described.

The theoretical and numerical bases of DDA are well known, see [19], and

here only a global introduction is given. The DDA discretization often uses

only one node per block, aspect computationally attractive. But then strains

and stresses are uniform inside each block, obtaining a poor representation

of the internal elastic fields. The combination of DEM and FEM, [20], [21],

solves this shortcoming and is able to model discontinuities although again

with a high computational cost.

In the present article, the authors propose to model masonry arches

with the attachment of individual subblocks composing DDA macroblocks.

The technique allows to accurately capture internal deformation and stress
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fields with a reasonable computational cost. Field experiments performed by

CEBTP Solen for the french Sociètè National des Chemins de Fer in 1980 are

described in [22], [23] and simulated here. In these experiments, the stabil-

ity of two–dimensional arches with different geometries and made out of cut

stone at real scale was tested with a variable number of blocks and different

applied loads:

• Case 1. Filling thrust plus convoy weight, for collapse prediction as

function of number of blocks

• Case 2. Filling plus embankment, for influence of embankment thick-

ness

• Case 3. Filling plus concentrated load, for influence of load intensity

The term filling refers to soil at the sides and at the top of the arch, the

latter composed of horizontal layers denominated embankment. The filling

either stabilizes as in a bridge, or constitutes the terrain load as in tunnels,

see [24]; the point load represents weight transmitted by, for instance, a heavy

vehicle.

The results of the experiments are compared with those from the numer-

ical simulation. In spite of the lack of statistical data (only one or two tests

were performed for each configuration) and the uncertainties of the data (di-

mensions, material properties etc.), the numerical and experimental results

are very close. These comparisons validate the applicability of discontinuous

numerical methods for real curved masonry structures under several types of

loads.
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2. Masonry and contact

Masonry arches are composed of a collection of pieces in general glued at

the joints by a layer of mortar with a small tensile strength but also directly in

contact. The arch compensates the action of internal and external loads with

contact forces at joints, creating an internal line of application of resultant

forces. The equilibrium is reached when all the sections of the arch work in

compression; the line crosses the central core of all sections. In any other

case some sections works under medium tensile or tangential stresses, blocks

slide and/or separate causing the collapse of the arch. Therefore, the design

of arches must take into consideration a high strength for compressive but

not for tensile or tangential stresses: the arch is aimed to optimally enforce

compression.

Contact is the constitutive model that dominates this behavior and is

based on two basic concepts: lack of interpenetration between blocks and

frictional behavior. The first is governed by the gap function gN and the

contact penalty algorithm, see Ref. [19]. The gap function measures the nor-

mal distance between every pair of opposite points of two contacting joints.

In case of penetration, the contact algorithm inserts a compressive contact

force fcN normal to the joint modeled by a high stiffness elastic spring that

enforces gN = 0. For gN > 0, blocks are separated and fcN = 0.

The frictional behavior is controlled by two terms: friction and cohesion.

The first is represented by a tangential force f r related to the normal fN with

a coefficient µ = tanφ (φ is the angle of friction), or in physical terms the

mechanical clinging between two pieces due to the asperities of their surfaces.

The cohesion C is the magnitude of the friction force to break the joint when
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the normal is null. Consequently, the total friction force is f r = µfN +C.

In case that the tangential component of resultant force exceeds f r blocks

slide and the arch collapses.

Since the tensile strength of masonry structures is almost negligible, spe-

cial methods called “limit calculation” have existed for some time. They are

based on the concept of “breaking joint” from Coulomb (1773), under two

basic hypotheses:

• Lack of tractions in the structure, all sections under compression

• Tangential forces in the arch section lower than the friction resistance

These hypotheses are analogous to two of the standard contact conditions:

Kuhn–Tucker and Coulomb friction respectively, see [25], [26]. The formula-

tion of DDA naturally incorporates the hypotheses for any geometry or load,

and provides results close to the experimental ones for the representative

cases shown in the following sections.

According to the second law of the thermodynamics, a system of blocks

under internal or external loadings deforms or moves so that the total energy

Π is in a minimum. DDA, see Ref. [19], is a numerical method that pro-

vides the mechanical response of a system composed by N interacting bodies

through the minimization of Π, energy that is defined as summation of po-

tential H and kinetic energies. For masonry, the former related to internal

and external loads, strain and contact interactions. The latter is neglected

since no external dynamic effects are applied, therefore Π =
∑N

i=1Hi. The

minimization of Π respect to the discretized ndg degrees of freedom Di of
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each block i (see section 3 for the motion analysis of each block) provides the

simultaneous equilibrium for a system of N blocks:
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Eq. 1 (left) are assembled as in FEM providing a linear system, Eq. 1

(right); this system is composed of a stiffness matrix K with N ×N subma-

trices each of dimension ndg × ndg, and discretized load f and displacement

vectors D each with N terms of dimension ndg.
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3. Block modeling

The most common DDA formulation uses first order discretizations for

the kinematic description; the movement is directly computed with the ex-

pression x = X +U , where X represents its material coordinates and x the

spacial ones. The vertical and horizontal displacements at any point of the

block are discretized as U = TD. The linear operator T modifies the vector

D that contains the following six degrees of freedom: two displacements,

one rotation and three strains all of them applied at the center of masses

(CoM) of the block. The stresses and strains are therefore constant through

the block; although a relatively small number of blocks is necessary to prop-

erly capture the movement of the blocks, a high number will in general be

required to simulate the elastic fields.

3.1. Internal and external loads

Fig. 1 shows an schematic representation of three i, j, k contacting mac-

roblocks divided into nine subblocks each (see next subsection) under variable

horizontal qh and vertical qv external, distributed loads. For the subblocks

that are in direct contact with the distributed loads (on the extrados or ex-

ternal curved side in this work), statically equivalent point forces f e
h, f

e
v and

the corresponding moment me applied on the CoM are calculated with

f e
h =

∫ st

sb

qh(s) dy(s) ; f e
v =

∫ st

sb

qv(s) dx(s)

me =
∑

n

rnc × fn
c + reh × f e

h + rev × f e
v

(2)
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where s is a curvilinear coordinate starting at the arch bottom, sb, st its values

at the bottom and top corners (nodes) of the extrados and dx(s), dy(s) the

projected horizontal and vertical components of a differential length on the

extrados, see Fig. 1. In the third expression, rnc refers to the distance between

the CoM and each node n = 1, . . . , 4 of the subblock, where the contact

forces fn
c are computed. The distances reh, r

e
v are again from the CoM but

now to the application point of f e
h, f

e
v , both of them on the extrados of the

external subblock e, Fig. 2. It is important to remark that the forces f e
h, f

e
v

are statically transferred to CoM of the external subblock from its extrados

adding the moment me.

In addition, for all subblocks the self weight W e and the resultant of

the applied contact forces fn
c are also equivalently applied and translated

to the CoM , respectively. The latter must again include the corresponding

cross product, adding to the moment me. Notice that the contact forces are

not in general perpendicular to the interfaces due to the tangential friction

component.

3.2. Substructure technique

To replicate the physics of contact (dry or mortar) between stones or

bricks, it seems reasonable to simulate each piece with a block, for instance

to evaluate the behavior of arches with the same geometry and load but

composed of an increasing number of stones. But taking into account the

necessity of a high number of information points to simulate the stress field, a

substructuring technique has been developed in this paper. This technique is

schematized in Fig. 2: a rectangular block (called “macroblock”) is internally

divided into a number of rectangular subblocks, nine in this figure; each
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subblock, with the same number of degrees of freedom as the original, is

connected to the neighbors through modified contact algorithms.

f6

h

1

7

9

j

2
3

4
5

6

8

5

4

2

2

3

4

r1c

r2c

1
r4c r3c

f6
v

r3
h

r3v
3

f3
v

f3

h

6

r6v

r6
h

1

Figure 2: Substructuring a macroblock into subblocks to simulate a continuum. Contact

forces between internal subblocks represented by double arrow; external forces (including

contact from other macroblocks) by single.

The modification is defined by springs between each of the intracontact

boundaries (see Fig. 1) in their normal and tangential directions. In this

type of connections, and contrary to the standard contact algorithms, the

interactions allow compression and tension forces to enforce both impenetra-
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bility and attachment of the subblocks. Additionally, to avoid the relative

displacement between subblocks, artificially high values of φ and C are im-

posed. For intercontact boundaries, the standard penalty method is applied,

allowing separation but not impenetrability. The relative displacement is

here governed by the physical φ and C of the material.

Action–reaction forces fn
c will appear at each internal node, while the

perimeter of the macroblock will be subjected to contact from others and

possibly to external forces. With this technique (similar to h–refinement) the

complications of a high–order DDA formulation (similar to p–refinement) are

avoided and a convergent stress field simulation can be obtained, due to the

multiplicity of information at the CoM of each subblock. The division into

subblocks is not computationally expensive since contact search is avoided

by an invariant (even during deformation or if necessary dynamic movement)

allocation vector. Summarizing, the subblocks act like constant–strain finite

elements hold together by the contact algorithm and the interfaces remain

together to simulate the continuum.

The process to implement a macroblock in DDA is summarized as:

• Subdivide each block in a specified number of subblocks

• Define intercontact and intracontact boundaries

• Apply the modified penalty method to intracontact boundaries, with

high artificial φ and C

• Apply the standard penalty to intercontact boundaries, with physical

φ and C
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3.3. Validation

In order to validate the substructure technique, a comparison of DDA

and elasticity stress fields for a curved beam (similar to a continuous semi–

arch) is developed in this subsection. The numerical results are obtained

from a single macroblock discretized into a variable number of subblocks

(from 4×4 to 16×16), while the theory of elasticity solution is taken from

the classical reference [27]. The internal and external radii are a = 0.5 and

b = 0.7 m respectively, the horizontal straight free surface is subjected to a

flexural distribution σθ

(
r, π

2

)
with upward resultant P = 2.5 kN (see Fig. 3

top) and the vertical free surface to a parabolically distributed τrθ(r, 0) also

with resultant P but downward, both according to the elasticity solution

σθ

(

r, π
2

)

=
P

∆

[

3r − a2b2

r3
− a2 + b2

r

]

;

τrθ(r, 0) =
P

∆

[

−r − a2b2

r3
+

a2 + b2

r

]

;

∆ = a2 − b2 + (a2 + b2) log
b

a

(3)

Both distributions are in vertical equilibrium, therefore no essential bound-

ary conditions are necessary. To facilitate the application of these external

forces, two narrow stripes composed of 20 subblocks (bottom figure 3) are

discretized at each free surface. Notice that no continuity between these

“loading” subblocks and the “internal” ones is needed, thanks to the contact

surfaces. The forces on each loading subblock side are proportional to the

corresponding length of the distribution, and assumed applied at the point

defined by the center of gravity of the subarea distribution; each force is then
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translated to the CoM with the corresponding moment. The contact pa-

rameters for the internal subblocks are chosen so that no interpenetration or

detachment are allowed: friction 35◦, normal and tangential penalty spring

stiffness 1×1010 N/m (see also section 4.1).

The equivalent stress is defined according to the Tresca criterium as

σeq = max

{
∣
∣σI − σII

∣
∣ ,

∣
∣σI

∣
∣ ,

∣
∣σII

∣
∣

}

(4)

where σI , σII are principal stresses computed from the two–dimensional state

of stress σθ, σr, τrθ with the usual tensorial notation. It is worth noting that

the first component is one order of magnitude larger than the other two,

therefore σeq ≈ σI ≈ σθ in most points. Also, σr, τrθ are zero at r = a, b and

since the ratio b/a = 1.4 is small, the maximum of both appear at the center

of the r direction. Stresses σθ, σr are function of sin θ in the circumferential

direction, with maximum at the bottom end and zero at the top, while τrθ is

function of cos θ with opposite maximum and minimum.

The σeq calculated from DDA: σdda
eq

∣
∣
n
and from elasticity: σely

eq

∣
∣
n
, 1 ≤

n ≤ N , are computed at the CoM of all subblocks. They are organized

in vectors
{
σdda
eq

}
and

{
σely
eq

}
with dimension N , where

√
N denotes the

number of subblocks along both the radial and circumferential directions.

As mentioned, the distribution of σeq is similar to that of σθ except close to

r = a, b and θ = π/2 where σθ and σr values add and subtract, respectively.

The error in percentage eN for a given mesh N is defined as the euclidean

norm of the difference between the two stress vectors.
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eN = 100

∣
∣
∣
∣{σely

eq } − {σdda
eq }

∣
∣
∣
∣
2

∣
∣
∣
∣{σely

eq }
∣
∣
∣
∣
2

= 100

√
∑N

n=1

(

σely
eq

∣
∣
n
− σdda

eq

∣
∣
n

)2

√
∑N

n=1

(

σely
eq

∣
∣
n

)2

(5)

A rate of convergence, [28], is calculated as the limit of the ratio between

norms of two consecutive, doubled mesh sizes e2N and eN :

lim
N→∞

e2N
eN

= 1 (6)

Fig. 4 shows the DDA convergence versus the number of subblocks (left

ordinate). An approximated linear rate for N ≤ 100 is obtained. Increasing

the number of subblocks after that number produces only a small decrease

of the error, implying a sublinear convergence. Only 5% error for a mesh of

N = 49 subblocks and almost nil for N = 100 is observed. The CPU time

in a standard portable personal computer is also plotted (right ordinate);

notice that the 5% error is reached for a total computation time of only 4

s. The curve is parabolic since the computer code running time also is: the

global matrix inversion is proportional to the cube of the mesh size and the

managing of data and files is quadratic. Obviously a small error for this

continuum problem would be obtained using the FEM with fewer elements

and lower computational time, but the point is to validate a single method

that studies instability through contacting blocks and internal stress fields at

the same time.
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4. Case 1: Buried arch under vertical load and filling

Experimental and numerical tests are described in this section for an arch

(or vault) under the action of filling terrain and vertical, quasi–concentrated

loads. The geometry, Fig. 5, corresponds to a buried arch whose thickness

increases from the peak to the abutments (vertical lower blocks) and is sup-

ported on rigid foundations. The arch is assembled with direct contact among

the stone blocks (dry masonry); stability is achieved through the curvature of

the structure and the contact and friction generated by the asperities of the

blocks. To facilitate the collapse, the arch does not mount keystone resulting

in an even number of blocks.

The experimental testing program, [23], consisted on the crumbling of

arches of equal dimensions but with different 9, 17, 27 and 61 of mobile (or

active) joints. These arches are covered with soil on the extrados from the

abutments to a height of 4.65 m (filling) and in addition two hydraulic jacks

17



apply quasi–concentrated vertical loads, see Fig. 5. The jacks are located

symmetrically at distances 1.5 m and apply a total force in two areas 1.5×1.0

m2 that are directly transmitted to the adjacent blocks and increase the

vertical thrust of the filling. All external loading is parameterized by an

intensity q0 (force per unit length): each jack direct force results in 1.675q0

and the filling thrust is represented by three stages of quasi–hydrostatic load

with decreasing intensities 0.7, 0.6 and 0.5q0.

0.5

2.25

0.6q0

0.5q0

0.7q01.45

1.45

1.45

0.3

6.7

1.51.5

4

1.675q01.675q0

1
10

5

1.75

Figure 5: Symmetric buried arch: geometry (dimensions in m) and parameterized loads

from [22].

Results for an arch with 201 joints are also reported in the reference, but

this configuration has not been simulated since the critical loads and failure

mechanisms are nearly the same as those of the 61–joint arch.
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4.1. DDA numerical data

The shape and dimensions of the arch were estimated from a figure in the

reference, resulting in Fig. 5. Then, the complete perimeter is divided into

J active joints and each abutment and block is simulated by a rectangular

macroblock of only one subblock, since the reference provides for this case

collapse due to instability and not to compression. The foundations are repre-

sented by an additional rigid rectangular block prevented from moving; these

restraints are the only essential boundary conditions. The two joints between

abutment and foundation are considered fixed. The rigid body motions of

the arch are prevented by contact and friction between blocks, according to

the Kuhn–Tucker conditions, [25].

The blocks are considered of high stiffness: Young modulus E = 1×109

N/m2 was chosen to be high enough to enforce rigidity but not to interfere

with computer precision. The Poisson’s coefficient is the standard µ = 0.25.

As for contact parameters, a friction angle for dry masonry of φs = 30◦ and

no cohesion were reported. The penalty parameter is the stiffness of the

elastic contact springs; the usual ǫN = 1×1010 N/m was used, greater than

E to enforce that penetrations between blocks are lower than displacements

related with strains. The self weight of the arch is calculated from a density

γs = 2300 kg/m3. The filling is considered to be gravel with density γf =

1600 kg/m3, friction angle φf = 30◦ and no cohesion. In addition to the

jack loads (present only in a few blocks close to the peak) that contribute to

qv, the hydrostatic loads from this filling contribute to both qv, qh, see (7)

below. Table 1 summarizes the material properties for this case and for most

properties of the following cases.
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Property Value Units

Stone Young’s Modulus E 1×109 N/m2

Stone Poisson’s coeff. µ 0.25 [-]

Stone density γs 2300 kg/m 3

Stone strength (compr) σu 1×107 N/m2

Stone friction φs 30◦

Stone cohesion c 0 N/m2

Filling density γf 1600 kg/m3

Filling friction φf 30◦

Table 1: Material properties for stone and filling.

4.2. Numerical results

Due to the parametrization of the external loads, q0 is the main unknown

to reach collapse. This intensity is found by iteration with several runs of

the computer code. Starting from zero, the load is increased by steps of

five kN until collapse is predicted. The arch caves in by instability when

several symmetric hinges form close to the abutments, close to the peak and

at other locations and when contact is lost in one or more blocks. The failure

criteria for hinge formation is considered fulfilled when the separation of two

contiguous nodes is larger than a user–chosen critical distance (0.01 m in the

current calculation). The hinge positions themselves are the other important

result of the computations.

Once it is decided that initial collapse (failure) is reached, the correspond-

ing q0 is kept constant and successive DDA iterations simulate the initial
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Collapse

Intact Initial displ.

Step 1 Step 2

Hinges
Step 3 Step 4

Figure 6: Collapse sequence for arch with 9 joints, Fig. 5.

collapsing process. Fig. 6 shows the sequence for a 9–joint arch. The first

step represents the configuration just when failure starts. The second shows

the initial displacements; given the relative high force of the jack, they ap-

pear mainly in the upper two blocks with a significant sliding. In the third

step, sliding is replaced by rotations, and symmetric hinges appear close to

the abutments and to the peak in the first and second blocks (from the top,

both directions). It is clear that the arch “opens” to the sides mostly due

to rotation of the lower hinges. Finally, in the fourth step the two upper

blocks separate and drop due to lack of friction restraint. Since the loads are

applied very slowly, the computation is static (no inertial forces are consid-

ered) and therefore valid only for the initial steps of the collapse. As well

know by architects, the hinges alternate: along the circular line of the arch

an external hinge follows an internal one or vice versa. The same situation

will repeat for the following cases.

In Fig. 7, the second step is shown for arches with 17 and 27 joints. In

the left we can observe a block displacement pattern similar to that of Fig. 6,
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Figure 7: Initial failure (Step 2) for arches with 17 and 27 joints, Fig. 5.

including the length of the descending top portions and the position of the

hinges. Some asymmetry can be observed in both cases, since the contact

algorithms produce small bifurcations during the simulation. This effect is

important for the corner-to-corner contact; far from being detrimental it is

often very useful to obtain averaged results, more realistic than those from

the purely deterministic simulations.

Step 4

Intact Initial displ.

Step 2Step 1

CollapseHinges
Step 3

Figure 8: Collapse sequence for arch with 61 joints, Fig. 5.

Finally, Fig. 8 shows the collapse sequence of an arch with a large number

of joints (61). Here, symmetry was forced by analyzing only half of the arch

and prescribing zero friction for the top block, in contact with a rigid vertical

surface. In this configuration the effect of the vertical loads is mostly local
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both at right and left of the peak, where blocks below the jack descend at each

side. Due to the high number of blocks and therefore contacts, the hinges

are not very clear (except close to the peak) until the last step is reached:

friction between the contact sides of the blocks prevents excessive movement

up to collapse. Due to the discontinuity produced by the jack action, the arch

opens in its middle, while the global vertical movement of the peak more or

less compensates the inward horizontal thrust. The structure behaves more

like a chain than as an arch, therefore, the effects are mostly local. For

instance, there is no lateral expansion, since the upper blocks descend rather

than rotate.

In Table 2 experimental and numerical results corresponding to the crit-

ical point loads for the different configurations are presented.

# joints Critical load Critical load Error

experiment DDA %

9 250 280 12.2

17 206 210 1.6

27 206 205 -0.8

61 205 205 0.1

Table 2: Experimental and numerical results. Critical intensity load q0 in kN/m vs. number

of joints for arch in Fig. 5.

Notice that when the number of joints increases the critical load tends

to an asymptotic value. This result is well known in architecture and repre-

sents the fact that, when the arch has many blocks and consequently many

joints, more weak points that permit the turning or sliding of the blocks ex-
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its. References such as [10] have reported this tendency with discontinuous

numerical and special finite element methods, but without validating their

results with experiments. We can also observe that the error is reduced sub-

stantially when the problem involves a large number of joints. This is due to

the solution being less sensitive to uncertainties in the data when multiple

possible failure modes can be captured by DDA; as in any converging numer-

ical method, the solution is better when the number of elements is higher.

Finally the implemented kinematics are of first order, meaning that for large

blocks precision in the movements is somewhat lost.

5. Case 2: Influence of embankment thickness on oval arch stability

Numerical simulations of the second experimental arch from [22] are pre-

sented in this section. Again geometry (now of oval shape) and loads are

estimated from the reference, see Fig. 9. Macroblocks are discretized into

four subblocks in the radial direction r and in the in circumferential s, all of

them of approximately constant length. The lateral thrust from the filling

is still present, but instead of the jack vertical forces a distributed load from

an embankment of variable thickness he is considered.

The arch can be unstable for two reasons (see Fig. 12):

• The lateral thrust of the filling dominates over the vertical loads when

he is low; collapse occurs by elevation of the peak and formation of

hinges, top figure

• The vertical forces are prevalent when he is high; collapse occurs by

descent of the peak and again hinge formation, bottom figure
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Figure 9: Scheme from [22] of a symmetrical oval arch (dimensions in m) and external loads

from embankment and filling materials and from concentrated load. Materials substituted

by corresponding forces in the right symmetric part.

Therefore there is an optimal range in the thickness of the embankment that

stabilizes the arch.

The arch is simulated with 16 blocks, the two lowest simply supported on

the foundations so that they can rotate or translate. The situation is similar

to that of the previous case except for the geometry and the vertical external

loads, aspects that produce different failure modes.

Two experimental collapses are described in the reference. One corre-

sponds to the first item before: absence of enough vertical load and ruin due

to lateral thrust, defined as lower limit. The same arch is then tested with

increasing he until a new collapse is caused by excessive weight (second item),

defined as upper limit. For both collapses lateral hinges open alternately (to-

wards the intrados or the extrados) for the two limits. For the upper limit,

the rotations at the base cause the lower blocks to partially lose contact with
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the base. An intermediate failure is also defined from a standard compression

test (stress σu) of the stone.

From simple funicular polygons and strength of materials equilibrium sim-

ilar to that proposed by [1], [22] calculates the continuous line (between lower

and upper limits) drawn in Fig. 10, differentiating between two instability

modes and failure by compression. Starting from the lower limit, he = 0.32 m

and therefore safety factor SF = 1, the calculation fixes he but increases in

steps and proportionally the loads qh, qv from (7) and draws the correspond-

ing funicular polygons, obtaining a SF for each load level. The safety factor

is defined from 1 to ∞ and the abscissa is a function of the representative

he. After the lower limit, a linear distribution up to he = 0.9 m with high

slope is observed, implying that a small increase in load greatly increases the

safety of the structure (zone I). After I, an increasing/decreasing short zone

(with maximum in the optimal he = 1.9 m) corresponds to failure by block

compression (zone II); this failure is visualized with the funicular polygon

being inside the arch. When the loads increase even more, there is a progres-

sive decrease in safety (zone III) due to excessive weight until failure is again

reached for he = 11.9 m, upper limit.

5.1. Numerical computation with DDA

The safety factors of the oval arch are calculated with DDA. The loads

produced by the self weight are computed directly from the volume and

material of each block defined in the previous section. For filling, the same

values are also used, but taking into account the reported compaction, an

increase of 10% is considered for low thicknesses, with a final value γe = 1760

kg/m3. For high thicknesses, he > 1.9 m, the value from the reference is used
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since compaction often is much less effective.

Fig. 1 schematizes the loads that act on the macroblocks: besides contact

and weight point loads, the actions of filling and embankment are represented.

These vertical and horizontal actions are calculated with the following equa-

tion from [29]

qv(s) = [H − y(s)] g γf + he g γe

qh(s) = (1− sin φf) qv(s)

(7)

where g is the gravity acceleration. The total filling heightH and the variable

height y(s) are depicted in Fig. 9. The actions are transformed into point

forces simply multiplying them by the horizontal and vertical projections of

the external side of the block, and the resulting point loads and corresponding

moments are then applied to the CoM .

With the DDA model and by trial and error, the lower and upper limits

that stabilize the arch are computed, finding he = 0.5 m and 12 m, very

close to the experimental ones. As in the reference but automatically, for

particular values of he the program increases the values of both qh(s), qv(s)

until collapse occurs when three or more hinges are formed with the criteria

mentioned in section 4.2. At the same time the maximum equivalent stress

is compared with σu, calculating the corresponding SF from instability or

from compression. In the transition between the two instabilities (zone II)

the line of application of the forces’ resultant crosses the central core of all

sections, close to the center of gravity. Therefore the block is subjected to

almost no turning moment, only compressions are present and hinges are not

formed. In this situation, the only possible failure is by elastic compression
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when the maximum equivalent Tresca stress σeq (see (4)) equals the failure

compression stress of the stone σu. In Fig. 10, the distribution of SF from

numerical results is represented with ticks; given the uncertainties in the data

the general agreement between these and the experimental one is very good.
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Figure 10: Safety factors vs. embankment thickness he for experimental and numerical

(Discrete Deformation Analysis) for oval arch (Fig. 9). Failure by: I instability, peak

raising; II elastic compression; III instability, peak descent.

To visualize the numerical stress distribution, Fig. 11 shows the equiva-

lent Tresca stress when he = 2 m, that is, in the center of zone II in which

failure occurs by compression. The range from 7.2 to 9.2 Mpa indicate that

as expected the oval arch is subjected to a more or less constant stress. It is

also clear that concentrations occur at the arch peak, at the middle and by

the abutments, the three of them alternating on the intrados and the extra-

dos. These concentrations are due to the addition of bending moments and

compressive forces, and coincide approximately with joints in which hinges
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are formed, see Fig. 12. But it is important to remark that DDA does not

directly predict the hinge formation by the stress level, but displacements

and rotations do. The actual point in which compression failure would occur

is the lower concentration for which qv = 160.1−0.15y kN/m and qh = 0.5 qv

kN/m augmented by SF = 3.8.
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Figure 11: Tresca equivalent stress distribution (N/m2) for the oval arch of Fig. 10 and

embankment he = 2 m.

The second comparison between experimental and numerical results is

related to the failure modes of the oval arch; Fig. 12 shows the predicted

collapse. For the lower limit of embankment thickness (top figure), it is

evident that the lateral forces are prevalent and that the peak rises; due to

symmetry, a hinge tends to open in the peak towards the extrados. Two
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Limits Numerical Experimental

Lower 18◦ 60◦ 90◦ 18◦ 60◦ 90◦

Upper 0◦ 26◦ 78◦ 0◦ 37◦ 78◦

Table 3: Comparison of hinge angles vs. embankment thickness he: low he for lower limit,

high he for upper limit.

other hinges on each side open alternately, the first one towards the intrados.

For the upper limit (bottom figure) DDA predicts just the contrary: due to

the embankment weight, the prevalent load is vertical; the peak descends and

again two alternate hinges open.

The experimental (from [22]) and numerical angles of these hinges are

shown in Table 3. These angles refer to the initial configuration, that is,

during the initial steps of the collapse. It is worth noting that all angles are

very close, with the exception of the intermediate angle for the upper limit.

This difference is due to the almost verticality of the block between joints

at 26◦ and 37◦: a small variation of the experimental data may provoke the

creation of a hinge in one or other consecutive joints.

6. Case 3: Influence of concentrated load on oval arch stability

The oval arch from the previous section is studied under the same condi-

tions except for the addition of a vertical load. This new load is concentrated

at the peak and exerted through a single jack that applies a load intensity per

unit depth qp distributed on a rectangle of dimension 2× 1 m. The width of

the load distribution covers approximately one block at each side of the peak,
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Figure 12: Case 2: DDA collapse of fifteen–joint oval arch (Fig. 9) for: lower limit (top)

by peak raising; upper limit (bottom) by peak descent. Thick line for macroblocks, thin

for subblocks.

and its effect is directly translated to the corresponding CoM . The embank-

ment has now a small constant thickness he = 0.2 m (corresponding to the

lower limit of the previous case), therefore it is considered well–compacted

with a high density γe = 1760 Kg/m3. The rest of material properties and

geometry are given in Table 1.

The objective is again to study the SF , but now versus concentrated

intensity qp; the procedure is the same as before, but qh, qv, and qp are

augmented at the same time to calculate the SF .

Fig. 13 shows the comparison between experimental and numerical re-

sults, with similarities with Case 2: at a lower and an upper limit of the load

the arch collapses, although under different instability modes. Notice that

since the chosen embankment already produces instability, the lower limit is

reached for qp = 0; for any increase stability is immediately achieved. By
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Figure 13: Safety factors vs. equivalent concentrated load for experimental and numerical

(Discrete Deformation Analysis) for oval arch (Fig. 9). Failure by: I instability, peak

raising; II elastic compression; III instability, peak descent.

varying qp, we find that DDA predicts lower and upper limits of 2.5 and

225 kN respectively. The agreement between experimental and numerical re-

sults is again very good, except for qp > 150 kN/m, for which DDA diverges

predicting significant higher loads. This divergence could be due to the con-

centration of the vertical load in a few subblocks, producing a possible error

in their translation and rotation. A more refined mesh generated in this area

would solve the problem, but again this deviation is not an important issue

for the simulation.

In Fig. 14, the failure modes corresponding to the lower and upper limits

are shown. The mode corresponding to the lower limit is exactly the same as

that of Case 2, due to the the equality of lateral loads and the vertical loads

playing a marginal role. The positions of the hinges are compared in Table
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4 with no significant error. The failure mode for the upper limit is different

than before: four blocks at each side of the peak descend together, and only

one internal hinge opens to the extrados. In this hinge a combination of

friction and rotation is present, but the rest of the arch is unaffected by the

vertical loads, moving just slightly inwards due to the lateral loads from the

filling.

Figure 14: Case 3: DDA collapse of oval arch (Fig. 9) for: lower limit (top) by peak raising;

upper limit (bottom) by peak descent. Thick line for macroblocks, thin for subblocks.

For cases 2 and 3 it is evident that for collapse friction plays a very small

role and most of the movement is induced by the rotation of series of blocks.

Due to the inclination of the arch sides, no much lateral movement occurs

except of a slight motion for the upper limit, which creates a hinge in the base.

The qualitative motions (movement of the peak, direction of the rotations)

are the same as those given by the experiments.

33



Limits Numerical Experimental

Lower 18◦ 60◦ 90◦ 18◦ 60◦ 90◦

Upper 0◦ 63◦ 90◦ 0◦ 63◦ 90◦

Table 4: Hinge angles vs. vertical concentrated load. Lower limit for collapse smallest

load, upper for largest.

7. Conclusions

Several experiments taken from the literature have been simulated using

the numerical method Discrete Deformation Analysis (DDA) and a specifi-

cally written computer code. This method is better suited for the analysis

than continuous ones, since their discretization and formulation are much

closer to the physical response of the problem. In addition the development,

implementation and computational time are smaller. Three cases for two dif-

ferent arches are presented. The first is related to the resistance of a circular

arch versus the number of joints, which as already known is asymptotic. The

other two, study the resistance of an oval arch under distributed and concen-

trated loads. Some of the parameters of the problem (geometry etc.) were

taken from the reference but others had to be estimated from other sources

or by best guesses.

The failure modes as well as the limit parameters are well simulated by

the numerical method for most cases. The analysis not only tackles failure

by instability but also by compression. For that, the original DDA blocks

are subdivided into subblocks that are kept together by the modified contact

algorithm preventing both penetration and separation. In this way, the exte-
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rior of the blocks is considered rigid but the interior is an elastic continuum

simulated with a large number of internal nodes, a good approximation for

materials such as stone, brick etc. It is worth noting that the intrinsic high

computational cost of contact mechanics is not reproduced in the subblocking

technique, since contact search is avoided and iterations reduced.

Further work is currently being conducted to apply DDA to effects not

tested in the experiments, such as foundation settlement, other concentrated

load positions and seismic behavior. When the numerical tool is finished and

validated, it could be an important aid for the optimal design of real arches,

vaults and domes, for which elevated safety factors are currently used.
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