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Dr. Benito Gimeno Martı́nez (Universitat de València Estudi General)
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silla de investigador espacial al fondo de su despacho, tras unas gafas asombradas de todo lo
que ocurre al otro lado de las lentes, y envuelto entre grandes papeles con enormes fórmulas
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Manolo, José Javier, Ana Teresa, Nácher, gracias a todos por los buenos momentos, por estar
ahı́, gracias.

Por último, quiero agradecer todo esto a quienes lo han hecho posible, mi familia. A
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Resumen
Desde los primeros estudios desarrollados por S. B. Cohn a finales de los años 60, los

resonadores dieléctricos, con factor de calidad elevado, han sido utilizados para el diseño
de filtros paso-banda de microondas. A partir de la aparición en los años 70 de materiales
dieléctricos con las propiedades eléctricas y estabilidad térmica idóneas, los resonadores
dieléctricos se convirtieron en elementos clave en numerosos diseños de filtros. De hecho,
esta tecnologı́a se encuentra frecuentemente en sistemas de comunicaciones móviles y por
satélite debido a sus ventajas en términos de reducción de masa y volumen, bajas pérdidas,
y estabilidad térmica. Por todo ello, el análisis y diseño riguroso de este tipo de filtros ha
suscitado un gran interés en la literatura técnica.

El objetivo principal de esta tesis doctoral es el desarrollo de una técnica modal eficiente
para caracterizar el comportamiento electromagnético de cavidades resonantes cargadas con
dieléctricos. Para ello, se presenta una nueva formulación de ecuación integral en el espa-
cio de estados basada en el método BI-RME (del inglés, boundary integral-resonant mode
expansion). En dicha formulación, para resolver la ecuación integral de volumen planteada,
el resonador dieléctrico se caracteriza de manera rigurosa por medio de las densidades de
carga y corriente de polarización equivalentes definidas en el volumen del objeto dieléctrico.
Siguiendo este método, los modos resonantes de las cavidades se obtienen a través de la
solución de un problema lineal de autovalores. Ası́ mismo, se obtiene la matriz generali-
zada de admitancias de la cavidad resonante cargada con dieléctrico como una expansión en
serie de polos en el dominio de la variable de Laplace. De esta manera, la respuesta elec-
tromagnética de las cavidades resonantes puede resolverse en un rango amplio de puntos
de frecuencia haciendo uso de un reducido esfuerzo computacional, y evitando ası́, cálculos
intensos en cada punto de frecuencia.

La formulación desarrollada ha sido aplicada al análisis de cavidades rectangulares car-
gadas con resonadores dieléctricos cilı́ndricos. Se ha integrado el código implementado en
una herramienta CAE (del inglés, Computer Aided Engineering ) para el diseño y análisis
de componentes pasivos de microondas y ondas milimétricas. Esta herramienta CAE es de
propósito general y está basada en técnicas modales avanzadas. De esta manera, se ha desa-
rrollado una eficeinte herramienta informática que permite el análisis riguroso de filtros con
resonadores dieléctricos. De hecho, distintos filtros paso-banda y elimina banda han sido
diseñados para validar esta nueva herramienta. Los resultados numéricos obtenidos han sido
comparados existosamente con literatura técnica, ası́ como con los resultados proporciona-
dos por una reconocida herramienta comercial basada en el método de elementos finitos.
Por tanto, se ha probado que el método implementado es preciso y computacionalmente efi-
ciente, porporcionando por ello, una herramienta idónea para el diseño optimizado de filtros
en guı́a onda con resonadores dieléctricos.





Resum
Des dels primers estudis desenvolupats per S. B. Cohn a finals dels anys 60, els resson-

adors dielèctrics, amb factor de qualitat elevat, han sigut emprats per al disseny de filtres
passa-banda de microones. Arran de l’aparició en els anys 70 de materials dielèctrics amb
les propietats elèctriques i l’estabilitat tèrmica idònies, els ressonadors dielèctrics s’han con-
vertit en elements clau en nombrosos dissenys de filtres. De fet, aquesta tecnologia es troba
freqüentment en sistemes de comunicacions mòbils i per satèl·lit degut a les seues avantatges
en termes de reducció de massa i volum, baixes pèrdues, i estabilitat tèrmica. Per tot això,
l’anàlisi i disseny rigorós d’aquest tipus de filtres ha suscitat un gran interès en la literatura
tècnica.

L’objetiu principal d’aquesta tesi doctoral és el desenvolupament d’una tècnica modal efi-
cient per a caracteritzar el comportament electromagnètic de cavitats ressonants carregades
amb dielèctrics. Per això, es presenta una nova formulació d’equació integral en l’espai
d’estats basada en el mètode BI-RME (de l’anglés, boundary integral-resonant mode ex-
pansion). En aquesta formulació, per a resoldre l’equació integral de volum plantejada, el
ressonador dielèctric es caracteritza de manera rigorosa per mitjà de les densitats de càrrega
i corrent de polarització equivalentes definides en el volum de l’objetce dielèctric. Seguint
aquest mètode, els modos ressonants de les cavitats s’obtenen a través de la solució d’un
problema lineal de autovalors. Aixı́ mateix, s’obté la matriu generalitzada d’admitàncies de
la cavitat ressonant carregada amb dielèctric com una expansió en sèrie de pols en el domini
de la variable de Laplace. D’aquesta manera, la resposta electromagnètica de les cavitats
ressonants pot resoldre’s en un rang ample de punts de freqüència fent ús d’un reduı̈t esforç
computacional, evitant aixı́, càlculs intensos en cada punt de freqüència.

La formulació desenvolupada ha sigut aplicada al anàlisi de cavitats rectangulars car-
regades amb ressonadors dielèctrics cilı́ndrics. S’ha integrat el codi implementat en una eina
CAE (de l’anglés, Computer Aided Engineering ) per al disseny i anàlisi de components
passius de microones i ones milimètriques. Aquesta eina CAE és de propòsit general i està
basada en tècniques modals avançades. D’aquesta manera, s’ha desenvolupat una eficient
eina informàtica que permet l’anàlisi rigorós de filtres amb ressonadors dielèctrics. De fet,
distints filtres passa-banda y elimina-banda han sigut dissenyats per validar aquesta nova
eina. Els resultats numèrics obtinguts han sigut comparats reeixidament amd la literatura
tècnica, aixı́ com amb els resultats proporcionats per una reconeguda eina comercial basada
en el mètode d’elements finits. Per tant, s’ha provat que el mètode implementat és precı́s
i computacionalment eficient, porporcionant degut a això, una eina idònia per al disseny
optimitzat de filtres en guia ona amb ressonadors dielèctrics.





Abstract
Since the first studies developed by S. B. Cohn in the late 1960s, high-Q dielectric res-

onators have been employed to design microwave bandpass filters. Once new dielectric
materials with suitable electrical properties and temperature stability were proposed in the
1970s, dielectric resonators became a key element in many filtering applications. Indeed,
dielectric-loaded waveguide filters are frequently found in satellite and mobile communica-
tion systems, due to their advantages in terms of mass and volume reduction, low losses,
and thermal stability. For these reasons, the full-wave analysis and design of such filters has
deserved considerable attention in the technical literature.

The main objective of this PhD thesis is the development of an efficient modal technique
to characterise the electromagnetic behaviour of dielectric-loaded cavity resonators. For such
purpose, a new state-space integral-equation (SS-IE) formulation in the s-domain, based on
the boundary integral-resonant mode expansion (BI-RME) method, is presented. In order to
solve the volume integral equation proposed, the dielectric resonator is rigorously charac-
terized by means of the electric equivalent polarization charge and current densities defined
in the volume of the dielectric object. Following this method, the resonant modes of the
considered cavities are obtained through the solution of a linear matrix eigenvalue problem.
Furthermore, a pole expansion of the generalized admittance matrix of the dielectric-loaded
cavity is obtained in the domain of the Laplace variable. Hence, the electromagnetic be-
haviour of the cavity resonators can be solved in a wide and dense frequency range with a
very reduced computational effort, avoiding to perform intensive computations at each fre-
quency point.

The formulation developed has been applied to analyse rectangular cavities loaded with
cylindrical dielectric resonators. The implemented code has been integrated into a Com-
puter Aided Engineering (CAE) tool for the analysis and design of passive microwave and
millimetre waves components. This CAE tool is a general purpose electromagnetic solver
based on adevanced modal techniques. Thus, a very efficient software tool for the full-wave
analysis of dielectric resonator filters has been developed. Indeed, different bandpass and
stopband single-mode filters have been designed using the new software tool. The numer-
ical results provided by this tool have been successfully compared with those included in
the technical literature, as well as with those provided by a well-known commercial code
based on the finite-element method. It has been proved that the implemented method is very
accurate and computationally efficient, thus making it very suitable for the optimized design
of waveguide filters including dielectric resonators.
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Chapter 1

Introduction

1.1 Motivation and state of the art

During the last three decades, dielectric resonators have become a key element in many
filtering applications [1–4]. Indeed, dielectric-loaded waveguide filters are frequently found
in satellite and mobile communication systems, due to their advantages in terms of mass and
volume reduction, low losses, and thermal stability. In the terrestrial mobile communication
system industry [5, 6], the cost of individual filters and the issue of mass production are
crucial, whereas volume and weight are critical in satellite communications [7].

In 1939, R. D. Richtmyer [8] introduced the term dielectric resonator (DR). He showed
that unmetallized dielectric objects can function as electrical resonators. Nevertheless, the
first activities on dielectric resonators did not occurred until the early 1960’s, when Okaya
and Barash rediscovered DRs while working on high dielectric materials [9]. They provided
the first analysis of modes and resonator design. During that decade, considerable efforts
were devoted to the analysis of dielectric resonators [10–12]. In this area, the most notable
work was developed by Cohn and his co-workers, who performed an extensive theoretical
and experimental study of DR [13, 14]. However, at that time, the lack of suitable materials
(due to their poor thermal stability) made impossible the development of practical compo-
nents.

The breakthrough in ceramic materials technology occurred in the early 1970’s when
Masse and Pucel [15] developed the first temperature-stable and low-loss barium-tetratitanate
ceramic (BaTi4O9). They published the design of a microstrip bandpass filter using dielectric
resonators made of this ceramic [16]. In subsequent years, new improved ceramic materi-
als were developed which made possible to use DRs for microwave applications. In 1975,
the first practical DR loaded microwave filter was reported by K. Wakino [17]. The ad-
vances in ceramic technology revived interest in dielectric resonators for a wide variety of
microwave circuits [18, 19]. New theoretical work and the use of DRs to design microwave
filters expanded significantly during the 1980’s. In 1982, a dual-mode axially-mounted di-
electric resonator was reported by S. J. Fiedziuszko [20]. It nearly matched the performance
of conventional dual-mode filters and set the scene for the potential use of dielectric loaded
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multiplexers for space application. This kind of filter has been successfully used in satellite
communications applications. As a consequence, complete studies on the DR’s modal chart
and the first rigorous full-wave analysis methods emerged in the 1980’s [21–23].

In addition, the new communication systems demanding more stringent filter charac-
teristics, have caused a significant progress in DR filter technology during the last two
decades [4–6]. In particular, the rapid expansion of wireless communication industry has
increased the demands for high-performance microwave filters and diplexers for both hand-
sets and base station applications. In this area, coaxial cavity filters are commonly used due
to their low cost and their spurious-free performance. Nevertheless, this kind of filters have
limited quality factor values and thus a different technology must be employed to match
the new filtering requirements. In this context, the high-Q dielectric resonator filters have
emerged as the baseline design for wireless base stations.

Due to all these factors, the full-wave analysis and design of DR filters has deserved
considerable attention in the technical literature. Indeed, the need for an accurate determina-
tion of the resonant frequencies and the related field patterns of dielectric resonator modes,
together with the mathematical complexity required for solving this kind of structures, have
encouraged the emergence of many different approaches for the electromagnetic analysis of
this problem [19].

In the 1960’s and 1970’s, the use of simplified mathematical models, by introducing
magnetic walls [10,11,13,14] or by using other approximations [24,25], allowed to obtain the
electromagnetic solution for the fundamental mode of cylindrical dielectric resonators. Van
Bladel and others [26, 27] made use of the perturbational-asymptotic technique to analyse
high-permittivity isolated cylindrical and ring resonators.

In the 1980’s more sophisticated methods arose. The Mode-Matching (M-M) technique
was employed firstly by Kobayashi [21] to analyse a cylindrical DR enclosed in a cylindrical
metal cavity. Kobayashi used such approach to determine the optimum dimension for ob-
taining the best separation of the spurious modes from the desired mode in pillbox and ring
resonators [28]. A different approach of the M-M technique was also applied by Zaki and
Atia [22], as well as by Zaki and Chen [23], to determine the modal chart of cylindrical DRs
placed symmetrically in a cylindrical cavity. That work was also extended to ring resonators
enclosed by cylindrical cavities [29], and to pillbox DRs placed symmetrically in rectangular
cavities [30]. In subsequent years, it was used to design mixed modes dielectric resonators
filters with rectangular cavities [31] and dielectric combine filters [32].

Other authors have used the orthogonal expansion method to analyse cylindrical dielec-
tric resonators in rectangular and cylindrical cavities [33], and inhomogeneously dielectric
filled cavities [34], as well as structures containing asymmetrically located, partial-height or
multilayer inhomogeneous cylindrical DRs [35]. A large variety of investigations about di-
electric resonators using the Finite-Element method (FEM) [36–40] can be also found in the
literature, as well as Finite Difference approaches in the time-domain (FDTD) [41–44] and
in the frequency-domain (FDFD) [45]. Nevertheless, the use of this kind of segmentation
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methods to deal with these problems typically require high computational resources.

Another kind of methods that have been widely used to analyse dielectric resonators are
those based on the integral equation approach solved via the Method of Moments (MoM)
[46]. These techniques are based on the solution of an integral equation, rather than a differ-
ential one. The integral equation is derived by means of a suitable Green’s function, which
constitutes the kernel. Once the integral equation is formulated, the Method of Moments
is employed to test the equation and transform it into linear algebraic equations that can be
solved numerically. We can differentiate basically between two possible integral formula-
tions [47]: the Volume Integral Equation Formulation (VIEF) and the Surface Integral Equa-
tion Formulation (SIEF). In the former method, the dielectric resonator is replaced by the
equivalent volumetric polarization currents [48]. In the second technique, the surface equiv-
alence principle [49] permits to replace the DR by equivalent electric and magnetic currents
on the surface defined by the interface between the dielectric resonator and the homogeneous
medium in which it is immersed. In this case, the dielectric body must be homogeneous. The
main difficulty of this kind of formulations lies in the ability to find the proper Green’s func-
tion to solve each problem. Many authors have used this kind of approaches to determine
the modal chart of DRs in free space or enclosed within metal cavities. Glisson et al. [50,51]
used the surface integral equation formulation for bodies of revolution to compute the low-
est resonant modes of isolated cylindrical dielectric resonators (including their field pattern).
They used the free-space Green’s function to obtain the integral equation, and applying the
MoM obtained the resonant frequencies by searching the zeros of a matrix determinant.
Omar and Schünemann [52] presented a theoretical adaptation of both, the volume and the
surface integral equation formulations, to analyse DRs inside homogeneously filled waveg-
uides. They proposed to use the dyadic Green’ function for the waveguides instead of the
free-space Green’s function. Hanson [53] used the VIEF to describe rectangular and cylin-
drical dielectric resonators in free space and in microwave integrated circuits (MIC’s), while
Kajfez and others [54] presented a SIEF to analyse axisymmetric cavities loaded with DRs.
More recently, F. Arndt [55, 56] proposed a new surface integral equation formulation to
analyse arbitrarily shaped dielectric resonators inside conventional rectangular cavities and
rectangular cavities with rounded corners. F. Arndt utilizes the Rao-Wilton-Glisson basis
functions [57] and an adaptive triangular mesh to expand the magnetic and electric currents
on the surface of the dielectric resonators. Most of these approaches, however, have a com-
mon factor: the use of the free space Green’s function. This fact obliges to enforce the
boundary conditions on the metallic walls of the shield, thus increasing the number of un-
knowns of the problem. Nevertheless, this drawback can be avoided by using the dyadic
Green’s function of the empty cavity that encloses the dielectric resonator. F. Alessandri and
others [58] have used the dyadic Green’s function of the rectangular cavity to analyse DR
filters in rectangular waveguides.

Moreover, most of the numerical techniques mentioned above are based on frequency- or
time-domain procedures [47,59]. In time-domain methods, such as the finite-difference time-
domain (FDTD) or the transmission-line matrix (TLM) algorithm, the temporal evolution of
the field (time-step by time-step) is computed by discretizing the Maxwell’s equations both
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in time and space. In a frequency-domain method, such as the finite-element method (FEM)
and boundary element methods (integral equation techniques or mode matching method),
the Maxwell’s equations are written in the frequency domain and solved to obtain the field
in the solution region computed at a set frequency. In any case, by making use of this kind of
procedures, problems must be solved over and over again to find the frequency response in a
broad bandwith. This drawback can be avoided using s-domain procedures (s is the Laplace
variable).

In this sense, it is remarkable that, from the 1990’s up to nowadays, several studies have
been devoted to the development of new electromagnetic solvers for the analysis of passive
microwave devices through state space-domain methods [60, 61]. These mathematical mod-
els permit to represent a linear system described by partial differential equations in terms
of an infinite poles and zeros expansion. In other words, one can obtain the electromag-
netic response of a microwave device in terms of some circuit generalized matrix (scattering,
admittance, impedance, etc.) represented in the form of pole expansion in the Laplace vari-
able s. S-domain methods present several advantages: since the system is linear, there is
no need to compute over and over again by stepping through time or frequency, and thus,
frequency sweeps are computed very fast. Furthermore, s-domain solutions may be cast
into equivalent electrical circuits, which is crucial in synthesis and design processes. In the
case of distributed circuits, finite difference (FD) and finite element (FE) methods applied
to the Maxwell equations in the s-domain yield to equations in which the discretized field
is represented by the state variables. However, these methods need to perform refined 3D
meshes, and consequently they make use of huge computational resources, slowing down
significantly the numerical computations performed, specially when complex 3D structures
are analysed. On the other hand, boundary element methods (BEM) avoid 3D meshes, but do
not give rise directly to mathematical models in the form of pole expansions valid on a very
wide bands, though fast frequency sweeps can be achieved by the adaptive Lanczos-Padè
algorithm [60, 61].

In the work presented in this PhD Thesis, the generalized admittance matrix (GAM),
which characterise the electromagnetic response of a dielectric-loaded cavity resonator, is
obtained in terms of a pole expansion in the s-domain by means of a new State-Space
Integral-Equation (SS-IE) approach. This technique is based in the well-known ‘Bound-
ary -Integral Resonant Mode Expansion’ (BI-RME) method developed in the University of
Pavia [62], which avoids frequency-per-frequency intensive computations, resulting in a very
efficient algorithm.

The BI-RME method was formerly applied to obtain the normalized resonant modes
of arbitrarily shaped metallic cavities in [63]. The unknown current flowing on the cavity
walls was considered inside a spherical resonator, rather than in free space as it is used to be
done in boundary element methods. Thus, by using the Green’s functions of the spherical
resonator instead of the free space one, the problem was cast by the Method of Moments
(MoM) into a real matrix linear eigenvalue problem. The same approach had been used
some years before to obtain the modes of arbitrarily shaped metallic waveguides [64], which
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was further enhanced in [65].

Making use of the Kurokawa’s representation of the field in a cavity resonator, it is pos-
sible to relate the pole expansion of the admittance parameters to the resonant modes of the
cavity obtained by closing the structure ports with conducting planes. Following this proce-
dure, a very efficient algorithm was developed in [62,66–68] to obtain the pole expansion of
the admittance matrix based on the BI-RME method and the use of very simple expressions
to represent the low-frequency behaviour of the GAM. However, the low-frequency approx-
imation used in those works introduced a limitation in the algorithm, since the ports of the
structure had to be long enough to separate the waveguides connected to the discontinuities.
In subsequent years, new procedures were developed in order to overcome this drawback.
In [69–71], the generalized admittance matrix of 2D and 3D structures was obtained by
using the BI-RME method to obtain the resonant modes, whereas a different technique was
used to find the quasi-static approximation of the GAM. It is remarkable that the proper com-
bination of the generalized admittance matrices that characterize different building blocks in
which a whole circuit is subdivided, can yield to a GAM in the form of a pole expansion that
characterize the whole structure [72].

It was in [73] where a unified algorithm based only in the BI-RME method was defini-
tively presented. In that work, the pole expansion of the GAM in the s-domain was directly
derived from the BI-RME method. Furthermore, the meshing procedure used by this method
is only performed on the boundary (2-D), and the number of unknowns involved in the pro-
blem when analysing a 3D structures is reduced drastically compared to those needed by FD
or FE procedures. This approach has been applied to analyse different 3D passive microwave
metallic structures demonstrating to be very efficient [74,75]. However, this method has been
seldom applied to problems including dielectric obstacles, such as the full-wave analysis of
H-plane filters with dielectric resonators [76]. Nowadays, in parallel to the work presented in
this thesis, the research group of the University of Pavia has been also developing a different
formulation to analyse rectangular waveguides loaded with dielectric resonators [77–79].

In this context, the work performed in this PhD Thesis is presented: a new State-Space
Integral-Equation approach to analyse dielectric-loaded resonator cavities. The SS-IE for-
mulation is based on the BI-RME method. The electromagnetic behaviour of rectangular
cavities loaded with dielectric resonators is obtained through the solution of a volume inte-
gral equation. The dielectric resonator is rigorously characterized by means of the electric
equivalent polarization charge and current densities defined in the volume of the dielec-
tric object. Moreover, the kernel of the integral equation is calculated making use of the
rectangular cavity Green’s functions (by means of the Ewald technique), thus avoiding the
introduction of additional unknowns to impose the boundary conditions on the walls of the
rectangular cavity. Following an analogous procedure to the one reported in [73], the reso-
nant modes and the field pattern of the considered cavities are obtained through the solution
of a linear matrix eigenvalue problem, while the pole expansion of the generalized admit-
tance matrix of the structure is obtained in the domain of the Laplace variable. Hence, the
electromagnetic response of metal cavities loaded with dielectric resonators can be solved in
a wide and dense frequency range with a very reduced computational effort.
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1.2 Objectives

The main objective of the work proposed in this PhD Thesis is the development of a new SS-
IE formulation to rigorously characterize the full-wave electromagnetic response of a cavity
resonator loaded with a dielectric inset. For this purpose, the generalized admittance matrix
(GAM) that represent the cavity resonator is accurately calculated. This technique has been
implemented to analyse rectangular cavities loaded with a cylindrical dielectric resonator.
The efficient analysis of this building block by means of the SS-IE approach is a key issue,
since the dielectric resonator characterization requires the major part of the computational
resources when one analyzes more complex structures such as dielectric resonator filters.
Once the GAM that represents the building block is calculated, it may be connected to other
circuit elements, in order to solve different typologies of dielectric resonator filters.

Thus, the main objectives of the presented work are the following ones:

1. Extension of the BI-RME method to calculate the modal chart of a cavity resonator
loaded with a linear, homogeneous and isotropic dielectric inset. A perfect conductive
walls resonant cavity is considered, including a dielectric inset placed at any arbitrary
position inside the cavity. The resonant frequencies are calculated by means of a linear
matrix eigenvalue problem as well as the electromagnetic field distribution.

2. Application of the new formulation to calculate the modal chart of a rectangular cavity
loaded with a cylindrical dielectric resonator placed at an arbitrary position inside the
cavity. The well knowledge of the electromagnetic field distribution is important to
properly understand the coupling mechanism of the resonant cavity to adjacent circuit
elements, such as irises, ports or other resonant cavities. The software tool developed
has been validated with technical literature and the well-known commercial software
Ansoft HFSS [80].

3. Formulation of a new state-space integral-equation (SS-IE) approach to calculate the
generalized admittance matrix of a resonant cavity loaded with a linear, homogeneous
and isotropic dielectric inset. As described above, the GAM is obtained as a pole
expansion in the domain of the Laplace variable s.

4. Application of the new SS-IE formulation to calculate the GAM of a rectangular cavity
loaded with a cylindrical dielectric resonator placed at an arbitrary position inside the
cavity. To calculate the GAM, the access apertures in the cavity are represented by
magnetic currents, and the implementation has been performed in two different phases:

• Aperture of two parallel access ports.

• Aperture of the four access ports in the lateral cavity sides.

5. Integration of the software module into FEST3D [81]. The new software tool allows
us to characterize the electromagnetic response of the resonant cavity, as well as to
connect it to other circuit elements, in order to consider more complex structures. This
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software module has been integrated in a Computer Aided Engineering tool (CAE tool)
for the analysis and design of passive microwave and millimeter-wave components:
FEST3D. Thus, the integration into such a general purpose CAE tool permits us to
analyze and design different bandpass and stopband filters that have been used to fully
validate the proposed algorithm.

6. Finally, different topologies of dielectric resonator filters in waveguide technology
have been studied in order to design bandpass and stopband filters. The designed
filters have been used to validate the method developed comparing the results obtained
with Ansoft HFSS.

1.3 Thesis structure
This PhD Thesis is composed of seven chapters. The first chapter is the present one, which
is the introduction. A brief review of the state of the art on the field of dielectric resonator fil-
ters for microwave applications and numerical techniques to analyse the electromagnetic be-
haviour of this kind of components have been presented. The main objectives of the present
work have been detailed as well.

In Chapter 2, the problem of determining the electromagnetic field generated by electric
and/or magnetic sources in cavity resonators, the so-called ‘interior problem’, is presented.
The main objective of this chapter is to present the ‘hybrid’ representation of the electro-
magnetic field generated by electric and/or magnetic sources in an ideal cavity proposed by
G. Conciauro and M. Bressan in [82]. Following this approach, the electromagnetic fields
are expressed in terms of the scalar and vector potentials in the Coulomb gauge, partly as
Green’s integrals, and partly as resonant mode expansion. This representation permits to ex-
tract the singularities of the dyadic Green’s functions in closed form, and it sets the starting
point for the State-Space Integral-Equation formulation presented in Chapter 3.

In Chapter 3, the State-Space Integral-Equation (SS-IE) approach to characterise dielectric-
loaded resonator cavities is presented. As mentioned above, this formulation is based on the
BI-RME method. As it is shown in the first section of this chapter, the dielectric resonator
has been rigorously characterized by means of the electric equivalent polarization charge and
current densities defined in the volume of the dielectric object. Starting from the ‘hybrid’
representation of the field in a cavity resonator presented in Chapter 2, the SS-IE formula-
tion is developed. Following this technique, the resonant modes of the considered cavities
are obtained through the solution of a linear matrix eigenvalue problem. Finally, in the
last section of this chapter, the pole expansion of the generalized admittance matrix of the
dielectric-loaded cavity is obtained in the domain of the Laplace variable.

The formulation presented in Chapter 3 is applied to characterize the electromagnetic
response of a rectangular cavity loaded with a cylindrical dielectric resonator in Chapter 4.
In this chapter, we describe the basis functions used to approximate the polarization vector
that characterize the dielectric object inside the cavity. Throughout this chapter we also show
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how crucial is the selection of an appropriate set of basis functions, not only for the good
convergence of the method proposed, but also to transform some of the integrals involved
in the problem. In the third section of Chapter 4 we explain how we have calculated the
entries of the matrices involved in the solution of the problem. As it is shown, the numerical
efficiency of the proposed method depends critically on the computation of these matrices,
and specially of those matrices involving the Green’s functions.

In Chapter 5, we present the electromagnetic analysis of different rectangular cavities
loaded with a dielectric puck using the SS-IE formulation previously derived. The resonant
frequencies of low and high order modes are calculated, as well as their electromagnetic field
distributions. The influence of geometrical and electric parameters in the computation of the
modal chart of the cavity resonator is studied. The results obtained with the new developed
formulation are successfully compared with technical literature and with the well-known
commercial tool Ansoft High Frequency Structure Simulator (Ansoft HFSS) [80], which is
based on the Finite-Element Method (FEM). The fact that the algorithm used by HFSS is
completely different from the SS-IE formulation presented in this work, makes it a good
reference to validate the software developed in this thesis. This study serves us not only to
perform a first validation of the method presented, but also to understand the electromagnetic
behaviour of the dielectric-loaded rectangular cavities under analysis.

In Chapter 6, different single-mode DR filters are presented. We have implemented a
software module to characterise the circuit building block represented by a rectangular cavity
loaded with a cylindrical dielectric resonator. The resonator cavity may be opened through
any of its lateral access ports and/or through its top surface. Once the generalized admit-
tance matrix of this circuit building block is calculated, it may be connected to other circuit
elements, in order to analyse different typologies of dielectric resonator filters. For such a
purpose, we have integrated this software module in a Computer Aided Engineering (CAE)
tool for the analysis and design of passive microwave and millimetre-waves components:
FEST3D (Full-wave Electromagnetic Simulation Tool 3D) [81]. In this chapter, we give a
brief introduction to the modal electromagnetic solver FEST3D. We also describe how the
algorithm developed in this PhD Thesis has been integrated into FEST3D. Finally, different
single-mode dielectric resonator bandpass filters, as well as a stopband filter, are presented.
The bandpass filters may be designed by using dielectric-loaded rectangular cavities cou-
pled through irises, or by placing the dielectric resonators in a rectangular waveguide below
cutoff. The results obtained by using the SS-IE approach integrated into FEST 3D are suc-
cessfully compared with those obtained by the commercial software tool Ansoft HFSS [80].

Finally, in Chapter 7 the conclusions are presented. Moreover, some guide lines for future
research activities in the field are proposed as a consequence of the work performed in this
PhD Thesis.



Chapter 2

Theory of Cavity Resonators Review

2.1 Introduction

A cavity resonator is a metallic enclosure including a lossless (or low-loss) medium, in which
modes of free oscillation can exist at an infinite number of discrete frequencies. The cavity
usually communicates with the outside through apertures providing coupling to a waveguide
or by means of a probe/loop that terminates in a coaxial transmission line. The electromag-
netic field is generated by internal sources and/or transmitted into the cavity through these
apertures or coaxial excitations.

The determination of the electromagnetic field generated by electric and/or magnetic
sources in cavity resonators, i. e., inside a finite volume under given boundary conditions,
represents a fundamental problem in electromagnetism. This is the so-called ‘interior pro-
blem’.

The first complete theory of the cavity resonators containing isotropic and homogeneous
media was presented by Kurokawa in 1958 [83], and it was reported in many books in sub-
sequents years [84–86]. Kurokawa proposed an orthonormal base, consisting of both irrota-
tional and solenoidal modes, for the electromagnetic field expansion. This way, expanding
the electromagnetic fields in terms of these complete orthonormal basis functions, the pro-
blem of solving the Maxwell’s equation in a cavity can be reduced to that of determining the
expansion coefficients. The solution of this problem yields to a general representation of the
electromagnetic field in the form of a pole expansion in the frequency domain in terms of the
resonant modes of the cavity resonator.

The electromagnetic field inside a cavity resonator can be also expressed in its integral
form by means of the Green’s functions. Indeed, due to the existence of internal sources, the
interior problem is directly related to the problem of calculating the electromagnetic field in
the source region. In this case, the behaviour of the electric dyadic Green’s function (G e)
needed to describe the field is extremely singular at the source region, and thus it is necessary
to calculate it efficiently. Many authors have determined the electric dyadic Green’s function
in form of eigenfunction series [87–89], but these representations are inadequate due to their
poor convergence properties near the singularities of G e. This drawback was overcome in
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the work presented by M. Bressan and G. Conciauro in 1983 [82]. They expressed G e

as a sum of one irrotational and two solenoidal terms, and evidenced the singularities of the
irrotational term and the former solenoidal one in a closed form. Following this approach, the
remaining terms containing the eigenfunction series were demonstrated to converge rapidly.
Furthermore the authors pointed out that the use of this formulation yields to an ‘hybrid’
representation of the field in terms of the scalar and vector potentials in the Coulomb gauge.
Indeed, it is considered an ‘hybrid’ representation because the electromagnetic field is finally
expressed partly as Green’s integrals, and partly as resonant mode expansion. This technique
has been widely applied in subsequent works [63, 71, 73–75] and it is detailed in the book
[62].

The main objective of this chapter is to present the hybrid representation of the electro-
magnetic field generated by electric and/or magnetic sources in an ideal cavity. This topic
will set the starting point for further discussion about the formulation presented in chapter 3.
For this purpose, the second and third sections of this chapter summarize the main results of
the Kurokawa’s theory of cavity resonators. The fourth section reproduces the main results
of the approach followed in [82] for the efficient calculation of the electric dyadic Green’s
function. Finally, the last three sections connect the results obtained in the previous ones in
order to provide the ‘hybrid’ representation of the electromagnetic field used in this Thesis.

2.2 The expansion of electromagnetic fields in cavity res-
onators

The theory of cavity resonators may be applied to different types of cavity (see Fig. 2.1).
However, in this section we will focus our attention in simply connected cavities with single
boundary (for multi-connected cavities or simply connected with double boundary see [62]).

(a) Simply connected with simple
boundary

(b) Simply connected with dou-
ble boundary

(c) Multi-connected with simple
boundary

Figure 2.1: Different types of cavity resonators.

Due to the finiteness of the electromagnetic energy stored in a finite volume, the electric
and magnetic fields belong to the space L2(V ), made up of complex square-integrable vector
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fields defined in the cavity volume V . The inner product of this space is defined as [62]:

〈~a,~b〉 =
∫

V
~a∗ ·~b dv ~a,~b ∈ L2(V )

where ∗ denotes complex conjugate.

The theory of cavity resonators is based on the possibility of representing the electromag-
netic field using an appropriate orthonormal bases of L2(V ). The bases are the electric and
magnetic eigenvectors. The electric eigenvectors are the solution of the eigenvalue problem:

∇2~V + Λ~V = 0 in V (2.1a)

∇·~V = 0

n̂× ~V = 0

}
on SV (2.1b)

where Λ is the eigenvalue. And the magnetic eigenvectors are the solution of the eigenvalue
problem:

∇2~V + Λ~V = 0 in V (2.2a)

n̂ · ~V = 0

n̂×∇×~V = 0

}
on SV (2.2b)

The solutions of both the electric and magnetic eigenvalue problems have the following
properties:

1. there is a countable infinity of real non-negative eigenvalues and real eigenvectors;

2. eigenvalues have a single cluster point at infinity;

3. eigenvalues are simple or have a finite degree of degeneracy;

4. eigenvectors are continuously differentiable to all orders, and mutually orthogonal in
L2(V );

5. assuming the normalization

‖~Vi‖2 = 〈~Vi, ~Vi〉 = 1

the eigenvector set constitutes an orthonormal basis of L2(V ); therefore, any square-
integrable vector field ~a, defined in V , can be represented by the expansion:

~a =
∞∑

i

〈~Vi,~a〉~Vi

According to the Helmholtz’s theorem, the set of both the electric and magnetic eigenvectors
can be divided into solenoidal and irrotational eigenvectors. In case of separate boundaries
or multi-connected cavities, the eigenvectors can also be divided into harmonic ones [62].
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2.2.1 Electric eigenvectors

IRROTATIONAL EIGENVECTORS - These eigenvectors are denoted as ~f1, ~f2, ... , ~fi, ...
being its corresponding eigenvalues µ2

1, µ
2
2, ... , µ

2
i , ... , respectively. By definition, the irrota-

tional eigenvectors satisfy:

∇× ~fi = 0, ∇· ~fi 6= 0 in V

and are the solution of:

(∇2 + µ2
i )
~fi = 0 in V (2.3)

The irrotational modes are generated from the scalar functions φi that are solutions of

∇2φi + µ2
iφi = 0 in V (2.4a)
φi = 0 on SV (2.4b)

from which it can be obtained that

~fi =
∇φi
µi

(2.5)

Apart from these properties, it can be demonstrated that we can always construct a set
of orthonormal irrotational eigenvectors. Making use of the equations (2.4b), (2.5) and the
vector identity,

∇·(φi∇φi) = φi∇2φi +∇φi · ∇φi ,
it can be demonstrated that if φi is normalized then ~fi is also normalized:

∫

V

~fi · ~fi dv =
∫

V
φ2
i dv −

1

µ2
i

∫

SV

φi
∂φi
∂n

ds =
∫

V
φ2
i dv = 1 (2.6)

Next, we can also demonstrate the orthogonality relationship between irrotational eigenvec-
tors. Firstly, we express the inner product between two eigenvectors as the product of its
corresponding scalar functions,

∫

V

~fi · ~fj dv =
∫

V

∇φi
µi

·∇φj
µj

dv =
1

µiµj

∫

V
[∇·(φi∇φj)− φi∇2φj] dv =

µj
µi

∫

V
φiφj dv

Following now a similar procedure to the used for the expression (2.6), we can write:

(µ2
i − µ2

j)
∫

V
φi · φj dv =

∫

V
(φi · ∇2φj − φj · ∇2φi) dv =

=
∫

V
∇ · (φi · ∇φj − φj · ∇φi) dv =

∫

SV

φi
∂φj
∂n

− φj
∂φi
∂n

ds = 0
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Therefore, when µi 6= µj the eigenvectors are orthonormal, whereas for degenerate eigenval-
ues it can be used the Gram-Schmidt orthogonalization procedure to construct a new subset
of orthonormal eigenvectors. And thus, one can always construct a set of irrotational eigen-
vectors that satisfy:

∫

V

~fi · ~fj dv = δij (2.7)

SOLENOIDAL EIGENVECTORS - The electric solenoidal modes are denoted as ~E1,
~E2,..., ~Ei,... and its corresponding eigenvalues as k2

1, k
2
2, ... , k

2
i , ... , respectively. By definition

they satisfy:

∇× ~Ei 6= 0, ∇· ~Ei = 0 in V

And therefore, taking into account (2.1a), the solenoidal eigenvectors satisfy:

∇×∇× ~Ei − k2
i
~Ei = 0 in V (2.8a)

n̂× ~Ei = 0 on SV (2.8b)

There exist an infinity number of positive eigenvalues an real eigenvectors. Next, we can
demonstrate that the solenoidal eigenvectors are mutually orthogonal. For this purpose we
substract the equations (2.8b) satisfied by ~Ei and ~Ej , just obtaining

~Ei · ∇×∇× ~Ej − ~Ej · ∇×∇× ~Ei = (k2
j − k2

i ) ~Ei · ~Ej ,
and then we can write:

(k2
j − k2

i )
∫

V

~Ei · ~Ej dv =
∫

V
( ~Ei · ∇×∇× ~Ej − ~Ej · ∇×∇× ~Ei) dv

=
∫

V
∇·( ~Ej ×∇× ~Ei − ~Ei ×∇× ~Ej) dv

=
∫

SV

(n̂× ~Ej · ∇× ~Ei − n̂× ~Ei · ∇× ~Ej) ds = 0

where we have used the vector identity∇·(~a×~b) = ~b ·∇×~a−~a ·∇×~b, and the boundary con-
dition satisfied by the solenoidal electric eigenvectors. As a consequence, when ki 6= kj the
eigenvectors are orthonormal, whereas for degenerate eigenvalues it can be used the Gram-
Schmidt orthogonalization procedure to construct a new subset of orthonormal eigenvectors.
And thus, assuming that the ~Ei are normalized, we can write:

∫

V

~Ei · ~Ej dv = δij (2.9)

Furthermore, the orthogonalization between the solenoidal and the irrotational electric eigen-
vectors can be easily demonstrated. Since ∇× ~fi = 0 and ∇×∇× ~Ej = −k2

j
~Ej , we can

write:
∇·(~fi ×∇× ~Ej) = ∇× ~fi · ∇× ~Ej − ~fi · ∇×∇× ~Ej = −k2

i
~fi · ~Ej
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And thus, we obtain:

k2
j

∫

V

~fi · ~Ej dv =
∫

SV

n̂× ~fi · ∇× ~Ej ds = 0 (2.10)

2.2.2 Magnetic eigenvectors

IRROTATIONAL EIGENVECTORS - These eigenvectors are denoted as ~g1, ~g2, ... , ~gi, ...
and its corresponding eigenvalues as ν2

1 , ν
2
2 , ... , ν

2
i , ... , respectively. Once again, by defini-

tion, the irrotational eigenvectors satisfy:

∇×~gi = 0, ∇·~gi 6= 0 in V

and are the solution of:

(∇2 + ν2
i )~gi = 0 in V (2.11)

The irrotational modes are generated from a scalar function ψi that are solutions of

∇2ψi + ν2
i ψi = 0 in V (2.12a)
∂ψi
∂n

= 0 on SV (2.12b)

from which it can be obtained that

~gi =
∇ψi
νi

(2.13)

And analogously to the case of the electric irrotational eigenvectors, the normalization of gi
is implied by the normalizing condition of ψi:

∫

V
~gi · ~gi dv =

∫

V
|ψi|2 dv = 1 (2.14)

SOLENOIDAL EIGENVECTORS - The magnetic solenoidal eigenvectors are denoted as
~H1, ~H2, ... , ~Hi, ... and its corresponding eigenvalues as k2

1, k
2
2, ... , k

2
i , ... , respectively. By

definition they satisfy:

∇× ~Hi 6= 0 ∇· ~Hi = 0

And therefore, taking into account (2.2a) and (2.2b), the magnetic solenoidal eigenvectors
satisfy:

∇×∇× ~Hi − k2
i
~Hi = 0 in V (2.15a)

n̂×∇× ~Hi = 0 on SV (2.15b)
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There exist an infinity number of positive eigenvalues an real eigenvectors. If we assume
that the ~Hi are normalized, we can proceed like in the case of the electric eigenvectors and
taking into account now the boundary conditions of ~Hi and ~gi, we can easily obtain the
orthogonalization properties:

∫

V

~Hi · ~Hj dv = δij (2.16)

∫

V

~Hi · ~gj dv = 0 (2.17)

So far, we have used the same symbol k2
i for the eigenvalues of both the electric and magnetic

solenoidal eigenvectors, and this is due to the fact that both spectra coincide. If we take the
curl of (2.8b) and (2.15b), we can observe that ∇× ~Ei satisfies the same equations as ~Hi and
that, by duality, ∇× ~Hi satisfies the same equations as ~Ei. As a consequence, we can state
that the eigenvalue spectra of the electric and magnetic solenoidal eigenvectors are the same.
Moreover, it is inferred that ∇× ~Ei is proportional to ~Hi and ∇× ~Hi is proportional to ~Ei.
Both proportionality constants must be ±ki, so choosing the positive sign, we can write:

∇× ~Hi = ki ~Ei

∇× ~Ei = ki ~Hi (2.18)

When the eigenvectors ~Ei are normalized, then the eigenvectors ~Hi are automatically nor-
malized. Starting from the expression

k2
i
~Hi · ~Hi = k2

i∇× ~Ei · ∇× ~Ei = ∇·( ~Ei ×∇× ~Ei) + ~Ei · ∇×∇× ~Ei

= ∇·( ~Ei ×∇× ~Ei) + k2
i
~Ei · ~Ei

we can integrate over the volume and using the boundary condition n̂ × ~Ei = 0, to finally
obtain:

‖ ~Hi ‖2=‖ ~Ei ‖2= 1 (2.19)

2.3 Forced oscillations in cavity resonators
In the preceding section we have presented a set of orthonormal eigenvectors that serves as
basis to expand the electromagnetic field in a simple connected cavity with single boundary
and with an isotropic and homogeneous medium. In such a space the field inside the cavity
can be represented as a linear eigenvector expansion:

~E =
∞∑

i=1

Ai ~Ei +
∞∑

i=1

Fi ~fi (2.20a)

~H =
∞∑

i=1

Bi
~Hi +

∞∑

i=1

Gi~gi (2.20b)
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The field in the cavity can be generated by interior sources or by exciting it by apertures in
the enclosure and they must obey the Maxwell’s equations:

∇× ~H = jωε ~E + ~J (2.21a)

−∇× ~E = jωµ ~H + ~M (2.21b)

where ~J and ~M are, respectively, the electric and magnetic current densities distributed in
the cavity.

In order to obtain the expansion coefficients of the interior problem, we insert now (2.20)
in (2.21). It is remarkable that the boundary conditions satisfied by the eigenvectors are not
the same as the boundary conditions satisfied by the field expanded. This fact means that the
series in (2.20) are no-uniform convergent, and thus the curl of the infinite sum is not equal
to the sum of the curls, i. e., the above series can not be differentiated term by term [84–86].
For this reason, we will proceed to expand the Maxwell’s equations (2.21) in terms of the
eigenvectors.

Since ∇× ~H has the form of an electric field, we expand the equation (2.21a) in terms
of the electric eigenvectors. We start projecting it in the subset of the electric irrotational
eigenvectors:

∫

V
∇× ~H · ~fi dv = jωε

∫

V

~E · ~fi dv +
∫

V

~J · ~fi dv (2.22)

Using∇×~fi = 0 and the boundary condition n̂× ~fi = 0, it can be observed that the left term
of equation (2.22) is equal to zero, and thus

Fi =
∫

V

~E · ~fi dv = j
η

k

∫

V

~J · ~fi dv (2.23)

where k = ω
√
εµ is the wavenumber at the operating frequency and and η =

√
µ
ε

is the
characteristic impedance of the medium.

We follow now the same procedure with the electric solenoidal eigenvector:
∫

V
∇× ~H · ~Ei dv = j

k

η

∫

V

~E · ~Ei dv +
∫

V

~J · ~Ei dv (2.24)

Using ∇× ~Ei = ki ~Hi and the boundary condition n̂× ~Ei = 0, we can write

kiBi = j
k

η
Ai +

∫

V

~J · ~Ei dv (2.25)

Since ∇× ~E has the form of a magnetic field, we will expand now the equation (2.21b) in
terms of the magnetic eigenvectors. By multiplying the expression by ~gi and integrating over
the cavity volume,

∫

V
∇× ~E · ~gi dv = −jkη

∫

V

~H · ~gi dv −
∫

V

~M · ~gi dv (2.26)
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and using
∫

V
∇× ~E · ~gi dv =

∫

SV

~gi · (n̂× ~E) ds

we calculate the coefficients Gi:

Gi =
j

kη

(∫

V

~M · ~gi dv +
∫

SV

~gi · (n̂× ~E) ds
)

(2.27)

Expanding analogously the expression (2.21b) in terms of the magnetic solenoidal eigenvec-
tors ~Hi, we have:

kiAi +
∫

SV

~Hi · (n̂× ~E) ds = −jkηBi −
∫

V

~M · ~Hi dv (2.28)

And thus, we can finally use the equations (2.25) and (2.28) to obtain the coefficients Ai and
Bi:

Ai =
ki

(∫
V
~M · ~Hi dv +

∫
SV

~Hi · (n̂× ~E) ds
)

+ jkη
∫
V
~J · ~Ei dv

k2 − k2
i

(2.29)

Bi =

jk
η

(∫
V
~M · ~Hi dv +

∫
SV

~Hi · (n̂× ~E) ds
)
− kiη

∫
V
~J · ~Ei dv

k2 − k2
i

(2.30)

Therefore, expressions (2.23), (2.27), (2.29) and (2.30) give us the value of the coeffi-
cient expansions in (2.20). These equations represent the field in the form of a singularity
expansion in the frequency domain. The singularities consist of a simple pole of the coeffi-
cients Fi and Gi at ω = 0, and an infinity of simple pole pairs of the coefficients Ai and Bi,
at the frequencies ±ωi, where

ωi =
ki√
εµ

(2.31)

As a consequence, we can express the field generated by magnetic and/or electric sources
in a cavity with perfect conducting walls (n̂× ~E = 0) as follows:

~E = j
η

k

∞∑

i=1

〈~fi, ~J〉~fi + jηk
∞∑

i=1

〈 ~Ei, ~J〉
k2 − k2

i

~Ei +
∞∑

i=1

ki
〈 ~Hi, ~M〉
k2 − k2

i

~Ei (2.32a)

~H =
jk

η

∞∑

i=1

〈 ~Hi, ~M〉
k2 − k2

i

~Hi −
∞∑

i=1

ki〈 ~Ei, ~J〉
k2 − k2

i

~Hi +
j

ηk

∞∑

i=1

〈~gi, ~M〉~gi (2.32b)
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2.4 Electric Green’s functions in the source region. Singu-
larity extraction

As we will see in Chapter 3, when calculating the electromagnetic fields in a rectangular ca-
vity loaded with a dielectric resonator, the electric sources ~J involved in the solution depend
on the electric field. As a consequence, we will have to deal with the problem of computing
the electric dyadic Green’s function in the source region.

The behaviour of the electric dyadic Green’s function is ‘extremely’ singular when the
observation and the source points coalesce, and that makes highly difficult to calculate it
accurately near or in the singularity point. Thus, we will have to pay special attention to
the approach used to determine G e in order to calculate efficiently the electromagnetic field
generated by internal sources in a cavity resonator.

In 1961 J. Van Bladel [90] pointed out the necessity of isolating the singularity of the
electric dyadic Green’s function in free space to determine the field in the source region.
In 1980 A. Yaghjian [91] generalized this concept for any kind of geometry providing an
approach to rigorously derive a generalized electric dyadic Green’s function which defines
uniquely the electric field inside and outside the source region. Following that work, the
electric field generated by electric sources in a cavity resonator with perfect conducting walls,
filled with linear, isotropic and homogeneous medium may be expressed as:

~E(~r) = −jωµ lim
δ→0

∫

V−Vδ

G e(~r, ~r
′) · ~J(~r ′) dv′ − L · ~J(~r)

jωε
(2.33)

where ~r and ~r ′ are, respectively, the observation and the source points, and L is the so-
called depolarizing dyadic, which is a symmetric constant dyadic that depends solely on the
geometry of the ‘principal volume’ Vδ. The principal volume excludes the singularity of G e

and becomes infinitesimally small in the limit as its maximum chord length δ approaches to
zero. In [91], it was demonstrated that the general expression of the depolarizing dyadic is:

L =
1

4π

∫

Sδ

~R ûnδ

R3
ds′ (2.34)

where Sδ is the surface of the principal volume Vδ, ûnδ
is the inward normal vector to Sδ,

~R = ~r − ~r ′ and R = ‖~R‖.

In the expression (2.33), the integral involving G e excludes the singularity. Due to the
fact that the the field is independent from the principal volume chosen to solve the problem,
the value of this Green’s integral must depend on the geometry of the principal volume, since
the value of L depends on it. In [90] the value of L was calculated for a spherical principal
volume, whereas in [91] the value for different geometries was reported. In [92], it was
presented an approach that allowed to perform numerical computations of the field by means
of (2.33) using a finite principal volume Vδ. However, in all these cases the computation of
G e is required and it is mainworth to compute it with high accuracy and efficiently.

Many other authors have calculated the electric dyadic Green’s function in form of eigen-
function series [87–89, 93]. Nevertheless, these representations of G e have demonstrated to
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be inadequate for the kind of problems that we are trying to solve, since their eigenfunc-
tions series have very poor convergence properties near the singularities even when they are
avoided. In the work of Howard and Seidel [94] it was pointed out that this problem is due
to the singularity associated to G e; they improved the convergence of the series involved by
extracting a singular irrotational term (of the order R−3) in closed form from the eigenfunc-
tions series. However, the remaining series had still a singularity of the order R−1. Also
in [95] it was presented a transformation of expression (2.33) that allowed to reduce the sin-
gularity order of the dyadic Green’s functions. Nevertheless, and despite this transformation,
the integral expression of the field with that technique still involved a kernel diverging like
R−1.

In [82] Bressan and Conciauro overcame all these drawbacks. They extracted from the
electric dyadic Green’s function not only the irrotational singularity like in [94], but also
a solenoidal weaker one (of the order R−1). This way the remaining eigenfunction se-
ries are regular at the source point and rapidly convergent. This approach was applied to
two-dimensional problems in [96] and later on used to calculate the electric dyadic Green’s
function of a spherical resonator in [97].

2.4.1 Decomposition of the electric dyadic Green’s function and singu-
larity extraction

The electric dyadic Green’s function G e for a cavity resonator involved in (2.33) is the solu-
tion of the following differential equation:

∇×∇×G e(~r, ~r
′)− k2G e(~r, ~r

′) = Iδ(~r, ~r ′) in V (2.35a)
n̂×G e = 0 onSV (2.35b)

where δ(~r, ~r ′) is the Dirac delta function in three dimensions, I is the unit dyadic, n̂ is the
unitarty normal vector to the surface SV of the cavity volume V .

The singularity of G e is known to be the same as the one of the free-space Green’s
function Gfs

e which is given by the well-known expression:

Gfs
e (~r − ~r ′) =

(
I + k−2∇∇

) e−jkR
4πR

(2.36)

By Taylor-expanding the exponential

e−jkR

4πR
≈ 1

4πR
− jk

4π
− k2

8π
R + · · · (2.37)

and neglecting the terms finite at R = 0, we can approximate Gfs
e at a distance much smaller
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than the wavelength (kR¿ 1) by

Gfs
e (~r − ~r ′) ≈ I

4πR
+

1

k2
∇∇ 1

4πR
− 1

8π
∇∇R

≈ I

4πR
+

1

k2
∇∇ 1

4πR
− I

8πR
+

~R~R

8πR3

≈ 1

k2
∇∇ 1

4πR
+

1

8πR
(I +

~R~R

R2
) (2.38)

where we have used the following identity:

∇∇R = ∇
3∑

i

∂xi
Rx̂i = ∇

3∑

i

Ri

R
x̂i =

3∑

i j

∂xj

Ri

R
x̂ix̂j

=
3∑

i j

δijR−RiRjR
−1

R
x̂ix̂j =

I

R
−
~R~R

R3

The expression (2.38) reveals the nature of the singularity of G e:

• There is a dominant singularity in the irrotational term ∇∇ 1
4πR

, which diverges like
R−3.

• There is a weaker singularity contained in the solenoidal term 1
8πR

(I +
~R~R
R2 ). This

singularity is of the order R−1.

The first singularity evidenced above was firstly extracted from the electric dyadic Green’
function in [94], whereas the second one was extracted for the first time in the work of
Bressan and Conciauro [82]. For this purpose the authors decomposed G e into:

G e = − 1

k2
∇∇′ge(~r, ~r ′) +GA

o(~r, ~r
′) +GA

k(~r, ~r
′) (2.39)

where ge(~r, ~r ′) is the scalar Green’s function; GA
o(~r, ~r

′) and GA
k(~r, ~r

′) are the solenoidal
dyadics1. These functions satisfy:

∇2ge(~r, ~r ′) = −δ(~r, ~r ′) in V (2.40a)
ge = 0 on SV (2.40b)

and

∇×∇×GA
o(~r, ~r

′) = Iδ(~r, ~r ′)−∇∇′ge(~r, ~r ′) in V (2.41a)

∇×∇×GA
k(~r, ~r

′)− k2GA
k(~r, ~r

′) = k2GA
o(~r, ~r

′) in V (2.41b)

n̂×GA
o(~r, ~r

′) = n̂×GA
k(~r, ~r

′) = 0 on SV (2.41c)

1We denote the solenoidal dyadics by GA
o (~r, ~r ′) and GA

k(~r, ~r ′) because, as we will see later in this section,
they represent the vector potential dyadic Green’s functionGA(~r, ~r ′). GA

o (~r, ~r ′) represents a quasi-static term,
independent from the frequency, and GA

k(~r, ~r ′) is the frequency dependent part.
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Since ∇× (∇∇′ge(~r, ~r ′)) = 0, using (2.41) it is easy to verify that expression (2.39)
satisfies equation (2.35). On the other hand, since∇·∇∇′ge(~r, ~r ′) = ∇′(∇2ge), using (2.40a)
it can be observed that the right hand side of equation (2.41a) is solenoidal, as required for
the existence of the solution of this equation.

Moreover, it is inferred from (2.40) that ge/ε represents the electrostatic potential due to
a unit point-charge placed at ~r. It can be expressed as:

ge(~r, ~r ′) =
1

4πR
+ ger(~r, ~r

′) (2.42)

where ger is a regular function which forces ge to match the boundary condition (2.40b).
Hence, it satisfies:

∇2ger(~r, ~r
′) = 0 in V (2.43a)

ger = − 1

4πR
on SV (2.43b)

Introducing now the expression (2.42) into equation (2.39), the irrotational singular term
− 1
k2∇∇′ 1

4πR
is evidenced.

The remaining singularity, as mentioned above, is solenoidal and frequency-independent,
therefore we can include it in the solenoidal dyadic GA

o . Hence, making use of the equation
(2.38), we can write:

GA
o(~r, ~r

′) =
1

8πR
(I +

~R~R

R2
) +GA

o,r(~r, ~r
′) (2.44)

where GA
o,r is a solenoidal dyadic regular at R = 0, and it matches the boundary condi-

tions dictated by (2.44) together with (2.41c). As it is demonstrated in the Appendix (E), it
satisfies:

∇×∇×GA
o,r(~r, ~r

′) = −∇∇′ger(~r, ~r
′) (2.45)

Last, an expression for GA
k has to be found. Since GA

k is finite at R = 0 and it is a
solenoidal dyadic, it can be expanded in terms of the electric solenoidal eigenvectors ~Ei.
These eigenvectors have been demonstrated to be an orthonormal base in the previous sec-
tions, so we can write:

GA
k(~r, ~r

′) =
∞∑

i

~Ei(~r)〈 ~Ei(~r) ·GA
k(~r, ~r

′)〉 (2.46)

Making use of the Vector-Dyadic Green’s Second Theorem and the boundary conditions
(2.8b) and (2.41c), it can be observed that

〈 ~Ei · ∇×∇×GA
k〉 = 〈∇×∇× ~Ei ·GA

k〉
〈 ~Ei · ∇×∇×GA

o〉 = 〈∇×∇× ~Ei ·GA
o〉
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By means of the divergence theorem and the boundary condition (2.40b) and ∇· ~Ei = 0, it is
also demonstrated that

〈 ~Ei · ∇∇′g(~r, ~r ′)〉 = 0

Using these Green’s identities together with the expressions(2.41), we can write:

〈 ~Ei ·GA
k〉 =

1

k2
〈 ~Ei · ∇×∇×GA

k〉 − 〈 ~Ei ·GA
o〉

=
1

k2
〈∇×∇× ~Ei ·GA

k〉 − 〈 ~Ei ·GA
o〉 =

k2
i

k2
〈 ~Ei ·GA

k〉 − 〈 ~Ei ·GA
o〉 (2.47)

and with a similar procedure we find:

〈 ~Ei ·GA
o〉 =

1

k2
i

〈∇×∇× ~Ei ·GA
o〉 =

1

k2
i

〈 ~Ei · ∇×∇×GA
o〉

=
1

k2
i

(
〈 ~Ei · Iδ(~r, ~r ′)〉 − 〈 ~Ei · ∇∇′g(~r, ~r ′)〉

)
=

~Ei
k2
i

(2.48)

Thus, introducing (2.47) and (2.48) in the expression (2.46), we obtain

〈 ~Ei(~r) ·GA
k(~r, ~r

′)〉 =
k2

k2
i (k

2
i − k2)

~Ei(~r
′) (2.49)

Therefore, this result together with (2.42), (2.44) and (2.46) yield to the final expression of
the electric dyadic Green’s function

G e(~r, ~r
′) =− 1

k2
∇∇′

[
1

4πR
+ ger(~r, ~r

′)
]
+

+
1

8πR


I +

~R~R

R2


 +GA

o,r(~r, ~r
′) + k2

∞∑

i

~Ei(~r) ~Ei(~r
′)

k2
i (k

2
i − k2)

(2.50)

where both the irrotational and the solenoidal singularities are evidenced in closed form.
Furthermore expressions for ger andGA

o,r can be obtained in closed form or in terms of rapidly
converging series depending on the geometry of the resonator cavity. The contribution of the
eigenvector expansion tends to zero when k tends to zero, therefore it may be seen as a
‘high-frequency correction’. The most significant terms correspond to resonances occurring
not much above the operating frequency, since the terms of the series decrease as k−4

i when
k2
i becomes much larger than k2.

2.4.2 Physical meaning of the electric dyadic Green’s function decom-
position: The Coulomb Gauge.

So far we have found an expression for the electric dyadic Green’s function that allows us
to extract the singularities of G e and to calculate it in an accurate and efficient way. We can
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now give a physical interpretation to this expression. By substituting (2.39) into (2.33) and
making use of (2.50), we can write:

~E(~r) = ~Eo(~r) + ~EA(~r) + ~̃E(~r) (2.51)

where

~Eo(~r) = j
jη

k

[
lim
δ→0

∫

V−Vδ

(∇∇′ge(~r, ~r ′)) · ~J(~r ′) dv′ + L · ~J(~r)
]

(2.52a)

~EA(~r) = −jkη
∫

V
GA
o(~r, ~r

′) · ~J(~r ′) dv′ (2.52b)

~̃E(~r) = −jk3η
∞∑

i

1

k2
i (k

2
i − k2)

~Ei(~r)
∫

V

~Ei(~r
′) · ~J(~r ′) dv′ (2.52c)

In the expression (2.52b), the limit has been omitted because the singularity of GA
o is

of the order of R−1 and hence it is integrable [98], being the integral independent from the
choice of the principal volume. The expression of ~Eo can be further developed using the
divergence theorem, thus obtaining

lim
δ→0

∫

V−Vδ

[∇∇′ge(~r, ~r ′)] · ~J(~r ′) dv′ =

= lim
δ→0

∫

V−Vδ

∇
[
∇′ · (ge(~r, ~r ′) ~J(~r ′))− ge(~r, ~r ′)∇′ · ~J(~r ′)

]
dv′ =

=
∫

SV

∇ge(~r, ~r ′) ~J(~r ′) · n̂ ds′ + lim
δ→0

∫

sδ

∇ge(~r, ~r ′)n̂ · ~J(~r ′) ds′−

−
∫

V
∇ge(~r, ~r ′)∇′ · ~J(~r ′) dv′ (2.53)

Since ge(~r, ~r ′) vanishes for any value of ~r ′ on the surface of the resonator cavity, then
the first surface integral in (2.53) is equal to zero. The volume integral, once again, does not
depend on the principal volume because the singularity of ∇ge is of the order of R−2 and it
is integrable [98], thus we have omitted the reference to the principal value. Using (2.42) we
can write:

lim
δ→0

∫

sδ

∇ge(~r, ~r ′)n̂ · ~J(~r ′) ds′ =

= lim
δ→0

∫

sδ

∇(
1

4πR
)n̂ · ~J(~r ′) ds′ +

∫

sδ

∇ger(~r, ~r ′)n̂ · ~J(~r ′) ds′ =

= − lim
δ→0

∫

sδ

(
~R

4πR−3
)n̂ · ~J(~r ′) ds′ = −L · ~J(~r) (2.54)

where we have taken into consideration that ~J(~r) and ger(~r, ~r
′) are regular functions at ~r = ~r ′,

and so the integral containing ger(~r, ~r
′) vanishes in the limit. Moreover, in the last integral,

we can assume ~J(~r ′) to have a fixed value( ~J(~r ′) = ~J(~r)) when δ tends to zero.
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Substituting (2.54) in (2.53) and introducing it in (2.52a), we obtain

~Eo(~r) = −1

ε
∇

∫

V
ge(~r, ~r ′)ρ(~r ′) dv′ (2.55)

where we have used the continuity equation ρ(~r) = −∇· ~J(~r)/jω.
It is remarkable that it has been obtained a expression for the electric field which is

independent from the principal volume chosen. Furthermore, equation (2.55) permits to
recognize ~Eo as the electric field given by the gradient of the scalar potential in the Coulomb

gauge. As a consequence the solenoidal terms ~EA(~r)+ ~̃E(~r) represent the contribution given
by the potential vector in the same gauge.

2.5 Scalar and vector potentials (Coulomb gauge)
In the previous section we have presented an expression of the electric dyadic Green’s func-
tion that permits to calculate efficiently the field in a cavity resonator. It is a decomposition
of G e in which the singularities are evidenced in closed form and the remaining series are
rapidly converging. Moreover the integrals involved does not depend on the principal vo-
lume chosen to calculate them like it occurs when using directly the equation (2.33) [90,91].
As we have seen this decomposition yields to a representation of the field in the Coulomb
gauge. Moreover, in problems where the sources depend on the field (we will see that this
is our case in the next chapter), it is crucial to calculate with high accuracy and efficiency
the electric dyadic Green’s function. Due to all these reasons, we will choose the Coulomb
gauge to represent the electromagnetic field.

Furthermore, in equations (2.20) we have split the field into solenoidal and irrotational
series expansion. The same kind of decomposition is present in the expression of the field
by means of the scalar and vector potentials in the Coulomb gauge [49, 99]:

~E = −∇V e − jω ~A− 1

ε
∇× ~F (2.56a)

~H = −∇V m +
1

µ
∇× ~A− jω ~F (2.56b)

where V e is the electric scalar potential, V m is the magnetic scalar potential, ~A denotes the
electric vector potential, and ~F denotes the magnetic vector potential.

In the Coulomb gauge, both the electric and magnetic vector potentials are solenoidal,

∇· ~A = ∇· ~F = 0 (2.57)

The electric potential vector satisfies:

∇×∇× ~A− k2 ~A = µ~J − jωµε∇V e in V (2.58a)

n̂× ~A = 0 on SV (2.58b)
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whereas in the case of the magnetic vector potential, the equations are:

∇×∇× ~F − k2 ~F = ε ~M − jωµε∇V m in V (2.59a)

n̂×∇× ~F = 0 on SV (2.59b)

The static electric potential is irrotational and satisfies:

∇2V e = −ρ
e

ε
in V (2.60a)

V e = 0 on SV (2.60b)

where ρe is the electric charge density which verifies the continuity equation∇·~J = −jωρe.
The static magnetic potential is also irrotational and it satisfies:

∇2V m = −ρ
m

µ
in V (2.61a)

∂V e

∂n
= 0 on SV (2.61b)

where ρm is the magnetic charge density which verifies the continuity equation ∇· ~M =
−jωρm.

We may express now the scalar and vector potentials as an eigenvector expansion pro-
ceeding like in section 2.3 to solve the equations above. Nevertheless, it is simpler to com-
pare equations (2.56) with (2.32), and taking into account which terms are solenoidal or
irrotational and their dependency on ~J or ~M , we can obtain the following representation of
the electric scalar and vector potential:

~A = µ
∞∑

i=1

〈 ~Ei, ~J〉
k2
i − k2

~Ei (2.62)

∇× ~A = µ
∞∑

i=1

ki〈 ~Ei, ~J〉
k2
i − k2

~Hi (2.63)

∇V e = −j η
k

∞∑

i=1

〈~fi, ~J〉~fi (2.64)

Introducing now (2.5) in (2.64), we can write:

∇V e(~r) = −j η
k

∞∑

i=1

〈~fi, ~J〉∇φi(~r)
µi

(2.65)

and assuming that differentiation and summation can be inverted 2, we obtain

V e(~r) = −j η
k

∞∑

i=1

〈~fi, ~J〉φi
µi

(2.66)
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Moreover, we have:

〈~fi, ~J〉 =
1

µi

∫

V
∇φi · ~J dv = − 1

µi

∫

V
φi∇· ~J dv =

jω

µi

∫

V
φiρ

e dv

where we have used the divergence theorem, the continuity equation and that φi = 0 on the
boundary. Thus we can finally rewrite (2.66) as

V e(~r) =
1

ε

∞∑

i=1

φi(~r)

µ2
i

∫

V
φiρ

e dv (2.67)

The expansion for the magnetic scalar and vector potentials can be analogously obtained:

~F = ε
∞∑

i=1

〈 ~Hi, ~M〉
k2
i − k2

~Hi (2.68)

∇× ~F = ε
∞∑

i=1

ki
〈 ~Hi, ~M〉
k2 − k2

i

~Ei (2.69)

∇V m =
1

jηk

∞∑

i=1

〈~gi, ~M〉~gi (2.70)

To obtain the expansion of V m, we have to consider the following expression:

〈~gi, ~M〉 =
1

νi

∫

V
∇ψi · ~J dv = − 1

νi

∫

V
ψi∇· ~J dv =

jω

νi

∫

V
ψiρ

m dv

where we have made use of the equation (2.13), the divergence theorem, the continuity
equation for the magnetic sources and the boundary condition n̂ · ~M = 0. Thus, proceeding
like for the electric scalar potential, we have2

V m(~r) =
1

µ

∞∑

i=1

ψi(~r)

ν2
i

∫

V
ψiρ

m dv (2.71)

2The eigenvectors used in the expansion of the scalar and the vector potentials satisfy the same boundary
conditions as the potentials. This fact makes the series to be uniform convergent [85], and thus it is possible
to invert the differentiation or integration and the summation in the expressions (2.62), (2.67), (2.68), and
(2.71). In fact, it is possible to obtain equations (2.63) and (2.69) by differentiating termwise (2.62) and (2.68)
respectively.
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2.6 Potential Green’s functions
In the preceding section we have expressed the scalar and vector potentials for a cavity
resonator with perfect conducting walls as an eigenvector expansion (see equations (2.62),
(2.67), (2.68), and (2.71)). By inverting now the integration and the summation 2, we obtain
the representation of the potentials in an integral form:

V e =
1

ε

∫

V
ge(~r, ~r ′)ρe(~r ′) dv′ (2.72a)

V m =
1

ε

∫

V
gm(~r, ~r ′)ρm(~r ′) dv′ (2.72b)

~A = µ
∫

V
GA(~r, ~r ′) · ~J(~r ′) dv′ (2.72c)

~F = µ
∫

V
GF (~r, ~r ′) · ~M(~r ′) dv′ (2.72d)

where we have defined:

ge(~r, ~r ′) =
∞∑

i

φi(~r)φi(~r
′)

µ2
i

(2.73a)

gm(~r, ~r ′) =
∞∑

i

ψi(~r)ψi(~r
′)

ν2
i

(2.73b)

GA(~r, ~r ′) =
∞∑

i

~Ei(~r) ~Ei(~r
′)

k2
i − k2

(2.73c)

GF (~r, ~r ′) =
∞∑

i

~Hi(~r) ~Hi(~r
′)

k2
i − k2

(2.73d)

where ge and gm are the scalar Green’s functions for the electric and magnetic scalar po-
tential, whereas GA and GF are the dyadic Green’s functions for the electric and magnetic
vector potentials, respectively.

The ge function coincides with the Green’s function for the electrostatic potential in the
cavity according to the Coulomb’s gauge and, as it has been presented in section 2.4, it
satisfies:

∇2ge(~r, ~r ′) = −δ(~r, ~r ′) in V (2.74a)
ge = 0 on SV (2.74b)
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The equations satisfied by the magnetic Green’s function are dual:

∇2gm(~r, ~r ′) = −δ(~r, ~r ′) in V (2.75a)
∂gm

∂n
= 0 on SV (2.75b)

To obtain the differential equation satisfied by the dyadic GA, we perform the following
substitutions in eq.(2.58):

µ~J ⇒ Iδ(~r, ~r ′) ~A(~r) ⇒ GA(~r, ~r ′)

and

µ(jωε∇V e) ⇒ ∇
∫

V
∇′′ge(~r, ~r′′) · Iδ(~r′′ − ~r ′)dv′′ = ∇∇′ge(~r, ~r ′)

The last transformation has been proposed because

µ(jωε∇V e) = jωµ∇
∫

V
ge(~r, ~r′′)ρe(~r′′)dv′′ =

= −µ∇
∫

V
ge(~r, ~r′′)∇′′ ~J(~r′′)dv′′ = ∇

∫

V
∇′′ge(~r, ~r′′)µ~J(~r′′)dv′′ (2.76)

where we have used the divergence theorem and the condition ge ~J = 0 on the boundary. In
conclusion, GA is the solution of the differential equation:

∇×∇×GA(~r, ~r ′)− k2GA(~r, ~r ′) = Iδ(~r, ~r ′)−∇∇′ge(~r, ~r ′) in V (2.77a)

n̂×GA(~r, ~r ′) = 0 on SV (2.77b)

As mentioned in previous sections, the series in expressions (2.73) converge very slowly,
due to the singular behaviour of the Green’s functions when ~r and ~r ′ coalesce. When per-
forming numerical calculations, these series need to be truncated and the slow convergence
may yield to inaccurate results in the source region. It has been shown that this drawback
can be avoided by extracting the Green’s functions singularities in closed form.

Since the form of the singularity does not depend on the boundary conditions, it is the
same for both the electric and magnetic scalar Green’s function:

gs(~r, ~r
′) =

1

4πR
(2.78)

and thus, we may decompose the scalar Green’s function like in section (2.4):

ge(~r, ~r ′) = gs(~r, ~r
′) + ger(~r, ~r

′) gm(~r, ~r ′) = gs(~r, ~r
′) + gmr (~r, ~r ′) (2.79)
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where ger and gmr are regular functions at R = 0.

In the case ofGA, since the singularity is independent from the frequency, we have shown
that the series expansion can be accelerated by extracting its zero-frequency limit GA

o . Thus,
we can write:

GA(~r, ~r ′) = GA
o(~r, ~r

′) +GA
k(~r, ~r

′) with GA
o(~r, ~r

′) = GA(~r, ~r ′)|k=0 (2.80)

Introducing eq.(2.80) in (2.73c), we can easily verify that

GA
k(~r, ~r

′) = k2
∞∑

i

~Ei(~r) ~Ei(~r
′)

k2
i (k

2
i − k2)

(2.81)

This is the expression obtained using (2.49) and (2.46). In fact, by introducing the equations
(2.80),(2.81) in (2.77), it is easily demonstrated that equations (2.41) are satisfied.

In conclusion, using the results obtained in section 2.4, we can write:

GA(~r, ~r ′) = GA
o(~r, ~r

′) +GA
k(~r, ~r

′) =

=
1

8πR
(I +

~R~R

R2
) +GA

o,r(~r, ~r
′) + k2

∞∑

i

~Ei(~r) ~Ei(~r
′)

k2
i (k

2
i − k2)

(2.82)

The dual expression gives us the dyadic Green’s function for the electric vector potential:

GF (~r, ~r ′) = GF
o (~r, ~r

′) +GF
k(~r, ~r

′) =

=
1

8πR
(I +

~R~R

R2
) +GF

o,r(~r, ~r
′) + k2

∞∑

i

~Hi(~r) ~Hi(~r
′)

k2
i (k

2
i − k2)

(2.83)

where GA
o,r and GF

o,r are regular dyadic functions at R = 0.

So finally, we have extracted the singularities from the Green’s functions in such a way
that we are able now to express them in terms of rapidly converging series. Expressions for
ger , g

m
r , GA

o,r and GF
o,r can be found using different methods, such as the image technique.

For instance, in the case of a spherical resonator, expressions in closed forms can be found
[62, 63, 73, 97]. In the case of the present work, we will use the Green’s functions of a
rectangular cavity which can be expressed as a triple series form. The computation of these
series can be tedious and different techniques to accelerate it have been proposed [100].
Nevertheless, in this work we will use a method presented in [101] based on the Ewald
technique [102]. This method has been applied in different works, such as [74, 75, 101],
demonstrating to be very efficient. Its implementation has been reported in detail in [Ch. 3,
103] and in [104]. Moreover, in order to compute the dyadic Green’s functions, the infinite
series in (2.82) and (2.83) must be truncated, so we finally express the dyadic Green fucntion
as:

GA(~r, ~r ′) =
1

8πR
(I +

~R~R

R2
)+GA

o,r(~r, ~r
′) + k2

M∑

i

~Ei(~r) ~Ei(~r
′)

k2
i (k

2
i − k2)

(k < kmax; kM ≤ ξkmax < kM+1) (2.84)
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where kmax is the wavenumber correspondent to the highest frequency of interest, and ξ is
a numerical parameter greater than 1. This parameter can be regarded as an accuracy factor,
since the number of modes considered in the series grows up as ξ increases. Its value is
typically around ξ ≈ 2, 3 [62,73]. Obviously, the dual expression of (2.84) holds to compute
the dyadic Green’s function for the magnetic vector potential.

2.7 Hybrid representation of the electromagnetic field in
an ideal cavity

In order to construct now the expressions of the fields, we first introduce equations (2.72a)
and (2.72c) in (2.56), making use of (2.76) and inverting the curl and the integration3 in
(2.72d),

∇× ~F = ε
∫

V
∇×GF (~r, ~r ′) · ~M(~r ′) dv′ (2.85)

we can obtain the expression of the electric field in terms of the Green’s functions:

~E(~r) =
η

jk
∇

∫

V
ge(~r, ~r ′)∇′ · ~J(~r ′) dv′ − jkη

∫

V
GA(~r, ~r ′) · ~J(~r ′) dv′

−
∫

V
∇×GF (~r, ~r ′) · ~M(~r ′) dv′ (2.86)

And analogously, the expression for the magnetic field can be found:

~H(~r) =
1

jkη
∇

∫

V
gm(~r, ~r ′)∇′ · ~M(~r ′) dv′ − jk

η

∫

V
GF (~r, ~r ′) · ~M(~r ′) dv′

+
∫

V
∇×GA(~r, ~r ′) · ~J(~r ′) dv′ (2.87)

And finally, by introducing equations (2.82) and (2.83) in these expressions, we obtain the
‘hybrid’ representation of the field:

~E(~r) =
η

jk
∇

∫

V
ge(~r, ~r ′)∇′ · ~J(~r ′) dv′

− jkη
∫

V
GA
o(~r, ~r

′) · ~J(~r ′) dv′ −
∫

V
∇×GF

o (~r, ~r
′) · ~M(~r ′) dv′

− jk3
∞∑

i

∫
V
~Ei(~r

′) · ~J(~r ′) dv′

k2
i (k

2
i − k2)

~Ei(~r)− k2
∞∑

i

∫
V
~Hi(~r

′) · ~M(~r ′) dv′

k2
i (k

2
i − k2)

~Hi(~r) (2.88a)

3We can invert the differential operator and the integration because the singularity of GF is integrable (of
the order R−1), and it does not depend on the principal volume. If we were working with G e, which as shown
has a higher singularity (R−3), this interchange of operators will give problems (the well-known problem of
the classical delta-function method [91]).
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~H(~r) =
1

jkη
∇

∫

V
gm(~r, ~r ′)∇′ · ~M(~r ′) dv′

− jk

η

∫

V
GF
o (~r, ~r

′) · ~M(~r ′) dv′ +
∫

V
∇×GA

o(~r, ~r
′) · ~J(~r ′) dv′

− jk3

η
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i
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′) · ~M(~r ′) dv′

k2
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2
i − k2)

~Hi(~r) + k2
∞∑

i

∫
V
~Ei(~r

′) · ~J(~r ′) dv′

k2
i (k

2
i − k2)

~Ei(~r) (2.88b)

The fields are given partly by eigenvector expansions and partly by Green’s integrals. The
Green integrals represent the field at low frequency. In order to compute them accurately, it
is crucial extract the Green’s function singularities, and to properly transform these singular
integrals. The eigenvector series represent high-frequency corrections and they converge
much faster than the full eigenvector expansions of the electric and magnetic fields.
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Chapter 3

State-Space Integral-Equation
Formulation based on the BI-RME
Method

3.1 Introduction

During the last decades, a great number of numerical techniques have been developed to
characterise the electromagnetic response of passive microwave circuits by means of frequency-
and time-domain procedures [47, 59]. In time-domain methods, such as the finite-difference
time-domain (FDTD) or the transmission-line matrix (TLM) algorithm, the temporal evolu-
tion of the field (time-step by time-step) is computed by discretizing the Maxwell’s equa-
tions both in time and space. In a frequency-domain method, such as the finite-element
method (FEM) and boundary element methods (integral equation techniques or mode match-
ing method), the Maxwell’s equations are written in the frequency domain and solved to ob-
tain the field in the solution region computed at a set frequency. In any case, by making use
of this kind of procedures, problems must be solved over and over again to find the frequency
response in a broad bandwith. This drawback can be avoided using s-domain procedures (s
is the Laplace variable).

From the 90’s up to nowadays, several studies have been devoted to the development
of new electromagnetic solvers for the analysis of passive microwave devices through state
space-domain methods [60, 61]. These mathematical models permit to represent a linear
system described by partial differential equations in terms of an infinite poles and zeros
expansion. In other words, one can obtain the electromagnetic response of a microwave
device in terms of some circuit generalized matrix (scattering, admittance, impedance, etc.)
represented in the form of pole expansion in the Laplace variable s. S-domain methods
present several advantages: since the system is linear, there is no need to compute over and
over again by stepping through time or frequency, and thus, frequency sweeps are computed
very fast. Furthermore, s-domain solutions may be cast into equivalent electrical circuits,
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which is crucial in synthesis and design processes.

In the case of distributed circuits, finite difference (FD) and finite element (FE) methods
applied to the Maxwell equations in the s-domain yield to equations in which the discretized
field is represented by the state variables. However, these methods need to perform refined
3D meshes, and consequently they make use of huge computational resources, slowing down
significantly the numerical computations performed, specially when complex 3D structures
are analysed. On the other hand, boundary element methods (BEM) avoid 3D meshes, but do
not give rise directly to mathematical models in the form of pole expansions valid on a very
wide bands, though fast frequency sweeps can be achieved by the adaptive Lanczos-Padè
algorithm [60, 61].

In this work we obtain the generalized admittance matrix (GAM) of a dielectric-loaded
cavity resonator in terms of a pole expansion in the Laplace variable domain by means of a
state-space integral-equation (SS-IE) approach. This technique is based in the well-known
‘Boundary -Integral Resonant Mode Expansion’ (BI-RME) method developed in the Univer-
sity of Pavia (Italy).

The BI-RME method was formerly applied to obtain the normalized resonant modes of
arbitrarily shaped metallic cavities in [63]. The unknown current flowing on the cavity walls
was considered inside a spherical resonator, rather than in free space as it is used to be done in
boundary element methods. Thus, by using the Green’s functions of the spherical resonator
instead of the free space one, the problem was cast by the Method of Moments (MoM) into
a real matrix linear eigenvalue problem. Consequently, this technique avoids frequency-per-
frequency computations, resulting in a very efficient tool. The same approach had been used
some years before to obtain the modes of arbitrarily shaped metallic waveguides [64], which
was further enhanced in [65].

Making use of the Kurokawa’s representation of the field in a cavity resonator (see chap-
ter 2), it is possible to relate the pole expansion of the admittance parameters to the resonant
modes of the cavity obtained by closing the structure ports with conducting planes. Fol-
lowing this procedure, a very efficient algorithm was developed in [62, 66–68] to obtain the
pole expansion of the admittance matrix based on the BI-RME method and the use of very
simple expressions to represent the low-frequency behaviour of the Y-matrix. However, the
low-frequency approximation introduces a limitation in the algorithm, since the ports of the
structure have to be long enough to separate the waveguides connected to the discontinuities.
In subsequent years, new procedures were developed in order to overcome this drawback.
In [69–71], the generalized admittance matrix of 2D and 3D structures was obtained by us-
ing the BI-RME method to obtain the resonant modes and a different technique to find the
quasi-static approximation of the GAM. It is remarkable that the proper combination of the
generalized admittance matrices that characterize different building blocks in which a whole
circuit is subdivided can yield to a GAM in the form of a pole expansion that characterize
the whole structure [72].

It was in [73] where a unified algorithm based only in the BI-RME method was defini-
tively presented. In that work, the pole expansion of the GAM in the s-domain was directly
derived from the BI-RME method. Furthermore, since the meshing procedure is performed
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on the boundary (2-D), the unknowns of the problem when analysing a 3D structures are
reduced drastically compared to those needed by FD or FE procedures. This approach has
been applied to analyse different 3D passive microwave metallic structures demonstrating
to be very efficient [74, 75]. However, this method has been seldom applied to problems
including dielectric obstacles, such as the full-wave analysis of H-plane filters with dielec-
tric resonators [76]. Nowadays, in parallel to the work presented in this thesis, the research
group of the University of Pavia has been also developing a different formulation to analyse
rectangular waveguides loaded with dielectric resonators [77–79].

In this chapter we present the state-space integral-equation approach based on the BI-
RME method that we have developed to characterise a dielectric-loaded resonator cavity.
As it is shown in the first section, the dielectric resonator has been rigorously characterized
by means of the electric equivalent polarization charge and current densities defined in the
volume of the dielectric object. Starting from the ‘hybrid’ representation of the field in a
cavity resonator (presented in the previous chapter), we develop the SS-IE formulation in
the second section. Following this method, the resonant modes of the considered cavities
are obtained through the solution of a linear matrix eigenvalue problem in the third section.
And finally, in the last section, the pole expansion of the generalized admittance matrix of
the dielectric-loaded cavity is obtained in the domain of the Laplace variable.

3.2 Dielectric obstacle characterization by means of the equiv-
alent polarization currents

It is well-known that dielectrics are materials whose dominant charges in atoms and molecules
are bound negative and positive charges that are held in place by atoms and molecular forces,
and they are not free to travel. Thus, ideal dielectrics are macroscopically neutral. However
when external fields are applied, the centroides of these bound negative and positive charges
can shift slightly in positions relative to each other, thus inducing a net electric dipole mo-
ment. Basically, there are three mechanisms that may produce electric polarization: Orien-
tation polarization, which is produced in materials that are composed by polar molecules
that carry a permanent dipole moment (polar molecules) orientated randomly, in such a way
that the net dipole moment of the material in the absence of field is zero. When a field is
applied, it tends to line up the individual molecular dipoles producing a net moment per unit
volume. Electronic polarization is produced in materials whose molecules are nonpolar, so
there are no individual dipoles in the absence of field. In this case, when an electric field is
applied, a slight displacement of the centers of charge occurs, and a net dipole moment is
induced. Ionic polarization in materials that possess positive and negative ions, is due to the
displacement of these ions when an external field is applied, inducing a net moment. There is
also a class of dielectric materials that are usually referred to as ferroelectrics. They exhibit
a hysteresis loop of polarization (~P ) versus electric field ( ~E) that is similar to the hysteresis
loop of ~B versus ~H for ferromagnetic material, and it possesses a remanent polarization and
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coercive electric field.

Let consider a source-free region of space containing an inhomogeneity characterized by
relative permittivity, which may be a function of position εr = εr(~r). If we consider a linear
and isotropic medium and time-harmonic fields, the electromagnetic field in the vicinity of
the inhomogeneity must satisfy the Maxwell’s equations

∇× ~E = −jωµo ~H (3.1a)

∇× ~H = jωε0εr ~E (3.1b)

∇·(ε0εr ~E) = 0 (3.1c)

∇·(µo ~H) = 0 (3.1d)

In order to calculate the electromagnetic field in a perfect conducting cavity resonator
loaded with a dielectric body, one could try to solve directly the differential equations pre-
sented above or the corresponding integral equations. However, this task can be rather com-
plicated. For this reason, it is convenient to convert the original scattering problem into an
equivalent problem which may result a simpler one. One way of accomplishing this is to
replace the inhomogeneous dielectric material present in the problem by equivalent induced
polarization currents and charges, as we detail in the following paragraphs.

If an external electric field is applied to a linear and isotropic dielectric material, the
induced polarization vector ~P (electric dipole moment per unit volume) inside the dielectric
body is proportional to the total electric field applied [48]:

~P (~r) = ε0χe(~r) ~E(~r) = ε0(εr(~r)− 1) ~E(~r) (3.2)

where χe(~r) is the electric susceptibility, which may be a function of position.
Defining now, the displacement vector as:

~D(~r) ≡ ε0
~E(~r) + ~P (~r) (3.3)

and introducing the displacement vector in the Maxwell’s divergence equation (3.1c), we
have

∇· ~D = ε0∇· ~E +∇· ~P = 0 =⇒ ∇· ~E = −(1/ε0)∇· ~P (3.4)

Thus, the term −∇· ~P may be interpreted as defining an electric-polarization charge density
ρp:

ρp = −∇· ~P (3.5)
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On the other hand, by making use of the expression (3.2), the Maxwell’s curl equation
(3.1b), can be rewritten as follows:

∇× ~H = jωε0εr ~E = jωε0εr ~E + jωε0
~E − jωε0

~E

= jωε0
~E + jωε0(εr − 1) ~E = jωε0

~E + jω ~P (3.6)

As a consequence, the term ω ~P may be regarded as an equivalent polarization current den-
sity,

~Jp = jω ~P (3.7)

Furthermore, it can be easily verified that the equivalent polarization current and charge
densities satisfy the continuity equation ∇· ~Jp + jωρp = 0.

Next, by introducing (3.6) and (3.4) in the expressions (3.1), the Maxwell’s equations
can be rewritten:

∇× ~E = −jωµo ~H (3.8a)

∇× ~H = jωε0
~E + ~Jp (3.8b)

∇·(ε0
~E) = ρp (3.8c)

∇·(µo ~H) = 0 (3.8d)

where ~Jp and ρp are, respectively, the equivalent induced polarization currents and charges
defined in equations (3.5) and (3.7).

Equations (3.8) describe the same electromagnetic fields as equations (3.1), but involve a
homogeneous space characterized by permittivity ε0 and permeability µo in which the equiv-
alent charge and current densities radiate instead of the original heterogeneous environment.
We can think of these equivalent sources as replacing the dielectric material in the origi-
nal problem (3.1). Thus, we have defined a new and simpler problem which is completely
equivalent to the original one. This procedure of replacing the dielectric material by induced
sources is known as the volumetric equivalent principle [47].

Next, we should express the equivalent polarization charge ρp in terms of the polarization
vector ~P . Due to the fact that the normal component of the displacement vector at the inter-
face between the dielectric and the vacuum is a continuous function, it is firstly convenient
to write ~P in terms of the displacement vector ~D. By introducing equation (3.2) into (3.3),
we obtain:

~P (~r) =

(
1− 1

εr(~r)

)
~D(~r) (3.9)

Next, by making use of the equation (3.5), we can observe that the evaluation of ρp is
reduced to the calculation of the gradient of the function 1/εr(~r),

ρp(~r)= − ~D(~r) · ∇
(

1− 1

εr(~r)

)
−

(
1− 1

εr(~r)

)
∇· ~D(~r) = ~D(~r) · ∇ 1

εr(~r)
(3.10)
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where we have considered that free charges are not present in the dielectric body and there-
fore ∇ · ~D = 0.

Up to now, we have considered the general case in which the dielectric resonator may be
an heterogeneous material. Nevertheless, in most of the practical cases, it is assumed that
the dielectric resonator material is homogeneous and non dispersive in the electromagnetic
power range in which they are operative. In that case, by denoting as εr1 the relative dielectric
permittivity of the dielectric obstacle placed inside the cavity resonator, we may express the
relative dielectric permittivity εr(~r) of the whole problem as a discontinuous function of the
position vector:

εr(~r) =

{
εr1 , ~r ∈ V1

1 , ~r /∈ V1
(3.11)

where V1 is the volume of the dielectric inset immersed in the cavity resonator, S1 is its
surface (the interface between the vacuum and the dielectric material), and n̂1 is the unitary
outward normal vector to S1.

To calculate ∇ε−1
r , we may rewrite equation (3.11) in a general orthogonal coordinate

system as:

εr(~r) = εr(n1) = εr1 + (1− εr1)H(n1 − n1d
) (3.12)

where n1 denotes the normal outward coordinate employed to define the boundary of the
dielectric object and H(n1 − n1d

) is the unit Heaviside function or step function, defined as:

H(x) =

{
0 , x < 0
1 , x ≥ 0

Note that with this notation, n1 = n1d
sets the interface between vacuum and the dielectric

(surface S1), so the explicit form of the Heaviside function is:

H(n1 − n1d
) =

{
0 , ~r ∈ V1

1 , ~r /∈ V1
(3.13)

Hence, we can also write:

ε−1
r (~r) = ε−1

r (n1) = ε−1
r1

+ (1− ε−1
r1

)H(n1 − n1d
) (3.14)

The expression of the gradient operator in the general coordinate system is:

∇εr(~r) =
3∑

i=1

x̂i
hi

∂εr
∂xi

=
n̂1

hn1

∂εr(n1)

∂n1

(3.15)

where hi is the metrical coefficient.
Now, we apply the operator to expression (3.14), obtaining

∇ 1

εr(~r)
=

(
1− 1

εr1

)
δ(n1 − n1d

)
n̂1

hn1

(3.16)
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where δ is the Dirac delta function. Finally, if we introduce this last expression into (3.10),
we have

ρp(~r) = ( ~D · n̂1)
1

hn1

(
1− 1

εr1

)
δ(n1 − n1d

) = (~P · n̂1)
1

hn1

δ(n1 − n1d
) (3.17)

This equation implies that the volumetric equivalent electric charge density is actually dis-
tributed on the surface of the dielectric body S1: it is a surface equivalent polarization charge
density rather than a volumetric one, as follows:

ρp(~r) =

{
1
hn1

Pn1 , ~r ∈ S1

0 , ~r /∈ S1

Note that Pn1 is the normal component of the polarization vector ~P to the surface S1.

In conclusion, the volumetric equivalence principle allows us to rigorously replace the
isotropic, linear and homogeneous dielectric material by:

• Surface equivalent polarization charge density distributed on the interface between the
dielectric and vacuum: ρp

• Volume equivalent polarization current density defined in the volume of the dielectric
body: ~Jp

As a consequence, the solution of the original scattering problem is equivalent to finding
the electromagnetic fields generated by these polarization sources radiating in vacuum. For
such purpose, expressions (3.7) and (3.17), which give the equivalent polarization charge ρp
and current ~Jp densities as functions of the polarization vector ~P , will be useful in the next
section to solve the integral equations corresponding to the new equivalent problem.

3.3 State-Space Integral-Equation Approach

The building block under study is a linear, homogeneous, non-dispersive and isotropic di-
electric inset arbitrarily placed inside a resonator cavity with perfect conductive walls. The
volume of the dielectric inset is denoted by V1 and its surface by S1, whereas the volume of
the cavity resonator is V and its surface S, which partially coincides with the surfaces of the
access ports Sν . In Fig. 3.1, a diagram of the building block is plotted. Note that, for the
sake of simplicity, a rectangular cavity with two access ports has been drawn. Nevertheless,
the cavity resonator may have a shape different from the rectangular one, and the number of
access ports may be unlimited.

The electromagnetic behaviour of this circuit building block can be characterized by
means of its generalized admittance matrix, which relates the modal voltages vn and the
modal currents in defined at each access port of the cavity resonator. If we consider a number
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of accessible modes Nν at each access port(ν), then the total number of accessible modes is
N =

∑
ν Nν , and the GAM will be the following N×N matrix:

Ym,n =
im
vn

; with vl = 0 ∀l 6= n (3.18)

In order to simplify the notation of the problem we will consider the modal vectors to be
defined in the whole surface of the resonator cavity S, being zero outside the surface of its
correspondent waveguide port Sν . Thus, if we order the different modal vectors from each
access port, we can denote:

~en(~r) ≡ ~e
(ν)
i (~r) δ(ν)(~r) (3.19)

(3.20)

where n = 1, · · · , N and i = 1, · · · , Nν . The delta function is defined as:

δ(ν)(~r) ≡
{

1 ∀~r ∈ Sν
0 ∀~r /∈ Sν

(3.21)

The same relationship holds for the magnetic modal vectors ~hn. The electric and mag-
netic modal vectors ~e(ν)n and ~h(ν)

n defined at the access waveguides are normalized, therefore
we can write:

∫

sν

~em · ~en ds =
∫

sν

~hm · ~hn ds = δmn (3.22)

where δ is the Kronecker delta function. Hence, the following relationship holds:

~hn = n̂× ~en (3.23)

where n̂ is the inward normal to S.

With these definitions, the tangential electric field over the boundary of the cavity can be
expressed in terms of the normalized waveguide electric modal vectors,

~Etang =
∑
ν

Nν∑

n=1

vn~e
(ν)
n =

N∑

n=1

vn~en, (3.24)

and the tangential magnetic field over the boundary of the cavity as,

~Htang =
∑
ν

Nν∑

n=1

in~h
(ν)
n =

N∑

n=1

in~hn, (3.25)

Thus, the modal current in defined at each port is related to the tangential magnetic field
~Htang as follows

in =
∫

S

~hn · ~Htang ds, (3.26)
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Figure 3.1: The basic building block under study: a dielectric resonator arbitrarily placed
inside a cavity resonator connected to access ports.

In order to determine the generalized admittance matrix of the structure under analysis,
the functional relationship between the tangential magnetic ( ~HT ) and electric ( ~ET ) fields
over the cavity access ports must be found.

Taking us starting point the ‘hybrid’ representation of the field (2.88), we can express
the electromagnetic field in a finite region generated by inner volumetric electric sources and
magnetic current sheets 4 on the boundary in terms of the electric scalar and vector potentials
(in the Coulomb gauge):

~E(~r) =
η

s
∇

∫

V
ge(~r, ~r ′)∇′ · ~J(~r ′) dv′ +

1

2
n̂× ~M(~r)

− sη
∫

V
GA
o(~r, ~r

′) · ~J(~r ′) dv′ −
∫

S
∇×GF

o (~r, ~r
′) · ~M(~r ′) ds′

+ s3η
M∑

m=1

∫
V
~Em · ~J dv

k2
m(s2 + k2

m)
~Em(~r) + s2

M∑

m=1

∫
S
~Hm · ~M ds

km(s2 + k2
m)

~Em(~r) (3.27a)

~H(~r) =
1

sη
∇

∫

S
gm(~r, ~r ′)∇′

s · ~M(~r ′) ds′

− s

η

∫

S
GF
o (~r, ~r

′) · ~M(~r ′) ds′ +
∫

V
∇×GA

o(~r, ~r
′) · ~J(~r ′)

+
s3

η

M∑

m=1

∫
S
~Hm · ~M ds

k2
m(s2 + k2

m)
~Hm(~r)− s2

M∑

m=1

∫
V
~Em · ~J dv

km(s2 + k2
m)

~Hm(~r) (3.27b)

4In the expressions (2.88), we have considered volumetric source currents distributed in the cavity. Nev-
ertheless, wether current sheets are considered, it is important to study the last term in the right hand side of
equations (2.86) and (2.87). The singularity of∇×GA or∇×GF is of the orderR−2 which is integrable when
we perform a volumetric integration, but it is not when the integration is performed over a surface. The proper
treatment of the singularity yields to the new term (1/2)n̂× ~M(~r) in the case of magnetic currents [73].
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where ∇s is the surface divergence operator.

We recall, from sections 2.4 and 2.6, that in these expressions ge, gm are electric and
magnetic static scalar potential Green’s functions, and GA

o , GF
o are, respectively, the static

dyadic Green’s functions for the electric and magnetic vector potentials of the resonant ca-
vity5. Whereas km, ~Em and ~Hm are, respectively, the resonant wavenumber, the normalized
electric and magnetic modal vector functions of the m-th mode of the resonator cavity. As it
was discussed in the previous chapter, the resonant mode expansions converges very quickly,
and can be truncated by retaining the resonant modes that satisfy km ≤ ξ kmax, where kmax
is the wavenumber correspondent to the highest frequency in the band of interest, and ξ is an
accuracy factor.

In the present formulation, the magnetic sources represent impressed current sheets de-
fined in the waveguide cross-section of the access ports connected to the cavity [85],

~M(~r) = −n̂× ~Etang(~r) = −n̂×
N∑

n=1

vn~en(~r) = −
N∑

n=1

vn~hn(~r) (3.28)

With regard to the electric sources, as it has been discussed in the previous section, we may
replace the homogeneous dielectric inset with dielectric permittivity εr1 by its equivalent
polarization charge ρp and current ~Jp densities radiating inside the resonator cavity. Thus,
we introduce equations (3.7), (3.17) and (3.28) into (3.27), and taking into account that

−
∫

V
ge(~r, ~r ′)∇′ · ~Jp(~r ′) = jω

∫

V
ge(~r, ~r ′)ρp(~r ′)

=
∫

V
ge(~r, ~r ′)~P (~r ′) · n̂1δ(n1 − n1d

) dv =
∫

S1

ge(~r, ~r ′)~P (~r ′) · n̂1 ds
′

5We could have used the free space Green’s functions instead of these ones, which have simpler expressions
than those for a rectangular or a spherical resonator. Nevertheless, it would yield to a non-linear matrix eigen-
value problem that should be solved over and over again at each frequency point. In addition, since we use the
Green’s function of the resonator cavity, the boundary conditions in the metal walls of the cavity are directly
fulfilled.
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we obtain:

~E(~r) = − 1

ε0

∇
∫

S1

ge(~r, ~r ′)~P (~r ′) · n̂1 ds
′ − s2

ε0

∫

V
GA
o(~r, ~r

′) · ~P (~r ′) dv′

+
N∑

n=1

vn

∫

S
∇×GF

o (~r, ~r
′) · ~hn(~r ′) ds′ + s2

M∑

m=1

am ~Em(~r)

+
1

2

N∑

n=1

vn~en(~r) (3.29a)

~H(~r) = − 1

sη

N∑

n=1

vn∇
∫

S
gm(~r, ~r ′)∇′

s ·~hn(~r ′) ds′

+
s

η

N∑

n=1

vn

∫

S
GF
o (~r, ~r

′) · ~hn(~r ′) ds′ + c s
∫

V
∇×GA

o(~r, ~r
′) · ~P (~r ′)

− s

η

M∑

m=1

kmam ~Hm(~r)− s

η

N∑

n=1

vn
M∑

m=1

∫
S
~Hm · ~hn ds
k2
m

~Hm(~r) (3.29b)

where the modal amplitudes am have been defined as:

am ≡ 1

k2
m(s2 + k2

m)

(
sη

∫

V1

~Em(~r)· ~J(~r)dv − km
N∑

n=1

vn

∫

S

~Hm(~r)·~hn(~r) ds
)

(3.30)

Next, by imposing (3.2) in the dielectric volume V1 using (3.29a), and expressing the
tangential magnetic field on the boundary of the resonator cavity in terms of the total set of
sources using (3.29b), we obtain the following integral equations:

~P (~r) =− χe1

[
∇

∫

S1

ge(~r, ~r ′)~P (~r ′) · n̂1 ds
′ + s2

∫

V1

GA
o(~r, ~r

′)· ~P (~r ′) dv′

− ε0

( N∑

n=1

vn

∫

S
∇×GF

o (~r, ~r
′) · ~hn(~r ′) ds′ + s2

M∑

m=1

am ~Em(~r)
)]

; ~r∈V1

(3.31a)

~HT (~r) =− 1

sη

N∑

n=1

vn∇s

∫

S
gm(~r, ~r ′)∇′

s ·~hn(~r ′) ds′

+
(
s

η

N∑

n=1

vn

∫

S
GF
o (~r, ~r

′)·~hn(~r ′) ds′ + s c
∫

V1

∇×GA
o(~r, ~r

′)· ~P (~r ′) dv′

− s

η

N∑

n=1

vn
M∑

m=1

∫
S
~Hm · ~hn ds
k2
m

~Hm(~r)− s

η

M∑

m=1

kmam ~Hm(~r)
)

T
; ~r∈S

(3.31b)

where the subindex T indicates tangential. We notice that in expressions (3.31) we can
observe the characteristic structure of the BI-RME solutions: frequency-independent kernels
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made up of boundary integrals (BI) and resonant mode expansions (RME). However, in our
case we do not have boundary, but volume integrals.

In order to obtain a numerical solution for the previous set of integral equations (3.31),
we apply the well-known Method of Moments (MoM) [46]. Thus, the unknown polarization
density is approximated as follows,

~P (~r) ≈ ε0χe1

Q∑

q=1

bq ~wq(~r); ~r ∈ V1 (3.32)

where bq are unknown coefficients, {~wq} are a set of basis functions defined in V1 and Q
is the number of basis functions used in the expansion [62]. These basis functions have to
satisfy the following properties:

1. {~wq} are continuous in V1.

2. Since the divergence of ~P is zero for the points within the dielectric inset (section 3.2),
then {~wq} are solenoidal functions:

∇· ~wq(~r) = 0; ~r∈V1 (3.33)

The next step in the formulation is to solve the electric field integral equation (EFIE) by
means of the MoM using the Galerkin’s method. For this purpose, we substitute (3.32) in
(3.31a), and using as testing functions the set of basis functions { ~wp}, we can write:

Q∑

q=1

bq

∫

V1

~wp(~r)· ~wq(~r) dv =− χe1

Q∑

q=1

bq

∫

S1

∫

S1

(~wp(~r)·n̂1)g
e(~r, ~r ′)(~wq(~r ′)·n̂1) ds

′ds

− χe1s
2
Q∑

q=1

bq

∫

V1

∫

V1

~wp(~r)·GA
o(~r, ~r

′)· ~wq(~r ′) dv′dv

+
N∑

n=1

vn

∫

V1

∫

S
~wp(~r)·∇×GF

o (~r, ~r
′)·~hn(~r ′) ds′dv

+ s2
M∑

m=1

am

∫

V1

~wp(~r) · ~Em(~r) dv (3.34)

where p = 1, 2, ..., Q. Note that in order to obtain the first term in the right hand side of
equation (3.34), we may define a regular function

ϑ(~r) ≡
∫

S1

ge(~r, ~r ′)(~wq(~r ′)·n̂1) ds
′

and since ~wq is solenoidal, then using the divergence theorem we have
∫

V1

~wp(~r)·∇ϑ(~r) dv =

=
∫

S1

(~wp(~r)·n̂1)ϑ(~r) ds =
∫

S1

∫

S1

(~wp(~r)·n̂1)g
e(~r, ~r ′)(~wq(~r ′)·n̂1) ds

′ds
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Expression (3.34) involves Q+M unknown coefficients bq and am, whereas it implies only
Q equations. Thus, to find the final system of equations that will provide us the solution of
the problem, we need M more equations that we obtain by substituting (3.32) in (3.30),

(k4
m + s2k2

m)am = s2χe1

Q∑

q=1

bq

∫

V1

~Em · ~wqdv − km
N∑

n=1

vn

∫

S

~Hm ·~hn ds (3.35)

where m = 1, 2, ...,M are the number of resonant modes used in the expansion of the
Green’s function.

Finally, making use of expressions (3.34) and (3.35) we can transform the integral equa-
tions into a system of coupled linear algebraic equations:

K4a + s2 K2 a− s2χe1 S b = −K F v (3.36a)

(D + χe1C) b− s2STa + s2χe1L b = W v (3.36b)

where a and b are, respectively, vectors with the modal amplitudes am and the bq coeffi-
cients, v is the vector of the impressed modal voltages at the waveguide access ports, and the
involved matrices are defined in Table 3.1. Now, defining the following matrices:

x ≡
[

a
b

]
; U ≡

[
−KF
χe1W

]
;

A ≡
[

K4 0
0 χe1 [D + χe1C]

]
; B ≡

[
K2 − χe1S

−χe1ST χ2
e1

L

]
(3.37)

we can re-write the system of equations defined by (3.36) in a compact form:

(A + s2B)x = U v (3.38)

On the other hand, in order to calculate the generalized admittance matrix, we need to obtain
a functional relationship between ~HT and ~ET . For this purpose, we apply the continuity of
the tangential magnetic field in the apertures of the cavity by imposing (3.25) in (3.31b), and
then we introduce (3.32). Finally, we apply the MoM using as testing function the modal
vectors {~hl}. Thus, we have

il =
1

sη

N∑

n=1

vn

∫

S

∫

S
(∇s ·~hl(~r))gm(~r, ~r ′)(∇′

s ·~hn(~r ′)) ds′

+
s

η

( N∑

n=1

vn

∫

S

∫

S

~hl(~r)·GF
o (~r, ~r

′)·~hn(~r ′) ds′

+ χe1

Q∑

q=1

bq

∫

S

∫

V1

~hl(~r)·∇×GA
o(~r, ~r

′)· ~wq(~r ′) dv′

−
N∑

n=1

vn
M∑

m=1

∫
S
~hl(~r)· ~Hm(~r) ds

∫
S
~Hm(~r ′)·~hn(~r ′) ds′

k2
m

−
M∑

m=1

kmam

∫

S

~hl(~r)· ~Hm(~r) ds
)

(3.39)
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where l = 1, 2, ..., N . Note that in order to obtain the first term in the r.h.s. of equation
(3.39), we have made use of the relation

~hl(~r) · ∇sg
m(~r, ~r ′) = ∇s ·(gm(~r, ~r ′)~hl(~r))− gm(~r, ~r ′)∇s ·~hl(~r)

Since the vector gm(~r, ~r ′)~hl(~r) is tangential to S, and S is a closed surface, using the diver-
gence theorem on a surface [85], we have

∫

S

∫

S
∇s ·(gm(~r, ~r ′)~hl(~r)) ds′ ds′ = 0

and then
∫

S

∫

S

~hl(~r) · ∇sg
m(~r, ~r ′) ds′ ds′ = −

∫

S

∫

S
(∇s ·~hl(~r)) · gm(~r, ~r ′) ds′ ds′

By making use of the matrices defined in expressions(3.37) and in Table 3.1, we can represent
the integral equations (3.39) in matrix form:

i =
1

sη
G v +

s

η
UT x +

s

η
(T− FTK−2F)v (3.40)

Finally, we obtain the generalized admittance matrix (i = Y v) by introducing equation (3.38)
in (3.40):

Y =
1

sη
G +

s

η

(
T− FTK−2F

)
+
s

η
UT (A + s2B)−1U (3.41)

3.4 Resonant modes of the dielectric-loaded cavity
To calculate the generalized admittance matrix by means of expression (3.41), it is needed
to invert the matrix (A + s2B). This matrix is singular when k is the eigenvalue of the
homogeneous eigenvalue problem

(A − k2B)x = 0 (3.42)

It can be observed that, if the impressed voltage is zero (v = 0), then the equation (3.38)
is casted into the homogeneous eigenvalue problem in (3.42). Thus, the expression (3.42)
represents the problem of obtaining the resonant modes of the dielectric loaded cavity when
the access ports to the cavity are closed by perfect electric wall. The eigenvalues give the
resonant frequency of the structure under study, whereas the eigenvectors are directly related
to the modal vectors existing in the resonant structure. Furthermore, the matrices A and B
are positive definte6, and thus the solution of the eigenvalue problem yields to (Q+M) real

6In [63] it is demonstrated that the matrices A and B are positive definte. In that work, the name of the two
matrices are interchanged.
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Table 3.1: Definition of the Matrices Used in the Method of Moments

K = diag{kn}; Sij =
∫
V1
~Ei(~r) · ~wj(~r) dv

Dij =
∫
V1
~wi(~r) · ~wj(~r) dv; Fij =

∫
S
~Hi(~r) · ~hj(~r) ds

Cij =
∫
S1

∫
S1

(~wi(~r) · n̂) ge(~r, ~r ′) (~wj(~r
′) · n̂ ′) ds ds ′

Lij =
∫
V1

∫
V1
~wi(~r) ·GA

0 (~r, ~r ′) · ~wj(~r ′) dv dv ′

Wij =
∫
V1

∫
S ~wi(~r) · ∇ ×GF

0 (~r, ~r ′) · ~hj(~r ′) dv ds ′

Tij =
∫
S

∫
S
~hi(~r) ·GF

0 (~r, ~r ′) · ~hj(~r ′) ds ds ′

Gij =
∫
S

∫
S

(
∇s · ~hi(~r)

)
gm(~r, ~r ′)

(
∇ ′
s · ~hj(~r ′)

)
ds ds ′

S ∈ <M×Q; D, C, L ∈ <Q×Q;

T, G ∈ <N×N ; W ∈ <Q×N ; F ∈ <M×N

and positive eigenvalues k2
i and (Q+M) real eigenvectors x(i) (the normalization condition

x(i)
T Bx(i) = 1 is assumed), where the index i denotes the i-th resonant mode of the structure.

We recall that:

x(i) ≡
[

a(i)

b(i)

]

Hence, by introducing the solution of this eigenvalue problem into (3.29) and making use of
(3.32), we can obtain the field distribution of the i-th resonant mode of the dielectric loaded
cavity resonator as:

~E(i)(~r) = χe1

Q∑
q

b(i)q
(
~Fq(~r) + k2

i
~Aq(~r)

)
− k2

i

M∑

m=1

a(i)
m
~Em(~r) (3.43a)

~H(i)(~r) =
1

η


χe1ki

Q∑
q

b(i)q ~Bq(~r)− ki
M∑

m=1

a(i)
m
~Hm(~r)


 (3.43b)

where the following definitions have been used:

~Fq(~r) ≡ −∇
∫

S1

ge(~r, ~r ′)~wq(~r ′) · n̂1 ds
′

~Aq(~r) ≡
∫

V1

GA
o(~r, ~r

′) · ~wq(~r ′) dv′

~Bq(~r) ≡
∫

V1

∇×GA
o(~r, ~r

′) · ~wq(~r ′) dv′
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3.5 Generalized admittance matrix in the form of pole ex-
pansions

So far, we have obtained a representation of the generalized admittance matrix (see eq.
(3.41)) that is not expressed as a pole expansion in the s-plane. In fact, that expression
involves the inverted matrix (A + s2B)−1 which is frequency dependent.

In [60] it is presented a procedure that allow to generate reduced-order models in the
s-domain from the integral form of Maxwell’s equations, combining the Adaptive Lanzcos-
Padè sweep (APLS), which is an improved form of the Padè via Lanzcos (PVL) algorithm,
with the boundary element method. By using the mixed-potential integral equation, ap-
proximating the unknown current with Rao-Wilton-Glisson basis functions and applying the
Galerkin’s method, the authors obtain the following generalized matrix eigenvalue problem:

[K + s2M]J = sE (3.45)

where k and M are matrices that depend on the frequency through the Green’s functions, J
is the unknown current and E is the incident field. Thus, assuming that the matrices do not
depend on the frequency and making a change of variables b = sE and u = s2, they rewrite
the expression as:

[K + uM]J = b (3.46)

In this way, they suggest to apply the ALPS procedure to find a piecewise rational-function
approximation to the frequency response over the band of interest.

In our case, we have obtained a similar expression (see eq.(3.38)), which is even better,
since matrices A and B are frequency independent. Therefore, we could apply at this point
the ALPS algorithm in order to obtain a reduced order model of our structure, and thus a
representation of the GAM in the form of pole expansion in the s-domain. Nevertheless we
will follow a different and simpler procedure described in [73] to obtain it.

As we have seen in the previous section, the matrices A and B in the eigenvalue problem
defined by (3.42) are positive definite. It is well known [105] that the matrix of eigenvectors
X = (x(1), x(2), ..., x(Q+M)), permits the diagonalization of A and B:

XTAX = Λ = diag{k2
1, k

2
2, ..., k

2
Q+M}, XTBX = I

where I is the identity matrix. Using this expressions we can verify that:

(A + s2B)−1 = X(Λ + s2I)−1XT =
Q+M∑

i=1

x(i)x(i)
T

k2
i + s2

(3.47)

By substituting this expression in the equation (3.41), we obtain the pole expansion of the
generalized admittance matrix in the s-domain. At this point, we could also use different
techniques [60] to obtain a reduced order model, i.e., to obtain the expression of the GAM
with a reduced number of poles. However, we will follow an approach analogous to the
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approximations used in chapter 2 to find the mode expansion of the dyadic Green’s func-
tions. This is, we extract the static contribution of the inverted matrix in ‘closed’ form and
then we find the frequency-dependent part as a pole expansion in the s-domain. The static
contribution is

(A + s2B)−1|s=0 = A−1 =
Q+M∑

i=1

x(i)x(i)
T

k2
i

(3.48)

Thus, we can write:

(A + s2B)−1 = A−1 − s2
Q+M∑

i=1

x(i)x(i)
T

k2
i (k

2
i + s2)

≈ A−1 − s2
P∑

i=1

x(i)x(i)
T

k2
i (k

2
i + s2)

(3.49)

It can be observed that after this extraction, the magnitude of the terms in the summation
is reduced by the factor s2/k2

i . This fact allows to introduce the last approximation which
consists in retaining the first P terms with ki 6 ξkmax, as in the case of the dyadic Green’s
function (ξ is an accuracy factor, usually ξ = 2, 3). On the other hand, it is noted that the
calculation of A−1 does note require any extra computational effort, since it is computed
when solving the eigenvalue problem defined by (3.42).

Finally, introducing (3.49) in (3.41), we obtain the GAM in pole expansion form:

Y =
1

sη
YA +

s

η
YB − s3

η

∑

i

y(i)y(i)
T

s2 + k2
i

(3.50)

where

YA = G, YB = T− FTK−2F + UTA−1U, y(i) =
UTx(i)

ki
(3.51)

It is also remarkable that this expression fulfills all the requirements for the physical realiz-
ability of the admittance matrix of a lossless and reciprocal circuit:

• it is symmetrical,

• it is imaginary,

• it is an odd function of the frequency,

• the non-zero poles in the k-plane are present in real opposite pairs and have real
residues,

• in self admittances, the residues of all poles are positive.
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Chapter 4

Application of the State-Space
Integral-Equation Formulation to the
analysis of a rectangular cavity loaded
with a dielectric cylinder

4.1 Introduction

In the previous chapters we have presented a new integral-equation formulation in the s-
domain to efficiently analyse the electromagnetic behaviour of perfect metallic cavities loaded
with dielectric resonators. The linear, homogeneous and isotropic dielectric body is rigor-
ously characterized by means of the electric equivalent polarization charge and current den-
sities defined in the volume of the dielectric object. We express the electromagnetic field
using the Green’s functions of a cavity resonator instead of using the free-space ones as
it is usually done in standard boundary integral methods. This way, by using the Green’s
functions for the scalar and vector potentials in the Coulomb’s gauge, we obtain an hybrid
representation of the field in terms of Green’s integrals and rapidly converging modal series.
Like in the boundary integral-resonant mode expansion method, taking as starting point this
hybrid representation of the field and using the method of moments, we can obtain the modal
chart and the field distribution of the cavity resonator by solving a real matrix linear eigen-
value problem. Moreover, the generalized admittance matrix of the structure is obtained in
the form of pole expansions in the s-domain.

In this chapter, we will focus our attention on one of the main objectives of this PhD
thesis: the application of this approach to characterize the electromagnetic response of a
rectangular cavity loaded with a cylindrical dielectric body (see Fig. 4.1). In this case, we
will use the Green’s functions of a rectangular cavity. Note that in the formulation presented
so far, we have always assumed that the cavity resonator used to calculate the Green’s func-
tions has the same geometry than the real metallic enclosure under analysis. This way, the
boundary conditions over the metallic cavities are directly imposed by the Green’s functions
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and there is no need to mesh the metallic shell. If we had used the Green’s functions of a
cavity resonator different from those of the structure under analysis, we should have taken
into account the additional unknown current flowing through the walls of the real metallic
cavity (see [62, 63, 73]). This would be the case, for instance, if we would like to analyse
rectangular cavities with rounded corners loaded with dielectric resonators. However, this
is beyond the scope of this PhD thesis, so we will focus our attention in the analysis of
dielectric-loaded rectangular cavities.

Figure 4.1: The basic building block under study: a cylindrical dielectric resonator arbitrar-
ily placed inside a rectangular cavity connected to two rectangular waveguides.

In the second section of this chapter we describe the basis functions used to approximate
the polarization vector that characterize the dielectric object inside the cavity. Throughout
this chapter we show how crucial is the selection of an appropriate set of basis functions,
not only for the good convergence of the method proposed, but also to transform some of
the integrals involved in the problem. The numerical efficiency of the proposed method
depends critically on the computation of the matrices collected in Table 3.1, and specially of
those matrices involving the Green’s functions. In the third section we explain how we have
calculated the entries of these matrices.

The elements of the S and D matrices can be expressed in closed form, and can be easily
reduced to 1- or 2-dimension integrals (some of them even have analytical solutions).

As it was presented in the work of San Blas [75], analytical solutions can be found to
calculate the F, T and G matrix elements. For this purpose, the access ports of the dielectric
loaded resonator are assumed to be rectangular waveguides with dimensions equal to those
of the corresponding cavity side. Furthermore, following a similar procedure to the used in
that work, the W matrix elements can be efficiently computed once the integrals involved are
reduced to 3-dimension integrals.

In the evaluation of the C and L matrix entries, a singular behavior arises when the
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source and the observation points coalesce (~r = ~r ′), and therefore their computation must
be treated carefully. In order to overcome this inconvenience, the inherent singularity of
the involved Green’s functions has been analytically extracted (see section 2.6). Thus, the
integrals present in both matrices have been split into two parts: the first one involving the
singularity of the Green’s function, and the other one including the regular terms of the
Green’s functions [73, 74]. To evaluate the regular integrals, the scalar and dyadic Green’s
functions have been efficiently computed by means of the Ewald’s technique, as described
in [101].

In order to compute the singular part of the C matrix elements, all the surface-surface
integrals have been reduced to three-dimension integrals. For the singular integrals related
with the top and bottom bases of the dielectric cylinder, the formula 1/R = −∇s · ∇sR
allows to transform them into regular ones [106]. However, such formula can not be applied
to the double surface integrals evaluated on the lateral surface of the cylinder. Nevertheless,
an analytical and efficient extraction of the singularity has been made in such a case, allowing
to transform the singular integrals into regular ones.

Finally, special attention must be paid to the calculation of the L matrix elements. In this
case, it is crucial not only to transform the singularities of the integrals to regular expres-
sions, but also to reformulate the volume-volume integrals to surface-surface ones. Thus,
we only need to perform a 2-D mesh over the surface of the dielectric resonator, instead
of performing a 3-D mesh in its volume. These transformations are specially important for
the evaluation of the regular part of the L matrix, since they allow to drastically reduce the
required computational effort.

4.2 Basis functions

In section 3.3 we have cast the integral equation (3.31a) into a linear matrix eigenvalue
problem by means of the Method of Moments. For this purpose, we have used equation
(3.32) to express the polarization vector that characterize the dielectric body in terms of a
set of basis functions. We recall that these basis functions are defined inside the dielectric
resonator (within V1), where they are continuous and solenoidal. As it has been mentioned
before, the selection of a suitable set of basis functions is a key issue in order to implement
an efficient algorithm, since the convergence of the method depends critically on it.

Rigorous analysis of dielectric resonators (DR) is a complex task. The mathematical
description of the electromagnetic field in such a structure is much more complicated than
the field description in a hollow waveguide, since the number of operations and unknowns
involved in the problem is much larger. Due to this fact, the application of mathematical
models that approach the solution of the electromagnetic field in the DR in a simple way
is of great practical interest for design purposes. These kind of simple models lack of the
needed accuracy for modern circuit design, but they can give us a helping hand to better
understand the DR electromagnetic behaviour and, thus, to choose a proper set of basis



54 Application to rectangular cavities loaded with a dielectric puck

functions to express the polarization vector that characterise the dielectric object.

It is well known that an approximate solution for a dielectric resonator with high relative
permittivity can be found by assuming that all the surfaces of the DR are perfect magnetic
conductors [19]. Such a ”first-order” model is shown in Fig. 4.2(a) where a cylindrical DR
with diameter d and height h is depicted. It simply consists of a cylindrical cavity resonator
with perfect magnetic walls. Using known procedures for the analysis of cavity resonators,
it is easy to compute the resonant frequencies of this model. Unfortunately, this first-order
model yields to high errors (10-20%) when comparing the resonant frequencies computed
with measurements. This fact evidences the needed of more complex models that provide
more accurate results.

(a) First-order model (b) Second-order model: Modified Cohn model

Figure 4.2: Simple models to analyse DR

An improved model was presented in 1968 by Seymour B. Cohn [14]. This approach is
based on a second-order model described by Okaya and Barash [9] for the computation of
resonant frequencies of TE and TM modes in rectangular dielectric resonators, which was
later applied to cylindrical shapes [10, 11]. In this model, the cylindrical perfect magnetic
conductor shell is retained, but the PMW at the top and bottom of the DR are replaced by
air-filled waveguides. These two hollow waveguides operate below cutoff because they are
filled with a low dielectric constant. Thus, the modes in these hollow waveguides are evanes-
cent and decay exponentially in the direction away from each end of the DR. The equivalent
circuit is a propagating transmission line of length h terminated at each end by reactances
equal to the pure-imaginary characteristic impedance of the cutoff air-filled waveguide. Us-
ing this second-order model, Cohn obtained not only the resonant frequencies of the DR,
but also solutions for the coupling between adjacent dielectric resonators operating at the
fundamental mode.

The Cohn model is appropriate to characterise an isolated DR, however we are interested
in analysing a DR enclosed within a rectangular metal shield. For this purpose, the modified
Cohn model can be used. It consists of placing the parallel plate metal enclosure as shown in
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Fig.4.2(b). In this case, the waveguides at the top and bottom of the DR may have different
dielectric constants. Both the TE01δ andHE11 modes of a DR can be solved by means of this
technique. Further improvements can be obtained by using a perturbational correction of this
model as reported in [19], or making use of variational techniques [25] to better approximate
the TEo

01δ mode. Another simple model was described in the 70’s by Itoh and Rudokas [24],
who instead of using the PMW waveguide, considered a dielectric rod waveguide.

Figure 4.3: Diagram of the basis functions used in the polarization vector expansion: The
solenoidal eigenvectors of the cylindrical cavity (with diameter d and height h) containing
the DR are used both with perfect electric walls (PEW) and perfect magnetic walls (PMW).

In our case, the basis functions needed by the Method of Moments are defined inside the
dielectric resonator. As it has been mentioned in section 3.2, due to the fact that the dielectric
material under analysis is linear, isotropic and homogeneous, the induced polarization is a
solenoidal function for the points within the volume V1. Furthermore, from the simple mod-
els considered above, we know that a first-order solution for a dielectric resonator with high
relative permittivity can be found by considering it as a cavity enclosed by perfect magnetic
walls. As a consequence, a good initial approach consists on expanding the polarization
vector unknown in terms of the set of solenoidal magnetic eigenvectors of the cylindrical
cavity containing the DR. However, this is a first-order approach that yields to inaccurate re-
sults [19]. In fact, it can be easily observed that, since the solenoidal magnetic eigenvectors
have no normal component on the cylinder surface (S1), the induced surface charge density
described by equation (3.17) can not be expressed in terms of this set of basis functions. For
this reason, the solenoidal electric eigenvectors (obtained as the solution of the equivalent
cylindrical cavity with perfect electric walls) must also be included in the complete set of
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solenoidal basis functions.

Therefore, the set of basis functions used in the present formulation can be split into
two different subsets: the solenoidal electric eigenvectors of the cylindrical cavity, solution
of the perfect electric wall cavity, and the solenoidal magnetic ones, solution of the perfect
magnetic wall cavity [62] (see Table 4.1). In Figs. 4.4 and 4.5 some examples of basis
functions are shown, for the case in which the dielectric puck has a ratio d/h = 2.9.

The basis functions are defined in the cylindrical coordinated system (ûρ, ûϕ, ûz) located
in the center of the bottom cap of the cylindrical cavity. Each subset of basis functions are
made up of TEz and TM z modes. We note that these are full-domain basis functions and
they satisfy the following equations:

∇· ~wq = 0 , ∇×∇× ~wq = −∇2 ~wq = k2
q ~wq, inV1 (4.1)

where kq is the resonant wavenumber related to the q-th basis function ~wq. The properties
expressed in equation (4.1) are crucial, as it will be shown in the next section, for the ana-
lytical transformation of the integrals involved in the calculation of the matrices defined in
Table 3.1, specially for the case of the L matrix.

The basis functions are normalized:
∫

V1

~wi · ~wj dv = δi j (4.2)

where both basis functions, ~wi and ~wj , are solution of the cylindrical cavity with perfect
electric walls (PEW) or both are solution of the cylindrical cavity with perfect magnetic
walls (PMW).

Finally, it is remarkable that we may follow different criteria to sort the basis functions
(from lower to higher resonant wavenumbers, from lower to higher modal indexes, etc.). In
chapter 5 we will show how the election among one of these criteria may affect the conver-
gence of the algorithm developed.
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Table 4.1: Basis Functions Used in the Method of Moments

The normalized basis functions are defined in the cylindrical coordinated system
(ûρ, ûϕ, ûz) located in the center of the dielectric puck base (see Fig. (4.6)). The in-
dexes j ≡ (p, q, l,m) with (m) ≡ (even), (odd) ≡ (1), (2) are used, and the operator
∇t is the projection of the ∇ operator in the plane defined by (ûρ, ûϕ).

Perfect Electric Wall

TEz : ~wj =

√
2/h

Θ′pq

(
ûz ×∇tψ

(m)
pq

)
sin (βlz)

TM z : ~wj =

√
εl/h

Θpq

√
Θ2

pq+β2
l

[
βl sin(βlz)∇tφ

(m)
pq −Θ2

pqφ
(m)
pq cos(βlz)ûz

]

Perfect Magnetic Wall

TEz : ~wj =

√
εl/h

Θpq

(
ûz ×∇tφ

(m)
pq

)
cos (βlz)

TM z : ~wj =
−
√

2/h

Θ′pq

√
Θ′ 2pq+β2

l

[
βl cos(βlz)∇tψ

(m)
pq + Θ′ 2

pqψ
(m)
pq sin(βlz)ûz

]

SYMBOLS: Jp(x) is the Bessel function of the first kind and the order p; J ′p(x) is
its derivative; χpq and χ′pqare the q-th non-zero root of: Jp(x) = 0 and J ′p(x) = 0,
respectively; Θpq ≡ 2χpq/d; Θ′

pq ≡ 2χ′pq/d; βl ≡ lπ/h; εp is the Neumman Factor; the
scalar functions are:

ψ(m)
pq = NpqJp

(
Θ′
pqρ

) {
cos(pϕ)
sin(pϕ)

}
(m) = (1)
(m) = (2)

; Npq =
Θ′pq

Jp(χ′pq)

√
εp/π

χ′ 2pq−p2

φ(m)
pq = MpqJp (Θpqρ)

{
cos(pϕ)
sin(pϕ)

}
(m) = (1)
(m) = (2)

; Mpq =
2
√
εp/π

d Jp+1(χpq)
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(a) PEW TEz: (0,1,1); (e) (b) PMW TEz: (0,1,0); (e)

(c) PEW TMz: (0,1,1); (e) (d) PEW TEz: (1,1,1); (e)

(e) PMW TMz: (1,1,1); (e) (f) PMW TEz: (2,1,0); (e)

(g) PMW TEz: (1,1,0); (o) (h) PMW TEz: (1,1,0); (e)

Figure 4.4: Basis functions used by the MoM in equatorial plane of the DR.
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(a) PEW TEz: (2,1,1), (o) (b) PEW TMz: (0,1,1), (e)

(c) PEW TMz: (2,1,1); (e) (d) PMW TMz: (1,2,1); (o)

(e) PEW TEz: (1,1,1); (o) (f) PEW TMz: (1,1,0); (e)

(g) PMW TMz: (0,1,1); (e) (h) PMW TMz: (2,1,0); (e)

Figure 4.5: Basis functions used by the MoM in meridian plane of the DR. Figs. 4.5(a)-
4.5(d) show the plane with φ = 0, whereas Figs. 4.5(e)-4.5(h) show the plane with φ = π/2.
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4.3 Calculation of the matrices used in the MoM
In the previous section we have described the set of basis functions used to expand the

polarization vector to solve the electric field integral equation by means of the method of
moments. The proper election of these basis functions is key to ensure a good convergence
of the formulation proposed. However, the efficiency of the formulation implemented does
not only depend on the basis functions selected, but also on the computation of the matrices
collected in the Table 3.1, and specially of those matrices involving the Green’s functions.
In this section, the procedure followed to calculate each of these matrices is described.

(a) Cross-section (b) Floor plan

Figure 4.6: Cartesian and polar coordinate systems associated to the rectangular cavity and
to the cylindrical DR, respectively.

4.3.1 Computation of the D matrix
The D matrix is a real symmetric matrix whose entries are:

Dij =
∫

V1

~wi(~r) · ~wj(~r) dv (4.3)

where V1 is the cylindrical volume defined by the DR, ~wi(~r) and ~wj(~r) are basis functions
and i, j = 1, 2, ..., Q. We recall that Q is the number of basis functions used to expand the
polarization vector by the method of moments in (3.32).

To calculate this matrix, we have to take into account the following possible combinations
of basis functions:

- PEW-PEW: both of the basis functions are solution of the cylindrical cavity with per-
fect electric walls

- PMW-PMW: both of the basis functions are are solution of of the cylindrical cavity
with perfect magnetic walls



4.3 Calculation of the matrices used in the Method of Moments 61

- PEW-PMW: one of the basis functions is solution of the PEW cavity whereas the other
one is eigenvector of the PMW cavity

A. Case PEW-PEW and PMW-PMW
Since the basis functions used in the method of moments are the solenoidal modes of the

cylindrical cavity with perfect electric and magnetic walls, they must satisfy, respectively,
the properties of the electric and magnetic normalized eigenvectors of a cavity resonator
described in section 2.2. They must verify (4.2), and therefore, the value of the matrix D in
the PEW-PEW and PMW-PMW cases, is:

Dij = δij (4.4)

B. Case PEW-PMW
Let assume that the function ~wi(~r) is a solenoidal mode of the cylindrical cavity with

perfect electric walls, and the function ~wj(~r) is a solenoidal mode of the cavity with perfect
magnetic walls. By using the notation used in Table 4.1, we can introduce the expressions
of the basis functions. The indexes of each basis function are related to the modal indexes
(i) ⇒ (p, q, l,m); (j) ⇒ (r, s, t, n), where the indexes (m), (n) ≡ (1), (2) indicates if the
mode used is the even or the odd solution. Thus, we have to take into consideration now
the different possible combinations of TEz and TM z modes. The integrals of the D matrix
are calculated in the cylindrical coordinate system used to define the basis functions {~w},
which is placed in the center of the bottom cap of the dielectric puck (ûρ, ûϕ, ûz) located in
the center of the dielectric puck base (see Fig. (4.6)).

Case ~wi is a TEz mode and ~wj is a TEz mode:

By introducing the expressions of the TEz basis functions in equation (4.3), we can
write:

Dij = NiNj

∫

V1

(
ûz ×∇sψ

(m)
pq

)
·
(
ûz ×∇sφ

(n)
rs

)
sin(βlz) cos(βtz) dv

= NiNj

∫ h

0
sin(βlz) cos(βtz) dz

∫

SC1

∇sψ
(m)
pq · ∇sφ

(n)
rs ds (4.5)

where ∇s is the projection of the ∇ operator in the plane defined by (ûρ, ûϕ); βi ≡ iπ
h

; ψ(m)
pq

and φ(n)
rs are the scalar functions defined in Table 4.1 and SC1 is the surface defined by the

bottom cap of the cylinder (z=0 plane). To calculate the integration over the surface SC1 , we
use the following surface vector identity in cylindrical coordinates [85],

∫

SC1

∇sφ
(n)
rs · ∇sψ

(m)
pq ds =

∫

C1

φ(n)
rs

(
ûρ · ∇sψ

(m)
pq

)
dl −

∫

SC1

φ(n)
rs ∇2

sψ
(m)
pq ds (4.6)

where C1 is the contour that encloses the surface SC1 . This way, equation (4.5) can be
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rewritten as follows:

Dij = NiNj

∫ h

0
sin(βlz) cos(βtz) dz

[∮

ρ= d
2

φ(n)
rs

∂ψ(m)
pq

∂ρ
ρ dϕ+

∫

SC1

φ(n)
rs ∇2

sψ
(m)
pq ds

]

= NiNjΘ
′ 2
pq

∫ h

0
sin(βlz) cos(βtz) dz

∫

SC1

ψ(m)
pq φ

(n)
rs ds (4.7)

where we have taken into account that

∂ψ(m)
pq

∂ρ

∣∣∣∣
ρ= d

2

= 0; ∇2
sψ

(m)
pq =−Θ′ 2

pqψ
(m)
pq ,

We can now perform the analytical integration over the z and ϕ variables, to obtain the
value of the D matrix entry:

Dij = NiNjΘ
′ 2
pq

2

εp

(1− (−1)l+t) l

l2 − t2
h δpr δmn I

ρ
pq,rs ∀ l 6= t

Dij = 0 ∀ l = t (4.8)

where the integral Iρpq,rs is defined as:

Iρpq,rs ≡
∫ d

2

0
ρJp(Θ

′
pqρ)Jr(Θrsρ) d ρ (4.9)

which is computed numerically.

Case ~wi is a TM z mode and ~wj is a TM z mode:

By substituting the expressions of ~wi(~r) and ~wj(~r) by its value when both of them are
TM z modes in equation (4.3), we have:

Dij = NiNj

∫

V1

[
βl sin(βlz)∇sφ

(m)
pq −Θ2

pqφ
(m)
pq cos(βlz)ûz

]
·

[
−βt cos(βtz)∇sψ

(n)
rs −Θ′ 2

rsψ
(n)
rs sin(βtz)ûz

]
dv

= NiNj(I1 + I2) (4.10)

where the integrals I1 and I2 are:

I1 ≡ −βlβt
∫

V1

sin(βlz) cos(βtz)(∇sφ
(m)
pq ) · (∇sψ

(n)
rs ) dv

I2 ≡ Θ2
pqΘ

′ 2
rs

∫

V1

cos(βlz) sin(βtz)φ
(m)
pq ψ

(n)
rs dv (4.11)
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This way, using again the relation (4.6) to transform the integral I1, and integrating both I1
and I2 over z and ϕ, we obtain:

Dij = NiNj

(
βlβt l + Θ2

pqt
)

Θ′ 2
rs

1− (−1)l+t

t2 − l2
h δmn I

ρ
rs,pq ∀ l 6= t

Dij = 0 ∀ l = t (4.12)

where Iρrs,pq is the integral defined in equation (4.9).

Case ~wi is a TEz mode and ~wj is a TM z mode:

When ~wi(~r) is a TEz mode of the PEW cavity and ~wj(~r) is a TM z eigenvector of the
PMW cavity, then we have that the entry ij of the D matrix is:

Dij = −NiNj

∫

V1

sin(βlz)(ûz ×∇sψ
(m)
pq )·

[
βt cos(βtz)∇sψ

(n)
rs + Θ′ 2

rs sin(βtz)ψ
(n)
rs ûz

]
dv

= NiNjβt

∫ h

0
sin(βlz) cos(βtz)dz

∫

SC1

(ûz ×∇sψ
(m)
pq ) · ∇sψ

(n)
rs ds (4.13)

To further develop this expression, we can make use of the following surface vector
identity in cylindrical coordinates:

∫

SC1

~a · ∇sψ ds =
∫

C1

ψ~a · ûρdl −
∫

SC1

ψ∇s · ~a ds (4.14)

This way, we can rewrite equation (4.13) as8:

Dij = NiNjβt
d

2

∫ h

0
sin(βlz) cos(βtz)dz

∮

ρ= d
2

ψ(n)
rs ûϕ · ∇sψ

(m)
pq dϕ (4.15)

Finally, the integration over z and ϕ can be analytically performed, obtaining:

Dij = NiNjβt Jp(χ
′
pq) Jr(χ

′
rs)h

(1− (−1)l+t) l

l2 − t2
p (−1)m(1− δmn)δpr ∀ l 6= t

Dij = 0 ∀ l = t (4.16)

8To achieve this result, we have defined ~a = ûz × ∇sψ
(m)
pq in (4.14), and we have used the following

identities:
∇s · (~a×~b) = ~b · ∇s × ~a− ~a · ∇s ×~b, ûz ·∇s×∇sψ = ∇s ·(∇s×(ψûz)) = 0
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Case ~wi is a TM z mode and ~wj is a TEz mode:

In this last case, the element ij of the D matrix is expressed by:

Dij = −NiNj

∫

V1

[
βl sin(βlz)∇sφ

(m)
pq + Θ2

pq cos(βlz)φ
(m)
pq ûz

]
·
[
cos(βtz)(ûz ×∇sφ

(n)
rs )

]
dv

= NiNjβl

∫ h

0
sin(βlz) cos(βtz)dz

∫

SC1

(ûz ×∇sφ
(n)
rs ) · ∇sφ

(m)
pq ds (4.17)

Following the same procedure as in the TEz−TM z case, we have:

Dij = −NiNjβl
d

2

∫ h

0
sin(βlz) cos(βtz)dz

∮

ρ= d
2

φ(m)
pq ûϕ · ∇sφ

(n)
rs dϕ (4.18)

Since φ(m)
pq |ρ= d

2
= 0, then

Dij = 0 (4.19)

4.3.2 Computation of the S matrix
The entries of the S matrix are represented by:

Sij =
∫

V1

~Ei(~r) · ~wj(~r) dv (4.20)

where ~Ei(~r) is a electric solenoidal mode of the empty rectangular cavity and i = 1, 2, ...,M ,
beingM the number of modes used in the expansion of the dyadic Green’s function, whereas
~wj(~r) is a basis function and j = 1, 2, ..., Q, being Q the number of basis functions used to
expand the polarization vector by the method of moments.

To evaluate the expression (4.20), we use, once again, the cylindrical coordinate system
{ûρ, ûϕ, ûz} placed in the center of the bottom cap of the dielectric puck. Since the electric
modes of the empty rectangular cavity have been calculated in the rectangular coordinate
system {ûxc , ûyc , ûzc} placed in the corner of the cavity (see Appendix A), a transformation
of coordinate system is required. As it can be observed in Fig. 4.6, the rectangular coordinate
system can be expressed in the cylindrical one:

xc = ρ cosϕ+ ao

yc = ρ sinϕ+ co

zc = z + bo

In order to evaluate the entries of the S matrix, we will first consider the division between
TEzc and TM zc modes for both the basis functions and the electric solenoidal modes of the
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rectangular cavity. This way, after performing some previous calculations, we can take into
account whether the basis functions belong to the PEW cylindrical cavity or to the PMW one.
Furthermore, we will consider that (ixc , iyc , izc) represent the modal indexes associated to the
i-th mode of the rectangular cavity ~Ei(~r), related to the coordinates (xc, yc, zc), respectively;
and that the indexes (p, q, l) represent the modal indexes associated to the j-th basis function
~wj(~r).

A. Case ~Ei is a TEzc mode and ~wj is a TEzc basis function

Since the TEzc basis function ~wj(~r) may be the solenoidal eigenvector of the PEW cylin-
drical cavity or the solution of the PMW one, we define the following scalar functions to
simplify the calculations:

Γl(z) ≡
{

sin(βhl z)
cos(βhl z)

}
; ∆pq ≡

{
Θ′
pq

Θpq

}
; Λ(m)

pq ≡
{
ψ(m)
pq

φ(m)
pq

}
;

~wj ∈ PEW
~wj ∈ PMW

(4.21)

where βlh ≡ lπ
h

and the scalar functions Θ′
pq, Θpq, ψ(m)

pq , φ(m)
pq are defined in Table 4.1.

This way, we can express a TM zc basis function, independently whether it is solution of
the PEW cylindrical cavity or solution of the PMW one, as:

~wj(~r) = N bf
j Γl(z)(ûz ×∇sΛ

(m)
pq ) (4.22)

Using expression (4.22) and the TEzc solenoidal mode of the empty rectangular cavity,
described in (A.15), in equation (4.20), we can write:

Sij = N rc
i N bf

j

∫ h

0
sin(kzc, i(z + bo))Γl(z) dz

∫

SC1

(ûz ×∇sξixc iyc
) · (ûz ×∇sΛ

(m)
pq ) ds

= N rc
i N bf

j

∫ h

0
sin(kz, i(z + bo))Γl(z) dz

∫

SC1

∇sξixc iyc
· ∇sΛ

(m)
pq ds (4.23)

where N rc
i and N bf

j are, respectively, the normalization factors of the rectangular cavity
mode and the basis function; ∇s is the projection of the ∇ operator in the plane defined by
(ûρ, ûϕ); SC1 is the surface defined by the bottom cap of the cylinder; kzc, i is the wavenumber
related to the coordinate zc and associated to the i-th mode of the rectangular cavity; ξixc iyc

is the scalar function used to calculate the TEzc mode of the rectangular cavity (see Section
A.2 of Appendix A).

Making use of the property (4.6), we have:

Sij = N rc
i N bf

j Iizc , l(z)

[
d

2

∮

ρ= d
2

ξixc iyc

∂Λ(m)
pq

∂ρ
dϕ+ ∆2

pq

∫

SC1

ξixc iyc
Λ(m)
pq ds

]
(4.24)

where the following integral with analytical solution has been defined :

Iizc , l(z) ≡
∫ h

0
sin(kzc, i(z + bo))Γl(z) dz (4.25)
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We can now distinguish between the cases in which the basis function is a perfect electric
walls eigenvector or a perfect magnetic walls one.

Case basis function PEW:

In this case, taking into account that ∂ψ
(m)
pq

∂ρ

∣∣∣∣
ρ= d

2

= 0 holds due to the boundary conditions of

derivative of the Bessel functions of first order, and introducing the scalar functions corre-
sponding to the PEW case (see equation (4.21)) into (4.24), we obtain:

Sij = N rc
i N bf

j Θ′ 2
pqI

ss
izc , l

(z)
∫ d

2

0
ρ d ρJp

(
Θ′
pqρ

)

∫ 2π

0
dϕ cos (kxc, i(ρ cosϕ+ ao)) cos (kyc, i(ρ sinϕ+ co))

{
cos(pϕ)
sin(pϕ)

}
(m) = (1)
(m) = (2)

(4.26)

In this last expression, kxc, i and kyc, i represent the wavenumber related to the coordinates
xc and yc respectively, associated to the i-th mode of the rectangular cavity (see eq. (A.28)
of the Appendix A). Moreover, the integral in (4.26) is computed numerically, whereas the
integral in (4.25) has analytical solution and is expressed now as:

Issizc , l
(z) ≡

∫ h

0
sin(kzc, i(z + bo)) sin(βhl z) dz (4.27)

Case basis function PMW:

Analogously, by introducing the PMW scalar functions (4.21) into (4.24), we have:

Sij = N rc
i N bf

j I
sc
izc , l

(z)
{
χpqJ

′
p (χpq) I

(p,m)
ixc ,iyc

(ϕ) + Θ2
pqI

(p,q,m)
ixc ,iyc

(ρ, ϕ)
}

(4.28)

where the integrals I(p,m)
ixc ,iyc

(ϕ), I(p,q,m)
ixc ,iyc

(ρ, ϕ) and Iscizc , l
(z) are defined as:

Iscizc , l
(z) ≡

∫ h

0
sin(kzc,i(z + bo)) cos(βhl z) dz

I
(p,m)
ixc ,iyc

(ϕ) ≡
∫ 2π

0
dϕ cos (kxc,i(ρ cosϕ+ ao)) cos (kyc,i(ρ sinϕ+ co))

{
cos(pϕ)
sin(pϕ)

}
(m) = (1)
(m) = (2)

I
(p,q,m)
ixc ,iyc

(ρ, ϕ) ≡
∫ d

2

0
ρ d ρJp (Θpqρ)

∫ 2π

0
dϕ cos (kxc,i(ρ cosϕ+ ao)) cos (kyc,i(ρ sinϕ+ co))

{
cos(pϕ)
sin(pϕ)

}
(m) = (1)
(m) = (2)

The integral Iscizc , l
(z) has analytical solution, whereas the integrals I(p,m)

ixc ,iyc
(ϕ), I(p,q,m)

ixc ,iyc
(ρ, ϕ)
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are computed numerically.

B. Case ~Ei is a TMzc mode and ~wj is a TEzc basis function

Making use again of the notation defined by the equations (4.21) and introducing the ex-
pression (4.22), as well as the TM zc solenoidal mode of the rectangular cavity (see equation
(A.22)) in equation (4.20), we have:

Sij =N rc
i N bf

j

∫

V1

[
kzc,i sin (kzc,i(z + bo))∇sηixc iyc

− k2
t,i cos (kzc,i(z + bo)) ηixc iyc

ûz

]
·

· (ûz ×∇sΛ
(m)
pq )Γl(z) dv =

=N rc
i N bf

j kzc,i

∫ h

0
sin(kzc,i(z + bo))Γl(z) dz

∫

SC1

∇sηixc iyc
· (ûz ×∇sΛ

(m)
pq ) ds (4.29)

where kt,i is the transverse wavenumber associated to the i-th resonant mode of the rectan-
gular cavity, and it is defined in (A.28). Next, applying the equation (4.14), we can write:

Sij = N rc
i N bf

j β
c
t

∫ h

0
sin(kzc,i(z + bo))Γl(z) dz

∮

ρ= d
2

ηixc iyc

∂Λ(m)
pq

∂ϕ
dϕ (4.30)

This way, it is easy now to analyse the two different possibilities: PEW or PMW basis
functions.

Case basis function PEW:

By introducing the scalar functions of the PEW basis function, from eq.(4.21), into the
equation (4.30), we obtain the value of Sij ,

Sij = N rc
i N bf

j kzc,ipJp(χ
′
pq)

∫ h

0
sin(kzc,i(z + bo)) sin(βhl z) dz

∫ 2π

0
dϕ sin(kxc,i(

d

2
cosϕ+ ao)) sin(kyc,i(

d

2
sinϕ+ co))

{− sin(pϕ)
cos(pϕ)

}
(m)=(1)
(m)=(2)

(4.31)

Case basis function PMW:

In this case, since ∂φ
(m)
pq

∂ψ

∣∣∣∣
ρ= d

2

= 0, we directly obtain from equation (4.30):

Sij = 0 ∀ (m) = (1), (2) (4.32)

C. Case ~Ei is a TEzc mode and ~wj is a TMzc basis function

Up to now the entries of the S matrix with ~wj being a TEzc basis functions, have been
evaluated. The use of the equations (4.21) has simplified our calculus, since they permit
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to consider at the same time PEW and PMW eigenvectors. Next, to proceed analogously
with the calculation of the cases where ~wj is a TM zc basis functions, we use the following
notation:

Γ
(1)
l (z) ≡

{
sin(βhl z)
cos(βhl z)

}
; ∆pq ≡

{
Θpq

Θ′
pq

}
;

~wj ∈ PEW
~wj ∈ PMW

(4.33a)

Γ
(2)
l (z) ≡

{
cos(βhl z)
− sin(βhl z)

}
; Λ(m)

pq ≡
{
φ(m)
pq

ψ(m)
pq

}
;

~wj ∈ PEW
~wj ∈ PMW

(4.33b)

where βlh ≡ lπ
h

and the scalar functions Θ′
pq, Θpq, ψ(m)

pq , φ(m)
pq are defined in Table 4.1.

This way, we can express a TM zc basis function, independently whether it is solution of
the PEW or PMW cylindrical cavity, as follows:

~wj(~r) = N bf
j [βhl Γ

(1)
l (z)∇sΛ

(m)
pq −∆2

pqΓ
(2)
l (z)Λ(m)

pq ûz] (4.34)

Hence, introducing the expression (4.34) and the TEzc solenoidal mode of the empty
rectangular cavity (see equation (A.22)) in equation (4.20), we can write:

Sij =N rc
i N bf

j

∫

V1

sin(kzc,i(z+bo))
(
ûz×∇sξixc iyc

)
·
[
βhl Γ

(1)
l (z)∇sΛ

(m)
pq −∆2

pqΓ
(2)
l (z)Λ(m)

pq ûz
]
dv

=N rc
i N bf

j β
h
l

∫ h

0
sin(kzc,i(z + bo))Γ

(1)
l (z) dz

∫

SC1

(∇sΛ
(m)
pq × ûz) · ∇sξixc iyc

ds (4.35)

and applying the equation (4.14), we have:

Sij =−N rc
i N bf

j β
h
l

∫ h

0
sin(kzc,i(z + bo))Γ

(1)
l (z) dz

∮

ρ= d
2

ξixc iyc

∂Λ(m)
pq

∂ψ
dϕ (4.36)

Thus, we can easily evaluate this expression for PEW or PMW cavity basis functions:

Case basis function PEW:

Since ∂φ
(m)
pq

∂ψ

∣∣∣∣
ρ= d

2

= 0, we directly obtain from equation (4.36):

Sij = 0 ∀ (m) = (1), (2) (4.37)

Case basis function PMW:

By introducing equations (4.33b) into (4.36), we have:

Sij = −N rc
i N bf

j β
h
l pJp(χ

′
pq)

∫ h

0
sin(kzc,i(z + bo)) cos(βhl z) dz

∫ 2π

0
dϕ cos(kxc,i(

d

2
cosϕ+ ao)) cos(kyc,i(

d

2
sinϕ+ co))

{− sin(pϕ)
cos(pϕ)

}
(m)=(1)
(m)=(2)

(4.38)
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D. Case ~Ei is a TMzc mode and ~wj is a TMzc basis function

In this case, by introducing the expression (4.34) and the TM zc solenoidal mode of the
rectangular cavity (see equation (A.22)) in equation (4.20), we have:

Sij = N rc
i N bf

j

∫

V1

[
kzc,i sin(kzc,i(z + bo))∇sηixc iyc

− k2
t,i cos(kzc,i(z + bo))ηixc iyc

ûz
]
·

·
[
βhl Γ

(1)
l (z)∇sΛ

(m)
pq −∆2

pqΓ
(2)
l (z)Λ(m)

pq ûz
]
dv

= N rc
i N bf

j

[
kzc,iβ

h
l I

(1)
izc , l

(z)
∫

SC1

∇sηixc iyc
·∇sΛ

(m)
pq ds+ k2

t,i∆
2
pqI

(2)
izc , l

(z)
∫

SC1

ηixc iyc
Λ(m)
pq ds

]

(4.39)

where the integrals I(1)
izc , l

(z) and I(2)
izc , l

(z) have analytical solution, and have been defined as:

I
(1)
izc , l

(z)≡
∫ h

0
sin(kzc,i(z + bo))Γ

(1)
l (z) dz (4.40a)

I
(2)
izc , l

(z)≡
∫ h

0
cos(kzc,i(z + bo))Γ

(2)
l (z) dz (4.40b)

Furthermore, by using the expression (4.6), we can rewrite the equation (4.39) as:

Sij = N rc
i N bf

j

{
kzc,iβ

h
l I

(1)
izc , l

(z)I
(p,q,m)
ixc ,iyc

(ϕ)+

+
[
kzc,iβ

h
l ∆

2
pqI

(1)
izc , l

(z) + k2
t,i∆

2
pqI

(2)
izc , l

(z)
]
I

(p,q,m)
ixc ,iyc

(ρ, ϕ)
}

(4.41)

where we have defined:

I
(p,q,m)
ixc ,iyc

(ϕ) ≡
∫ 2π

0
ηixc iyc

∂Λ(m)
pq

∂ρ

∣∣∣∣
ρ=d/2

dϕ (4.42a)

I
(p,q,m)
ixc ,iyc

(ρ, ϕ) ≡
∫

SC1

ηixc iyc
Λ(m)
pq ds (4.42b)

Therefore to calculate the entry of the S matrix in this case, we have to evaluate the inte-
grals I(1)

izc , l
(z), I(2)

izc , l
(z), I(p,q,m)

ixc ,iyc
(ϕ) and I(p,q,m)

ixc ,iyc
(ρ, ϕ) and introduce them in equation (4.41).

Case basis function PEW:

By introducing the expressions (4.33b) for PEW basis functions into the equations (4.42)
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and (4.40), we obtain

I
(1)
izc , l

(z) =
∫ h

0
sin(kzc,i(z + bo)) sin(βhl z) dz = Issizc , l

(z) (4.43)

I
(2)
izc , l

(z) =
∫ h

0
cos(kzc,i(z + bo)) cos(βhl z) dz = Iccizc , l

(z) (4.44)

which have analytical solution, and,

I
(p,q,m)
ixc ,iyc

(ϕ) = χpqJ
′
p(χpq)

∫ 2π

0
dϕ sin(kxc,i(

d

2
cosϕ+ ao)) sin(kyc,i(

d

2
sinϕ+ co))

{
cos(pϕ)
sin(pϕ)

}
(m)=(1)
(m)=(2)

(4.45)

I
(p,q,m)
ixc ,iyc

(ρ, ϕ) =
∫ d

2

0
ρJp (Θpqρ) d ρ

∫ 2π

0
dϕ sin(kxc,i(

d

2
cosϕ+ ao)) sin(kyc,i(

d

2
sinϕ+ co))

{
cos(pϕ)
sin(pϕ)

}
(m)=(1)
(m)=(2)

(4.46)

These last expressions are computed numerically.

Case basis function PMW:

Since ∂ψ
(m)
pq

∂ρ

∣∣∣∣
ρ= d

2

= 0, in this case we have:

I
(p,q,m)
ixc ,iyc

(ϕ) = 0 ∀(m) = (1), (2) (4.47)

whereas the rest of integrals are:

I
(1)
izc , l

(z) =
∫ h

0
sin(kzc,i(z + bo)) cos(βhl z) dz = Iscizc , l

(z) (4.48)

I
(2)
izc , l

(z) = −
∫ h

0
cos(kzc,i(z + bo)) sin(βhl z) dz = −Icsizc , l

(z) (4.49)

with analytical solution, and,

I
(p,q,m)
ixc ,iyc

(ρ, ϕ) =
∫ d

2

0
ρJp

(
Θ′
pqρ

)
d ρ

∫ 2π

0
dϕ sin(kxc,i(

d

2
cosϕ+ ao)) sin(kyc,i(

d

2
sinϕ+ co))

{
cos(pϕ)
sin(pϕ)

}
(m)=(1)
(m)=(2)

(4.50)

which is computed numerically.
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4.3.3 Computation of the C matrix
The C matrix is a real symmetric matrix whose entries are:

Cij =
∫

S1

∫

S1

(~wi(~r) · n̂)ge(~r, ~r ′)(~wj(~r ′) · n̂′) ds ds′ (4.51)

where S1 is the surface of the cylindrical dielectric resonator, ~wi(~r) and ~wj(~r
′) are the basis

functions, ge(~r, ~r ′) is the scalar Green’s function for the electric scalar potential of the empty
rectangular cavity, ~r and ~r ′ are, respectively, the observation and the source points. We recall
that i, j = 1, 2, ..., Q, being Q the number of basis functions used to expand the polarization
vector by the method of moments.

The first conclusion that we can extract from equation (4.51) is that the contribution of
the PMW basis functions to the C matrix is null. This is due to the fact that the normal
component to the cylindrical cavity of this kind of basis functions is equal to zero. In fact,
it results evident from the discussion in section 4.2, since the C matrix represents somehow
the contribution of the equivalent electric polarization charge density described by equation
(3.17).

Hence,
Cij = 0 ∀ ~wi, ~wj ∈ PMW {~w} (4.52)

Thus, to evaluate the C matrix we will focus our attention in the entries where both ~wi
and ~wj are basis functions solution of the PEW cylindrical cavity. Furthermore, in order to
calculate it, the surface S1 has been divided into three parts:

• S
(1)
1 denotes the bottom cap, and its normal outward vector is: n̂(1) = −ûz

• S
(2)
1 denotes the top cap, and its normal outward vector is: n̂(2) = ûz

• S
(3)
1 denotes the lateral surface, and its normal outward vector is: n̂(3) = ûρ

The total surface of the dielectric puck may be expressed as:

S1 = S
(1)
1 ∪ S(2)

1 ∪ S(3)
1 (4.53)

Furthermore, by defining the following matrices:

C
(α,β)
ij ≡

∫

S
(α)
1

∫

S
(β)
1

(
~wi(~r) · n̂(α)

)
ge(~r, ~r ′)

(
~wj(~r

′) · n̂(β)′) ds ds′ (4.54)

where α, β = 1, 2, 3. The entry of the C matrix can be expressed as:

Cij =
3∑

α,β=1

C
(α,β)
ij (4.55)

This way, in order to compute the C matrix we have to evaluate 9 submatrices. However,
due to the fact that ge(~r, ~r ′) = ge(~r ′, ~r), we have

C(α,β) = C(β,α)
T ⇒ C

(α,β)
i j = C

(β,α)
j i
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Therefore, we only need to calculate:

C(α,β) with β ≥ α

The evaluation of these matrices must be performed carefully, since, as mentioned in
the previous chapters, the scalar Green’s function is singular when ~r = ~r ′. Indeed, a first
inspection of the expression (4.54) suggest us to divide the matrices into two different types:
a former kind of matrices that involve integrals in which the observation and the source point
do not coalesce. Hence, the integrals to be solved do not present any singularity. The second
kind are those matrices whose entries involve singular integrals due to the fact that ~r and ~r ′

coalesce.

The matrix C(1,2) is of the first kind, since

~r 6= ~r ′ ∀ ~r ∈ S(1)
1 ; ~r ′ ∈ S(2)

1

This matrix is computed numerically and for this purpose the scalar Green’s function is
efficiently calculated by means of the Ewald technique [102] (for details, see [101], [74],
[Ch. 3, 103] or [104]).

The second group is made up of the matrices C(1,1), C(2,2), C(3,3), C(1,3) and C(2,3). In order
to calculate them, we extract the singularity of the ge in closed form using the expression
(2.79).

ge(~r, ~r ′) =
1

4πR
+ ger(~r, ~r

′)

Thus, we have to calculate each matrix as the sum of two matrices: the former one containing
the singularity of the Green’s function and the last one which involves regular integrals.

C(α,β) = C̃(α,β)
+ C(α,β)

r (4.56)

being,

C̃
(α,β)
ij =

∫

S
(α)
1

∫

S
(β)
1

(
~wi(~r) · n̂(α)

) 1

4πR

(
~wj(~r

′) · n̂(β)′) ds ds′ (4.57)

C
(α,β)
r, ij =

∫

S
(α)
1

∫

S
(β)
1

(
~wi(~r) · n̂(α)

)
ger(~r, ~r

′)
(
~wj(~r

′) · n̂(β)′) ds ds′ (4.58)

where R = |~r − ~r ′|, and ger(~r, ~r
′) is the regular part of the scalar Green’s function.

The regular matrices C(α,β)
r are computed numerically, using the Ewald’s technique to

calculate the scalar Green’s function, like for the C(1,2) matrix. On the other hand, the matri-
ces involving singular integrals must be treated analytically to transform them into integrable
expressions. In the following paragraphs, we explain how to proceed with the different C̃(α,β)

matrices.

All the calculus are related to the cylindrical coordinate system placed in the center
of the bottom cap of the dielectric puck. Furthermore, we assume that the modal indexes
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{p, q, l,m} are associated to the ~wi basis function, whereas the modal indexes {u, v, t, n}
are associated to ~wj .

A. Computation of matrix C̃(1,1)

In this case, the entry of the C̃(α,β)
matrix is:

C̃
(1,1)
ij =

∫

S
(1)
1

∫

S
(1)
1

(
−~wi(~r)

∣∣∣∣
z=0
· ûz

)
1

4πR

(
−~wj(~r ′)

∣∣∣∣
z′=0
· ûz

)
ds ds′ (4.59)

In order to evaluate this expression, the first step is to introduce into equation (4.59) the
expressions of the TEz and TM z basis functions of the PEW cavity.

Case ~wi or ~wj are TEz basis function:

Since the z-component of a TEz basis function is

(~wi(~r)
∣∣∣∣
z=0
· ûz) = 0, (4.60)

then we have:

C̃
(1,1)
ij = 0 (4.61)

Case ~wi and ~wj are TM z basis function:

The normal component to S(1)
1 of the TM z basis function is given by:

(~wi(~r)
∣∣∣∣
z=0
· ûz) = −NiΘ

2
pqφ

(m)
pq (4.62)

By introducing this expression into the equation (4.59), we have:

C̃
(1,1)
ij = NiNj

Θ2
pqΘ

2
uv

4π

∫

S
(1)
1

∫

S
(1)
1

φ(m)
pq (~r)φ(n)

uv (~r ′)

R
ds ds′ (4.63)

The integral in (4.63) is singular when ~r = ~r ′. To avoid this singularity, we make use of
one of the results obtained from the work of P. Arcioni et al. [106], that permits to express
the term 1/R as:

1

R
= −∇s ·∇′

sR (4.64)

where ∇s is the surface nabla operator. It is remarkable that this result is only applicable
when ~r and ~r ′ are on a coplanar surface.

This way, introducing the expression (4.64) into equation (4.63), and making use of the
equation (D.10) (see Appendix D), we can rewrite:

C̃
(1,1)
ij = NiNj

Θ2
pqΘ

2
uv

4π
(I(1)
pq,uv − I(2)

pq,uv − I(3)
pq,uv + I(4)

pq,uv) (4.65)
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where the following integrals have been defined:

I(1)
pq,uv =

d2

4

∮ 2π

o

∮ 2π

o
φ(m)
pq (~r)

∣∣∣∣
ρ= d

2

φ(n)
uv (~r ′)

∣∣∣∣
ρ′= d

2

R(ûρ · û′ρ) dϕ dϕ′ (4.66a)

I(2)
pq,uv =

d

2

∫

S
(1)
1

∮ 2π

o
φ(m)
pq (~r)

∣∣∣∣
ρ= d

2

R
(
û′ρ · ∇′

sφ
(n)
uv (~r ′)

)
dϕ ds′ (4.66b)

I(3)
pq,uv =

d

2

∫

S
(1)
1

∮ 2π

o
φ(n)
uv (~r ′)

∣∣∣∣
ρ′= d

2

R
(
ûρ · ∇sφ

(m)
pq (~r)

)
dϕ′ ds (4.66c)

I(4)
pq,uv =

∫

S
(1)
1

∫

S
(1)
1

R∇sφ
(m)
pq (~r) · ∇′

sφ
(n)
uv (~r ′) ds ds′ (4.66d)

Since φ(m)
pq

∣∣∣∣
ρ= d

2

= 0 for any value of p, q,m, it can be easily observed that the integrals I(1),

I(2) and I(3) defined above are equal to zero, whereas the expression (4.66d) can be further
developed,

I(4)
pq,uv =

∫

S
(1)
1

∫

S
(1)
1

R
[∂φ(m)

pq

∂ρ

∂φ(n)
uv

∂ρ′
ûρ · û′ρ +

1

ρ′
∂φ(m)

pq

∂ρ

∂φ(n)
uv

∂ϕ′
ûρ · û′ϕ+

+
1

ρ

∂φ(m)
pq

∂ϕ

∂φ(n)
uv

∂ρ
ûϕ · û′ρ +

1

ρρ′
∂φ(m)

pq

∂ϕ

∂φ(n)
uv

∂ϕ′
ûϕ · û′ϕ

]
ds ds′

= I(41) + I(42) + I(43) + I(44) (4.67)

Next, taking into account that in cylindrical coordinates we have:

ûρ · û′ρ = ûϕ · û′ϕ = cos(ϕ− ϕ′) (4.68a)

ûρ · û′ϕ = −ûϕ · û′ρ = sin(ϕ− ϕ′) (4.68b)

R =
√
ρ2+ρ′ 2−2ρρ′cos(ϕ−ϕ′) (4.68c)

Finally, by introducing the expressions (4.68) and the values of the scalar functions from the
Table 4.1 into the equation (4.67), we obtain the value of the C̃(1,1)

matrix in terms of regular
integrals:

C̃
(1,1)
ij = NiNj

Θ2
pqΘ

2
uv

4π
(I(41) + I(42) + I(43) + I(44)) (4.69)

with

I(41) = ΘpqΘuvδpuδmn

∫ d
2

0

∫ d
2

0
d ρ d ρ′ ρ ρ′J ′p(Θpqρ)J

′
u(Θuvρ

′)

∮ 2π

0
cos(ϕ) cos(pϕ) dϕ

√
ρ2+ρ′ 2−2ρρ′cos(ϕ)

{
(1 + δ0p)π
(1− δ0p)π

}
(m) = (1)
(m) = (2)

(4.70)
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I(42) = Θpq u δpuδmn

∫ d
2

0

∫ d
2

0
d ρ d ρ′ ρJ ′p(Θpqρ)Ju(Θuvρ

′)

∮ 2π

0
sin(ϕ) sin(pϕ) dϕ

√
ρ2+ρ′ 2−2ρρ′cos(ϕ)

{
(1− δ0p)π

π

}
(m) = (1)
(m) = (2)

(4.71)

I(43) = Θuv p δpuδmn

∫ d
2

0

∫ d
2

0
d ρ d ρ′ ρ′Jp(Θpqρ)J

′
u(Θuvρ

′)

∮ 2π

0
sin(ϕ) sin(pϕ) dϕ

√
ρ2+ρ′ 2−2ρρ′cos(ϕ)

{
π

(1− δ0p)π

}
(m) = (1)
(m) = (2)

(4.72)

I(44) = p u δpuδmn

∫ d
2

0

∫ d
2

0
d ρ d ρ′Jp(Θpqρ)Ju(Θuvρ

′)

∮ 2π

0
cos(ϕ) cos(pϕ) dϕ

√
ρ2+ρ′ 2−2ρρ′cos(ϕ)

{
(1− δ0p)π
(1 + δ0p)π

}
(m) = (1)
(m) = (2)

(4.73)

All these expressions are calculated numerically. Note that to achieve the results presented
above, we have used the technique described in the Appendix B (see (B.1)) to reduce the
integration over the ϕ and ϕ′ variables. Therefore, not only the initial singular integrals have
been transformed to regular ones, but also we have reduced the integrations involved from
4-dimensions to 3-dimensions.

B. Computation of matrix C̃(2,2)

The entries of the C̃(2,2)
matrix are:

C̃
(2,2)
ij =

∫

S
(2)
1

∫

S
(2)
1

(
~wi(~r)

∣∣∣∣
z=h
· ûz

)
1

4πR

(
~wj(~r

′)
∣∣∣∣
z′=h
· ûz

)
ds ds′ (4.74)

We can observe that the only difference between this expression and the equation (4.59) is
the value of the z-component of the basis functions at z = 0 and at z = h, which is:

~wi(~r)
∣∣∣∣
z=h
· ûz = (−1)l ~wi(~r)

∣∣∣∣
z=0
· ûz ∀ i; with i ≡ {p, q, l}, (m)

Therefore, if we assume that the modal indexes {p, q, l} and (m) are associated to the ~wi
basis function, and the modal indexes {u, v, t} and (n) are associated to ~wj , we have:

C̃
(2,2)
ij = (−1)l+t C̃

(1,1)
ij (4.75)

C. Computation of matrix C̃(3,3)

In order to calculate the C̃(3,3)
matrix, we have to evaluate the following expression:

C̃
(3,3)
ij =

∫

S
(3)
1

∫

S
(3)
1

(
~wi(~r)

∣∣∣∣
ρ= d

2

· ûρ
)

1

4πR

(
~wj(~r

′)
∣∣∣∣
ρ′= d

2

· û′ρ
)
ds ds′ (4.76)
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In this case, in order to avoid the singularity of the Green’s function we can not use the
expression (4.64) since ~r and ~r ′ are not coplanar. Hence, we need to transform the singular
integrals to regular ones using a different procedure from the followed for the C̃(1,1)

and the
C̃(2,2)

matrices.

Firstly, we will develop the expression (4.76) for the different PEW basis functions. For
this purpose, we have to take into consideration the normal components to S(3)

1 of the TEz

and TM z modes:

TEz : ~wi(~r) · ûρ
∣∣∣∣
ρ= d

2

= Ni sin(βhl z)(ûz ×∇sψ
(m)
pq )

∣∣∣∣
ρ= d

2

· ûρ = −Ni sin(βhl z)ûϕ · ∇sψ
(m)
pq

∣∣∣∣
ρ= d

2

= −Nip Jp(χ
′
pq) sin(βhl z)

2

d

{− sin(pϕ)
cos(pϕ)

}
(m) = (1)
(m) = (2)

(4.77a)

TM z : ~wi(~r) · ûρ
∣∣∣∣
ρ= d

2

= Ni

[
βhl sin(βhl z)∇sφ

(m)
pq

∣∣∣∣
ρ= d

2

−Θpqφ
(m)
pq

∣∣∣∣
ρ= d

2

cos(βhl z)ûz

]
· ûρ

= Niβ
h
l Θpq J

′
p(χpq) sin(βhl z)

{
cos(pϕ)
sin(pϕ)

}
(m) = (1)
(m) = (2)

(4.77b)

And the expression of R in the cylindrical coordinate system:

R =
√
d2(1−cos(ϕ−ϕ′))/2 + (z − z′)2 (4.78)

By introducing now equations (4.77) and (4.78) in (4.76), we can obtain the value of the
C̃(3,3)

entries for the different combination of basis functions. To achieve the results presented
below, we use again the technique described in the Appendix B to reduce the integration over
the ϕ and ϕ′ variables.

Case ~wi is TEz and ~wj is TEz:

C̃
(3,3)
ij =

NiNj p u Jp(χ
′
pq)Ju(χ

′
uv)

4π
δmnδpuĨ

(3,3)
pl, t

{
(1−δ0p)π
(1+δ0p)π

}
(m)=(1)
(m)=(2)

(4.79)

Case ~wi is TEz and ~wj is TM z:

C̃
(3,3)
ij =

NiNj p χuv Jp(χ
′
pq)J

′
u(χuv)β

h
t

4π
(1−δmn)δpuĨ(3,3)

pl, t

{
(1−δ0p)π
−(1+δ0p)π

}
(m)=(1)
(m)=(2)

(4.80)
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Case ~wi is TM z and ~wj is TM z:

C̃
(3,3)
ij =

NiNj χpq χuv J
′
p(χpq)J

′
u(χuv)β

h
l β

h
t

4π
δmnδpuĨ

(3,3)
pl, t

{
(1+δ0p)π
(1−δ0p)π

}
(m)=(1)
(m)=(2)

(4.81)

To obtain the expressions (4.79), (4.80) and (4.81), the following integral has been de-
fined:

Ĩ
(3,3)
pl, t ≡

∫ h

0
dz

∫ h

0
dz′

∫ 2π

0
dϕ

sin(βhl z) sin(βht z
′) cos(pϕ)√

d2(1−cosϕ)/2 + (z − z′)2
(4.82)

Note that this integral is still singular when R = 0, this is, when z = z′ and ϕ = 0 7.
For this reason, it can not be computed numerically in a direct way. It must be transformed
analytically into regular integrals, as reported in detail in the Appendix D.

On the other hand, since C̃(3,3)
is a symmetric matrix, the case in which ~wi is TM z and ~wj

is TEz is directly obtained interchanging the modal indexes p, q, l, (m) ⇔ u, v, t, (n) from
the case ~wi is TEz and ~wj is TM z.

D. Computation of matrix C̃(1,3)

The entries of the C̃(1,3)
matrix are:

C̃
(1,3)
ij =

∫

S
(1)
1

∫

S
(3)
1

(
−~wi(~r)

∣∣∣∣
z=0
· ûz

)
1

4πR

(
~wj(~r

′)
∣∣∣∣
ρ′= d

2

· û′ρ
)
ds ds′ (4.83)

Again, since the only subset of basis functions that have a non-zero normal component
to the surface S(1)

1 are the TM z modes, then

C̃
(1,3)
ij = 0 ∀ ~wi ∈ TEz{~w} (4.84)

In this case, taking into account

R =
√
ρ2+d2/4−ρ d cos(ϕ−ϕ′)+ z′ 2 (4.85)

and introducing equations (4.62), (4.77) into (4.83), we can evaluate C̃(1,3)
for the different

combination of basis functions.

Case ~wi is TM z and ~wj is TEz:

C̃
(1,3)
ij =

NiNjΘ
2
pq u Ju(χ

′
uv)

4π
(1− δmn)δpuĨ

(1,3)
pq, t

{
(1+δ0p)π
(1−δ0p)π

}
(m)=(1)
(m)=(2)

(4.86)

7When ~r = ~r ′, we have ϕ = 0 due to the change of variable performed by the technique described in the
appendix to reduce the integrals over ϕ and ϕ′.



78 Application to rectangular cavities loaded with a dielectric puck

Case ~wi is TM z and ~wj is TM z:

C̃
(1,3)
ij =

NiNj dΘ2
pqΘuvβ

h
t J

′
u(χuv)

8π
δmnδpuĨ

(1,3)
pq, t

{
(1+δ0p)π
(1−δ0p)π

}
(m)=(1)
(m)=(2)

(4.87)

where the integral Ĩ(1,3)
pq, t has been defined as:

Ĩ
(1,3)
pq, t ≡

∫ d
2

0
d ρ

∫ h

0
dz′

∫ 2π

0
dϕ

ρJp(Θpqρ) sin(βht z
′) cos(pϕ)√

ρ2+d2/4−ρ d cos(ϕ)+ z′ 2
(4.88)

It can be observed that when R = 0, this is when ρ = d/2, ϕ = 0 and z′ = 0, the integrand
has an indeterminacy of the kind 0/0. Due to this fact, we need to evaluate the existence of
the limit of the integrand when R → 0. As it is demonstrated in the Appendix D, this limit
exists and it is equal to zero, therefore we can integrate numerically Ĩ(1,3)

pq, t .

lim
{ρ,ϕ,z′}→{d/2,0,0}

ρJp(Θpqρ) sin(βht z
′) cos(pϕ)√

ρ2+d2/4−ρ d cos(ϕ)+ z′ 2
= 0 (4.89)

E. Computation of matrix C̃(2,3)

The entries of the C̃(2,3)
matrix are:

C̃
(2,3)
ij =

∫

S
(2)
1

∫

S
(3)
1

(
~wi(~r)

∣∣∣∣
z=h
· ûz

)
1

4πR

(
~wj(~r

′)
∣∣∣∣
ρ′= d

2

· û′ρ
)
ds ds′ (4.90)

It can be easily observed that the only differences between the expressions (4.83) and
(4.90) are the normal component of the basis functions to the surface S(1)

1 and the surface
S

(2)
1 , and the dependence on z′ of R. Due to this fact, it seems that we can take profit from

the calculus performed for the C̃(1,3)
matrix in order to compute the C̃(2,3)

one.

Firstly, we must take into account that

(~wi(~r)·n̂(1))
∣∣∣∣
z=0

= (−1)l+1(~wi(~r)·n̂(2))
∣∣∣∣
z=h

(4.91)

Secondly, we must also consider the dependence on z′ of R which makes Ĩ(2,3)
pq, t to be:

Ĩ
(2,3)
pq, t ≡

∫ d
2

0
d ρ

∫ h

0
dz′

∫ 2π

0
dϕ

ρJp(Θpqρ) sin(βht z
′) cos(pϕ)√

ρ2+d2/4−ρ d cos(ϕ)+ (h− z′)2
(4.92)
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By performing a change of variable u = h− z′, we have

Ĩ
(2,3)
pq, t = −

∫ d
2

0
d ρ

∫ 2π

0
dϕ

∫ 0

h
du

ρJp(Θpqρ) sin(βht (h− u)) cos(pϕ)√
ρ2+d2/4−ρ d cos(ϕ)+ u2

= (−1)t+1
∫ d

2

0
d ρ

∫ 2π

0
dϕ

∫ h

0
du

ρJp(Θpqρ) sin(βht u) cos(pϕ)√
ρ2+d2/4−ρ d cos(ϕ)+ u2

= (−1)t+1Ĩ
(1,3)
pq, t (4.93)

Therefore, using equations (4.91) and (4.93) in (4.90) , we obtain:

C̃
(2,3)
ij = (−1)(l+t)C̃

(1,3)
ij (4.94)

4.3.4 Computation of the L matrix
The L matrix is a real matrix whose entries are described by:

Lij =
∫

V1

∫

V1

~wi(~r)·GA
o(~r, ~r

′)· ~wj(~r ′) dv dv′ (4.95)

where V1 is the cylindrical volume defined by the DR; ~wi(~r) and ~wj(~r
′) are the basis func-

tions; i, j = 1, 2, ..., Q, beingQ the number of basis functions used to expand the polarization
vector by the method of moments; GA

o(~r, ~r
′) is the quasi-static dyadic Green’s function for

the electric vector potential. It is easy to demonstrate that it is a symmetric matrix, since:

Lji =
∫

V1

∫

V1

~wj(~r)·GA
o(~r, ~r

′)· ~wi(~r ′) dv dv′ =
∫

V1

∫

V1

~wj(~r)·
(
~wi(~r

′)·[GA
o(~r, ~r

′)]T
)
dv dv′

=
∫

V1

∫

V1

~wi(~r
′)·GA

o(~r
′, ~r)· ~wj(~r) dv dv′ = Lij (4.96)

where we have used the property [GA
o(~r, ~r

′)]T = GA
o(~r

′, ~r).

As it has been shown in section 2.6, this dyadic contains the singularity of the dyadic
Green’s function for the electric potential GA. In fact, by using equation (2.82) we can
extract the singularity in closed form.

GA
o(~r, ~r

′) = Go
s(~R) +GA

o,r(~r, ~r
′) =

1

8πR
(I +

~R~R

R2
) +GA

o,r(~r, ~r
′) (4.97)

where ~R = ~r − ~r ′, and GA
o,r(~r, ~r

′) is the regular part of the quasi-static dyadic Green’s
function.

By introducing equation (4.97) into (4.96), the L matrix can be expressed as the sum of
two matrices: the former one containing the singularity of the Green’s function, and the last
one containing the regular part. Thus, we can write:

L = Lsing + Lreg (4.98)
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where the entries of the Lsing and Lreg are defined by:

Lsingij ≡
∫

V1

∫

V1

~wi(~r)·Go
s(~R)· ~wj(~r ′) dvdv′ (4.99a)

Lregij ≡
∫

V1

∫

V1

~wi(~r)·GA
o,r(~r, ~r

′)· ~wj(~r ′) dv dv′ (4.99b)

Since Go
s(~R) is a singular function when ~r = ~r ′, we need to transform the singular

integral in (4.99a) into a regular one in order to calculate it. On the other hand, the integrand
in (4.99b) is a regular function, and thus, by using the Ewald’s technique to compute the
dyadic GA

o,r, we have computed the integral numerically. However, it must be observed
that expressions (4.99) involve volume-volume integrals (6-D integrals) which require a big
computational effort, reducing significantly the efficiency of the algorithm implemented.
Due to this fact, in this case, it is necessary to reformulate the volume-volume integrals to
surface-surface ones. In this way, we only need to perform a 2-D mesh over the surface of the
dielectric resonator, instead of performing a 3-D mesh in its volume. These transformations
are specially important for the evaluation of the regular part of the L matrix, since they allow
to drastically reduce the required computational effort.

A. Computation of the Lsing matrix

The entries of the Lsing matrix are defined by the following integral:

I =
∫

V1

∫

V1

~wi(~r) ·Go
s(~R) · ~wj(~r ′) dv dv′ (4.100)

By making use of the identity (4.1) and applying the second vector-dyadic Green’s theorem
(eq. (C.12) of Appendix C), we have:

k2
i

∫

V1

~wi(~r) ·Go
s(~R) dv =

∫

V1

(∇×∇× ~wi(~r)) ·Go
s(~R) dv

=
∫

V1

~wi(~r) · ∇×∇×Go
s(~R) dv+

+
∫

S1

(n̂× ~wi(~r)) · ∇×Go
s(~R) ds+

∫

S1

(n̂×∇× ~wi(~r)) ·Go
s(~R) ds (4.101)

and thus, introducing this expression into (4.100), we can write:

k2
i I =

∫

V1

∫

V1

~wi(~r)·∇×∇×Go
s(~R)· ~wj(~r ′) dv dv′

+
∫

V1

∫

S1

(n̂× ~wi(~r))·∇×Go
s(~R)· ~wj(~r ′) ds dv′

+
∫

V1

∫

S1

(n̂×∇× ~wi(~r))·Go
s(~R)· ~wj(~r ′) ds dv′ (4.102)



4.3 Calculation of the matrices used in the Method of Moments 81

Next, taking into account the identity satisfied by the dyadic Go
s(~R) (see section E.1 of

Appendix E),

∇×∇×Go
s(~R) = ∇′×∇′×Go

s(~R) (4.103)

and using the expression (C.20), we can develop the double volume integral in (4.102) to
obtain:

∫

V1

∇×∇×Go
s(~R)· ~wj(~r ′) dv′ =

∫

V1

∇′×∇′×Go
s(~R)· ~wj(~r ′) dv′

= k2
j

∫

V1

Go
s(~R)· ~wj(~r ′) dv′ −

∫

S1

(∇′×Go
s(~R))·(n̂′ × ~wj(~r

′)) ds′

−
∫

S1

Go
s(~R)·(n̂′ ×∇′× ~wj(~r ′)) ds′ (4.104)

According to this last expression, we can rewrite equation (4.102),

k2
i I = k2

j

∫

V1

∫

V1

~wi(~r)·Go
s(~R)· ~wj(~r ′) dv dv′

−
∫

V1

∫

S1

~wi(~r)·(∇′×Go
s(~R))·(n̂′ × ~wj(~r

′)) ds′ dv

−
∫

V1

∫

S1

~wi(~r)·Go
s(~R)·(n̂′ ×∇′× ~wj(~r ′)) ds′ dv

+
∫

V1

∫

S1

(n̂× ~wi(~r))·∇×Go
s(~R)· ~wj(~r ′) ds dv′

+
∫

V1

∫

S1

(n̂×∇× ~wi(~r))·Go
s(~R)· ~wj(~r ′) ds dv′ , (4.105)

and making use of the property(see section E.1 of Appendix E):

∇×Go
s(~R) = ∇′×Go

s(~R) (4.106)

we finally have:

(k2
i − k2

j )I =−
∫

V1

∫

S1

~wi(~r)·(∇×Go
s(~R))·(n̂′ × ~wj(~r

′)) ds′ dv

−
∫

V1

∫

S1

~wi(~r)·Go
s(~R)·(n̂′ ×∇′× ~wj(~r ′)) ds′ dv

+
∫

V1

∫

S1

(n̂× ~wi(~r))·∇′×Go
s(~R)· ~wj(~r ′) ds dv′

+
∫

V1

∫

S1

(n̂×∇× ~wi(~r))·Go
s(~R)· ~wj(~r ′) ds dv′ (4.107)
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The result achieved so far allows to calculate the entries of the Lsing matrix in terms of
5-D integrals instead of 6-D ones, when ki 6= kj . Nevertheless, the integrands in (4.107)
are still singular when R = 0, so we need to transform them once again in order to obtain
regular integrals.

For this purpose, let us consider the following properties of the singular dyadic (see
section E.1 of Appendix E):

Go
s(~R) = −∇×∇×RI

8π
= −∇′×∇′×RI

8π
(4.108a)

∇×Go
s(~R) = −∇×∇×

~R× I

8πR
(4.108b)

∇′×Go
s(~R) = −∇′×∇′×

~R× I

8πR
(4.108c)

In order to transform the volume integrals contained in equation (4.107), we use (C.12)
and (4.108) for the integrals over ~r, so that

∫

V1

~wi(~r)·∇×Go
s(~R) dv =− k2

i

∫

V1

~wi(~r)·
~R× I

8πR
dv +

∫

S1

(n̂×∇× ~wi(~r))·
~R× I

8πR
ds

−
∫

S1

(n̂× ~wi(~r))·Go
s(~R) ds (4.109)

∫

V1

~wi(~r)·Go
s(~R) dv =− k2

i

∫

V1

~wi(~r)
R

8π
dv +

∫

S1

(n̂×∇× ~wi(~r)) R
8π

ds

+
∫

S1

(n̂× ~wi(~r))·
~R× I

8πR
ds (4.110)

Analogously, we use equation (C.20) to develop the integrals over ~r ′, obtaining:

∫

V1

(∇′×Go
s(~R))· ~wj(~r ′) dv′ =− k2

j

∫

V1

~R× I

8πR
· ~wj(~r ′) dv′ −

∫

S1

Go
s(~R)·(n̂′ × ~wj(~r

′)) ds′

+
∫

S1

~R× I

8πR
·(n̂′ ×∇′× ~wj(~r ′)) ds′ (4.111)

∫

V1

Go
s(~R)· ~wj(~r ′) dv′ =− k2

j

∫

V1

R

8π
~wj(~r

′) dv′ +
∫

S1

~R× I

8πR
·(n̂′ × ~wj(~r

′)) ds′

+
∫

S1

R

8π
(n̂′ ×∇′× ~wj(~r ′)) ds′ (4.112)
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We can now introduce (4.109), (4.110), (4.111) and (4.112) into equation (4.107), ob-
taining:

(k2
i − k2

j )I =k2
i

∫

S1

∫

V1

~wi(~r)·
~R

8πR
×(n̂′ × ~wj(~r

′)) dvds′

−
∫

S1

∫

S1

(n̂×∇× ~wi(~r))·
~R

8πR
×(n̂′ × ~wj(~r

′)) dsds′

+
∫

S1

∫

S1

(n̂× ~wi(~r))·Go
s(~R)·(n̂′ × ~wj(~r

′)) dsds′

+ k2
i

∫

S1

∫

V1

~wi(~r)
R

8π
·(n̂′ ×∇′× ~wj(~r ′)) dvds′

−
∫

S1

∫

S1

(n̂×∇× ~wi(~r)) R
8π
·(n̂′ ×∇′× ~wj(~r ′)) dsds′

−
∫

S1

∫

S1

(n̂× ~wi(~r))·
~R

8πR
×(n̂′ ×∇′× ~wj(~r ′)) dsds′

− k2
j

∫

S1

∫

V1

(n̂× ~wi(~r))·
~R

8πR
× ~wj(~r ′) dv′ ds

−
∫

S1

∫

S1

(n̂× ~wi(~r))·Go
s(~R)·(n̂′ × ~wj(~r

′)) ds′ ds

+
∫

S1

∫

S1

(n̂× ~wi(~r))·
~R

8πR
×(n̂′ ×∇′× ~wj(~r ′)) ds′ ds

− k2
j

∫

S1

∫

V1

(n̂×∇× ~wi(~r)) R
8π
· ~wj(~r ′) dv′ ds

+
∫

S1

∫

S1

(n̂×∇× ~wi(~r))·
~R

8πR
×(n̂′ × ~wj(~r

′)) ds′ ds

+
∫

S1

∫

S1

(n̂×∇× ~wi(~r)) R
8π
·(n̂′ ×∇′× ~wj(~r ′)) ds′ ds (4.113)

Simplifying this expression, we have:

(k2
i − k2

j )I = k2
i

∫

S1

∫

V1

~wi(~r)·
~R

8πR
×(n̂′ × ~wj(~r

′)) dvds′

+ k2
i

∫

S1

∫

V1

~wi(~r)
R

8π
·(n̂′ ×∇′× ~wj(~r ′)) dvds′

− k2
j

∫

S1

∫

V1

(n̂× ~wi(~r))·
~R

8πR
× ~wj(~r ′) dv′ ds

− k2
j

∫

S1

∫

V1

(n̂×∇× ~wi(~r)) R
8π
· ~wj(~r ′) dv′ ds (4.114)
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Hence, this expression permits to calculate the entries of the singular L matrix, when
ki 6= kj , in terms of 5-D integrals of regular functions. However, we can further transform
these integrals using the following expressions:

∫

V1

~wi(~r)×
~R

R
dv =

∫

V1

~wi(~r)×∇~R dv

= −
∫

V1

∇×(R~wi(~r)) dv +
∫

V1

R∇× ~wi(~r) dv

= −
∫

S1

n̂× ~wi(~r)Rds+
∫

V1

R∇× ~wi(~r) dv (4.115)

and,

−
∫

V1

~R

R
× ~wj(~r

′) dv′ =
∫

V1

(∇′R)× ~wj(~r
′) dv′

=
∫

V1

∇′×(R~wj(~r
′)) dv′ −

∫

V1

R∇′× ~wj(~r ′) dv′

=
∫

S1

n̂′ × ~wj(~r
′)Rds′ −

∫

V1

R∇′× ~wj(~r ′) dv′ (4.116)

Finally, substituting these results into equation (4.114), we obtain:

(k2
i − k2

j )L
sing
ij = k2

i

∫

S1

∫

V1

R

8π
∇× ~wi(~r)·(n̂′ × ~wj(~r

′)) dvds′

+ k2
i

∫

S1

∫

V1

R

8π
~wi(~r)·(n̂′ ×∇′× ~wj(~r ′)) dvds′

− k2
j

∫

S1

∫

V1

R

8π
(n̂× ~wi(~r))·∇′× ~wj(~r ′) dv′ ds

− k2
j

∫

S1

∫

V1

R

8π
(n̂×∇× ~wi(~r))· ~wj(~r ′) dv′ ds

− (k2
i − k2

j )
∫

S1

∫

S1

R

8π
(n̂× ~wi(~r))·(n̂′ × ~wj(~r

′)) ds ds′ (4.117)

Expression (4.117) is numerically more stable than expression (4.114), since there are no
denominators approaching to zero in the involved integrands. This result provides directly
Lsingij as a five-dimension integral of regular functions, when ki 6= kj , whereas it yields a
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relationship independent of Lsingij when ki=kj .

To deal with this particular case, we can introduce (4.110) into (4.99a) to obtain:

Lsingij =
∫

V1

∫

V1

~wi(~r)·Go
s(~R)· ~wj(~r ′) dv dv′

= −k2
i

∫

V1

∫

V1

~wi(~r)
R

8π
· ~wj(~r ′) dv dv′ +

∫

V1

∫

S1

(n̂×∇× ~wi(~r)) R
8π
· ~wj(~r ′) ds dv′

+
∫

V1

∫

S1

(n̂× ~wi(~r))·
~R

8πR
× ~wj(~r

′) ds dv′ , (4.118)

and making use of the expression (4.116), we obtain:

Lsingij =− k2
i

∫

V1

∫

V1

R

8π
~wi(~r)· ~wj(~r ′) dv dv′ +

∫

V1

∫

S1

R

8π
(n̂×∇× ~wi(~r))· ~wj(~r ′) ds dv′

+
∫

V1

∫

S1

R

8π
(n̂× ~wi(~r))·(∇′× ~wj(~r ′)) ds dv′

−
∫

S1

∫

S1

R

8π
(n̂× ~wi(~r))·(n̂′ × ~wj(~r

′)) ds ds′ (4.119)

The numerical computation of all previous integrals has been performed in the cylindrical
coordinate system centered in the bottom base of the dielectric resonator, where the basis
functions used in the Method of Moments have been defined. In fact, due to the dependency
of these regular functions with the angular variables ϕ and ϕ′, all the integrals presented
above can be reduced in one more dimension, and even a great number of them are directly
equal to zero (see Appendix B). Therefore, the integrals involved in the calculation of Lsing

have been reduced to 4-D regular integrals when ki 6= kj case. On the other hand, when
ki = kj , 5-D regular integrals need to be computed, but this is not a big drawback since
they represent a very reduced percentage of the total number of integrals to be computed.
However, there is an alternative procedure to compute Lsing when ki = kj that results in 4-D
integrals.

It can be observed from equation (4.117) that, when ki = kj , the expression of Lsingij is
an indeterminate form of the type 0/0 that could be calculated as the limit for ki → kj , if
ki would be a continuous independent variable (but this is not the case, due to the boundary
conditions imposed to ~wi). Let us consider the function ~wi(α~r), defined in V1, where α is a
continuous scaling factor. Obviously, ~wi(α~r) does not satisfy the same boundary conditions
on SV1 (unless for α = 1), but in V1 it still satisfies:

∇· ~wi(α~r) = 0, ∇×∇× ~wi(α~r) = α2k2
i ~wi(α~r) = α2k2

j ~wi(α~r), (4.120)

and the limit,

lim
α→1

~wi(α~r) = ~wi(~r)
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For this reason, the result above (equation (4.117)) applied to ~wi(α~r) provides meaning-
ful results for any α 6= 1, even in the ki = kj case. Nevertheless, taking the limit for α→ 1,
we can write:

I =
∫

V1

∫

V1

~wi(~r)·Go
s(~R)· ~wj(~r ′) dvdv′ = lim

α→1

∫

V1

∫

V1

~wi(α~r)·Go
s(~R)· ~wj(~r ′) dvdv′ (4.121)

And thus, introducing (4.117) in (4.121) for ~wi(α~r), and making use of (4.120), we may
rewrite the integral when ki = kj as follows:

I = lim
α→1

{
1

α2 − 1

(
α2

∫

S1

∫

V1

R

8π
∇× ~wi(α~r)·(n̂′ × ~wj(~r

′)) dvds′

+ α2
∫

S1

∫

V1

R

8π
~wi(α~r)·(n̂′ ×∇′× ~wj(~r ′)) dvds′

−
∫

S1

∫

V1

R

8π
(n̂× ~wi(α~r))·∇′× ~wj(~r ′) dv′ ds

−
∫

S1

∫

V1

R

8π
(n̂×∇× ~wi(α~r))· ~wj(~r ′) dv′ ds

)

−
∫

S1

∫

S1

R

8π
(n̂× ~wi(α~r))·(n̂′ × ~wj(~r

′)) ds ds′
}

(4.122)

This expression can be simplified by taking into account that α2 − 1 = (α + 1)(α − 1),
obtaining:

I =
1

2
lim
α→1

{
1

α− 1

(
α2

∫

S1

∫

V1

R

8π
∇× ~wi(α~r)·(n̂′ × ~wj(~r

′)) dvds′

+ α2
∫

S1

∫

V1

R

8π
~wi(α~r)·(n̂′ ×∇′× ~wj(~r ′)) dvds′

−
∫

S1

∫

V1

R

8π
(n̂× ~wi(α~r))·∇′× ~wj(~r ′) dv′ ds

−
∫

S1

∫

V1

R

8π
(n̂×∇× ~wi(α~r))· ~wj(~r ′) dv′ ds

)}

−
∫

S1

∫

S1

R

8π
(n̂× ~wi(~r))·(n̂′ × ~wj(~r

′)) ds ds′ (4.123)

Now we consider the term inside the parenthesis in (4.123) as a continuous function of
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the scaling factor α,

F (α) ≡α2
∫

S1

∫

V1

R

8π
∇× ~wi(α~r)·(n̂′ × ~wj(~r

′)) dvds′

+ α2
∫

S1

∫

V1

R

8π
~wi(α~r)·(n̂′ ×∇′× ~wj(~r ′)) dvds′

−
∫

S1

∫

V1

R

8π
(n̂× ~wi(α~r))·∇′× ~wj(~r ′) dv′ ds

−
∫

S1

∫

V1

R

8π
(n̂×∇× ~wi(α~r))· ~wj(~r ′) dv′ ds (4.124)

Since, due to the indetermination of the kind 0/0 we know that F (1) = 0, then we can regard
the limit in (4.123) as a partial derivative,

∂F (α)

∂α

∣∣∣∣
α=1

= lim
α→1

F (α)− F (1)

α− 1
, (4.125)

and thus, we have:

I =
1

2

∂

∂α

(
α2

∫

S1

∫

V1

R

8π
∇× ~wi(α~r)·(n̂′ × ~wj(~r

′)) dvds′

+ α2
∫

S1

∫

V1

R

8π
~wi(α~r)·(n̂′ ×∇′× ~wj(~r ′)) dvds′

−
∫

S1

∫

V1

R

8π
(n̂× ~wi(α~r))·∇′× ~wj(~r ′) dv′ ds

−
∫

S1

∫

V1

R

8π
(n̂×∇× ~wi(α~r))· ~wj(~r ′) dv′ ds

)

α=1

−
∫

S1

∫

S1

R

8π
(n̂× ~wi(~r))·(n̂′ × ~wj(~r

′)) ds ds′ (4.126)

Next, introducing the new symbol ~wi(~r) = ∂
∂α

~wi(α~r)
∣∣∣
α=1

, and differentiating we obtain:

I =
∫

S1

∫

V1

R

8π
∇× ~wi(~r)·(n̂′ × ~wj(~r

′)) dvds′ +
∫

S1

∫

V1

R

8π
~wi(~r)·(n̂′ ×∇′× ~wj(~r ′)) dvds′

+
1

2

∫

S1

∫

V1

R

8π
∇×~wi(~r)·(n̂′ × ~wj(~r

′)) dvds′ +
1

2

∫

S1

∫

V1

R

8π
~wi(~r)·(n̂′×∇′× ~wj(~r ′)) dvds′

− 1

2

∫

S1

∫

V1

R

8π
(n̂×∇×~wi(~r))· ~wj(~r ′) dv′ds−

1

2

∫

S1

∫

S1

R

8π
(n̂× ~wi(~r))·(n̂′× ~wj(~r ′)) dsds′

−
∫

S1

∫

S1

R

8π
(n̂× ~wi(~r))·(n̂′ × ~wj(~r

′)) dsds′ (4.127)
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We can observe that expression (4.127) may be a good solution for computing Lsingij when
ki = kj . Nevertheless, since Lsing is a symmetric matrix, we should obtain a symmetric
expression with repspect to the indexes i and j. We know that when ki = kj the expression
(4.117) becomes an indeterminate form of the kind 0/0, so this implies that the following
term vanishes:

k2
i

[∫

S1

∫

V1

R

8π
∇× ~wi(~r)·(n̂′ × ~wj(~r

′)) dvds′ +
∫

S1

∫

V1

R

8π
~wi(~r)·(n̂′ ×∇′× ~wj(~r ′)) dvds′

]

−k2
j

[∫

S1

∫

V1

R

8π
(n̂× ~wi(~r))·∇′× ~wj(~r ′) dv′ds−

∫

S1

∫

V1

R

8π
(n̂×∇× ~wi(~r))· ~wj(~r ′) dv′ds

]

and thus,
∫

S1

∫

V1

R

8π
∇× ~wi(~r)·(n̂′ × ~wj(~r

′)) dvds′ +
∫

S1

∫

V1

R

8π
~wi(~r)·(n̂′ ×∇′× ~wj(~r ′)) dvds′ =

∫

S1

∫

V1

R

8π
(n̂× ~wi(~r))·∇′× ~wj(~r ′) dv′ds+

∫

S1

∫

V1

R

8π
(n̂×∇× ~wi(~r))· ~wj(~r ′) dv′ds

Therefore, we can substitute the first two integrals in (4.127) by
∫

S1

∫

V1

R

8π
∇× ~wi(~r)·(n̂′ × ~wj(~r

′)) dvds′ +
∫

S1

∫

V1

R

8π
~wi(~r)·(n̂′ ×∇′× ~wj(~r ′)) dvds′ =

1

2

[ ∫

S1

∫

V1

R

8π
∇× ~wi(~r)·(n̂′ × ~wj(~r

′)) dvds′ +
∫

S1

∫

V1

R

8π
~wi(~r)·(n̂′ ×∇′× ~wj(~r ′)) dvds′

+
∫

S1

∫

V1

R

8π
(n̂× ~wi(~r))·∇′× ~wj(~r ′) dv′ds+

∫

S1

∫

V1

R

8π
(n̂×∇× ~wi(~r))· ~wj(~r ′) dv′ds

]
,

and finally obtain:

Lsingij =
∫

S1

∫

V1

R

8π
∇×~wi(~r) + ~wi(~r)

2
·(n̂′ × ~wj(~r

′)) dv ds′

+
∫

S1

∫

V1

R

8π

(~wi(~r) + ~wi(~r))

2
·(n̂′×∇′× ~wj(~r ′)) dv ds′

−
∫

S1

∫

V1

R

8π

(
n̂×~wi(~r)− ~wi(~r)

2

)
·∇′× ~wj(~r ′) dv′ ds

−
∫

S1

∫

V1

R

8π

(
n̂×∇×~wi(~r)− ~wi(~r)

2

)
· ~wj(~r ′) dv′ ds

−
∫

S1

∫

S1

R

8π
(n̂× ~wi(~r))·(n̂′× ~wj(~r ′)) ds ds′ (4.128)
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In this case, due to the angular dependence of the integrands, we can also use Appendix B
to reduce one dimension the integrals in this last expression. Therefore, the integrals involved
in the calculation of Lsing have been finally reduced to four-dimension regular integrals.

B. Computation of the Lreg matrix

The expression for the Lreg matrix entries is:

Lregij ≡
∫

V1

∫

V1

~wi(~r)·GA
0,r(~r, ~r

′)· ~wj(~r ′) dv dv′

A similar procedure to the one just described for the Lsing terms has been followed to
transform the previous integral. Using the Green’s Second Theorem, a first transformation
of one of the volume integrals can be performed:

∫

V1

~wi(~r)·GA
o,r(~r, ~r

′) dv = k−2
i

{ ∫

V1

~wi(~r)·∇×∇×GA
o,r(~r, ~r

′) dv

+
∫

S1

(n̂× ~wi(~r))·∇×GA
o,r(~r, ~r

′) ds+
∫

S1

(n̂×∇× ~wi(~r))·GA
o,r(~r, ~r

′) ds
}

(4.129)

Introducing in this expression the identity satisfied by the dyadic GA
o,r(~r, ~r

′) (see section E.2
of Appendix E):

∇×∇×GA
o,r(~r, ~r

′) = −∇∇′ger(~r, ~r
′) (4.130)

we can rewrite the integral,

∫

V1

~wi(~r)·GA
o,r(~r, ~r

′) dv = k−2
i

{
−∇′

∫

S1

(~wi(~r)·n̂)ger(~r, ~r
′) ds

+
∫

S1

(n̂× ~wi(~r))·∇×GA
o,r(~r, ~r

′) ds+
∫

S1

(n̂×∇× ~wi(~r))·GA
o,r(~r, ~r

′) ds
}

(4.131)

To obtain the first surface integral in the right hand sside of this expression, we have taken
into account that {~wi} are solenoidal functions, and thus, by means of the Gauss theorem,
we have:

∫

V1

~wi(~r)·∇∇′ger(~r, ~r
′) dv =

∫

V1

∇′∇ger(~r, ~r ′)· ~wi(~r) dv

= ∇′
∫

V1

∇ger(~r, ~r ′)· ~wi(~r) dv = ∇′
∫

S1

ger(~r, ~r
′)(~wi(~r)·n̂) ds (4.132)
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Now we introduce (4.131) into (4.99b) to rewrite the entries of the Lreg matrix as follows:

Lregij = k−2
i

{
−

∫

V1

∫

S1

∇′
[
(~wi(~r)·n̂)ger(~r, ~r

′)
]
· ~wj(~r ′) ds dv′

+
∫

V1

∫

S1

(n̂× ~wi(~r))·∇×GA
o,r(~r, ~r

′)· ~wj(~r ′) ds dv′

+
∫

V1

∫

S1

(n̂×∇× ~wi(~r))·GA
o,r(~r, ~r

′)· ~wj(~r ′) ds dv′
}

≡ k−2
i {−I(1)

ij + I
(2)
ij + I

(3)
ij } (4.133)

Analogously to the procedure followed to obtain the equation (4.132), we can transform
the integral I(1)

ij using the Gauss theorem:

I
(1)
ij =

∫

S1

∫

S1

(~wi(~r)·n̂)·ger(~r, ~r ′)·(~wj(~r ′)·n̂′) ds ds′ (4.134)

In order to reformulate the integrals I(2)
ij and I(3)

ij , let us first consider the following ex-
pression:

∫

V1

GA
o,r(~r, ~r

′)· ~wj(~r ′) dv′ =k−2
j

{∫

V1

∇′×∇′×GA
o,r(~r, ~r

′)· ~wj(~r ′) dv′

+
∫

S1

∇′×GA
o,r(~r, ~r

′)·(n̂′× ~wj(~r ′)) ds′ +
∫

S1

GA
o,r(~r, ~r

′)·(n̂′×∇′× ~wj(~r ′)) ds′
}

(4.135)

where we have used equation (4.1) and the second vector-dyadic Green’s theorem (see
(C.20)). Now, considering the identities satisfied by the dyadic GA

o,r(~r, ~r
′) (see section E.2

of Appendix E):

∇′×∇′×GA
o,r(~r, ~r

′) = −∇∇′ger(~r, ~r
′) (4.136)

∇′×GA
o,r(~r, ~r

′) = ∇×GF
o,r(~r, ~r

′) (4.137)

We can rewrite the expression (4.135) as:
∫

V1

GA
o,r(~r, ~r

′)· ~wj(~r ′) dv′ =k−2
j

{
−∇

∫

S1

ger(~r, ~r
′)(n̂′ · ~wj(~r ′)) ds′

+
∫

S1

∇×GF
o,r(~r, ~r

′)·(n̂′× ~wj(~r ′)) ds′ +
∫

S1

GA
o,r(~r, ~r

′)·(n̂′×∇′× ~wj(~r ′)) ds′
}

(4.138)

This way, by introducing equation (4.138) into the expressions of I(2)
ij and I(3)

ij , we have:

I
(2)
ij = k−2

j

{
−

∫

S1

∫

S1

(n̂× ~wi(~r))·∇∇′gmr (~r, ~r ′)·(n̂′× ~wj(~r ′)) ds ds′

+
∫

S1

∫

S1

(n̂× ~wi(~r))·∇×GA
o,r(~r, ~r

′)·(n̂′×∇′× ~wj(~r ′)) ds ds′
}
, (4.139)
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and

I
(3)
ij =k−2

j

{
−

∫

S1

∫

S1

(n̂×∇× ~wi(~r))·∇ger(~r, ~r ′)·(n̂′ · ~wj(~r ′)) ds ds′

+
∫

S1

∫

S1

(n̂×∇× ~wi(~r))·∇×GF
o,r(~r, ~r

′)·(n̂′× ~wj(~r ′)) ds ds′

+
∫

S1

∫

S1

(n̂×∇× ~wi(~r))·GA
o,r(~r, ~r

′)·(n̂′×∇′× ~wj(~r ′)) ds ds′
}

(4.140)

where we have used to obtain I(2)
ij , the identity ∇×∇×GF

o,r(~r, ~r
′) = −∇∇′gmr (~r, ~r ′) (see

section E.2 of Appendix E).

The terms containing ∇∇ ′gmr (~r, ~r ′) and ∇ger(~r, ~r ′) need further development. For in-
stance, in order to arrange the term containing ∇∇′gmr in the expression of I(2)

ij , it must be
noticed that (n̂ × ~wi(~r)) is a vector tangent to the surface S1. In consequence, it can be
written:

∫

S1

∫

S1

(n̂× ~wi(~r))·∇∇′gmr (~r, ~r ′)·(n̂′× ~wj(~r ′)) ds ds′ =

∫

S1

∫

S1

(n̂× ~wi(~r))·∇s∇′
s g

m
r (~r, ~r ′)·(n̂′× ~wj(~r ′)) ds ds′

Then, applying the Gauss theorem on a surface, it is obtained:
∫

S1

∫

S1

(n̂× ~wi(~r))·∇∇′gmr (~r, ~r ′)·(n̂′× ~wj(~r ′)) ds ds′ =

∫

S1

∫

S1

(∇s ·(n̂× ~wi(~r)))·gmr (~r, ~r ′)·(∇′
s ·(n̂′× ~wj(~r ′))) ds ds′ (4.141)

In order to reduce the integral containing ∇gereg in the expression of I(3)
ij , let us apply the

the Vector Green’s First Theorem (eq. (C.7)) to the following expression:
∫

V1

~wi(~r)·∇ger(~r, ~r ′) dv = k−2
i

∫

V1

(∇×∇× ~wi(~r))·∇ger(~r, ~r ′) dv

= k−2
i

[ ∫

V1

(∇× ~wi(~r))·(∇×∇ger(~r, ~r ′)) dv−
∫

S1

n̂·(∇ger(~r, ~r ′)×∇× ~wi(~r)) ds
]

= k−2
i

∫

S1

(n̂×∇× ~wi(~r))·∇ger(~r, ~r ′) ds (4.142)

We can write:
∫

S1

∫

S1

(n̂×∇× ~wi(~r))·∇ger(~r, ~r ′)·(n̂′ · ~wj(~r ′)) ds ds′ =

k2
i

∫

V1

∫

S1

~wi(~r)·∇ger(~r, ~r ′)·(n̂′ · ~wj(~r ′)) dv ds′
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Therefore, applying now the Gauss theorem to the volume integral we finally get
∫

S1

∫

S1

(n̂×∇× ~wi(~r))·∇ger(~r, ~r ′)·(n̂′ · ~wj(~r ′)) ds ds′ =

k2
i

∫

S1

∫

S1

(n̂· ~wi(~r))·ger(~r, ~r ′)·(n̂′ · ~wi(~r)) ds ds′ (4.143)

Finally, introducing the equations (4.141) and (4.143) into (4.139) and (4.140) respectively,
and substituting the reduced expressions for I(1)

ij , I(2)
ij and I(3)

ij into Lregij , we obtain the fol-
lowing expression in terms of double surface integrals:

Lregij =
1

k2
i k

2
j

{
−

∫

S1

∫

S1

∇s ·(n̂× ~wi(~r))·gmr (~r, ~r ′)·∇′
s ·(n̂′× ~wj(~r ′)) ds ds′

+
∫

S1

∫

S1

(n̂×∇× ~wi(~r))·GA
o,r(~r, ~r

′)·(n̂′×∇′× ~wj(~r ′)) ds ds′

+
∫

S1

∫

S1

(n̂× ~wi(~r))·∇×GA
o,r(~r, ~r

′)·(n̂′×∇′×~wj(~r ′)) ds ds′

+
∫

S1

∫

S1

(n̂× ~wj(~r))·∇×GA
o,r(~r, ~r

′)·(n̂′×∇′× ~wi(~r)) ds ds′
}

− k2
i+k

2
j

k2
i k

2
j

∫

S1

∫

S1

(n̂· ~wi(~r))·ger(~r, ~r ′)·(n̂′ · ~wj(~r ′)) ds ds′ (4.144)

Therefore the Lreg matrix has been expressed in terms of 4-D surface integrals, avoiding
in such a a way the necessity of performing 3-D meshes in the dielectric body.

4.3.5 Computation of the G, T, W and F matrices

So far in this section we have presented the computation of the D, S, C and L matrices.
According to the system of equations described in (3.37), it can be easily observed that these
are the matrices involved in the solution of the homogeneous eigenvalue problem (3.42). As
it has been explained in section (3.4), the solution of this eigenvalue problem implies that the
impressed voltage is zero, this is, the resonant structure with its access ports closed. There-
fore, at this point we are able to calculate the resonant frequencies of the rectangular cavity
loaded with the cylindrical dielectric resonator and its modal field distribution. However, if
we want to calculate the GAM of the structure under analysis, we still have to consider the
aperture of the access ports. For this purpose, we have to proceed with the computation of
the G, T, F and W matrices collected in Table 3.1. We recall that this matrices are directly
involved in the computation of the GAM (3.50) through the calculus of the matrices YA and
YB (see (3.24)).

In this work we have considered the aperture of the four lateral faces and the top cap of
the rectangular cavity under study (see Fig. 4.7). Note that following the notation introduced
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Figure 4.7: Rectangular cavity loaded with a cylindrical DR opened by its five access ports.

in the expression (3.51), we consider Nξ modes at each access port (ξ), being N the total
number of modes at the ports (see table 3.1):

N =
5∑

ξ

Nξ (4.145)

Therefore, using this notation, the calculation of the G, T, W and F matrices can be per-
formed by blocks. These blocks represent the interaction of each access port, and we can
express their entries as:

G(γ,ξ)
mn =

∫

Sγ

∫

Sξ

∇s ·~h(γ)
m (~r) gm(~r, ~r ′) ∇′

s ·~h(ξ)
n (~r ′) ds ds′ (4.146)

T (γ,ξ)
mn =

∫

Sγ

∫

Sξ

~h(γ)
m (~r)·GF

o (~r, ~r
′)·~h(ξ)

n (~r ′) ds ds′ (4.147)

W (ξ)
mn =

∫

V1

∫

Sξ

~wm(~r)·∇×GF
o (~r, ~r

′)·~h(ξ)
n (~r ′) ds′ dv (4.148)

F (ξ)
mn =

∫

Sξ

~Hm(~r)·~h(ξ)
n (~r) ds (4.149)

In theses expressions γ, ξ = 1, . . . , 5 represent the access ports (see Fig. 4.7); Sξ is the
rectangular surface associated to the cross section of the port (ξ); n = 1, . . . , Nξ; m =
1, . . . , Nγ for the G and T matrices; m = 1, . . . , Q for the W matrix, where Q is the number
of basis functions used; m = 1, . . . ,M for the F matrix, where M is the number of the
rectangular cavity modes used in the expansion of the dyadic Green’s function; ~h(ξ)

n (~r) is
the n-th normalized magnetic modal vector associated to the port (ξ); gm(~r, ~r ′) is the static
Green’s function for the magnetic scalar potential of the rectangular cavity; GF

o (~r, ~r
′) is

the quasi-static dyadic Green’s function for the electric vector potential of the rectangular
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cavity; ~Hm(~r) is the m-th magnetic resonant mode of the empty rectangular cavity; ~wm(~r) is
the m-th basis function used to expand the polarization vector by the MoM.

Let us consider now the geometry of the structure under analysis in Fig. 4.8. It can be
observed that, in the coordinate system (x1, y1, z1), we have considered that the access port
(1) of the structure is located at z1 = 0; the port (2) is on the plane z1 = c; the port (3) on
x1 = 0; the port (4) on x1 = a, and the port (5) on the plane defined by y1 = b.

Figure 4.8: Rectangular cavity loaded with a cylindrical DR opened by its five access ports.

To compute the entries of the matrices (4.146)–(4.149), it is necessary to know the ex-
pressions of the magnetic modal vectors ~h(ξ)

n (~r) at each access port of the rectangular cavity.
For this purpose, let us consider (xξ, yξ) the transverse coordinates defined at the port (ξ),
being zξ the axial coordinate. Thus, we can write [86]:

~h(ξ)
n (~r) = Nxξ,n Fxξ,n(xξ, yξ) x̂ξ +Nyξ,n Fyξ,n(xξ, yξ) ŷξ (4.150)

where the normalization factorsNxξ,n andNyξ,n, as well as the scalar functions Fxξ,n(xξ, yξ)
and Fyξ,n(xξ, yξ) associated to each access port are defined in the section A.1 of the Appendix
A.

In Fig. 4.8, the coordinate system (x1, y1, z1) is shown. This coordinate system has
been used to describe the modal vectors of the parallel access ports ξ = 1 and ξ = 2. It is
remarkable that, due to this election, the propagative direction of the modes from the port
ξ = 1 points inward the rectangular cavity, whereas in the case of the modes from the port
ξ = 2, it points outward the rectangular cavity. Therefore, we must introduce a negative sign
in the expression of the modal vectors at the port ξ = 2 in order to use them properly. This is
due to the fact that the magnetic modal vectors are related to the equivalent modal currents
that characterize the GAM [107], and they are always defined in the inward direction to the
access. Furthermore, in the figure 4.8 the coordinate systems (x3, y3, z3) and (x5, y5, z5) are
also shown. The former is used to describe the modal vectors of the parallel ports ξ = 3 and
ξ = 4. In this case the modal vectors of port ξ = 4 must be also modified with a minus sign,
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since we have used the coordinate system (x3, y3, z3) to formulate them. The last one is used
to formulate the modal vectors of the port ξ = 5.

The dimensions lxξ
× lyξ

that define the cross section of each rectangular access port (ξ)
have been chosen as follows:

lx1 = lx2 = a; lx3 = lx4 = c; lx5 = c;

ly1 = ly2 = b; ly3 = ly4 = b; ly5 = a (4.151)

As well as, the dimensions lzξ
related to the propagative direction at each access port are:

lz1 = lz2 = c; lz3 = lz4 = a; lz5 = b (4.152)

Moreover, we recall that in order to calculate the S matrix, for convenience, we have
formulated the electric modes of the rectangular cavity in the coordinate system (xc, yc, zc)
shown in figure FIGURA. Therefore, to evaluate the integrals involved in the computation of
the F matrix, we have to be coherent and to use the same coordinate system to formulate the
magnetic modes of the rectangular resonator. The dimensions of the cavity in this coordinate
system are:

lxc = a; lyc = c; lzc = b (4.153)

At this point, we can observe that the expressions (4.146)–(4.148) contain the scalar
and dyadic Green’s functions which are singular when ~r = ~r ′. Thus, a first inspection could
suggest us to proceed like for the L and C matrices, extracting the singularities in closed form
and transforming the singular integrals to regular ones. Nevertheless, for the computation of
the G, T and W matrices we will use a different procedure. The scalar magnetic Green’s
function, gm(~r, ~r ′), of a rectangular resonator can be expressed as a series of the scalar
functions associated to the modal vectors of a rectangular waveguide with the same cross
section as the cavity (see equation (A.29) of the Appendix A). This kind of expression does
converge very slowly, and for this reason it is usually not convenient to use them for the
computations. However, in our case its use results very advantageous, since it allows us to
solve analytically the integrals involved in the computation of the G matrix, as we detail in
the next subsections. Analogously, the static dyadic Green’s function and its curl, GF

o (~r, ~r
′)

and∇×GF
o (~r, ~r

′), can be expressed in terms of the modal vectors associated with the access
ports (see section A.3 of the Appendix A). Despite the fact that these series are slowly
convergent, they permits us to obtain analytical expressions for the integrals involved in the
computation of the T and W matrices.

A. Computation of the G matrix

The expression of the entries G(γ,ξ)
mn is:

G(γ,ξ)
mn =

∫

Sγ

∫

Sξ

∇s ·~h(γ)
m (~r) gm(~r, ~r ′) ∇′

s ·~h(ξ)
n (~r ′) ds ds′ (4.154)



96 Application to rectangular cavities loaded with a dielectric puck

To evaluate this integral, firstly we calculate the divergence of the magnetic modal vector
at the access port (ξ) (see expressions (A.11) y (A.13) of the Appendix A):

∇′
s ·~h(ξ)

n (~r ′) =




νξ k

(ξ)
t,n φ

(ξ)TE
nxξ

,nyξ
(xξ, yξ), if n is a TEzξ mode

0, if n is a TMzξmode
(4.155)

where (nxξ
, nyξ

) are the modal indexes associated to the n-th mode at the port (ξ) which
are related to the coordinates xξ y yξ, respectively; k(ξ)

t,n is the n-th cutoff wavenumber at the
same port; φ(ξ)TE

nxξ
,nyξ

(xξ, yξ) is the scalar modal function used to obtain the modal eigenvectors
TEzξ , which is defined by the equation (A.10) of the Appendix A; and νξ is a constant factor
that forces the propagative direction to point inward to the rectangular cavity. In particular:

νξ =





1, if ξ = 1, 3, 5

−1, if ξ = 2, 4
(4.156)

Therefore, it is easily observed that if any of the magnetic modes ~h(γ)
m (~r) or ~h(ξ)

n (~r ′) are
TMzξ modes, then:

G(γ,ξ)
mn = 0 (4.157)

Thus, to evaluate the expression (4.154) when both ~h(γ)
m (~r) and ~h(ξ)

n (~r ′) are TEzξ modes,
we define the following surface integral:

ζ(ξ)
n (r) ≡

∫

Sξ

gm(~r, ~r ′) ∇′
s ·~h(ξ)

n (~r ′) ds′ (4.158)

Introducing (4.155) and (A.29) in this expression, we have:

ζ(ξ)
n (r) = νξ

k
(ξ)
t,n

lzξ

φ(ξ)TE
nxξ

,nyξ
(xξ, yξ)

∞∑

nzξ
=0

ν
nzξ

ξ εnzξ

cos
(
kzξ

zξ
)

(k
(ξ)
t,n)2 + k2

zξ

(4.159)

where εn is the Neumman factor (eq. (A.6)) and kzξ
is the wavenumber of the rectangular

cavity related to the zξ coordinate defined by the equation (A.31).

Therefore, if m is a mode of the access port (γ) and (mxγ ,myγ ) are the modal indexes
related to the coordinates xγ and yγ , respectively, then the entry G(γ,ξ)

m,n can be expressed as
follows:

G(γ,ξ)
mn =

∫

Sγ

∇S · h(γ)
m (r) ζ(ξ)

n (r) dS =
1

lzξ

νγ νξ k
(γ)
t,m k

(ξ)
t,n

∞∑

nzξ
=0

ν
nzξ

ξ

εnzξ

(k
(ξ)
t,n)2 + k2

zξ

·
∫

Sγ

φ(γ)TE
mxγ ,myγ

(xγ, yγ)φ
(ξ)TE
nxξ

,nyξ
(xξ, yξ) cos

(
kzξ

zξ
)
dS (4.160)
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where φ(γ)TE
mxγ ,myγ

(xγ, yγ) represents the potential function of the m-th TEzγ mode of the port

(γ), and k(γ)
t,m is the cutoff wavenumber of that mode.

In order to evaluate the integral (4.160), we need to express its integrand in one coordi-
nate system. For this purpose, we reformulate the potential function φ(γ)TE

mxγ ,myγ
(xγ, yγ) in the

coordinate system (xξ, yξ, zξ). Furthermore, it is convenient to notice that the integral must
be evaluated in the rectangular cross section defined by the port (γ). This surface is described
by the plane ϑξ = const, whit ϑ = (xξ, yξ, zξ). For instance, the surface related to port (1)
is on the plane x3 = const and the plane x5 = const. Thus, the surface integral above can
always be expressed as two unidimensional integrals of the kind:

∫ l%ξ

0
cos(k%ξ,m %ξ) cos(k%ξ,n %ξ) d%ξ =

l%ξ

εn%ξ

δm%ξ
,n%ξ

, with % = (xξ, yξ, zξ) 6= ϑξ (4.161)

where m%ξ
is the modal index of the m-th mode related to the coordinate %ξ; k%ξ,m is the

cutoff wavenumber related to the coordinate %ξ which is defined as k%ξ,m = m%ξ
π/l%ξ

, and
δm,n is the Kronecker delta function.

At this point, by solving analytically the surface integral in (4.160) by means of (4.161),
we obtain as a result an infinite series that can be also solved analytically, as it is detailed in
the section F.1 of the Appendix F.

Using this procedure, the entries of the G(γ,ξ)
mn matrix which relate parallel access ports,

this is, the entries G(ξ,ξ)
mn with ξ = 1, 2, . . . , 5 and the entries G(ξ,ξ+1)

mn with ξ = 1, 3, can be
expressed as:

G(ξ,ξ)
mn = k

(ξ)
t,n coth

(
k

(ξ)
t,n lzξ

)
δm,n (4.162)

G(ξ,ξ+1)
mn = − k

(ξ)
t,n

sinh
(
k

(ξ)
t,n lzξ

) δm,n (4.163)

And the entries of the matrix blocks that relate the orthogonal access ports, this is, the
elements G(γ,ξ)

mn with γ = 1, 2 and ξ = 3, 4, 5, or with γ = 3, 4 and ξ = 5, are given by,

G(γ,ξ)
mn =

k
(γ)
t,m k

(ξ)
t,n

(k
(ξ)
t,n)2 + k

(γ)2
mzξ

νγ νξ√
lzξ
lzγ

ρ(γ,ξ)
m,n ψ

(γ,ξ)
m,n (4.164)

where k(γ)
mzξ

represents the wavenumber of the m-th mode of the port (γ) associated to the

coordinate zξ; and ρ(γ,ξ)
m,n and ψ(γ,ξ)

m,n are auxiliary functions which definition can be found in
section F.2 of the Appendix F.

Finally, it is remarkable that, since the matrix G is symmetric, we have only evaluated
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the matrix blocks G(γ,ξ)
mn with ξ ≥ γ.

B. Computation of the T matrix

As it has been reported before, the blocks of the T matrix, T (γ,ξ)
mn , are:

T (γ,ξ
mn ) =

∫

Sγ

∫

Sξ

~h(γ)
m (~r)·GF

o (~r, ~r
′)·~h(ξ)

n (~r ′) ds ds′ (4.165)

where the expression for the static part of the dyadic Green’s function for the electric po-
tential vector of a rectangular resonator, GF

o (~r, ~r
′), can be found in the equation (A.33) of

the Appendix A. To evaluate this integral, we will assume that m represents a mode of the
port (γ), being (mxγ ,myγ ) its modal indexes related to the coordinates xγ e yγ , respectively.
Analogously, we will also assume that n is a mode of the port (ξ), and its modal indexes
(nxξ

, nyξ
) are related to the transverse coordinates xξ e yξ, respectively.

In order to evaluate the entries of the T matrix, we will first consider the following vector
surface integral:

~Γ (ξ)
n (~r) =

∫

Sξ

GF
o (~r, ~r

′) · ~h(ξ)
n (~r ′) ds′ = Γ(ξ)

xξ,n
x̂ξ + Γ(ξ)

yξ,n
ŷξ + Γ(ξ)

zξ,n
ẑξ (4.166)

where the three components of the vector ~Γ (ξ)
n (~r) can be expressed as:

Γ(ξ)
xξ,n

=
∫

Sξ

(
h

(ξ)
x′

ξ
,nG

F
0,xξx

′
ξ
+ h

(ξ)
y′

ξ
,nG

F
0,xξy

′
ξ
+ h

(ξ)
z′
ξ
,nG

F
0,xξz

′
ξ

)
ds′ (4.167a)

Γ(ξ)
yξ,n

=
∫

Sξ

(
h

(ξ)
x′

ξ
,nG

F
0,yξx

′
ξ
+ h

(ξ)
y′

ξ
,nG

F
0,yξy

′
ξ
+ h

(ξ)
z′
ξ
,nG

F
0,yξz

′
ξ

)
ds′ (4.167b)

Γ(ξ)
zξ,n

=
∫

Sξ

(
h

(ξ)
x′

ξ
,nG

F
0,zξx

′
ξ
+ h

(ξ)
y′

ξ
,nG

F
0,zξy

′
ξ
+ h

(ξ)
z′
ξ
,nG

F
0,zξz

′
ξ

)
ds′ (4.167c)

Thus, introducing the modal vector functions of the rectangular access ports and the
dyadic Green’s function (see Appendix A) in the equations (4.167), we can obtain the value
of the vector ~Γ (ξ)

n (~r) in the case that the mode n is a TEzξ mode:

Γ(ξ)
xξ,nTE

= νξ
2

lzξ

N TE
xξ,n

sin
(
kxξ,n xξ

)
cos

(
kyξ,n yξ

)
Θ(ξ)
nTE

(zξ) (4.168a)

Γ(ξ)
yξ,nTE

= νξ
2

lzξ

N TE
yξ,n

cos
(
kxξ,n xξ

)
sin

(
kyξ,n yξ

)
Θ(ξ)
nTE

(zξ) (4.168b)

Γ(ξ)TE
zξ,nTE

= −νξ 2

lzξ

N TE
xξ,n

(k
(ξ)
t,n)

2

kxξ,n

cos
(
kxξ,n xξ

)
cos

(
kyξ,n yξ

)
Φ(ξ)
nTE

(zξ) (4.168c)
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And the value of ~Γ (ξ)
n (~r) when the mode n is a TMzξ mode:

Γ(ξ)
xξ,nTM

= νξ
1

lzξ

N TM
xξ,n

sin
(
kxξ,n xξ

)
cos

(
kyξ,n yξ

)
Θ(ξ)
nTM

(zξ) (4.169a)

Γ(ξ)
yξ,nTM

= −νξ 1

lzξ

N TM
yξ,n

cos
(
kxξ,n xξ

)
sin

(
kyξ,n yξ

)
Θ(ξ)
nTM

(zξ) (4.169b)

Γ(ξ)
zξ,nTM

= 0 (4.169c)

In the expressions (4.168a)–(4.169c), we have made use of the infinite series:

Θ(ξ)
nTE

(zξ) =
∞∑

nzξ
=1

k2
zξ(

(k
(ξ)
t,n)2 + k2

zξ

)2 cos
(
kzξ

zξ
)
ν
nzξ

ξ (4.170)

Θ(ξ)
nTM

(zξ) =
∞∑

nzξ
=0

εnzξ

(k
(ξ)
t,n)2 + k2

zξ

cos
(
kzξ

zξ
)
ν
nzξ

ξ (4.171)

Φ(ξ)
nTE

(zξ) =
∞∑

nzξ
=1

kzξ(
(k

(ξ)
t,n)2 + k2

zξ

)2 sin
(
kzξ

zξ
)
ν
nzξ

ξ (4.172)

where kzξ
= nzξ

π/lzξ
.

Consequently, the T (γ,ξ)
mn matrix can be calculated as follows:

T (γ,ξ)
mn =

∫

Sγ

~h(γ)
m (~r) · ~Γ (ξ)

n (~r) ds =
∫

Sγ

(
h(γ)
xγ ,m Γ(ξ)

xξ,n
+ h(γ)

yγ ,m Γ(ξ)
yξ,n

+ h(γ)
zγ ,m Γ(ξ)

zξ,n

)
ds

(4.173)

In order to evaluate the integral (4.173), we proceed analogously to the calculation of
(4.160). We express the modal vector ~h(γ)

m (~r) in the coordinate system (xξ, yξ, zξ). Fur-
thermore, the integral must be evaluated in the rectangular cross section defined by the port
(γ). Therefore, the surface is described by the plane ϑξ = const, with ϑ = (xξ, yξ, zξ). In
this way, the surface integral above can be expressed as unidimensional integrals of the type
described in (4.161) or of the type:

∫ l%ξ

0
sin(k%ξ,m %ξ) sin(k%ξ,n %ξ) d%ξ =

l%ξ

2
(εn%ξ

− 1) δm%ξ
,n%ξ

, with % = (xξ, yξ, zξ) 6= ϑξ

(4.174)
In this way, by solving analytically the surface integral in (4.173) by means of (4.161)

and (4.174), we obtain as a result infinite series that can be also summed in a closed form, as
it is detailed in the section F.1 of the Appendix F.

Finally, the results obtained for the blocks of the T matrix which relate parallel access
ports, this is, the entries T (ξ,ξ)

mn with ξ = 1, 2, . . . , 5 and the entries T (ξ,ξ+1)
mn with ξ = 1, 3.
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Moreover, we must take into account that, in this case, the modes m and n can be TE or TM
modes:

T (ξ,ξ)
mTE,nTE

=
1

2k
(ξ)
t,n


coth

(
k

(ξ)
t,n lzξ

)
− k

(ξ)
t,n lzξ

sinh2
(
k

(ξ)
t,n lzξ

)

 δm,n (4.175)

T (ξ,ξ+1)
mTE,nTE

= − 1

2k
(ξ)
t,n

1

sinh
(
k

(ξ)
t,n lzξ

)

1− k

(ξ)
t,n lzξ

tanh
(
k

(ξ)
t,n lzξ

)

 δm,n (4.176)

T (ξ,ξ)
mTM,nTE

= T (ξ,ξ)
mTE,nTM

= T (ξ,ξ+1)
mTM,nTE

= T (ξ,ξ+1)
mTE,nTM

= 0 (4.177)

T (ξ,ξ)
mTM,nTM

=
1

k
(ξ)
t,n

coth
(
k

(ξ)
t,n lzξ

)
δm,n (4.178)

T (ξ,ξ+1)
mTM,nTM

= − 1

k
(ξ)
t,n

1

sinh
(
k

(ξ)
t,n lzξ

) δm,n (4.179)

And the elements of the matrix which relate orthogonal access ports, this is, the elements
T (γ,δ)
mn with γ = 1, 2 y ξ = 3, 4, 5; or with γ = 3, 4 y ξ = 5, are given by:

T (γ,ξ)
mTE,nTE

= νγ νξ
k2
mxγ

k
(γ)
t,m

ρ(γ,ξ)
m,n ψ

(γ,ξ)
m,n(

(k
(ξ)
t,n)2 + k2

mzξ

)2

1√
lzγ lzξ


 1

k
(ξ)
t,n

χ(γ,ξ)
m,n − k

(ξ)
t,n ϕ

(γ,ξ)
m,n


(4.180)

T (γ,ξ)
mTM,nTE

= −νγ νξ
kmxγ

k
(γ)
t,m

ζ(γ,ξ)
m,n τ (γ,ξ)

(
(k

(ξ)
t,n)2 + k2

mzξ

)2

√√√√ 2

lzγ lzξ


k(ξ)

t,n +
k2
mxγ

k
(ξ)
t,n


 ψ(γ,ξ)

m,n (4.181)

T (γ,ξ)
mTE,nTM

= −
knxξ

knyξ

k
(γ)
t,m k

(ξ)
t,n

νγ νξ θ
(γ,ξ)
m,n

(k
(ξ)
t,n)2 + k2

mzξ

√√√√ 2

lzγ lzξ

ψ(γ,ξ)
m,n (4.182)

T (γ,ξ)
mTM,nTM

=
kmxγ

k
(γ)
t,m k

(ξ)
t,n

νγ νξ λ
(γ,ξ)
m,n

(k
(ξ)
t,n)2 + k2

mzξ

2√
lzγ lzξ

τ (γ,ξ) ψ(γ,ξ)
m,n (4.183)

where the next auxiliary functions χ(γ,ξ)
m,n , ϕ(γ,ξ)

m,n , ζ(γ,ξ)
m,n , τ (γ,ξ), θ(γ,ξ)

m,n and λ(γ,ξ)
m,n have been de-

fined in the section F.2 of the Appendix F. To conclude, it is remarkable that the T matrix
is also symmetric. For this reason, we have only presented the expressions of T(γ,ξ) for the
cases ξ ≥ γ.

C. Computation of the W matrix

The W matrix can be also calculated by blocks, W (ξ)
mn, which expression is:

W (ξ)
mn =

∫

V1

∫

Sξ

~wm(~r)·∇×GF
o (~r, ~r

′)·~h(ξ)
n (~r ′) ds′ dv (4.184)
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where the expression of the curl of the dyadic Green’s function for the electric vector poten-
tial of a rectangular cavity can be found in the equation (A.36) of the Appendix A. Firstly,
in order to calculate this integral, let us consider the following surface integral in the primed
coordinate system:

~Ψ (ξ)
n (~r) ≡

∫

Sξ

∇×GF
o (~r, ~r

′)·~h(ξ)
n (~r ′) ds′ (4.185)

We substitute now the equations (A.34)-(A.35) and (A.37)-(A.38) into (A.36) to obtain the
expression of GF

o (~r, ~r
′) in terms of the magnetic modal vectors of the access ports. Thus,

we can evaluate (4.185) taking into account wether the n mode of the access port is a TEzξ

mode or a TMzξ one:

~Ψ (ξ)
nTE

(~r) =
εnxξ

εnyξ√
lxξ
lyξ

1

k
(ξ)
t,n

sinh
(
k

(ξ)
t,n Υ(ξ)(zξ)

)

sinh(k
(ξ)
t,n lzξ

)

{
kyξ,n cos(kxξ,n xξ) sin(kyξ,n yξ) x̂ξ

− kxξ,n sin(kxξ,n xξ) cos(kyξ,n yξ) ŷξ
}

(4.186)

~Ψ (ξ)
nTM

(~r) = − 2√
lxξ
lyξ

1

k
(ξ)
t,n

sinh
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k

(ξ)
t,n Υ(ξ)(zξ)

)

sinh(k
(ξ)
t,n lzξ

)

{
kxξ,n cos(kxξ,n xξ) sin(kyξ,n yξ) x̂ξ

+ kyξ,n sin(kxξ,n xξ) cos(kyξ,n yξ) ŷξ
}

+νξ
2√
lxξ
lyξ

sin(kxξ,n xξ) sin(kyξ,n yξ)
cosh

(
k

(ξ)
t,n Υ(ξ)(zξ)

)

sinh(k
(ξ)
t,n lzξ

)
ẑξ (4.187)

where the following auxiliary function has been defined:

Υ(ξ)(zξ) ≡



lzξ
− zξ, if ξ = 1, 3, 5

zξ, if ξ = 2, 4
(4.188)

Therefore, the entries of the W (ξ)
mn matrix can be finally calculated as:

W (ξ)
mn =

∫

V1

~wm(~r)·~Ψ (ξ)
n (r) dv (4.189)

This last integral can be performed numerically. For this purpose, to compute any block
matrix W(ξ) we must express the basis functions ~wm(~r) in the coordinate system (xξ, yξ, zξ)
of each port (ξ). As a consequence, we are able to calculate the elements of the W matrix in
terms of 3-D integrals, instead of solving 5-D ones. Note that these integrals do not present
singularities.

D. Computation of the F matrix

The entries of the F matrix are:

F (ξ)
mn =

∫

S

~Hm(~r) · ~h(ξ)
n (~r) ds (4.190)
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where ~Hm(~r) is the magnetic field associated to the m-th mode of the rectangular cavity. To
evaluate the expression of the entries F (ξ)

mn, we must express the integrand in one coordinate
system. For this purpose, we will reference the magnetic modal vector ~Hm(~r), formulated
in the coordinate system (xc, yc, zc) (see Fig. 4.7), to the coordinate systems (xξ, yξ, zξ) of
each access port (ξ).

Now, let us consider that (mxc ,myc ,mzc) represent the modal indexes of to the m-th mode
of the rectangular cavity, related to the coordinates (xc, yc, zc), respectively; and (nxξ

, nyξ
)

are the modal indexes of the n-th mode of the access port, related to the coordinates xξ e yξ,
respectively. Using now the expressions (A.20) and (A.27) of Appendix A for the magnetic
modal vectors TEzc and TMzc of a rectangular cavity, we can obtain the value of F (ξ)

mn for
ξ = 1, 2:

F (ξ)
mTE,nTE

= ν
myc+1
ξ

√
εmxc

εmyc
εnxξ

εnyξ

km k
(ξ)
t,n

√
2lyc

(−1)mxc

[kxc,m kzc,m kxξ,n

2kt,m
(εmxc

−1)

− kt,m kyξ,n

εmxc

]
δmxc ,nxξ

δmzc ,nyξ
(4.191a)

F (ξ)
mTE,nTM

= ν
myc+1
ξ

√
εmxc

εmyc

km k
(ξ)
t,n

√
2lyc

(−1)mxc

[kxc,m kzc,m kyξ,n

kt,m

+ kt,m kxξ,n

]
δmxc ,nxξ

δmzc ,nyξ
(4.191b)

F (ξ)
mTM,nTE

= ν
myc+1
ξ
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εmzc

εnyξ

εnxξ
lyc

kyc,m kxξ,n

kt,m k
(ξ)
t,n

(−1)mxc δmxc ,nxξ
δmzc ,nyξ

(4.191c)

F (ξ)
mTM,nTM

= ν
myc+1
ξ

kyc,m kyξ,n

kt,m k
(ξ)
t,n

√
εmzc

lyc

(−1)mxc δmxc ,nxξ
δmzc ,nyξ

(4.191d)

where κm is the m-th resonance wavenumber of the rectangular cavity; kϑc,m is the wavenum-
ber associated with the m-th resonant mode of the rectangular cavity, related to the coordi-
nate ϑc, with ϑc = xc, yc, zc; kt,m =

√
k2
xc,m + k2

yc,m is the transverse wavenumber associated



4.3 Calculation of the matrices used in the Method of Moments 103

with the m-th resonant mode of the rectangular cavity (see eq. (A.28) Appendix A).

When the access ports are ξ = 3, 4, the expressions for the entries F (ξ)
mn are:

F (ξ)
mTE,nTE

= ν
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√
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(4.192a)
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F (ξ)
mTM,nTE

= ν
mxc+1
ξ

√√√√
εmzc

εnxξ

εnyξ
lxc

kxc,m kxξ,n

kt,m k
(ξ)
t,n

(−1)mxc+myc+1 δmyc ,nxξ
δmzc ,nyξ

(4.192c)
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(4.192d)

Finally, when ξ = 5 we have:
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(4.193a)
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Chapter 5

Analysis of rectangular cavities loaded
with a dielectric puck: Resonant
frequencies and modal chart

5.1 Introduction

One key aspect related to the use of dielectric resonators is that one may find resonant fre-
quencies of undesired modes (spurious modes) close to the resonant frequency of the oper-
ational mode. For this reason, it is crucial to be able to know the resonant frequencies and
the field patterns of all the involved modes in order to determine their proper operation and
coupling to other elements in the circuit to be designed. The electromagnetic behaviour of
the various modes depends on the material properties of the DR (its dielectric permittivity,
etc.), its geometric properties (i.e., the diameter/height ratio, etc.), and the surroundings of
the DR, this is, the dimensions of the rectangular cavity and the position of the DR inside
it. Therefore, if the resonant frequencies and electromagnetic field distributions are accu-
rately computed, it will be possible to determine the most appropriate way to modify the
environment of the cavity resonator in order to excite the desired mode, or to avoid as much
as possible the excitation of the spurious modes.

The need for an accurate determination of the resonant frequencies and the related elec-
tromagnetic field patterns of dielectric resonator modes, together with the mathematical com-
plexity required for solving this kind of structures, have encouraged the emergence of many
different approaches for the electromagnetic analysis of this problem [19]. In section 4.2 we
have briefly described some techniques that making use of simplified mathematical models,
by introducing magnetic walls [10, 11, 13, 14] or by using other approximations [24, 25],
allow us to obtain the solution for the TE01δ mode of cylindrical dielectric resonators. Van
Bladel and others [26,27] made use of the perturbational-asymptotic technique, consisting of
a power expansion of the refraction index (n =

√
εr) in the Maxwell’s equations, to analyse

high-permittivity isolated cylindrical and ring resonators. Krupka [108] obtained the low-
est resonances of a cylindrical anisotropic resonator in a cylindrical cavity by means of the
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Galerkin-Rayleigh-Ritz method.

Figure 5.1: Rectangular cavity loaded with a cylindrical dielectric resonator.

In the 1980’s more sophisticated methods arose. For instance, the so-called radial Mode-
Matching (M-M) technique was employed firstly by Kobayashi [21] to analyse a cylindrical
DR enclosed in a cylindrical metal cavity. This technique divides the DR cross section into
complementary regions where the permittivity is independent of the radial coordinate (ρ).
Following this procedure, the field in each region is represented as a superposition of TM
and TE functions satisfying the boundary conditions at the perfect electric walls of the ca-
vity. Once the fields are described in each region, the continuity of the tangential electric and
magnetic fields is enforced at the boundaries between the different regions. The resulting
equations are tested using the appropriate functions, thus obtaining an homogeneous system
of equations. The resonant frequencies are obtained as the non trivial solution of such a sys-
tem, i. e., searching for the frequencies where the determinant of the system matrix vanishes.
In a later work, Kobayashi used that approach to determine the optimum DR dimensions for
obtaining the best separation of the spurious modes from the desired mode (the TE01δ or
the HE11δ modes were considered) in pillbox and ring resonators [28]. A similar procedure,
the so-called axial Mode-Matching technique, was also applied by Zaki And Atia [22], as
well as by Zaki and Chen [23], to determine the TE, TM and hybrid modes of cylindrical
DRs placed symmetrically in a cylindrical cavity. In this case, the problem is divided into
partial regions where the permittivity is independent of the axial coordinate, in such a way
that the transverse fields can be expanded in terms of homogeneous or dielectrically loaded
cylindrical waveguides at each region. This work was also extended to ring resonators en-
closed by cylindrical cavities [29] and to pillbox DRs placed symmetrically in rectangular
cavities [30]. This last work was used in subsequent years to design mixed modes dielectric
resonators filters with rectangular cavities [31] and dielectric combine filters [32].

Other authors have used the orthogonal expansion method to analyse cylindrical dielec-
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tric resonators in rectangular and cylindrical cavities [33, 34], and inhomogeneously dielec-
tric filled cavities [34], as well as structures containing asymmetrically located, partial-height
or multilayer inhomogeneous cylindrical DRs [35]. A large variety of investigations about
dielectric resonators using the Finite-Element method (FEM) [36–40] can be also found in
the literature, as well as Finite Difference approaches in the time-domain (FDTD) [41–44]
and in the frequency-domain (FDFD) [45]. Nevertheless, the use of this kind of segmentation
methods to deal with these problems typically require high computational resources.

Another kind of methods that have been widely used to analyse dielectric resonators are
those based on the integral equation approach solved via the Method of Moments (MoM)
[46]. These techniques are based on the solution of an integral equation, rather than a differ-
ential one. The integral equation is derived by means of a suitable Green’s function, which
constitutes the kernel. Once the integral equation is formulated, the Method of Moments
is employed to test the equation and transform it into linear algebraic equations that can be
solved numerically. We can differentiate basically between two possible integral formula-
tions [47]: the Volume Integral Equation Formulation (VIEF) and the Surface Integral Equa-
tion Formulation (SIEF). In the former method, the dielectric resonator is replaced by the
equivalent volumetric polarization currents [48]. In the second technique, the surface equiv-
alence principle [49] permits to replace the DR by equivalent electric and magnetic currents
on the surface defined by the interface between the dielectric resonator and the homogeneous
medium in which it is immersed. In this case, the dielectric body must be homogeneous. The
main difficulty of this kind of formulations lies in the ability to find the proper Green’s func-
tion to solve each problem (as discussed in previous chapters). Many authors have used this
kind of approaches to determine the modal chart of DRs in free space or enclosed within
metal cavities. Glisson et al. [50, 51] used the surface integral equation formulation for
bodies of revolution to compute the lowest resonant modes of isolated cylindrical dielec-
tric resonators (including their field pattern). They used the free-space Green’s function
to obtain the integral equation, and applying the MoM obtained the resonant frequencies
by searching the zeros of a matrix determinant. Omar and Schünemann [52] presented a
theoretical adaptation of both, the volume and the surface integral equation formulations,
to analyse DRs inside homogeneously filled waveguides. They proposed to use the dyadic
Green’ function for the waveguides instead of the free-space Green’s function. Hanson [53]
used the VIEF to describe rectangular and cylindrical dielectric resonators in free space and
in microwave integrated circuits (MIC’s), while Kajfez and others [54] presented a SIEF to
analyse axisymmetric cavities loaded with DRs. More recently, F. Arndt [55,56] proposed a
new surface integral equation formulation to analyse arbitrarily shaped dielectric resonators
inside conventional rectangular cavities and rectangular cavities with rounded corners. F.
Arndt utilizes the Rao-Wilton-Glisson basis functions [57] and an adaptive triangular mesh
to expand the magnetic and electric currents on the surface of the dielectric resonators. Most
of these approaches, however, have a common factor: the use of the free space Green’s func-
tion. This fact obliges to enforce the boundary conditions on the metallic walls of the shield,
thus increasing the number of unknowns of the problem. Nevertheless, this drawback can be
avoided by using the dyadic Green’s function of the empty cavity that encloses the dielec-
tric resonator. F. Alessandri and others [58] have used the dyadic Green’s function of the
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rectangular cavity to analyse DR filters in rectangular waveguides.

The State-Space Integral-Equation (SS-IE) approach developed in the present thesis is a
Volume Integral Equation formulated in the Laplace variable domain. As explained in chap-
ter 3, we have used the dyadic Green’s function of the empty rectangular cavity formulated
in the Coulomb gauge. This choice has allowed us to compute the modal chart of rectangular
cavities loaded with cylindrical DR by solving, only once, a matrix eigenvalue problem. Pro-
ceeding in this way, we are able to avoid searching the zeros of a matrix determinant as most
of the methods presented above do. Furthermore, the choice of a suitable set of basis func-
tions used by the Method of Moments has allowed us to transform analytically the volume
integrals involved to surface integrals, thus improving the efficiency of the formulation.

In this chapter, we present the electromagnetic analysis of different rectangular cavities
loaded with a dielectric puck using the SS-IE formulation previously derived. The resonant
frequencies of low and high order modes are calculated, as well as their electromagnetic field
distributions. The influence of geometrical and electric parameters in the computation of the
modal chart of the cavity resonator is studied. The results obtained with the new developed
formulation are successfully compared with the technical literature as well as with the well-
known commercial tool Ansoft High Frequency Structure Simulator (Ansoft HFSS) [80],
which is based on the Finite-Element Method (FEM). The fact that the algorithm used by
HFSS is completely different from the SS-IE formulation presented in this work, makes it
a good reference to validate the software developed in this thesis. This study will serve us
not only to perform a first validation of the method presented, but also to understand the
electromagnetic behaviour of the dielectric-loaded rectangular cavities under analysis.

5.2 Modal chart

As it has been explained in Chapter 3, in order to calculate the modal chart of a rectangu-
lar cavity loaded with a cylindrical dielectric resonator, we have to solve the homogeneous
eigenvalue problem described by (3.42). The resonant frequencies of the structure are ob-
tained from the eigenvalues of the solution, whereas the eigenvectors yield to the field dis-
tribution of each resonant mode by means of equations (3.43). In this section, we validate
the algorithm developed by comparing the results of the new formulation with the technical
literature and with the well-known electromagnetic solver Ansoft HFSS. For this purpose,
different structures are analysed, and a catalogue of electric and magnetic field patterns for
several resonant modes is presented.

As first test case, we compare the results obtained through this thesis formulation with a
classical benchmark found in the technical literature [30]. In such a work, K. A. Zaki and X.-
P. Liang used the axial Mode-Matching technique to analyse cylindrical dielectric resonators
enclosed in rectangular cavities. They calculated the resonant frequencies, the field patterns
of low-order modes and the coupling levels between adjacent cavities through irises. They
compared the resonant frequencies calculated using their method with measurements. In
particular, they obtained the resonant frequency of the first hybrid mode (HE12). For such a



5.2 Resonant frequencies and modal chart 109

Case 1 2 3
Diameter of the resonator d (mm) 16.61 17.50 19.23
Height of the resonator h1 (mm) 5.54 5.84 6.43

Table 5.1: Dimensions of the test cases extracted from [30] . Rectangular cavity dimensions:
a = 25.4mm, b = 25.4mm, c = 23.37mm; DR relative permittivity: εr1 = 38; DR support
height and relative permittivity: h2 = 6.99mm, εr2 = 1.

purpose, three different cases were proposed. The full structure is centered with regard to the
z = 0 plane of the rectangular cavity, whose dimensions are a = 25.4mm, b = 25.4mm,
c = 23.37mm (see Fig. 6.1). The DR’s relative permittivity is εr1 = 38. It is supported
by a concentric dielectric cylinder with height h2 = 6.99mm, whose relative dielectric
permittivity is assumed to be εr2 = 1. The diameter and thickness of the dielectric resonator
vary for each different case. Table 5.1 shows the dimensions of the DR for the three different
cases under consideration.

Case 1 Case 2 Case 3
f (GHz) Err(%) f (GHz) Err(%) f (GHz) Err(%)

Meas. [30] 4.382 - 4.153 - 3.777 -
SS-IE 4.406 0.55 4.179 0.63 3.791 0.37

MM [30] 4.3880 0.14 4.1605 0.18 3.721 1.48
FDTD [44] 4.40 0.41 4.17 0.41 3.78 0.08
FDFD [45] 4.383 0.02 4.144 0.21 3.749 0.74

Table 5.2: Resonant frequencies of the HE12 odd mode for the cases presented in Table
5.1. Comparison between measurements [30] and different numerical algorithms: SS-IE
formulation developed in the present thesis, the Mode Matching (MM) technique [30], Finite
Difference Time-Domain (FDTD) [44] and Finite Difference Frequency-Domain (FDFD)
[45] techniques.

During last years, many other authors who have developed different techniques to analyse
this kind of structures, have compared their results with those presented by Zaki and Liang
in [30]. In Table 5.2, the results obtained with our method are compared with measurements
and Mode Matching (MM) [30], Finite Difference Time-Domain (FDTD) [44] and Finite
Difference Frequency-Domain (FDFD) [45] techniques. To calculate accurately the resonant
frequencies by means of the state-space integral equation (SS-IE) approach, we have used
250 basis functions to expand the polarization vector, and 1000 resonant modes of the empty
rectangular cavity in the kernel (to calculate the dyadic Green’s function). It can be observed
that a good agreement is achieved between the results of the present work and those from the
literature.

As mentioned above, the resonant frequencies shown in Table 5.2 correspond to the first
hybrid modes existing in the structures under analysis. The HE modes are hybrid electro-
magnetic modes with respect to the axis of rotation, ûz (see Fig. 4.6), of the DR (they have
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non-zero both, Ez andHz). In the technical literature, we can find different ways of denoting
this kind of modes. The use of bothHEM ,HE andEH to denote hybrid modes usually im-
plies that the modes designated HE are considered “H like” and the modes designated EH
are considered “E like”. This method of designation is analogous to that used in cylindrical
dielectric waveguides [109]. It may be quite ambiguous, since it depends on the criteria used
to decide one or other notation. For these reason, we will simply denote all the hybrid modes
as HE modes.

Different hybrid modes may be distinguished by two or three modal indexes. In the case
of open DRs, some authors [19, 50, 51] use three modal indexes: the first index, p, refers to
the azimuthal dependence of the mode; the second and third indexes, q and l, refer usually
to the number of field extrema within the DR radial and axial directions. In the case of DRs
symmetrically placed in a cavity, Zaki and Chen [23] proposed only to use two indexes: the
first one is related to the angular variation of the mode, whereas the second one classifies
the resonant frequencies of the hybrid modes in increasing order without any reference to
the modal field distribution. In our case, we will also employ only two indexes in order to
simplify the notation. Nevertheless, in this section we will show later on how the hybrid
modes order can change dependending on the diameter/thickness ratio (d/h) of the DR. As
a consequence, analogously to the open dielectric resonators, we will use the second modal
index to refer the number of field extrema within the DR radial direction instead of their
frequency order.

Case 1. f (GHz) Case 2. f (GHz) Case 3. f (GHz)
SS-IE HFSS Err (%) SS-IE HFSS Err (%) SS-IE HFSS Err (%)

TE01 3.562 3.563 0.03 3.415 3.415 0.00 3.182 3.182 0.00
HEe

12 4.374 4.356 0.41 4.142 4.122 0.50 3.738 3.713 0.67
HEo

12 4.406 4.393 0.29 4.179 4.164 0.36 3.791 3.774 0.45

Table 5.3: Comparison between HFSS and the new SS-IE Formulation: First three resonant
modes of the structures presented in Table 5.1.

Moreover, in the case of isolated cylindrical dielectric resonators [51], each of these
modes has a degeneracy due to its dependence on the angular coordinate. The hybrid modes
can acquire either cos(pϕ) or sin(pϕ) dependence (even or odd solutions, respectively). In
the case of cylindrical DR enclosed in rectangular cavities, this degeneracy do also exist
but can be broken by the distances of the dielectric cylinder to the walls of the cavity, this
is, by the dimensions a and c. Due to the analogy with the isolated cylindrical dielectric
resonator, we will distinguish the quasi-degenerated or degenerated modes as even (HEe) or
odd (HEo) modes. Other authors use different notations. For instance, Zaki [30, 31] places
a Perfect Electric Wall (PEW) or a Perfect Magnetic Wall (PMW) at the symmetry plane at
x = a/2 to simplify the problem, denoting the different modes calculated with this procedure
by PEW or PMW.

In order to observe the quasi-degeneracy of these hybrid modes, the first three resonant
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Figure 5.2: Electric field distribution for the first hybrid mode, HE12, at the equatorial
plane. Rectangular cavity dimensions: a = 25.4mm, b = 25.4mm, c = 23.37mm; DR:
d = 16.61mm, h1 = 5.54mm, εr1 = 38; DR support: h2 = 6.99mm, εr2 = 1.

modes for the test cases presented in Table 5.1 have been calculated with the SS-IE formu-
lation. Table 5.3 gives the comparison between our results and Ansoft HFSS, showing again
very good agreement. The second and third modes are the first hybrid modes, HEe

12 and
HEo

12 respectively. Looking at the EM field distribution, we can observe that the resonant
frequencies in Table 5.2 correspond to the third order modes, the odd ones. The separation
between the resonant frequencies of both modes is less than a 2% in all the cases.

Fig. 5.2(a) and Fig. 5.2(b) display the electric field distribution for the HEo
12 and the

HEe
12 modes, respectively, in the plane X-Y that passes through the center of the dielectric

resonator (hereinafter we will call this plane, the equatorial plane). The reference ϕ = 0 has
been chosen to be in the positive-x axis direction (see Fig. 4.6). It can be observed that both
modes are orthogonal, and the only factor that breaks the symmetry between both modes is
the different separation of the DR to the walls of the cavity in the X or Y direction, i. e., the
dimensions a and c of the rectangular cavity. Therefore, the degeneracy of the hybrid modes
can be slightly controlled by changing the dimensions of the rectangular cavity. In Fig. 5.3,
the resonant frequencies of the HEo

12 and the HEe
12 modes are shown as a function of the

length of the rectangular cavity (dimension c). For this purpose, we have used the structure
of the test case 1 shown in Table 5.1. As it is expected, the modes are degenerated when
a = c = 25.4mm.

In Fig. 5.4(a), we show the electric field distribution for the HE(e)
12 mode in the Y-Z

plane that passes through the center of the dielectric resonator, which corresponds to the
plane with ϕ = π/2. Hereinafter we will refer to this plane as the meridian plane with
ϕ = π/2, whereas the X-Z plane that passes through the center of the DR will be denoted as
the meridian plane with ϕ = 0. Fig. 5.4(b) gives the magnetic field pattern for the HE(o)

12
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Figure 5.3: Resonant frequencies of the two hybrid modes HE12 as a function of the length,
dimension c, of the rectangular cavity. Rectangular cavity dimensions: a = 25.4mm, b =
25.4mm; DR: d = 16.61mm, h1 = 5.54mm, εr1 = 38; DR support: h2 = 6.99mm,
εr2 = 1.

mode in the meridian plane with ϕ = π/2.
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Figure 5.4: Electromagnetic field distribution for the first hybrid mode, HE12, in the merid-
ian plane with ϕ = π/2. Rectangular cavity dimensions: a = 25.4mm, b = 25.4mm,
c = 23.37mm; DR: d = 16.61mm, h1 = 5.54mm, εr1 = 38; DR support: h2 = 6.99mm,
εr2 = 1.
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So far, a brief analysis of the electromagnetic behaviour of the HE12 hybrid modes has
been presented. Nevertheless, we can appreciate in Table 5.3 that, for the cases under anal-
ysis, these modes are the second and third order ones, respectively. The first order resonant
mode is the transverse electric mode, TE01, with respect to the axis of rotation of the DR.
Fig. 5.5(a) depicts the electric field distribution in the equatorial plane for the TE01 mode,
whereas Fig. 5.5(b) displays the magnetic field pattern in the meridian plane with ϕ = π/2.
It can be observed that the electric field is quite strong everywhere within the equatorial plane
of the dielectric cylinder, except near the center. Due to this, we could think in removing a
cylindrical plug from the center of the dielectric resonator without changing too much the
electric field pattern of the mode. Moreover, the presence or absence of dielectric has little
impact on the magnetic field, despite of the fact that it is stronger in the center of the DR.
Therefore, if we placed a dielectric ring resonator instead a dielectric puck, the resonant fre-
quency of the TE01 would not be affected too much, while we could modify the frequencies
of other undesired resonant modes in the vicinity of it [19].
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plane with ϕ = π/2

Figure 5.5: Electromagnetic field distribution for the TE01 mode. Rectangular cavity dimen-
sions: a = 25.4mm, b = 25.4mm, c = 23.37mm; DR: d = 16.61mm, h1 = 5.54mm,
εr1 = 38; DR support: h2 = 6.99mm, εr2 = 1.

In technological applications [19], the coupling to the TE01 mode is often accomplished
through the magnetic field via a small horizontal metallic wire loop placed in the equatorial
plane. It can also be coupled to a rectangular waveguide operating in the TE10 mode via the
magnetic field by placing the longest side of the waveguide parallel to the rotation axis of the
dielectric cylinder. This coupling procedure is useful in evanescent mode waveguide filters,
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Mode order SS-IE (GHz) HFSS (GHz) Relative Error (%)
1 1.899 1.899 0.00
2 2.289 2.281 0.35
3 2.307 2.301 0.26
4 2.688 2.687 0.04
5 2.697 2.696 0.04
6 2.778 2.776 0.07
7 2.869 2.866 0.10
8 2.876 2.874 0.07
9 3.001 2.999 0.07

10 3.013 3.011 0.07

Table 5.4: Comparison between Ansoft HFSS and the new SS-IE formulation. Resonant
frequencies (GHz) of the first 10 modes of a dielectric-loaded resonator cavity: a = 36mm,
b = 30mm, c = 40mm; resonator: h1 = 10mm, d = 30mm, εr1 = 45; support: h2 =
7.5mm, εr2 = 1.
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Figure 5.6: Electromagnetic field distribution in the equatorial plane for the HE(e)
11 mode.

Rectangular cavity dimensions: a = 36mm, b = 30mm, c = 40mm; DR: d = 30mm,
h1 = 10mm, εr1 = 45; DR support: h2 = 7.5mm, εr2 = 1.

as we will see in the next chapter. Furthermore, coupling via the electric field can also be
performed by using a small horizontal dipole probe placed in the vicinity of the top or the
bottom cap of the DR.

The next test case presented consists on a dielectric puck with diameter d = 30mm,
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Figure 5.7: Electromagnetic field distribution in the meridian plane with ϕ = π/2 for the
HE

(e)
11 mode. Rectangular cavity dimensions: a = 36mm, b = 30mm, c = 40mm; DR:

d = 30mm, h1 = 10mm, εr1 = 45; DR support: h2 = 7.5mm, εr2 = 1.

and thickness h1 = 10mm, which is placed inside a rectangular cavity with dimensions
a = 36mm, b = 30mm and c = 40mm. The relative permittivity of the dielectric resonator
is εr1 = 45, and it is supported by a concentric dielectric cylinder with height h2 = 7.5mm,
and εr2 = 1. In Table 5.4, the resonant frequencies of the first 10 modes calculated with
the SS-IE formulation are compared with the results provided by Ansoft HFSS, obtaining
very good agreement. In order to calculate accurately the resonant frequencies with the
SS-IE approach, we have used 250 basis functions and 900 resonant modes of the empty
rectangular cavity.

The first three modes of the structure under analysis shown in Table 5.4 are, as in the
previous test cases, the TE01, HE(e)

12 and HE(o)
12 modes. It can be observed that the 4th-

and 5th- order resonant modes of the structure, like the HE12, are also quasi-degenerated
modes. These resonant frequencies correspond to the second hybrid electromagnetic modes,
HE

(e)
11 and HE(o)

11 , respectively. The magnetic field distributions for the HE(e)
11 mode in the

equatorial and meridian planes are plotted in Fig. 5.6(b) and 5.7(b), respectively. The electric
field of these modes is always zero in the equatorial plane since they present an odd pattern
respect to this plane. For this reason, in Fig. 5.6(a) we have displayed the electric field
distribution in a plane parallel to the equatorial one, placed 0.2mm below the top cap of the
DR. Fig. 5.7(a) gives the electric field distribution in the meridian plane. It can be observed
that the electric field is strong outside the dielectric resonator top face, where the field is
parallel to the DR’s cap. Therefore, one could achieve the coupling to the HE11 mode by
placing a short balanced dipole probe centered on the axis of rotation and oriented parallel
to the top surface of the resonator.

In Fig. 5.8 we show the electromagnetic field distribution for the transverse magnetic
mode, TM01, which corresponds to the 6th-order mode of the structure analysed in Table 5.4.
Fig. 5.8(a) displays the magnetic field pattern in the equatorial plane, whereas Fig. 5.8(b)
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Figure 5.8: Electromagnetic field distribution for the TM01 mode. Rectangular cavity di-
mensions: a = 36mm, b = 30mm, c = 40mm; DR: d = 30mm, h1 = 10mm, εr1 = 45;
DR support: h2 = 7.5mm, εr2 = 1.

gives the electric field in the meridian plane with ϕ = π/2. It can be observed that this
mode is well contained within the dielectric resonator, whereas the electric field is stronger
in the center of the top and bottom faces of it. One could say that this mode is like the dual
of the TE01 mode. The coupling to this mode can be achieved via electric field by a short
capacitive probe, a straight coaxial pin, located above or below the DR and parallel to its axis
of rotation. It can also be coupled via magnetic field to a rectangular waveguide operating in
the TE10 mode, for this purpose, the waveguide must be attached to the resonant cavity with
its short side parallel to the DR axis of rotation.

The resonant structures that have been analysed so far in this section have a common
factor: in all the cases the diameter/thickness ratio of the dielectric resonator is d/h1 =
3. Consequently, a rectangular cavity loaded with a cylindrical DR with a different d/h1

ratio (e.g., d/h1 = 2) is considered as the next test case. The dielectric puck diameter is
d = 16.80mm, and its thickness h1 = 6.985mm. The rectangular cavity dimensions are
a = 25.4mm, b = 25.4mm and c = 23.368mm. The relative permittivity of the dielectric
resonator is εr1 = 50, and it is supported by a concentric dielectric cylinder with height h2 =
6.985mm, and relative dielectric permittivity εr2 = 1. In Table 5.5, some of the resonant
frequencies that correspond to the first 50 modes obtained with the algorithm implement in
this work, and those calculated with Ansoft HFSS, are successfully compared. To calculate
accurately all the resonant frequencies shown in this table with the SS-IE formulation, we
have used 450 basis functions and 1800 resonant modes of the empty rectangular cavity.
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Mode order SS-IE (GHz) HFSS (GHz) Relative Error (%)
1 2.779 2.779 0.00
2 3.351 3.351 0.00
3 3.357 3.357 0.00
4 3.529 3.520 0.26
5 3.542 3.534 0.23
6 3.882 3.879 0.08
7 4.062 4.062 0.00
8 4.071 4.070 0.07
9 4.269 4.270 0.02

10 4.533 4.530 0.07
15 4.918 4.916 0.04
20 5.198 5.198 0.00
25 5.776 5.755 0.36
30 5.911 5.905 0.10
35 6.220 6.220 0.00
40 6.421 6.408 0.20
45 6.605 6.597 0.12
50 7.007 7.004 0.04

Table 5.5: Comparison between Ansoft HFSS and the new SS-IE formulation. Resonant fre-
quencies (GHz) of the first 50 modes of a dielectric-loaded resonator cavity: a = 25.4mm,
b = 25.4mm, c = 23.368mm; resonator: h1 = 8.4mm, d = 16.8mm, εr1 = 50; support:
h2 = 6.985mm, εr2 = 1.

To solve the Maxwell’s equations by means of the FEM technique, HFSS needs to perform
an initial 3D mesh of the structure under analysis, which depends on the work frequency.
For this reason, we have used different ’setup solutions’ to calculate the resonant modes
accurately with this software tool. This means that we have split the problem of calculating
the first 50 resonant modes, computing groups of ten modes each time. Nevertheless, with
our formulation we just need to solve the complete eigenvalue problem only once.

If we display the electromagnetic field distribution in this case, we can observe that
the second and third order modes are the hybrid HE11 ones, whereas the fourth and fifth
correspond to the HE12 modes. As a consequence, depending on the d/h1 ratio, the order
of these hybrid modes can change. For this reason, as we mentioned above, we prefer to use
the second modal index to denote the number of extrema field in the radial direction instead
of their frequency order.

In Fig. 5.9, the influence of the d/h1 ratio in the resonant frequency of the first six
modes is studied. For such a purpose, the resonant structure described in Table 5.4 is used.
The d/h1 ratio is varied keeping constant the volume of the DR. It can be observed that
there exists a d/h1 interval where the separation between the TE01 mode and the contiguous
hybrid modes is optimum. For this reason, the ratio typically used to design filters based
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on this kind of resonant structures operating under the TE01 mode [18], is comprised within
the range d/h1 ∈ [2 − 3]. In Fig. 5.10, the effect of the DR relative permittivity on the
resonant frequencies of the first six modes is also presented. To perform this study, we have
used a cylindrical dielectric resonator with diameter d = 16.8mm, and height h1 = 8.4mm
supported by a concentric cylinder of height h2 = 6.985mm, and relative permittivity εr2 =
1. The rectangular cavity dimensions are a = 25.4mm, b = 25.4mm, c = 23.37mm.
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Figure 5.9: Study of the first six resonant modes of a rectangular cavity loaded with a cylin-
drical dielectric resonator as a function of the d/h1 ratio. Rectangular cavity dimensions:
a = 36mm, b = 30mm, c = 40mm; DR: εr1 = 45; DR support: h2 = 7.5mm, εr2 = 1.

Mode SS-IE Ansoft HFSS Difference (%)
1 2.768 2.769 0.04
3 3.562 3.554 0.22
5 3.914 3.917 0.08
10 4.480 4.481 0.02
15 5.132 5.134 0.04
20 5.355 5.355 0.00
25 5.853 5.841 0.20
30 6.236 6.207 0.46
35 6.632 6.580 0.78
40 6.869 6.872 0.04

Table 5.6: Comparison between Ansoft HFSS and the SS-IE formulation. Resonant fre-
quencies of the first 40 modes (GHz): a = 30mm, b = 25.4mm, c = 40mm; resonator:
h1 = 6.43mm, d1 = 18mm, εr1 = 50; support: h2 = 11mm, εr2 = 1.
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Figure 5.10: Study of the first six resonant modes of a rectangular cavity loaded with a
cylindrical dielectric resonator as a function of the DR relative permittivity. Rectangular
cavity dimensions: a = 25.4mm, b = 25.4mm, c = 23.37mm; DR: d = 16.8mm,
h1 = 8.4mm; DR support: h2 = 6.985mm, εr2 = 1.
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Figure 5.11: Electric field distribution in the equatorial plane of a rectangular cavity loaded
with an off-centred dielectric resonator. Rectangular cavity dimensions: a = 30mm, b =
25.4mm, c = 40mm; DR: h1 = 6.43mm, d1 = 18mm, εr1 = 50; DR support: h2 =
11mm, εr2 = 1, positioned at ao = 17.5mm, co = 27.5mm.
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On the other hand, when one considers real cases, it is important to have the capability to
perform a tolerances analysis. The formulation implemented allows to simulate off-centred
structures, which is essential for such practical purpose. For this reason, the last validation
test proposed in this section is based on a rectangular cavity with dimensions a = 30mm,
b = 25.4mm, c = 40mm. The cavity is loaded with a dielectric puck with relative permit-
tivity εr1 = 50, whose height and diameter are h1 = 6.43mm, d1 = 18mm, respectively.
The center of the base of the DR is positioned at coordinates ao = 17.5mm, co = 27.5mm
in the z = 0 plane (see Fig. 4.6). The support height is h2 = 11mm, whereas its relative
permittivity is εr2 = 1. The first 40 modes have been calculated and compared (see Table
5.6) with Ansoft HFSS, obtaining again a very good agreement. To compute such 40 modes
with a high degree of accuracy, 200 basis functions and 1800 resonant modes of the empty
rectangular cavity were used. Electromagnetic distributions patterns have been plotted for
several modes of this off-centred structure, which can be seen in Figs. 5.11, 5.12 and 5.13. It
can be observed that the behaviour of the electromagnetic pattern for the different resonant
modes is analogous to the centered case.
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Figure 5.12: Electromagnetic field distribution in the equatorial plane of a rectangular cavity
loaded with an off-centred dielectric resonator. Rectangular cavity dimensions: a = 30mm,
b = 25.4mm, c = 40mm; DR: h1 = 6.43mm, d1 = 18mm, εr1 = 50; DR support:
h2 = 11mm, εr2 = 1, positioned at ao = 17.5mm, co = 27.5mm.

Finally, we present a detailed convergence analysis for a better understanding of the
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Figure 5.13: Magnetic field distribution in the equatorial plane of a rectangular cavity loaded
with an off-centred dielectric resonator. Rectangular cavity dimensions: a = 30mm, b =
25.4mm, c = 40mm; DR: h1 = 6.43mm, d1 = 18mm, εr1 = 50; DR support: h2 =
11mm, εr2 = 1, positioned at ao = 17.5mm, co = 27.5mm.

algorithm developed. The relevant parameters to perform such a study are:

• Q, which represents the number of basis functions employed to expand the equivalent
polarization vector following the MoM (see eq. (3.32)).

• M , which is the number of modes of the empty rectangular cavity used in the resonant
mode expansion (RME) of the dyadic Green’s functions for the electric and magnetic
vector potentials (see eq. (2.84) and (3.27)).

As it has been described in sections 2.6 and 3.3, we use a resonant mode expansion to
compute the dyadic Green’s functions for the vector potentials in the Coulomb’s gauge. The
series involved in such expressions are truncated by retaining the first M resonant modes of
the empty rectangular cavity, ~Em, that satisfy:

km ≤ kM ≤ ξ kmax ≤ kM+1,

where kmax is the wavenumber correspondent to the highest frequency in the band of interest,
and ξ is an accuracy factor. These expressions for the dyadic Green’s function have been
widely used in other works [62, 63, 73, 74], where the value of the accuracy factor has been
typically chosen around ξ ∈ [2, 3]. Nevertheless, in our case the value of kmax is given by
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the resonant frequencies of the dielectric-loaded cavity resonator. And, due to the presence
of the dielectric resonator, these resonant frequencies are much lower than the frequencies
of the resonant modes of the empty rectangular cavity. This means that following the cited
criteria, even taking ξ ∈ [3, 4], in most of the cases we will retain in the Green’s function
expansion very few resonant modes of the empty cavity, thus obtaining inaccurate results.
As an example, we can observe the test case 3 in Table 5.1. If we analyse an structure
operating with the fundamental mode in the frequency range 2− 4 GHz, we will have a ratio
kmax/k1 = 2.1, being k1 the first order resonant mode of the empty rectangular cavity. For
instance, taking ξ = 4, we will only need to retain 15 resonant modes of the rectangular
cavity in the RME of the dyadic Green’s function.

Moreover, the difference between the value of kmax and the wavenumber associated to
the highest order rectangular cavity mode (kM ), used in the resonant mode expansion, will
critically depend on the dimensions of the DR as well as on its relative permittivity. Thus,
the appropriate value of the accuracy factor will present strong variations, depending on the
structure under analysis.

For this reason, in order to obtain accurate results, we have followed an additional criteria
to select the number of rectangular cavity modes to be used in the resonant mode expansion.
As it is well known, each resonant mode ( ~Hm, ~Em) used in this expansion has associated
a resonant wavenumber km. Thus, the wavenumber of the highest order resonant mode
employed, kM , can give us an idea of the maximum spatial resolution that is used to describe
the dyadic Green’s functions involved in the integral equation. The bigger is kM , the highest
spatial resolution is used. On the other hand, the polarization vector is also expanded in
terms of the basis functions {~w}. Each basis function, ~wq, has also a related wavenumber,
Kq, associated. Thus, the spatial resolution employed to expand the unknown of the problem,
the polarization vector (~P ), is somehow controlled by the value of the wavenumber of the
highest order basis function, KQ. It has no sense to compute the dyadic Green’s function
with high spatial resolution if the polarization vector is computed with low resolution and
vice versa. Therefore, the additional criteria that we have used is to retain the rectangular
cavity modes that describe the dyadic Green’s functions with a similar spatial resolution to
that used for expanding the polarization vector with the basis functions. This is:

km ≤ kM , and Kq ≤ KQ, with kM ∼ KQ (5.1)

Following this last criteria, we directly relate the number of resonant modes (M) used
in the RME to the number of basis functions employed to expand ~P . Therefore, the most
relevant parameter to take into account in the convergence study is the number of basis
functions (Q) used by the MoM.

In Figs. 5.14, 5.15, 5.16 and 5.17, the convergence study that we have performed is
shown. These figures display the resonant frequencies of the first order modes for differ-
ent dielectric-loaded resonator cavities as a function of Q. Among all the geometrical and
electrical parameters that describe a rectangular cavity loaded with a cylindrical resonator,
those who have a biggest influence on the resonant modes of the structure are the dimensions
and the relative permittivity of the dielectric resonator. For this reason, we have focused our
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attention in analysing the behaviour of structures with different relative permittivities εr1 and
different d/h1 ratios of the dielectric resonator. Moreover, in all the considered cases the
dielectric resonator is centered with respect to the base of the rectangular cavity, so ao = a/2
and bo = b/2.

In these graphics, we have plotted the evolution of each resonant frequency in terms of
the number of basis functions with two different lines, in order to distinguish between the
two criteria used to sort the basis functions ~wq:

• A first one that consists in sorting the basis functions from the lower to higher related
wavenumbers. This is what we have called the ‘k-order criteria’.

• A second criteria that is based on the modal indexes (p, q, l) associated with each basis
function (see Table 4.1). We have created a new index:

Ω = p+ q + l

In this way, we can sort the basis functions from lower to higher Ω index. Those basis
functions that have the same Ω index, are sorted according to their wavenumber. This
is what we have called the ‘indexes-order criteria’.

In Fig. 5.14, the evolution of the resonant frequency of the TE01 and the hybrid HE12

modes are shown (see Figs. 5.14(a) and 5.14(b), respectively) for a rectangular cavity loaded
with a DR with a ratio d/h1 = 3 and a relative permittivity εr1 = 38. To perform this
analysis we have used the structure of the case 3 in Table 5.1. We can observe how the TE01

mode reach convergence much more faster than the hybrid modes. We only need 100 basis
functions to have a convergent result for the TE01 mode, even it is enough with 50 basis
function making use of the ‘indexes-order criteria’. On the other hand, to reach convergence
for the HE12 modes, around 400 basis functions are needed with the ‘k-order criteria’, and
around 200 if we use the ‘indexes-order criteria’. If we depict the same graphic for the TM01

and other hybrid modes, such as the HE11 ones, we will observe a similar pattern. In fact,
this behaviour is repeated in all the cases under consideration for the convergence study. The
reason for this is that we have expanded the polarization vector, which is proportional to the
electric field inside the DR, in terms of TEz and TM z basis functions. Thus, the electric
field corresponding to TE and TM dielectric modes match more better with this kind of
basis functions than with the hybrid ones.

The same resonant modes are analysed in Fig. 5.15 for a structure with a DR ratio
d/h1 = 3 and a relative permittivity εr1 = 50. In particular, the test case 1 in Table 5.1
has been used by changing the relative permittivity of the dielectric resonator. As it is ob-
served, the convergence pattern is analogous to the one presented in Fig. 5.14. Nevertheless,
this behaviour changes when we analyse a rectangular cavity loaded with a dielectric res-
onator with a ratio d/h1 = 2 as it is shown in Fig. 5.16. Figs. 5.16(a) and 5.16(b) display
the resonant frequency of the TE01 and the HE12 modes, respectively, as a function of Q.
The rectangular cavity dimensions are a = 25.4mm, b = 25.4mm, c = 23.368mm; the



124 Analysis of rectangular cavities loaded with a dielectric puck

dielectric resonator dimensions are h1 = 8.4mm and d1 = 16.8mm, whereas its relative
permittivity is εr1 = 38; the support’s height is h2 = 6.99mm.

By comparing Fig. 5.14 and Fig. 5.16, we can observe that the TE01 mode reach con-
vergence at the same level, but the hybrid modes reach convergence much faster for the
d/h1 = 2 case than for the d/h1 = 3 one. To explain this different behaviour, one should
first remember that each basis function has associated the modal indexes p, q and l, which are
related to the angular, radial, and the axial coordinates (ϕ, ρ, z) of the cylindrical coordinate
system where the basis functions are defined (see Table 4.1). When a wide dielectric res-
onator (e. g. d/h1 = 3) is analysed, and the basis functions are sorted by their wavenumbers,
the different values that the modal indexes can take are not balanced. For instance, in the case
studied in Fig. 5.14, if we take the first 200 basis functions sorted by their wavenumber, the
maximum values that the modal indexes reach are (p, q, l) = (8, 3, 2), and most of them with
l = 0, 1. Thus, in this case the basis functions selected are suitable to describe the variation
of the fields in the angular and radial coordinates, whereas the variation in the axial coordi-
nate will be weakly characterized. Nevertheless, when the radius of the dielectric resonator
approaches to its height (d/h1 = 2), the modal indexes are more balanced, thus contributing
to a faster convergence. This fact has a bigger influence in the convergence of the hybrid
modes, since the electric field of these modes is matched in a worse way through the basis
functions used. Indeed, due to this reason, we have proposed a new criteria to sort the basis
functions. As explained before, we calculate the Ω index which is the sum of the 3 modal
indexes related to each basis function. Thus, sorting the basis functions from lower to higher
Ω indexes, we manage to ensure that the set of basis functions selected has enough varia-
tion of all the three modal indexes (p, q, l). In each graphic presented in the convergence
analysis, we have plotted the convergence of the algorithm using the criteria based on the
classification of the basis functions by their wavenumber (‘k-order criteria’) and using this
new criteria (‘indexes-order criteria’). It can be observed that the convergence is enhanced
by means of the ‘indexes-order criteria’ in all the cases.

Finally, we have plotted the evolution of the resonant frequencies for the TM01 andHE11

modes of a structure with a dielectric resonator whose relative permittivity is εr1 = 50 and
its ratio is d/h1 = 2, observing the previous tendency.
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Figure 5.14: Convergence study: Resonant frequencies as a function of the number of
basis functions (Q) used by the MoM. Rectangular cavity dimensions: a = 25.4mm,
b = 25.4mm, c = 23.368mm; DR: h1 = 6.43mm, d = 19.23mm, εr1 = 38; DR support:
h2 = 6.99mm, εr2 = 1.
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Figure 5.15: Convergence study: Resonant frequencies as a function of the number of
basis functions (Q) used by the MoM. Rectangular cavity dimensions: a = 25.4mm,
b = 25.4mm, c = 23.368mm; DR: h1 = 5.54mm, d = 16.61mm, εr1 = 50; DR support:
h2 = 6.99mm, εr2 = 1.
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Figure 5.16: Convergence study: Resonant frequencies as a function of the number of
basis functions (Q) used by the MoM. Rectangular cavity dimensions: a = 25.4mm,
b = 25.4mm, c = 23.368mm; DR: h1 = 8.4mm, d = 16.8mm, εr1 = 38; DR sup-
port: h2 = 6.99mm, εr2 = 1.
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Figure 5.17: Convergence study: Resonant frequencies as a function of the number of
basis functions (Q) used by the MoM. Rectangular cavity dimensions: a = 25.4mm,
b = 25.4mm, c = 23.368mm; DR: h1 = 8.4mm, d = 16.8mm, εr1 = 50; DR sup-
port: h2 = 6.99mm, εr2 = 1.



Chapter 6

Design of passive microwave filters based
on dielectric resonators

6.1 Introduction

During the last three decades, dielectric resonators have become a key element in many
filtering applications [1–4]. Indeed, dielectric-loaded waveguide filters are frequently found
in satellite and mobile communication systems, due to their advantages in terms of mass and
volume reduction, low losses, and thermal stability. In the terrestrial mobile communication
system industry [5], the cost of individual filters and the issue of mass production are crucial,
whereas volume and weight are critical in satellite communications [7].

Since the early stages in the microwave technology history, electromagnetic waves prop-
agation in dielectric media has been a key topic of research [110]. It was shown by Rayleigh
in 1897 that an “infinitely” long cylinder of a dielectric material can serve as a guide for
electromagnetic waves of certain frequencies. Also scientists like A. Sommerfeld in 1899
and D. Hondros in 1909 worked on the waves that can be guided by the discontinuity surface
between two media having different electrical properties. D. Hondros and P. Debye cen-
tered their attention in studying dielectric rods to guide electromagnetic signals, obtaining
a theoretical solution in 1910. Even G. C. Southworth at the Bell Telephone Laboratories
started his research on waveguides considering dielectric media. He realized afterwards that
in metal sheathed dielectric cylinders, the dielectric media was unnecessary and the wave
was supported by the metal tube. He finally presented his work on hollow tube waveguides
in 1936.

Apart from acting as electromagnetic guiding structures, dielectric materials can be also
used as high-quality electrical resonators. In 1939, R. D. Richtmyer [8] introduced the term
dielectric resonator (DR). He showed that unmetallized dielectric objects can function as
electrical resonators. Nevertheless, the first activities on dielectric resonators did not oc-
curred until the early 1960’s when Okaya and Barash rediscovered DRs while working on
high dielectric materials [9]. They provided the first analysis of modes and resonator de-
sign. During that decade, considerable efforts were devoted to the analysis of dielectric
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resonators [10–12]. In this area the most notable work was developed by Cohn and his co-
workers, who performed an extensive theoretical and experimental study of the DR [13, 14].
However, at that time the lack of suitable materials (due to their poor thermal stability) made
impossible the development of practical components. The rutile ceramics (TiO2) employed
in the experiments had an isotropic dielectric constant in the order of 100 and a high-Q factor
(Q ∼ 10000 at 4 GHz). Unfortunately, they exhibited a very high temperature coefficient of
resonant frequency (τf ∼ 400 ppm/◦C), thus causing too large resonant frequency changes,
more than an order of magnitude too high for practical applications.

The breakthrough in ceramic materials technology occurred in the early 1970’s when
Masse and Pucel [15] developed the first temperature-stable and low-loss barium-tetratitanate
ceramic (BaTi4O9), which yielded Q ∼ 1300 and τf ∼ 5ppm/◦C at 9.6 GHz. They pub-
lished the design of a microstrip bandpass filter using dielectric resonators made of this
ceramic [16]. In subsequent years, new improved ceramic materials were developed which
made possible to use DRs for microwave applications. In this scenario, the Murata Manu-
facturing Company played an important role since it was the first company that made com-
mercially available temperature-stable ceramics [3].

In 1975, the first practical DR loaded microwave filter was reported by K. Wakino [17].
The advances in ceramic technology revived interest in dielectric resonators for a wide va-
riety of microwave circuits [18, 19]. New theoretical work and the use of DRs to design
microwave filters expanded significantly during the 1980’s. In 1982, a dual-mode axially-
mounted dielectric resonator was reported by S. J. Fiedziuszko [20]. It nearly matched the
performance of conventional dual-mode filters, and set the scene for the potential use of di-
electric loaded multiplexers for space application. The structure is similar to the circular
waveguide dual-mode filters with the exception of loading the circular cavities with dielec-
tric pucks. The dual-degenerate HE11δ mode is used, and the couplings via resonators are
performed via cruciform irises. This kind of filter has been successfully used in satellite com-
munications applications. Subsequently, this work was extended by other authors [111–113].
Furthermore, as it has been explained in Chapter 5, during the 1980’s complete studies on
the DR’s modal chart and the first rigorous full-wave analysis methods emerged [21–23].

During the last two decades, the new communication systems emerged demanding more
stringent filter characteristics, have caused a significant progress in DR filter technology
[4–6]. In particular, the rapid expansion of wireless communication industry has increased
the demands for high-performance microwave filters and diplexers for both handsets and
base station applications. In this area, coaxial cavity filters are commonly used due to their
low cost and their spurious-free performance. Nevertheless, this kind of filters have limited
quality factor values, and thus a different technology must be employed to match the new
filtering requirements. In this context, the high-Q dielectric resonator filters have emerged
as the baseline design for wireless base stations.

A typical dielectric resonator filter consists of a number of DRs mounted inside cavities
machined in a metallic housing. One of the most used structures is the cylindrical suspended
DR structure in a rectangular cavity (see in Fig. 6.1). The relative dielectric constant is typi-
cally between 20-80 and the DR is placed far from the enclosure. At the resonant frequency,
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most of the electromagnetic energy is stored within the dielectric. The enclosure stops radia-
tion and since it is remote, the resonant frequency of the structure is largely controlled by the
dimensions and permittivity of the dielectric. The quality factor (Q) of the resonator cavity
is dominated by the loss tangent of the ceramic material.

The dielectric resonator is placed inside the metal cavity by means of a dielectric sup-
port with a low dielectric permittivity. A layer of adhesive is used between the DR and the
support, being both mounted inside the cavity employing a metallic or plastic screw. The
support structure can degrade the quality factor if it is not properly designed. Since the reso-
nant frequencies of each resonator are very sensitive to any change of the dielectric constant,
tuning screws are always needed for readjustment due to manufacture tolerances on the di-
electric constant of the DRs. The input and output RF energy are normally coupled to the
filter through coaxial probes, while irises are used to provide the necessary coupling between
resonators. The walls of the enclosure must be close enough to the dielectric resonator in
order to the irises provide the necessary coupling. The enclosure is typically a square shape
with a side width that is 1.5-1.7 times the diameter of the DR [5], however if one wants the
enclosure not to have any influence in the Q-factor, it is known that the smaller dimension
of the cavity should be 2-3 times the biggest dimension of the DR (normally the diame-
ter) [18, 19]. Indeed, despite the fact that the Q factor of the filter is mainly controlled by
the loss tangent of the dielectric, in real components, it is reduced due to the losses in the
metallic enclosure, support structure and tuning screws.

The first order resonant modes presented in Chapter 5 can be used as operating modes for
dielectric resonator filters: single transverse transverse electric (TE) modes, single transverse
transverse magnetic (TM) modes, dual hybrid (HE) modes, triple TE and triple TM modes.
Single-mode DR filters operating in TE01 modes are the most commonly used designs in
wireless applications. The design offers the highest achievable filter Q in comparison with
other modes of operation. The dual-mode filters present a reduced dimension compared to
single-mode filters. Their design takes advantage of the dual-degenerate hybrid modes HE
by placing the DR on the base of a housing. Thus, the hybrid modes are lowered in frequency
and become the fundamental mode. A metallic disk is also placed on the top of the resonator
to enhance its spurious response [114]. A design that also uses grounded DR is the dielectric
combline filters reported in [32]. These are single-mode filters which operate in the TM
mode. The dielectric rod has a height bigger than its diameter and it is positioned on the basis
of the cavity, thus the TM mode becomes the fundamental one. Mixing metallic combline
and dielectric loaded resonators, a filter presenting a high-Q and free-spurious performance
can be designed. Another interesting design is the mixed modes cylindrical planar dielectric
resonator filters [31]. In such a structure the resonators are excited in different modes (TE01

and HE11 modes) to enhance the spurious performance of dual-mode filters operating only
with hybrid modes. Finally, it is also remarkable that by using DR with different shapes,
triple-mode [115] and quadruple-mode [116] filters can be developed.

In this chapter, different single-mode DR filters are presented. The dielectric puck loaded
in rectangular waveguides or cavities is rigorously modelled by means of the State-Space
Integral-Equation approach formulated in Chapter 5. We have implemented a software mod-
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ule to characterise the circuit building block represented by a rectangular cavity loaded with
a dielectric puck. The resonator cavity may be opened through any of its lateral access ports
and/or through its top surface. The efficient analysis of the dielectric resonator loaded cavity
by means of the SS-IE approach is a key issue, since the dielectric resonator characterization
requires the major part of the computational resources when one analyses more complex
structures. Once the generalized admittance matrix (GAM) of this circuit building block
is calculated, it may be connected to other circuit elements, in order to analyse different
topologies of dielectric resonator filters. For such a purpose, we have integrated this soft-
ware module in a Computer Aided Engineering (CAE) tool for the analysis and design of
passive microwave and millimetre-waves components: FEST3D (Full-wave Electromagnetic
Simulation Tool 3D) [81].

In the next section, we give a brief introduction to the modal electromagnetic solver
FEST3D. We also describe how the algorithm developed in this thesis has been integrated
into such tool. Finally, in the last section, different single-mode dielectric resonator bandpass
filters, as well as a stopband filter, are presented. The bandpass filters may be designed by
using dielectric-loaded rectangular cavities coupled through irises, or by placing the dielec-
tric resonators inside a rectangular waveguide below cutoff. The results obtained by using
the SS-IE approach integrated into FEST 3D are successfully compared with those obtained
by the commercial software tool Ansoft HFSS [80].

6.2 Integration into FEST3D
As mentioned above, in this section we present a brief introduction to the CAE tool FEST3D
(Full-wave Electromagnetic Simulation Tool 3D). The results shown in the next section have
been achieved by integrating the new SS-IE formulation for the rigorous analysis of DR-
loaded rectangular cavities into FEST3D. For this reason, the aim of this section is to give
a better understanding on how we have proceed to integrate the software module developed
in this thesis into this general purpose electromagnetic solver. However, more detailed infor-
mation about FEST3D may be obtained from [81].

FEST3D is a full-wave electromagnetic solver based on advanced modal algorithms for
the analysis and design of passive microwave and millimetre-waves components for space
and ground applications. This CAE tool is property of the European Space Agency (ESA).
It is the result of several European R&D projects that have been carried out during the last
fifteen years, mainly under ESA contracts and a Research Training Network (2001-2004)
funded by the European Commission V Framework programme. Several companies, uni-
versities and research institutions have been involved at different levels in the development
of FEST3D: European Research and Technology Center from the European Space Agency
(ESTEC/ESA, The Netherlands), Netherlands Organisation for Applied Scientific Research
(TNO, The Netherlands), Aurora Software and Testing, S.L. (AURORASAT, Spain), Ingeg-
neria dei Sistemi, S.p.A. (Italy), ITLink, S.r.L.(Italy), TESAT-SpaceCom Gmbh (Germany),
École Polytechnique Fédérale de Lausanne (Switzerland), Technische Universität Darmstadt
(Germany), Università di Pavia (Italy), Universidad Politécnica de Valencia and Universitat
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de València Estudi General. In this sense, it is remarkable that at the end of the last ESA
contract devoted to further developments of FEST3D (September 2008), the European Space
Agency transferred the exclusive distribution license of this CAE tool to the company AU-
RORASAT. Thus, since then, it is this Spanish spin-off company who is in charge of the
distribution, maintenance and development of FEST3D.

6.2.1 Introduction to FEST3D.
The software architecture of FEST3D can be split into three main blocks:

• The Graphical User Interface (GUI).

• The Optimiser and Tolerances module (OPT).

• The Electromagnetic Computational Engine (EMCE).

Figure 6.1: FEST3D GUI screenshot: A four-pole DR filter is simulated. The network cir-
cuit is represented in the cambas, while the real geometry is visualized. The electromagnetic
response is shown by menas of the gnuplot program.

The Graphical User Interface.
The Graphical User Interface is a pure Java program. It offers user-friendly, intuitive CAE-
like interface to the user. It allows interactive edit, analysis (invoking the EMCE) and optimi-
sation (invoking the OPT) of a microwave or millimetre wave circuit. The GUI supports the
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same set of components implemented in the EMCE, and lets the user easily create, modify,
connect, delete, cut and paste components. Several canonical elements can be simulated by
using the corresponding icons, and arbitrary 2D elements can be easily drawn by the user
with the help of an special editor. It can start and control all the other tools (EMCE, OPT
and all installed extensions) with a single click, and can graphically show the analysis results
by driving the ‘gnuplot’ program. It also permits to visualize the real geometry of the circuit
under analysis.

Moreover, the GUI allows to create easily a pdf file with all the information that the user
desires to include about the circuit under analysis. It even offers the possibility to directly
interact with the team responsible of the development of FEST3D by sending bug/technical
reports via internet with simple clicks. In addition, it notifies to the user if there exist new
versions of FEST3D which can be easily upgraded via internet.

The GUI offers to the user an easy-to-use and versatile interface to control all aspects
of the optimiser (OPT). The user can choose with simple clicks which parameters of the
components in the circuit he wants to optimise, and can watch their value changing during
the optimisation procedure.

It is also remarkable that due to the used Java language and to the careful program design,
new components (waveguides and junctions) and new extensions can be easily added to the
GUI.

The Optimiser and Tolerances module.

The optimiser is a C++ program. Rather than focusing on a specialized optimisation al-
gorithm, it exploits C++ object-oriented features to offer a uniform interface where further
algorithms can be easily integrated. The OPT is a standalone program, independent from
both the GUI and the EMCE.

Both the EMCE and the OPT are built to be robust and behave predictably in case of
errors. The EMCE detects and reports invalid circuit geometries, as well as inconsistent or
unacceptably low numerical precision parameters. The OPT can detect such errors, and will
“stay away” from points that cause the EMCE to fail, allowing the optimisation to proceed
even in the case of extreme geometries (where a small perturbation can lead to an invalid
geometry). The OPT supports multiple, weighted goal functions in the form of equalities or
inequalities between one of the circuit scattering matrix elements Smn and a user-specified
numerical function. The circuit to be optimised is - automatically - only simulated at the
frequency points where at least one goal function is defined (each goal numerical function
can be defined on a different set of frequency points).

The OPT also supports multiple, weighted constraints in the form of equalities or in-
equalities between a left and a right expression of the parameters being optimised. It is even
possible to temporarily lock a parameter value or to set it to a formula (a function of the
other parameters). The user can modify all aspects of optimisation (algorithms, parameters,
goals and constraints) at any time that the OPT is not running. The OPT progress is shown in



6.2 Integration into FEST3D 135

real-time using both text (error and parameters values) and graphical output using ‘gnuplot’.

Moreover, FEST3D permits to perform tolerance analysis by using a specific module.
The user can select any parameter of the simulated microwave device to perform a tolerance
analysis. Then, independent Gaussian perturbations are applied to the selected parameters.
The user can also choose the standard deviation of the Gaussian probability distribution.

The Electromagnetic Computational Engine.
The FEST3D EMCE is a mixed C++/Fortran77 program. On the one hand, it takes full
advantage of the possibilities offered by object-oriented programming, on the other hand a
significant portion of the computational intensive code is written in Fortran77, including ef-
ficient linear algebra algorithms. The EMCE architecture is component-based, encouraging
assembling of possibly already existing software modules and also allowing upgrading and
improvement with minimum impact on the application core. It is also remarkable that the
EMCE can be compiled without any change on Linux, Windows and Sun operating systems.

The modal electromagnetic solver is based, mainly, in the following advanced numerical
algorithms:

• The Integral Equation technique to characterize planar junctions between two or more
waveguides described in [62, 117].

• The 2D version of the Boundary Integral-Resonant Mode Expansion (BI-RME) method
for the electromagnetic analysis of H-and E-plane arbitrary shaped structures [66, 67,
69, 70], as well as uniform waveguides with arbitrary shaped cross sections [64, 65].

• The 3D version of the BI-RME method for the electromagnetic analysis of rectangular
cavities with cylindrical metallic posts [74, 75].

• Theory of cavities to characterise empty rectangular cavities with multiaperture [118],
such as T-junctions or cubic-junctions.

The theory implemented in FEST3D supports the full-wave analysis of the following
passive components:

- Rectangular, Circular, Elliptical, Coaxial, arbitrarily shaped waveguides;
- Infinite radiating arrays made of rectangular and circular waveguides; S- and U- bends;

- Planar transitions with multi-aperture able to connect a variety of waveguides;
- Cubic junctions; T junctions;
- Y junctions; 2-Dimensional Arbitrary junctions;
- Rectangular cavities loaded with cylindrical metallic posts.

FEST3D is based on a multimode equivalent network representation. This means that
the microwave device under analysis is considered a circuit network made of different com-
ponents of the list mentioned above, which are the network elements. Each network element
in the microwave circuit is represented by a generalized impedance matrix (GIM), which
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gives the relationship between the electric and magnetic fields for each component in a mul-
timode space. Therefore, taking advantage of the microwave network theory, the problem
of analysing a big structure, e. g. a filter or a multiplexer, can be split into the analysis of
elemental components. This fact makes it possible to develop a component-based software,
as it was said before. Once the corresponding GIMs of each network element are calculated,
the cascaded connection of these impedance matrices yields a matrix system representing
the whole circuit. Then the input ports of the network structure are excited with the desired
modes, and the scattering parameters are calculated by solving a banded matrix linear sys-
tem. All of this is done for each frequency point of the frequency range selected by the
user.

For an efficient analysis, the computation of the generalized impedance matrix of each
network element has been split into two parts: the static and dynamic ones. In the static
part, all the computations independent from the frequency are performed, and the variables
needed to calculate later on the GIM of each element are stored. The GIMs, which depend
on the frequency, are computed within the frequency loop, in the dynamic part. All this
is possible thanks to the use of the integral equation technique and the BI-RME method
mentioned above. On the one side, the integral equation formulation [62] used to characterise
planar junctions between waveguides, permits to extract the frequency dependency from
the kernel of the integral equation. Thus, the required infinite series in the kernel can be
calculated outside the frequency loop. On the other side, the BI-RME method is used to
analyse arbitrary shaped 2D components or rectangular cavities loaded with cylindrical posts.
As explained in Chapter 3, the pole expansion of the generalized admittance matrix that
characterise these components may be obtained in the frequency domain. Following this
method, the resonant modes of the 2D arbitrary components and of cavities with posts are
obtained through the solution of linear matrix eigenvalue problems in the static part. The
eigenvalue and eigenvectors obtained in the static part are then used to calculate the GAM as
a pole expansion (and consequently the GIM) in the dynamic part. In both approaches, a great
amount of computation time is saved because a significant part of the needed computations
are done only once, outside the frequency loop. Moreover, the solution of transcendental
equations per frequency point is avoided. Hence, the electromagnetic behavior of the whole
circuit can be solved in a wide and dense frequency range with a very reduced computational
effort.

Furthermore, FEST3D provides a caching file service. For each simulation, the data
calculated in the static part is stored in a separate cache file. In this way, if during a new
simulation there is some element that is equal to an element analysed in one of the previous
simulations, FEST3D takes the static data directly from the corresponding caching file, thus
avoiding to repeat intensive computations performed before, and then saving computational
effort.

FEST3D also supports symmetries: the user can specify global circuit symmetries (one
or more of: constant width, constant height, all-centred, all-circular) and the EMCE will
automatically switch to the set of waveguide modes appropriate for the specified set of sym-
metries. Since symmetries significantly lower the number of modes required to obtain an
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accurate result, this technique greatly reduces the computational time needed to simulate a
circuit that has one or more of the above symmetries.

Finally, it is also remarkable that the EMCE provides specific modules in order to predict
RF breakdown due to Multipactor and Corona phenomena. By using the electromagnetic
fields computed by the electromagnetic solver, these modules can predict the breakdown
voltage levels of the microwave device under analysis.

6.2.2 Integration of the DR-loaded cavity module into FEST3D.
In order to develop a software tool able to analyse dielectric resonator filters, the first step
that we performed was the implementation of a software module to obtain the modal chart of
a rectangular cavity loaded with a cylindrical dielectric resonator by means of the new SS-IE
formulation. As it has been detailed in Chapter 3, to obtain the resonant modes, we have
to solve the homogeneous eigenvalue problem defined in (3.42). Since the solution of such
a problem implies intensive computations, we decided to use Fortran 77 as programming
language. Once this first module was validated (see Chapter 5), we implemented the code to
calculate the generalized admittance matrix (GAM) of the DR-loaded rectangular cavity as a
pole expansion in the domain of the Laplace variable (see eq. (3.50)). As detailed in Chapter
3, the resonator cavity may be opened by any of its lateral surfaces and/or the top cap.

At that point, we were able to obtain the electromagnetic response of a dielectric-loaded
cavity resonator. However, in order to analyse more complex structures, such as filters, it
was necessary to integrate the code developed into a general purpose electromagnetic solver
that gave the possibility to connect it to other circuit elements. The choice was to integrate
it into FEST3D, since it is an efficient full-wave electromagnetic solver that, like the formu-
lation proposed in this thesis, make use of advanced modal techniques based on the integral
equation technique. Due to the fact that the main program of FEST3D is written in C++
and it is an object-oriented code, in order to integrate the new software module it has been
necessary to implement a C++ class that represents a new “FEST3D network element”: a
rectangular cavity loaded with a dielectric puck. This C++ class is responsible of loading
the parameters that describe the resonator cavity from a FEST input file, validating those
parameters, connecting the cavity to other network elements attached to the access ports of
the cavity, controlling the caching files, and finally calling the Fortran routines that calculate
the generalized impedance matrix.

As it has been explained above, in FEST3D the computation of the GIM of each network
element is split into the static and the dynamic part. In the case of the DR-loaded cavity, a
Fortran77 subroutine is called in the static part to solve the eigenvalue problem (3.42), thus
obtaining the resonant wavenumbers and the matrices YA, YB and y(i) (see eq. (3.51)) needed
to calculate the GAM. In the dynamic part, another F77 subroutine to calculate the GAM is
called. In the static part, the resonant wavenumbers and the matrices YA, YB and y(i) are
conveniently stored and saved in the corresponding caching file. Thus, if FEST3D detects
that there is a rectangular cavity loaded with a dielectric puck equal to other dielectric cavity
resonator that has been already analysed in he current or previous simulations, it avoids to
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(a) This dialog window allows the introduction of
the cavity dimensions, the number of basis func-
tions and modes of the empty cavity used in the
analysis. The surfaces of the rectangular cavities
that are opened as access ports are also indicated
in this window.

(b) This dialog window allows the user to intro-
duce the dielectric resonator dimensions, the rel-
ative permittivity of the dielectric material and its
position inside the rectangular cavity.

Figure 6.2: Dialog windows to introduce the data corresponding to the dielectric-loaded
rectangular cavity.

solve again the eigenvalue problem (3.42) by copying the required data. For instance, when
one analyses a symmetric DR filter with some repeated dielectric loaded cavities, FEST3D
will perform the static computations only for each different cavity, thus saving computational
resources. Due to the cache file service, this will even occur if the dielectric cavity resonator
has been analysed in previous simulations.

In principle, the access ports of the dielectric-loaded rectangular cavity implemented
must be rectangular waveguides with a cross section equal to the surface of the cavity. How-
ever, since FEST3D permits to analyse waveguides with zero length, the cavity resonator can
be connected to any kind of circuit elements, such as any kind of iris or T-junctions, through
a zero length rectangular waveguides.

Finally, the new FEST3D network element has been integrated in the graphical user
interface. Thus, the user can easily introduce the data that characterise the dielectric-loaded
cavity resonator and visualize the real device under analysis. Fig. 6.2 show the windows
where the user introduces all the needed parameters.



6.3 Bandpass and bandstop dielectric resonator filters 139

6.3 Bandpass and bandstop dielectric resonator filters
In this section, the CAE tool FEST3D upgraded with the software module developed in
the present thesis is used for the design of different dielectric resonator filters in rectangular
waveguide. Firstly, we present some prototype structures that are used as basis for the single-
mode DR filters designed. Afterwards, the analysis of different bandpass and bandstop filters
by means of the new software tool is successfully compared with the results obtained with the
well-known electromagnetic solver Ansoft HFSS [80]. Since HFSS is based on the Finite-
Element Method (FEM), which is completely different from the SS-IE formulation presented
in this work and the modal techniques used in FEST3D, it represents a good reference to
validate the software developed in this thesis.

Figure 6.3: Bandpass structure using dielectric resonators in a rectangular waveguide enclo-
sure.

The bandpass prototype structure to be described is made of a rectangular cavity loaded
with a dielectric puck connected through rectangular irises at both ends to propagating rect-
angular waveguides. The rotation axis of the dielectric cylinder is oriented parallel to the
largest side of the input/output waveguides as shown in Fig. 6.3. When the propagating
waveguides are excited on their fundamental mode (TE10), the reactangular cavity contain-
ing the DR is under cutoff, therefore in the absence of the dielectric body, no energy would
be transmitted between the propagating waveguides. Nevertheless, in the prototype structure,
the input waveguide excites through the iris the electromagnetic fields in the cavity, which
decay exponentially with the distance from the iris. These evanescent fields excite, via the
magnetic field, the fundamental TE01 mode in the dielectric resonator, and then the energy
is transmitted to the output waveguide.

Table 6.1 shows the dimensions of the dielectric-loaded reactangular cavity and the irises
of the bandpass prototype analysed. In that table, w, h and t mean, respectively, the width,
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Rectangular Cavity a (mm) b (mm) c (mm)
13.5 17.88 13.2

Rectangular Iris w (mm) h (mm) t (mm)
1.0 9.0 0.5

Dielectric Resonator d (mm) h1 (mm) εr1
9.84 4.43 44

Table 6.1: Bandpass prototype parameters

the height and the thickness of the rectangular iris. The DR is centered with respect to the
bottom surface of the rectangular cavity and its base is placed at a height h2 = 6.73 mm.
The input/output ports are WR-159 (40.39×20.193 mm) waveguides.

To characterise the dielectric loaded cavity, we have used 250 basis functions, 1000 reso-
nant modes of the rectangular cavity and 20 accessible modes in the apertures. Moreover, to
characterise the junctions between the rectangular waveguides by means of the integral equa-
tion technique, we have employed 20 accessible modes, 150 basis functions and 600 modes
in the series of the integral equation kernel. The electromagnetic response of the prototype
structure presented in Table 6.1 is shown in Fig. 6.4. Two peaks of the scattering parameter
|S12| can be observed at 5.195 GHz and 6.429 GHz corresponding to the excitation of the
fundamental mode TE01 and the hybrid mode HE11 of the DR.
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Figure 6.4: Electromagnetic response of the bandpass prototype described in Table 6.1. The
results are compared with the FEM electromagnetic solver Ansoft HFSS.

Next, we can use the idea behind the previous bandpass prototype structure to design a
bandpass filter. We can connect different dielectric-loaded rectangular cavities to each other,
through rectangular irises, to design a bandpass filter. Thus, the evanescent fields that have
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Figure 6.5: Four-pole band-pass filter based on dielectric resonators in rectangular cavities
connected through rectangular irises.

excited the dielectric resonator in the prototype, will now excite the DR in the nearest cavity
resonator and the signal will be transmitted through the next dielectric resonators to the
output propagating waveguide. We have employed the new software tool to design a four-
pole band-pass filter based on dielectric loaded rectangular cavity resonators (see Fig. 6.5).
The dielectric support of the resonators is assumed to have a relative permittivity εr2 = 1, and
a height of h2 = 3.25 mm. The DRs are centered with respect to the base of their rectangular
enclosures. The input and output ports of the filter are standard WR-90 waveguides and are
directly coupled to the first and the last cavities. The designed bandpass filter is symmetric
in the propagating direction, and the rest of its geometrical parameters are included in Table
6.2.

Rectangular Cavities a (mm) b (mm) c (mm)
1 & 4 10.0 9.0 7.7
2 & 3 11.0 9.0 10.4

Rectangular Irises w (mm) h (mm) t (mm)
1 & 3 6.08 4.43 0.5

2 4.85 5.27 0.5
Dielectric Resonators d (mm) h1 (mm) εr1

5.10 2.3 50

Table 6.2: Dimensions of a four-pole filter centered at 8.94 GHz. It is based on dielectric-
loaded cavities coupled through rectangular irises. The dielectric support of the resonators
is assumed to have a relative permittivity εr2 = 1, and a height of h2 = 3.25 mm.



142 Dielectric resonator filter design

In order to analyse the filter described in Table 6.2, we have used 150 basis functions
to characterise the dielectric resonators, 700 resonant modes of the rectangular cavities and
50 accessible modes in the apertures. In addition, to characterise the junctions between the
rectangular waveguides by means of the integral equation technique, we have employed 50
accessible modes, 150 basis functions and 500 modes in the series of the integral equation
kernel. We have simulated this filter with an Intel Core 2Duo at 1.83 GHz, and the required
computational effort has been of 49 s in the frequency-independent part, and of 0.4 s per
frequency point. The filter is centered at 8.94 GHz with a bandwidth of 37 MHz. The results
obtained with the new code developed are again successfully compared with those provided
by the commercial code Ansoft HFSS in Fig. 6.6 and 6.7. The out of band response is also
shown in Fig. 6.8.
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Figure 6.6: Electromagnetic response of the bandpass filter described in Table 6.2. Com-
parison between the state space-integral equation method and the Finite-Element Method
(Ansoft HFSS).

The next bandpass filter designed using dielectric-loaded cavity resonators has a band-
width of 40 MHz and its pass-band is centered at 5 GHz. The input/output ports are WR-187
(47.55 ×22.147 mm) rectangular waveguides, which are directly coupled to the cavity res-
onators. The dielectric supports have a height of h2 = 3.25 mm, and a relative permittivity
of εr2 = 1. The rest of parameters are shown in Table 6.3. In this case, to obtain the
electromagnetic response of the filter designed, we have needed: 250 basis functions in the
DRs; 600 resonant modes in the reactangular cavities; 30 accessible modes in the apertures.
To characterise the planar junctions between the rectangular waveguides, we have used 30
accessible modes, 100 basis functions and 400 modes in the series of the integral equation
kernel. The computational time used in the analysis of such a filter has been 45 s in the static
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Figure 6.7: Electromagnetic response of the band-pass filter described in Table 6.2. Com-
parison of the scattering parameters phases between the state-space integral-equation method
and Ansoft HFSS.

part and 0.12 s per frequency point in the dynamic part with an Intel Core 2 Duo @1.83GHz
processor. The comparison of our results with the FEM-based electromagnetic solver Ansoft
HFSS is presented in Fig. 6.9.

Rectangular Cavities a (mm) b (mm) c (mm)
1 & 4 13.5 17.88 13.2
2 & 3 17.18 17.88 16.6

Rectangular Irises w (mm) h (mm) t (mm)
1 & 3 6.4 8.68 0.5

2 6.12 8.85 0.5
Dielectric Resonators d (mm) h1 (mm) εr1

9.84 4.43 44

Table 6.3: Dimensions of a four-pole filter centered at 5.0 GHz. It is based on dielectric-
loaded cavities coupled through rectangular irises. The dielectric support of the resonators
is assumed to have a relative permittivity εr2 = 1, and a height of h2 = 6.73 mm.

Fig. 6.10 shows the electromagnetic response of the third bandpass filter designed us-
ing dielectric-loaded cavity resonators coupled via rectangular irises. In this case, the in-
put/output ports are WR-90 (19.05 ×9.525 mm) rectangular waveguides, which are directly
coupled to the cavity resonators. The dielectric supports are centered with respect to the
base of the rectangular enclosures, having a height of h2 = 2.975 mm, and a relative per-
mittivity of εr2 = 1. The rest of parameters are shown in Table 6.4. The four-pole filter
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Figure 6.8: Electromagnetic response of the band-pass filter described in Table 6.2. Com-
parison in the out of band range between the state-space integral-equation method and Ansoft
HFSS.

has a bandwidth of 78 MHz and its pass-band is centered at 10.74 GHz. We have used 250
basis functions in the DRs, 600 resonant modes in the reactangular cavities and 25 accessible
modes in the apertures. To characterise the planar junctions between the rectangular waveg-
uides, we have used 25 accessible modes, 100 basis functions and 450 modes in the series
of the integral equation kernel. To simulate the filter 44 s have been used in the static part,
while 0.1 s per frequency point were employed in the dynamic part using the same computer
than in the previous test cases.

Rectangular Cavities a (mm) b (mm) c (mm)
1 & 4 6.14 8.13 7.25
2 & 3 7.99 8.13 7.56

Rectangular Irises w (mm) h (mm) t (mm)
1 & 3 2.8 4.4 0.5

2 2.3 4.1 0.5
Dielectric Resonators d (mm) h1 (mm) εr1

4.84 2.18 40

Table 6.4: Dimensions of a four-pole filter centered at 10.74 GHz. It is based on dielectric-
loaded cavities coupled through rectangular irises. The dielectric support of the resonators
is assumed to have a relative permittivity εr2 = 1, and a height of h2 = 2.975 mm.

Up to now, we have presented different bandpass filters based on dielectric-loaded rect-
angular cavities where the coupling between cavity resonators is performed by means of
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Figure 6.9: Electromagnetic response of the bandpass filter described in Table 6.3. Com-
parison between the state space-integral equation method and the Finite-Element Method
(Ansoft HFSS).

rectangular irises. However, this coupling between resonators can also be achieved via di-
rect coupling by placing the dielectric resonators in a cutoff waveguide as it is shown in
Fig. 6.11. Next, we describe three different four-pole filters based on dielectric resonators in
rectangular waveguides below cutoff.

The first DR filter designed of this kind consists of a rectangular waveguide housing
(9.19×9.19 mm) loaded with four cylindrical dielectric resonators, which is connected to
WR-90 (19.05×9.525 mm) waveguides acting as input/output ports. The dielectric resonators
are centered with respect to the axis of propagation and the height of the four dielectric
supports is h2 = 3.59 mm. The rest of parameters are shown in Table 6.5. The pass-band of
the filter is centered at 11.98 GHz. We have used 200 basis functions in the DRs, 700 resonant
modes in the rectangular cavities and 20 accessible modes in the apertures. To characterise
the planar junctions between the rectangular waveguides, we have used 20 accessible modes,
40 basis functions and 200 modes in the series of the integral equation kernel. To simulate
the filter, 21.5 s have been used in the static part, while 0.01 s per frequency point were
employed in the dynamic part using the same computer than in the previous test cases. The
electromagnetic response obtained with our code is successfully compared with the results
of Ansoft HFSS as it is shown in Fig. 6.12.

The input/output ports of the second dielectric-loaded waveguide filter are WR-112 (28.5×
12.624 mm) waveguides. The four dielectric pucks are placed, centered with respect to the
axis of propagation, in a rectangular waveguide housing whose dimensions are 12.25×12.25
mm. The rest of parameters are shown in Table 6.6. In order to obtain the electromagnetic
response of the filter, we have used 250 basis functions in the DRs, 800 resonant modes in
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Figure 6.10: Electromagnetic response of the bandpass filter described in Table 6.4. Com-
parison between the state space-integral equation method and the Finite-Element Method
(Ansoft HFSS).

Lengths between DRs L1 (mm) L2 (mm) L3 (mm)
3.34 11.04 12.13

Dielectric Resonators d (mm) h1 (mm) εr1
4.24 2.01 38

Table 6.5: Dimensions of a four-pole filter at 11.98 GHz based on dielectric-loaded rectan-
gular waveguide below cutoff. The dielectric support of the resonators is assumed to have a
relative permittivity εr2 = 1, and a height of h2 = 3.59 mm.

the rectangular cavities and 30 accessible modes in the apertures. To characterise the planar
junctions between the rectangular waveguides, we have used 30 accessible modes, 60 basis
functions and 300 modes in the series of the integral equation kernel. To simulate the whole
structure, 28 s have been used in the static part, while 0.04 s per frequency point have been
employed in the dynamic part using an Intel Core 2 Duo @1.83GHz processor. The pass-
band of the filter is centered at 9 GHz. Our results are successfully compared with those
obtained by using Ansoft HFSS as it is shown in Fig. 6.13.

The design parameters of the last dielectric-loaded waveguide filter are shown in Table
6.7. It consists of a rectangular waveguide (27.56×27.56 mm) loaded with four cylindrical
dielectric resonators, which is connected to WR-229 (58.17×29.08 mm) waveguides acting
as input/output ports. The dielectric resonators are centered with respect to the axis of prop-
agation and the height of the four dielectric supports is h2 = 10.98 mm. The pass-band of
the filter is centered at 3.99 GHz. We have used 150 basis functions in the DRs, 500 resonant
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Figure 6.11: Bandpass filter in rectangular waveguide. The dielectric resonators are directly
coupled.

Lengths between DRs L1 (mm) L2 (mm) L3 (mm)
4.105 14.72 16.17

Dielectric Resonators d (mm) h1 (mm) εr1
4.92 2.33 50

Table 6.6: Dimensions of a four-pole filter at 9 GHz based on dielectric-loaded rectangular
waveguide below cutoff. The dielectric support of the resonators is assumed to have a relative
permittivity εr2 = 1, and a height of h2 = 4.96 mm.

modes in the reactangular cavities and 50 accessible modes in the apertures. To characterise
the planar junctions between the rectangular waveguides, we have used 50 accessible modes,
70 basis functions and 300 modes in the series of the integral equation kernel. To simulate
the filter, 14 s have been used in the static part, while 0.14 s per frequency point were em-
ployed in the dynamic part using the same computer than in the previous test cases. The
electromagnetic response of the filter is shown in Fig. 6.14.

Lengths between DRs L1 (mm) L2 (mm) L3 (mm)
8.55 31.1 33.74

Dielectric Resonators d (mm) h1 (mm) εr1
11.8 5.6 44

Table 6.7: Dimensions of a four-pole filter at 3.99 GHz based on dielectric-loaded rectan-
gular waveguide below cutoff. The dielectric support of the resonators is assumed to have a
relative permittivity εr2 = 1, and a height of h2 = 10.98 mm.

The next structures to be considered are shown in Figs. 6.15(a) and 6.15(b). This kind
of bandstop structures in waveguide technology was reported by Ren [119]. It is realized
by coupling the dielectric resonator to a propagating waveguide. The resonators are located
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Figure 6.12: Electromagnetic response of the dielectric-loaded rectangular waveguide band-
pass filter described in Table 6.5.

in their own metal enclosures, and the coupling to the main waveguide is achieved through
apertures in the waveguide walls. This configuration provides isolation for individual DR and
reduces their perturbation of the waveguide. Like in the case of the bandpass prototype, the
rectangular cavity containing the resonator is below cutoff. When the TE10 mode is excited
in the propagating waveguide, the magnetic field of that mode couples with the magnetic
field of the fundamental TE01 mode in the dielectric resonator. Thus, the energy is absorbed
by the DR and reflected. In the structure shown in Fig. 6.15(a), the coupling is performed
via the Hx component of the fundamental mode in the propagating waveguide, whereas in
the case of Fig. 6.15(b), it is performed via the Hz component of the same mode.

Rectangular Cavity a (mm) b (mm) c (mm)
10.0 9.0 7.7

Rectangular Iris w (mm) h (mm) t (mm)
1.0 8.0 0.35

Dielectric Resonator d (mm) h1 (mm) εr1
5.10 2.3 50

Table 6.8: Bandstop prototypes parameters

The analysed bandstop prototypes consist of a WR-90 (22.86 ×10.16 mm) waveguide
connected to a rectangular cavity loaded with a dielectric resonator through a rectangular
iris. The dielectric support is assumed to have unitary relative dielectric permittivity with
a height h2 = 3.25 mm, the rest of geometry parameters are shown in Table 6.8. Both
the Hx and the Hz configurations have been simulated (see Fig. 6.15(a) and Fig. 6.15(b),
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Figure 6.13: Electromagnetic response of the dielectric-loaded rectangular waveguide band-
pass filter described in Table 6.6.

respectively).

In order to obtain the electrical response of these structures, we have employed 150 basis
functions, 900 resonant modes of the rectangular cavity in both configurations. In the Hx

configuration, we have used 50 modes in the aperture of the dielectric-loaded cavity and in
the T-Junction; 50 accessible modes, 200 basis functions and 600 modes in the series of the
integral equation kernel used to characterise the planar junctions between rectangular waveg-
uides. On the other hand, in the Hz configuration, we have used 20 modes in the aperture of
the dielectric-loaded cavity and in the T-Junction; 20 accessible modes, 150 basis functions
and 500 modes in the series of the integral equation kernel for the planar junctions. In Fig.
6.16(a) and Fig. 6.16(b), the results provided by our method are successfully compared to
those obtained with Ansoft HFSS for the Hx and the Hz configurations, respectively.

We can use now the bandstop prototype structure, analogously to the case of the band-
pass filter, to design a bandstop filter. For this purpose, we have connected, to a WR-90
waveguide, four dielectric-loaded rectangular cavities. As it is shown in Fig. 6.17, the Hx

configuration have been used. The filter is symmetric with respect to the axis of the propaga-
tion of the WR-90 waveguide. The dielectric supports are assumed to have unitary relative
dielectric permittivity with a height h2 = 3.25 mm. In the first cavity resonator, the center of
the DR is placed at 3.9 mm from the iris, while in the case of the second resonator is placed
at 3.5 mm. The rest of parameters are shown in Table 6.9. In this table, L1 is the length from
the center of the first iris to the input port, while L2 and L3, are the length from the center of
the second iris to the center of the first one, and the length from the center of the second iris
to the center of the third one, respectively.

In order to obtain the electrical response of the bandstop filter, we have employed 200
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Figure 6.14: Electromagnetic response of the dielectric-loaded rectangular waveguide band-
pass filter described in Table 6.7.

(a) Hx configuration (b) Hz configuration

Figure 6.15: Bandstop structures using dielectric resonators in rectangular waveguides.

basis functions, 800 resonant modes of the rectangular cavity 50 modes in the aperture of
the dielectric-loaded cavity. To characterise the T-Junction, it has been used 50 modes in
the apertures, whereas to analyse the planar junctions between rectangular waveguides 50
accessible modes, 200 basis functions and 700 modes in the series of the integral equation
kernel, have been used. To simulate the whole structure, 50 s have been used in the static
part, while 1 s per frequency point have been employed in the dynamic part using an Intel
Core 2 Duo @1.83GHz processor. In Fig. 6.18, the results provided by our method are
successfully compared to those obtained with Ansoft HFSS.

Finally, it must be highlighted that the State Space-Integral Equation formulation, due to
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(a) Hx configuration
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(b) Hz configuration

Figure 6.16: Electromagnetic response of the band-stop prototypes. Comparison between
the results obtained with the state-space integral-equation method and with Ansoft HFSS.

Figure 6.17: Bandstop filter described in Table 6.9.

its numerical efficiency, is very suitable for being used within computer-aided design tools.
Most of the total computational effort required by this method is related to the frequency in-
dependent calculations needed to build and solve the eigenvalue problem defined by (3.42).
Therefore, the optimized design of dielectric-loaded waveguide filters can be very fast, even
if a large number of frequency points are used, as long as the optimization parameters are
those not affecting the dielectric resonator geometry. For instance, in the filters previously
presented, it is possible to control the coupling iris dimensions, as well as the length of the di-
electric resonator cavities, to perform a fine adjustment of the S-parameters without changing
the dielectric resonator geometry. Since the dielectric resonator geometry is not changed, the
solution of the cited eigenvalue problem can be reused, and thus the optimization procedure
is extremely efficient.
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Rectangular Cavities a (mm) b (mm) c (mm)
9.0 9.0 8.04
9.0 9.0 7.37

Rectangular Irises w (mm) h (mm) t (mm)
8.88 8.0 0.5
8.03 9.0 0.5

Lengths between irises L1 (mm) L2 (mm) L3 (mm)
14.5 10.89 10.51

Dielectric Resonators d (mm) h1 (mm) εr1
5.1 2.3 50

Table 6.9: Dimensions of the bandstop filter based on dielectric-loaded cavities. The dielec-
tric support of the resonators is assumed to have a relative permittivity εr2 = 1, and a height
of h2 = 3.25 mm.
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Figure 6.18: Electromagnetic response of the bandstop filter described in Table 6.9.



Chapter 7

Conclusions and future work

In this PhD Thesis, a new State-Space Integral-Equation (SS-IE) formulation in the Laplace
variable domain has been proposed for characterizing rectangular cavities loaded with dielec-
tric resonators. This novel technique, based on the BI-RME method, has been successfully
implemented to analyse the electromagnetic behaviour of rectangular cavities loaded with
cylindrical dielectric resonators. The software module developed in the frame of this Thesis
has been integrated in the Computer Aided Engineering (CAE) tool for the full-wave analysis
of microwave and millimetre components FEST3D. The use of the resulting tool has permit
to analyse and design complex devices, such as stop-band and band-pass filters, based on
dielectric loaded resonators in rectangular waveguide technology. The accuracy of the pro-
posed method has been validated through successful comparisons with data obtained from
the technical literature and a well known commercial software based on the Finite Element
Method (FEM). It has been proved that the implemented method is accurate and computa-
tionally efficient, thus making it very suitable for the optimized design of waveguide filters
including dielectric resonators.

The SS-IE approach developed in the present Thesis is a Volume Integral Equation for-
mulated in the Laplace variable domain. The linear, homogeneous and isotropic dielectric
body is rigorously characterized by means of the electric equivalent polarization charge and
current densities defined in the volume of the dielectric object. As shown in Chapter 2, we
have expressed the electromagnetic field using the Green’s functions of a rectangular ca-
vity instead of using the free-space ones as it is usually done in standard boundary element
methods. Thus, by using the Green’s functions for the scalar and vector potentials in the
Coulomb’s gauge, we obtain an hybrid representation of the field in terms of Green’s inte-
grals and rapidly converging modal series. Moreover, the Green’s functions for a rectangular
cavity has been efficiently computed following the Ewald technique. Taking as starting point
this hybrid representation of the field and using the Method of Moments (MoM), we can ob-
tain the modal chart and the field distribution of the cavity resonator by solving a real matrix
linear eigenvalue problem. Proceeding in this way, we are able to avoid searching the zeros
of a matrix determinant as other frequency- or time- domain methods do. In addition, the use
of the Green’s functions for a rectangular cavity avoids to impose the boundary conditions on
the walls of the metallic cavity, and thus reducing the number of unknowns of the problem
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to be solved.

The new formulation has been applied to calculate the modal chart of a rectangular cavity
loaded with a cylindrical dielectric resonator placed at an arbitrary position inside the cavity.
Throughout the Chapter 4, we have shown how crucial is the selection of an appropriate set
of basis functions to expand the polarization vector, not only for the good convergence of the
method proposed, but also to transform some of the integrals involved in the computation of
the matrices involved in the solution of the problem by means of the MoM. As it is shown,
the numerical efficiency of the proposed method depends critically on the computation of
these matrices, and specially of those matrices involving the Green’s functions. For instance,
in this case of the computation of the L matrix elements, it is crucial not only to transform
the singularities of the integrals to regular expressions, but also to reformulate the volume-
volume integrals to surface-surface ones. Thus, we only need to perform a 2-D mesh over
the surface of the dielectric resonator, instead of performing a 3-D mesh in its volume. These
transformations are specially important for the evaluation of the regular part of the L matrix,
since they allow to drastically reduce the required computational effort.

The resonant frequencies of low and high order modes of different rectangular cavities
loaded with cylindrical dielectric resonators have been calculated, as well as their electro-
magnetic field distributions. The influence of geometrical and electric parameters in the
computation of the modal chart of the cavity resonator has been studied. The results ob-
tained with the new developed formulation have been successfully compared with the tech-
nical literature and with the well-known commercial tool Ansoft High Frequency Structure
Simulator (Ansoft HFSS), which is based on the Finite-Element Method. The fact that the
algorithm used by HFSS is completely different from the SS-IE formulation presented in this
work, makes it a good reference to validate the software developed in this Thesis. On the
other hand, the convergence studies performed has shown that the criteria used to order the
basis functions used in the MoM can affect the convergence of the method.

Once the code implemented to compute the modal chart of rectangular cavities loaded
with cylindrical dielectric resonators was validated, we applied the SS-IE approach to cal-
culate the generalized admittance matrix (GAM) of the considered cavities by opening the
lateral access ports. The resonator cavity may be opened through any of its lateral access
ports and/or through its top surface. It is important to remark that all the matrices whose
elements contain surface integrals over the access ports, involving magnetic Green’s func-
tions and magnetic mode vectors for the waveguide, have been analytically solved using the
resonant mode expansion of the Green’s functions. The efficient analysis of the dielectric
resonator loaded cavity by means of the SS-IE approach is a key issue, since the dielectric
resonator characterization requires the major part of the computational resources when one
analyses more complex structures. As described in Chapter 3, the GAM is obtained as a pole
expansion in the domain of the Laplace variable. Hence, with the new formulation we avoid
to perform intensive computations at each frequency point like other frequency- and time-
domain methods do. Thus, the electromagnetic behaviour of the cavity resonators can be
solved in a wide and dense frequency range with a very reduced computational effort. Once
the generalized admittance matrix (GAM) of this circuit building block is calculated, it may
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be connected to other circuit elements, in order to analyse different typologies of dielectric
resonator filters.

For such a purpose, we have integrated this software module in a Computer Aided Engi-
neering (CAE) tool for the analysis and design of passive microwave and millimetre-waves
components: FEST3D (Full-wave Electromagnetic Simulation Tool 3D). The integration
into such a general purpose CAE tool permits us to analyze and design different topologies
of dielectric resonator filters in waveguide technology. Moreover, it allows us to use all the
capabilities of FEST3D when analysing a circuit, such as the 3D visualization of the real
component, the use of optimization algorithms, etc. The new tool has been used to design
different single-mode bandpass and stopband filters. The designed filters have been used
to validate the method developed comparing the results obtained with Ansoft HFSS. As it
was expected, the CPU time used to analyse such DR filters is very competitive, being the
computations preformed in the frequency loop extremely short.

To conclude, we highlight some of the research activities that may emerge in a future
from the work developed in this Thesis. As mentioned in Chapter 3, one of the advantages of
s-domain solutions is that they may be cast into equivalent electrical circuits, which is crucial
in synthesis and design processes. For this reason, one of the next future activities foreseen
is to use the developed algorithm in order to find an accurate equivalent electrical circuit that
will be used to develop new synthesis tools for dielectric resonator filters. So far, we have
applied the formulation developed to analyse rectangular cavities loaded with a cylindrical
DR, nevertheless the presence of the dielectric support has not been considered. One possible
extension of the work may be to take into account a dielectric support. Moreover, in real
applications, the dielectric resonator filters need to be tuned with metallic screws in order
to obtain the proper electrical response. In addition, the input/output excitation of such
filters is usually achieved by means of coaxial probes. For this reason, it would be of great
interest to extend the present formulation to include metal posts in the cavity and to make
available the coaxial excitation [74, 120]. On the other hand, the set of basis functions used
in the present work, has been particularized for a cylindrical DR. Despite the fact that the
SS-IE formulation presented is based on the solution of a Volume Integral Equation, the
election of a suitable set of basis functions has allowed us to reduce the integrals involved to
surface integrals. However, if one wants to consider different DR shapes, a new set of basis
functions should be considered. And thus, part of the problem should be reformulated. For
this reason, in a mid-term future, to find a new SS-IE approach based on a Surface Integral
Equation Formulation to analyse cavity resonators with metal and/or dielectric insets may be
an optimum objective.

Finally, the scientific publications related to the work performed in this PhD Thesis are
enumerated in Appendix G .
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Appendix A

Modal analysis of rectangular cavities
and waveguides

A.1 Magnetic modal vectors of a rectangular waveguide
Let consider a waveguide with rectangular cross section whose dimensions are lxξ

× lyξ
, and

whose corresponding transverse coordinates are (xξ, yξ). Then, the magnetic modal vector
function related to the n-th mode of the waveguide may be expressed as [86]:

h(ξ)
n (r) = Nxξ,n Fxξ,n(xξ, yξ) x̂ξ +Nyξ,n Fyξ,n(xξ, yξ) ŷξ (A.1)

In the last equation, Nxξ,n and Nyξ,n are normalization factors whose expression are particu-
larized for the cases TEzξ and TMzξ 1 [86]:

N TE
xξ,n

=
kxξ,n

k
(ξ)
t,n

√√√√εnxξ
εnyξ

lxξ
lyξ

(A.2)

N TE
yξ,n

=
kyξ,n

k
(ξ)
t,n

√√√√εnxξ
εnyξ

lxξ
lyξ

(A.3)

N TM
xξ,n

= 2
kyξ,n

k
(ξ)
t,n

1√
lxξ
lyξ

(A.4)

N TM
yξ,n

= −2
kxξ,n

k
(ξ)
t,n

1√
lxξ
lyξ

(A.5)

where (nxξ
, nyξ

) are the modal indexes of the n-th modal solution related to the coordinates
(xξ, yξ), respectively; kxξ,n = nxξ

π/lxξ
is the wavenumber related to the coordinate xξ;

1For the sake of simplicity, hereinafter the superindex zξ will be omitted to denote the modes TEzξ and
TMzξ .
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kyξ,n = nyξ
π/lyξ

is the wavenumber related to the coordinate yξ; (k
(ξ)
t,n)

2 = k2
xξ,n

+ k2
yξ,n

is
the squared wavenumber corresponding to the n-th mode of the waveguide; and εn is the
Neumann factor, which is defined as:

εn =





1, if n = 0

2, if n 6= 0
(A.6)

In addition, the functions Fxξ,n(xξ, yξ) and Fyξ,n(xξ, yξ) in the expression (A.1) are defined
as follows [86]:

Fxξ,n(xξ, yξ) = sin(kxξ,n xξ) cos(kyξ,n yξ) (A.7)

Fyξ,n(xξ, yξ) = cos(kxξ,n xξ) sin(kyξ,n yξ) (A.8)

Next, we proceed to calculate the divergence of the TE and the TM magnetic modal
vectors. In the case of TE modes, the magnetic field may be expressed by means of the
following identity:

h(ξ)TE
n (r) = ẑξ ×


ẑξ × 1

k
(ξ)
t,n

∇tφ
(ξ)TE
n (r)


 (A.9)

being zξ the coordinate that defines the propagating direction of the waveguide;∇t the trans-
verse gradient operator calculated in the coordinates (xξ, yξ), and φ(ξ)TE

n (r) the potential
function 2:

φ(ξ)TE
n (r) =

√√√√εnxξ
εnyξ

lxξ
lyξ

cos(kxξ,n xξ) cos(kyξ,n yξ) (A.10)

Then, we can write3:

∇ · h(ξ)TE
n (r) = ∇ ·


ẑξ × (ẑξ × 1

k
(ξ)
t,n

∇tφ
(ξ)TE
n (r))


 = ∇ ·


ẑξ · 1

k
(ξ)
t,n

∇tφ
(ξ)TE
n (r)


 ẑξ

− 1

k
(ξ)
t,n

∇ · ∇tφ
(ξ)TE
n (r) = − 1

k
(ξ)
t,n

∇2
tφ

(ξ)TE
n (r) = k

(ξ)
t,n φ

(ξ)TE
n (r) (A.11)

In the case of TM modes, it can be demonstrated that the divergence of the magnetic
modal vector is equal to zero. Since we have:

h(ξ)TM
n (r) = −ẑξ ×∇tφ

(ξ)TM
n (r) (A.12)

being φ(ξ)TM
n (r) a potential function. Then4:

∇ · h(ξ)TM
n (r) = −∇ ·

(
ẑξ ×∇tφ

(ξ)TM
n (r)

)
= ∇ ·

(
∇tφ

(ξ)TM
n (r)× ẑξ

)

= ∇ ·
(
∇t × ẑξφ

(ξ)TM
n (r)− φ(ξ)TM

n (r)∇× ẑξ
)

= 0 (A.13)

2The potential function (A.10) satisfies the scalar waves equation.
3The following identity has been used: A×(B×C) = (A ·C)B− (A ·B)C.
4The following identity has been used in this step: ∇ψ ×A = ∇× (ψA)− ψ∇×A.
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A.2 Electric and magnetic solenoidal modal vectors of a
rectangular cavity

Figure A.1: Rectangular cavity resonator with dimensions lx × ly × lz.

Let consider a rectangular cavity with dimensions lx × ly × lz. We assume that (x, y)
are the transverse coordinates and z is the axial coordinate (see Figure A.1). In order to
obtain the electric and magnetic modal vectors of the rectangular cavity, we should solve
equation (2.8b). Nevertheless, the complexity of this vector equation can be relaxed due to
the simmetry of the problem, since the cross-section of the cavity is uniform along the z
axis. Thus, the TEz solenoidal modal vectors are related to the eigensolution of the two-
dimensional equation [62]:

∇2ξ + λ2ξ = 0 in S (A.14)

∂ξ

∂n
= 0 on ∂S

where ξ is a scalar function, S is the surface described by the cavity in the X-Y plane, i. e.,
the rectangle with dimensions lx × ly, and ∂S its contour.

By means of the eigensolution of this equation, the electric modal vector related to the
i-th TEz mode can be expressed as:

~ETEz

i = N TEz

i sin (kz,iz)
(
ûz ×∇tξix,iy

)
, (A.15)

and the magnetic modal vector,

~HTEz

i = −N
TEz

i

ki

[
kz,i cos (kz,iz)∇tξix,iy + k2

t,i sin (kz,iz) ξix,iy ûz
]

(A.16)

being ∇t the transverse gradient operator calculated in the coordinates (x, y); N TE
i a nor-

malization factor defined as:

N TE
i =

1

kt,i

√
2εixεiy
lxlylz

(A.17)
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The scalar function ξix,iy is solution of the equation (A.14), and can be written as:

ξix,iy = cos(kx,ix) cos(ky,iy) (A.18)

By introducing now (A.18) and (A.17) into (A.15) and (A.16), we can the electric and
magnetic modal vectors can be rewritten as follows:

~ETEz

i =
1

kt,i

√
2εixεiy
lxlylz

(
ky,i cos (kx,ix) sin (ky,iy) sin (kz,iz) ûx

− kx,i sin (kx,ix) cos (ky,iy) sin (kz,iz) ûy

)
(A.19)

and

~HTEz

i =
1

kt,iki

√
2εixεiy
lxlylz

(
kx,ikz,i sin (kx,ix) cos (ky,iy) cos (kz,iz) ûx

+ ky,ikz,i cos (kx,ix) sin (ky,iy) cos (kz,iz) ûy

− k2
t,i cos (kx,ix) cos (ky,iy) sin (kz,iz) ûz

)
(A.20)

The TM z solenoidal modal vectors are related to the eigensolution of the two-dimensional
equation [62]:

∇2η + λ2η = 0 in S (A.21)

η = 0 on ∂S

And thus, the electric modal vector related to the i-th TM z mode can be expressed as:

~ETMz

i = N TMz

i

[
kz,i sin(kz,iz)∇tηix,iy − k2

t,i cos(kz,iz)ηix,iy ûz
]

(A.22)

and the magnetic modal vector,

~HTMz

i = −N TMz

i ki cos(kz,iz)
(
ûz ×∇tηix,iy

)
(A.23)

where N TM
i is a normailization factor defined as

N TM
i = − 2

kt,iki

√
εiz
lxlylz

(A.24)

The scalar function ηix,iy is soltuion of the equation (A.21), and is expressed as:

ηix,iy = sin(kx,ix) sin(ky,iy) (A.25)
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By introducing now (A.24) and (A.25) into (A.22) and (A.23), we can the electric and
magnetic modal vectors can be rewritten as follows:

~ETMz

i = − 2

kt,iki

√
εiz
lxlylz

(
kx,ikz,i cos (kx,ix) sin (ky,iy) sin (kz,iz) ûx

+ ky,ikz,i sin (kx,ix) cos (ky,iy) sin (kz,iz) ûy

− k2
t,i sin (kx,ix) sin (ky,iy) cos (kz,iz) ûz

)
, (A.26)

and

~HTMz

i =
2

kt,i

√
εiz
lxlylz

(
ky,i sin (kx,ix) cos (ky,iy) cos (kz,iz) ûx

− kx,i cos (kx,ix) sin (ky,iy) cos (kz,iz) ûy

)
(A.27)

Please note that in all these expressions, (ix, iy, iz) are the modal indexes respectively
associated to the coordinates (x, y, z) of the i-th mode, and εi is the neumann factor defined
in (A.6). Moreover, the following definitions have been considered:

kx,i ≡ ixπ

lx
; ky,i ≡ iyπ

ly
; kz,i ≡ izπ

lz
; (A.28a)

k2
t,i ≡ k2

x,i + k2
y,i = λ; k2

i ≡ k2
t,i + k2

z,i (A.28b)

A.3 Magnetic Green’s functions of a rectangular cavity

Let consider a rectangular cavity with dimensions lxξ
× lyξ

× lzξ
. We assume that (xξ, yξ)

are the transverse coordinates and zξ is the axial coordinate. The magnetic scalar Green’s
function can be expressed as follows [62]:

gm(r, r′) =
∞∑

nxξ
,nyξ

,nzξ
=0

nxξ
=nyξ

=nzξ
=0 excluded

εnzξ

κ2 lzξ

φnxξ
,nyξ

(xξ, yξ)φnxξ
,nyξ

(x′ξ, y
′
ξ) cos(kzξ

zξ) cos(kzξ
z′ξ)

(A.29)
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where εn is the Neumann factor defined in (A.6) and the following definitions have been
considered :

κ2 = k2
xξ

+ k2
yξ

+ k2
zξ

(A.30)

kϑξ
=

nϑξ
π

lϑξ

, with ϑ = (x, y, z) (A.31)

φnxξ
,nyξ

(xξ, yξ) =

√√√√εnxξ
εnyξ

lxξ
lyξ

cos(kxξ
xξ) cos(kyξ

yξ) (A.32)

being κ the resonant wavenumber of the rectangular cavity. Note that in the expression of
the scalar Green’s function it appears the potential function used in (A.9) to calculate the TE
modes of a rectangular waveguide with dimensions lxξ

× lyξ

5.

Moreover, the static part of the magnetic dyadic Green’s function may be expressed as
[62]:

ḠF
0 (r, r ′) =

∞∑

nxξ
,nyξ

=0

∞∑

nzξ
=1

HTE(xξ, yξ, zξ)H
TE(x′ξ, y

′
ξ, z

′
ξ)

κ2

+
∞∑

nxξ
,nyξ

=1

∞∑

nzξ
=0

HTM(xξ, yξ, zξ)H
TM(x′ξ, y

′
ξ, z

′
ξ)

κ2
(A.33)

where HTE(r) and HTM(r) are the normalized magnetic modal vectors of the TE and TM
modes of a rectangular cavity6, respectively, and their expressions are [86]:

HTE(r) =
1

κ

√√√√ 2

lzξ

[
kzξ

cos(kzξ
zξ)h

TE
nxξ

,nyξ
(r)

−
√
k2
xξ

+ k2
yξ
φnxξ

,nyξ
(xξ, yξ) sin(kzξ

zξ) ẑξ
]

(A.34)

HTM(r) =

√√√√εnzξ

lzξ

cos(kzξ
zξ)h

TM
nxξ

,nyξ
(r) (A.35)

Finally, the curl of the static part of the magnetic dyadic Green’s function may be written

5Indeed, it can be observed that φ(xξ, yξ) = φ
(ξ)TE
n (xξ, yξ).

6In the first summation term of the expression (A.33) related to the TE modes, the indexes nxξ
and nyξ

can
not be equal to zero simultaneously.
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as [62]:

∇× ḠF
0 (r, r′) =

∞∑

nxξ
,nyξ

=0

∞∑

nzξ
=1

ETE(xξ, yξ, zξ)H
TE(x′ξ, y

′
ξ, z

′
ξ)

κ

+
∞∑

nxξ
,nyξ

=1

∞∑

nzξ
=0

ETM(xξ, yξ, zξ)H
TM(x′ξ, y

′
ξ, z

′
ξ)

κ
(A.36)

where the normalized electric modal vectors of a rectangular cavity are [86]:

ETE(r) =

√√√√ 2

lzξ

(
hTE
nxξ

,nyξ
(r)× ẑξ

)
sin(kzξ

zξ) (A.37)

ETM(r) =
1

κ

√√√√εnzξ

lzξ

[(
hTM
nxξ

,nyξ
(r)× ẑξ

)
kzξ

sin(kzξ
zξ)

+
2

lxξ
lyξ

√
k2
xξ

+ k2
yξ

sin(kxξ
xξ) sin(kyξ

yξ) cos(kzξ
zξ) ẑξ

]
(A.38)

Hence, it is remarkable that the electric and magnetic fields of a rectangular cavity with
dimensions lxξ

× lyξ
× lzξ

have been expressed in terms of the modal vectors hn(r) of a
rectangular waveguide with dimensions lxξ

× lyξ
, defined in (A.9) and (A.12).
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Appendix B

Integrals involving trigonometric
functions

Let consider the following integral:

Itrig≡
∫ 2π

0

∫ 2π

0
F (ϕ−ϕ ′)

{
sin(pϕ)
cos(pϕ)

}{
sin(q ϕ ′)
cos(q ϕ ′)

}
dϕ dϕ ′

where p and q are integers, and F (ϕ− ϕ ′) is a function of cos(ϕ− ϕ ′) and/or sin(ϕ− ϕ ′).
Since F (ϕ− ϕ ′) is a periodic function with period 2π, then the integral can be transformed
into:

Itrig≡
∫ ϕ ′+2π

ϕ ′

∫ 2π

0
F (ϕ−ϕ ′)

{
sin(pϕ)
cos(pϕ)

}{
sin(q ϕ ′)
cos(q ϕ ′)

}
dϕ dϕ ′

Next, we can perform the following change of variable: α = ϕ−ϕ ′; dα = dϕ. The new
boundaries of the integration are:

ϕ=ϕ ′ ⇒ α = 0; ϕ=ϕ ′ + 2π ⇒ α = 2π

And thus, the integral can be rewritten as:

Itrig≡
∫ 2π

0

∫ 2π

0
F (α)

{
sin (p(α+ ϕ ′))
cos (p(α+ ϕ ′))

}{
sin(q ϕ ′)
cos(q ϕ ′)

}
dα dϕ ′

Finally, taking into account the four different sine (s) and/or cosine (c) combinations, and
performing the analytical integration over the variable ϕ ′, we obtain:

I
(s,s)
trig = (1− δ0p)πδpq

∫ 2π

0
F (ϕ) cos(pϕ) dϕ (B.1a)

I
(s,c)
trig = −I(c,s)

trig = πδpq

∫ 2π

0
F (ϕ) sin(pϕ) dϕ (B.1b)

I
(c,c)
trig = (1 + δ0p)πδpq

∫ 2π

0
F (ϕ) cos(pϕ) dϕ (B.1c)

where δpq is the Kronecker delta.
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Appendix C

Dyadic Analysis

A dyadic is defined by

F =
∑

j

~Fjx̂j =
∑

i

x̂i ~Fi =
∑

ij

Fijx̂ix̂j (C.1)

The following operations can be defined:

- Scalar products of a Vector and a Dyadic:

F · ~a ≡ ∑

j

~Fj(x̂j · ~a) (C.2a)

~a · F ≡ ∑

i

(~a · x̂i)~Fi (C.2b)

- Vector products of a Vector and a Dyadic:

F × ~a ≡ ∑

j

~Fj(x̂j × ~a) =
∑

ij

Fijx̂i(x̂j × ~a) (C.3a)

~a× F ≡ ∑

i

(~a× x̂i)~Fi =
∑

ij

Fij(~a× x̂i)x̂j (C.3b)

- Divergence and curl of a Dyadic:

∇·F ≡ ∑

j

(∇· ~Fj)x̂j (C.4)
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∇×F ≡ ∑

j

(∇× ~Fj)x̂j (C.5)

Using these definitions, we can demosntrate some properties of the divergence and the curl
of dyadics that will be useful in the development of our formulation. For instance,

∇×(ϕF ) =
∑

j

(∇×(ϕ~Fj))x̂j =
∑

j

(∇ϕ× ~Fj + ϕ∇× ~Fj)x̂j

=
∑

j

(∇ϕ× ~Fj)x̂j +
∑

j

(ϕ∇× ~Fj)x̂j = ∇ϕ× F + ϕ∇×F (C.6)

where we have used the vector identity ∇×(ϕ~a) = ∇ϕ× ~a+ ϕ∇×~a.

We can also deduce some dyadic integral theorems. Taking as starting point the first
vector Green’s theorem:∫

V
[(∇× ~P ) · (∇× ~Q)− ~P∇×∇× ~Q] dv =

∫

SV

n̂ · (~P ×∇× ~Q) ds (C.7)

By considering three different vectors ~Qj , so we have three different identities of the same
form as (C.7), and by juxtaposing a unit vector x̂i on the right side and summing, we can
write:

∑

j

(∫

V
[(∇× ~P ) · (∇× ~Qj)− ~P · ∇×∇× ~Qj] dv

)
x̂j

=
∑

j

(∫

SV

n̂ · (~P ×∇× ~Qj) ds
)
x̂j (C.8)

Thus, by using the definition of the curl, we demonstrate the so-called first vector-dyadic
Green’s theorem of Type A:

∫

V
[(∇× ~P ) · (∇×Q)− ~P · ∇×∇×Q] dv =

∫

SV

n̂ · (~P ×∇×Q) ds (C.9)

Using the same procedure but interchanging this time ~P and ~Q, we can obtain the so-called
first vector-dyadic Green’s theorem of Type B:

∫

V
[(∇× ~P ) · (∇×Q)− (∇×∇× ~P ) ·Q] dv = −

∫

SV

n̂ · (∇× ~P ×Q) ds (C.10)

By substracting (C.9) from (C.10), we obtain the second vector-dyadic Green’s theorem:
∫

V
[(~P · ∇×∇×Q− (∇×∇× ~P ) ·Q] dv

= −
∫

SV

n̂ · [~P ×∇×Q+ (∇× ~P )×Q] ds (C.11)

And using the dyadic identity ~a · (~b× C) = (~a×~b) · C, we can rewrite
∫

V
[(~P · ∇×∇×Q− (∇×∇× ~P ) ·Q] dv

= −
∫

SV

[(n̂× ~P ) · ∇×Q+ (n̂×∇× ~P ) ·Q] ds (C.12)
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Up to this point, the dyadics have been defined using the same coordinate system for both
the columns (x̂j) and the rows (x̂i), but we can define now dyadics with two independent
coordinate systems {x̂} and {x̂′}. Consider the following dyadic:

F (~r, ~r ′) =
∑

j

~Fjx̂
′
j =

∑

i

x̂i ~F
′
i =

∑

ij

Fij(~r, ~r
′)x̂ix̂′j (C.13)

where Fij(~r, ~r ′) is a scalar function and a vector ~a′ denotes that this vector ~a has been refer-
enced to the primed coordinate system {x̂′}.

In this case, we have to pay attention to the definition of the divergence and the curl, since
it may change depending on which coordinate system the operators are refered to. Thus, we
have:

∇·F ≡ ∑

j

(∇· ~Fj)x̂′j (C.14a)

∇×F ≡ ∑

j

(∇× ~Fj)x̂
′
j (C.14b)

∇′ ·F ≡ ∑

i

x̂i(∇′ · ~F ′i ) (C.14c)

∇′×F ≡ ∑

i

x̂i(∇′× ~F ′i ) (C.14d)

This way, the property expressed by (C.6) in the case of the primed curl is:

∇′×(ϕF ) =
∑

i

x̂i(∇′×(ϕ~F ′i )) =
∑

i

x̂i(∇′ϕ× ~F ′i + ϕ∇′× ~F ′i )

=
∑

i

−x̂i(~F ′i ×∇′ϕ) +
∑

i

x̂i(ϕ∇′× ~Fi) = −F ×∇′ϕ+ ϕ∇′×F (C.15)

The integral theorems presented above, can be now obtained by juxtaposing in equation (C.7)
a unit vector x̂i on the left side and summing:

∑

i

x̂i

(∫

V
[(∇′× ~Qi) · (∇′× ~P )− (∇′×∇′× ~Qi) · ~P ] dv′

)

= −∑

i

x̂i

(∫

SV

(∇′× ~Qi × ~P ) · n̂′ ds′
)

(C.16)

This way the first vector-dyadic Green’s theorem of Type A can be expressed
∫

V
[(∇′×Q) · (∇′× ~P )− (∇′×∇′×Q) · ~P ] dv′ = −

∫

SV

(∇′×Q× ~P ) · n̂′ ds′ (C.17)
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And analogously, the first vector-dyadic Green’s theorem of Type B:
∫

V
[(∇′×Q) · (∇′× ~P )−Q · (∇′×∇′× ~P )] dv′ =

∫

SV

(Q×∇′× ~P ) · n̂′ ds′ (C.18)

And thus, by substracting (C.17) from (C.18), the analog expression for the second vector-
dyadic Green’s theorem is:

∫

V
[(∇′×∇′×Q) · ~P −Q · ∇′×∇′× ~P ] dv′

=
∫

SV

[(∇′×Q)× ~P +Q×∇′× ~P ] · n̂′ ds (C.19)

Finally, using the dyadic indentity (C × ~a) ·~b = C · (~a×~b), we can rewrite:
∫

V
[(∇′×∇′×Q) · ~P −Q · ∇′×∇′× ~P ] dv′

= −
∫

SV

[(∇′×Q) · (n̂′ × ~P ) +Q · (n̂′ ×∇′× ~P )] ds′ (C.20)



Appendix D

Integrals involved in the computation of
Matrix C

In Chapter 4, the computation of the matrices needed to solve the electromagnetic behaviour
of a rectangular cavity loaded with a cylindrical DR using the MoM, have been detailed.
The entries of some of these matrices are integrals that involve the Green’s functions of the
rectangular cavity. Consequently, to perform these integrations, special attention must be
paid to the singularities of the Green’s functions. In this Appendix, we detail some of the
procedures that have been followed in order to compute the matrix C.

D.1 Integral involved in the computation of the matrix C̃(1,1)

To compute the entries of the matrix C̃(1,1), we need to calculate integrals of this kind:

I =
∫

S

∫

S

f(~r)g(~r ′)
R

ds ds′ (D.1)

where f(~r) and g(~r ′) are scalar functions; R = |~r − ~r ′|; S is a planar surface, which is
the domain of integration. This integrand is singular when ~r = ~r ′ (R = 0). To avoid
this singularity, we make use of one of the results obtained from the work of P. Arcioni et
al. [106], that permits to express the term 1/R as:

1

R
= −∇s ·∇′

sR (D.2)

where ∇s is the surface nabla operator. It is remarkable that this result is only applicable
when ~r and ~r ′ are on a coplanar surface.

Thus, introducing (D.2) into (D.1), the integral can be rewritten as:

I = −
∫

S

∫

S
f(~r)g(~r ′)∇s ·∇′

sRds ds
′ = −

∫

S
g(~r ′)

[∫

S
f(~r)∇s ·∇′

sRds
]
ds′ (D.3)
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We can further develop this last expression. For this purpose, we can use the following vector
identity on a surface [85]1

∫

S

~P · ∇sψ ds =
∫

C
ψ ~P · ûm dl −

∫

S
ψ∇s · ~P ds (D.5)

where ~P and ψ are a vector and a scalar function defined on the surface S with contour C,
and ûm is the unit vector that is on the tangent plane and perpendicular to curve C.

By using (D.5), we can transform the integration over ~r in (D.3),

∫

S
f(~r)∇s ·∇′

sRds =
∫

C
f(~r)(∇′

sR) · ûm dl −
∫

S
(∇′

sR) · ∇sf(~r) ds (D.6)

and thus, the new expression of the integral is:

I = −
∫

S

∫

C
g(~r ′) f(~r) (∇′

sR) · ûm dl ds′ +
∫

S

∫

S
g(~r ′)(∇′

sR) · ∇sf(~r) ds ds′ (D.7)

Next, following an analogous procedure to transform the integration over ~r ′ in the two
terms of expression (D.7), we have:

∫

S

∫

C
g(~r ′) f(~r) (∇′

sR) · ûm dl ds′ =
∫

C

∫

C
Rf(~r) g(~r ′) ûm · û′m dl dl′ −

∫

S

∫

C
f(~r)R∇′

s · (g(~r ′) ûm) ds′ dl (D.8)

∫

S

∫

S
g(~r ′)(∇′

sR) · ∇sf(~r) ds ds′ =
∫

S

∫

C
Rg(~r ′) (∇sf(~r)) · û′m dl′ ds−

∫

S

∫

S
R (∇sf(~r)) · (∇′

sg(~r
′)) ds ds′ (D.9)

Finally, by introducing (D.8) and (D.9) into (D.7), we obtain:

I =
∫

S

∫

C
f(~r)R∇′

s · (g(~r ′) ûm) ds′ dl +
∫

S

∫

C
Rg(~r ′) (∇sf(~r)) · û′m dl′ ds

−
∫

S

∫

S
R (∇sf(~r)) · (∇′

sg(~r
′)) ds ds′ −

∫

C

∫

C
Rf(~r) g(~r ′) ûm · û′m dl dl′ (D.10)

1The general expression, for any kind of surface, is:
∫

S

~P · ∇sψ ds =
∫

C

ψ ~P · ûm dl −
∫

S

(
ψ∇s · ~P + Jψûn · ~P

)
ds (D.4)

where J is the first curvature of the surface, and ûn is its unit normal vector. In our case, J = 0.
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D.2 Integral involved in the computation of the matrix C̃(3,3)

As it has been shown in Chapter 4, the computation of the C̃(3,3) matrix requires the evalua-
tion of the following singular integral:

I =
∫ h

0

∫ h

0

∫ 2π

0

sin(βhl z) sin(βht z
′) cos(pϕ)√

d2(1−cosϕ)/2 + (z − z′)2
dz dz′ dϕ (D.11)

Since the integrand has an odd dependence with respect to the variable ϕ, we can easily
change the limits of the integration over this variable from [0, 2π[ to [0, π[ by multiplying the
integral by a factor 2. In addition, to isolate the singularity, we may perform the change of
variable t = z − z′, obtaining

I = 2
∫ π

0
dϕ

∫ h

0
dz′

∫ h−z′

−z′
dt

g(t, z′, ϕ)√
d2 sin2 ϕ

2
+ t2

(D.12)

where we have taken into account the identity 1− cosϕ = 2 sin2 ϕ
2

, and the regular function
g(t, z′, ϕ) has been defined as:

g(t, z′, ϕ) ≡ sin(βhl (t+ z′)) sin(βht z
′) cos(pϕ) (D.13)

Next, by adding and subtracting the term
(
(dϕ

2
)2 + t2

)−1/2
, we can rewrite the integral as:

I = 2(I1 + I2) (D.14)

where the following integrals have been defined:

I1 ≡
∫ π

0
dϕ

∫ h

0
dz′

∫ h−z′

−z′
dt g(t, z′, ϕ)

(
1√

d2 sin2 ϕ
2

+ t2
− 1√

(dϕ
2
)2 + t2

)
(D.15)

I2 ≡
∫ π

0
dϕ

∫ h

0
dz′

∫ h−z′

−z′
dt g(t, z′, ϕ)

1√
(dϕ

2
)2 + t2

(D.16)

Firstly, we proceed to evaluate the integral I1. It can be observed in (D.15) that the
integrand of this expression is made up of the multiplication between a function, which is
regular and bounded in the domain of integration, and a singular term that may be rewritten
as follows:

1√
d2 sin2 ϕ

2
+ t2

− 1√
(dϕ

2
)2 + t2

=

√
(dϕ

2
)2 + t2 −

√
d2 sin2 ϕ

2
+ t2

√
d2 sin2 ϕ

2
+ t2

√
(dϕ

2
)2 + t2

=

(dϕ
2
)2 − (d sin ϕ

2
)2

√
d2 sin2 ϕ

2
+ t2

√
(dϕ

2
)2 + t2

(√
d2 sin2 ϕ

2
+ t2 +

√
(dϕ

2
)2 + t2

) =

dϕ
2

+ d sin ϕ
2√

d2 sin2 ϕ
2

+ t2 +
√

(dϕ
2
)2 + t2

dϕ
2
− d sin ϕ

2√
d2 sin2 ϕ

2
+ t2

√
(dϕ

2
)2 + t2

(D.17)
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Let see now if this expression is bounded in the integration domain. Taking into account that
ϕ ∈ [0, π[, it is verified that

√
(d
ϕ

2
)2 + t2 ≥

√
(d
ϕ

2
)2 = d

ϕ

2√
(d sin

ϕ

2
)2 + t2 ≥

√
(d sin

ϕ

2
)2 = d sin

ϕ

2

and then,

0 ≤ dϕ
2

+ d sin ϕ
2√

d2 sin2 ϕ
2

+ t2 +
√

(dϕ
2
)2 + t2

≤ 1 (D.18)

On the other hand, we also have

dϕ
2
− d sin ϕ

2√
d2 sin2 ϕ

2
+ t2

√
(dϕ

2
)2 + t2

≤ (ϕ
2
− sin ϕ

2
)

(d sin ϕ
2
)(ϕ

2
)
≤ π(ϕ

2
− sin ϕ

2
)

dϕ
2

2

(D.19)

In this last inequality we have taken into account that (2/π)u ≤ sinu when u ∈ [0, π/2[.
Furthermore, it is easily verified using the Taylor series that

x− sinx ' x3

3!
− x5

5!
+
x7

7!
· · · ⇒ x− sinx ≤ x3

3!
, x ∈ [0, π[

And thus, we can rewrite inequality (D.19) as:

dϕ
2
− d sin ϕ

2√
d2 sin2 ϕ

2
+ t2

√
(dϕ

2
)2 + t2

≤ π(ϕ
2
− sin ϕ

2
)

dϕ
2

2

≤ π(ϕ
2
)3/3!

dϕ
2

2

=
ϕπ

24d
, ϕ ∈ [0, π[ (D.20)

From expressions (D.18) and (D.20) it is deduced that the singular term of the I1 integrand
(eq. (D.17)) is bounded. Moreover, we can calculate the limit:

lim
ϕ→0+

1√
d2 sin2 ϕ

2
+ t2

− 1√
(dϕ

2
)2 + t2

∣∣∣∣
t6=0

= lim
ϕ→0+

1√
t2
− 1√

t2

lim
ϕ→0+

1√
d2 sin2 ϕ

2
+ t2

− 1√
(dϕ

2
)2 + t2

∣∣∣∣
t=0

=

lim
ϕ→0+

1√
(d sin ϕ

2
)2
− 1√

(dϕ
2
)2

= lim
ϕ→0+

1
dϕ
2

− 1

dϕ
2

= 0

Therefore, the integral I1 is Riemann integrable, since its integrand is continuous and bounded
in the integration domain. Thus, we may compute it numerically taking into account that the
integrand is zero when ϕ = 0.

We proceed now to calculate the integral I2, whose integrand is singular when ϕ = t = 0.
Firstly, we perform a change of variable:

u = d
ϕ

2
; du =

d

2
dϕ; u ∈ [0, dπ/2[
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Consequently, the integral can be written as:

I2 =
∫ π

0
dϕ

∫ h

0
dz′

∫ h−z′

−z′
dt g(t, z′, ϕ)

1√
(dϕ

2
)2 + t2

=
2

d

∫ dπ/2

0
dϕ

∫ h

0
dz′

∫ h−z′

−z′
dt g(t, z′, u)

1√
u2 + t2

(D.21)

Next we perform a second change of variable:

u = ρ cos θ
t = ρ sin θ

}
⇒ J(ρ, θ) =

∣∣∣∣
∂u
∂ρ

∂u
∂θ

∂t
∂ρ

∂t
∂θ

∣∣∣∣ =
∣∣∣∣

cos θ − ρ sin θ
sin θ ρ cos θ

∣∣∣∣ = ρ

where ρ and θ are the new variables, and J(ρ, θ) is the Jacobian determinant associated to
the change of variables.

Thus, the integral can be rewritten as follows,

I2 =
2

d

∫ h

0
dz′

∫

Sρ,θ

ρ dρd θ
g(ρ, z′, θ)√

(ρ cos θ)2 + (ρ sin θ)2
=

2

d

∫ h

0
dz′

∫

Sρ,θ

dρd θ g(ρ, z′, θ)

and introducing the expression of the function g, we have:

I2 =
2

d

∫ h

0
dz′

∫

Sρ,θ

dρd θ sin(βhl (ρ sin θ + z′)) sin(βht z
′) cos

(
2 p

d
ρ cos θ

)
(D.22)

Let remark that the singularity has been canceled due to the introduction of the Jacobian.
In this new expression, Sρ,θ is the domain of integration associated to the variables ρ and θ.
It is important to notice that the integrand is regular, and thus we can compute the integral
numerically. Taking into account that the boundaries of integration are u ∈ [0, dπ

2
[ and

t ∈ [−z′, h− z′], we consider three different regions of integration in Sρ,θ. For this purpose,
we define the following parameters (see Fig. D.1):

tan θ1 =
−2z′

πd
with θ1 ≤ 0, z′ ∈ [0, h] (D.23a)

tan θ2 =
2(h− z′)

πd
with θ2 ≥ 0, h− z′ ∈ [h, 0] (D.23b)

And finally, the three regions of integration are:

• Region 1: θ ∈ [−π/2, θ1[, sin θ = −z′
ρmax1

→ ρmax1 = −z′
sin θ

→ ρ ∈ [0, −z
′

sin θ
]

• Region 2: θ ∈ [θ1, θ2[, cos θ = πd
2ρmax2

→ ρmax2 = πd
2 cos θ

→ ρ ∈ [0, πd
2 cos θ

]

• Region 3: θ ∈ [θ2, π/2], sin θ = h−z′
ρmax3

→ ρmax3 = h−z′
sin θ

→ ρ ∈ [0, h−z
′

sin θ
]

where ρmaxi is the maximum value that ρ can takes for a given value of θ in the i−region.
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q

q

1

2

u

t

h-z'

-z'

pd
2

Region 3

Region 2

Region 1
r

r

r

Figure D.1: Graphical representation of the domain of integration Sρ,θ associated to the
variables ρ and θ. The regions in which Sρ,θ is divided to calculate numerically the integral
are also represented.

D.3 Integral involved in the computation of the matrix C̃(1,3)

In the section 4.3, it has been shown that in order to calculate the entries of the matrix C̃(1,3),
the following integral must be computed:

Ĩ
(1,3)
pq, t ≡

∫ d
2

0
d ρ

∫ h

0
dz′

∫ 2π

0
dϕ

ρJp(Θpqρ) sin(βht z
′) cos(pϕ)√

ρ2+d2/4−ρ d cos(ϕ)+ z′ 2
(D.24)

where Jp(X) is the Bessel function of the first kind of order p; Θpq = 2χpq

d
and βht = tπ

h
,

being χpq the q-th non-zero root of Jp(X) = 0; ρ ∈ [0, d/2]; ϕ ∈ [0, 2π[; and z′ ∈ [0, h]. It
is easily observed that when ρ = d/2, ϕ = 0 and z′ = 0, the integrand has an indeterminacy
of the kind 0/0. Due to this fact, we need to evaluate this indeterminacy. In this section, we
demonstrate that this limit exists:

lim
{ρ,ϕ,z′}→{d/2,0,0}

ρJp(Θpqρ) sin(βht z
′) cos(pϕ)√

ρ2+d2/4−ρ d cos(ϕ)+ z′ 2
(D.25)

Firstly, we can observe that in the vicinity of ϕ = 0, since cosϕ>0, the following inequality
holds:

ρ2+d2/4−ρ d cos(ϕ) ≥ ρ2+d2/4−ρd (D.26)

Furthermore, we define the function:

f(ρ) ≡ ρ2+d2/4−ρd (D.27)
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This function is monotonically decreasing in the range of interest, i.e. ρ ∈ [0, d/2], with
f(0) = d2/4 and f(d/2) = 0. Thus, we have

ρ2+d2/4−ρd ≥ 0 (D.28)

Therefore, the following inequalities are also satisfied:

ρ2+d2/4−ρ d cos(ϕ) + (z′)2 ≥ (z′)2 (D.29a)

√
ρ2+d2/4−ρ d cos(ϕ)+ z′ 2 ≥ |z′| (D.29b)

Finally, taking into account this last expression and | sin x| ≤ |x|, we can write:

∣∣∣∣
ρJp(Θpqρ) sin(βht z

′) cos(pϕ)√
ρ2+d2/4−ρ d cos(ϕ)+ z′ 2

∣∣∣∣ ≤
|ρJp(Θpqρ)| |βht z′|

|z′| = |ρJp(Θpqρ)| |βht | (D.30)

And thus, since

lim
ρ→d/2

|ρJp(Θpqρ)| |βht | = 0, (D.31)

then it is demonstrated that the limit of the integrand exists and it is:

lim
{ρ,ϕ,z′}→{d/2,0,0}

ρJp(Θpqρ) sin(βht z
′) cos(pϕ)√

ρ2+d2/4−ρ d cos(ϕ)+ z′ 2
= 0 (D.32)

Therefore, we can compute numerically the integral Ĩ(1,3)
pq, t .
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Appendix E

Properties of the Green’s functions used
to calculate the L matrix.

As it has been shown in Chapter 2, in the case of a cavity resonator, the scalar Green’s func-
tions (GFs) for the electric and magnetic scalar potential, and the dyadic Green’s functions
for the electric and magnetic vector potentials, may be expressed as:

ge(~r, ~r ′) =
∞∑

i

φi(~r)φi(~r
′)

µ2
i

(E.1a)

gm(~r, ~r ′) =
∞∑

i

ψi(~r)ψi(~r
′)

ν2
i

(E.1b)

GA(~r, ~r ′) =
∞∑

i

~Ei(~r) ~Ei(~r
′)

k2
i − k2

(E.1c)

GF (~r, ~r ′) =
∞∑

i

~Hi(~r) ~Hi(~r
′)

k2
i − k2

(E.1d)

where φi(~r) and µi are the scalar function and the eigenvalue associated to the i-th electric
irrotational eigenvector of the cavity resonator; ψi(~r) and νi are the scalar function and the
eigenvalue associated to the i-th magnetic irrotational eigenvector of the cavity resonator;
~Ei(~r) and ~Hi(~r) are, respectively, the electric and magnetic solenoidal eigenvectors of the
cavity resonator, being ki its corresponding eigenvalue.

The ge function coincides with the Green’s function for the electrostatic potential in the
cavity according to the Coulomb’s gauge, and it satisfies:

∇2ge(~r, ~r ′) = −δ(~r, ~r ′) in V (E.2a)

ge = 0 on SV (E.2b)
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The equations satisfied by the magnetic scalar Green’s function are dual:

∇2gm(~r, ~r ′) = −δ(~r, ~r ′) in V (E.3a)

∂gm

∂n
= 0 on SV (E.3b)

being V the cavity volume and SV the cavity surface.

Moreover, we recall that the dyadic Green’s function for the electric potential (GA) is the
solution of the following differential equation:

∇×∇×GA(~r, ~r ′)− k2GA(~r, ~r ′) = Iδ(~r, ~r ′)−∇∇′ge(~r, ~r ′) in V (E.4a)

n̂×GA(~r, ~r ′) = 0 on SV (E.4b)

Since the singularity of the scalar GFs does not depend on the boundary conditions, it is
the same for both the electric and magnetic scalar GFs:

gs(~r, ~r
′) =

1

4πR
(E.5)

where ~R = ~r − ~r ′. Thus, the scalar Green’s function may be decomposed as follows:

ge(~r, ~r ′) = gs(~r, ~r
′) + ger(~r, ~r

′)

gm(~r, ~r ′) = gs(~r, ~r
′) + gmr (~r, ~r ′) (E.6)

where ger and gmr are regular functions at R = 0.

In the case of GA, since the singularity is independent from the frequency, we have
shown that the series expansion can be accelerated by extracting its zero-frequency limit,
denoted as GA

o . Thus we can write:

GA(~r, ~r ′) = GA
o(~r, ~r

′) +GA
k(~r, ~r

′) (E.7)

being

GA
o(~r, ~r

′) ≡ GA(~r, ~r ′)|k=0 ⇒ GA
o(~r, ~r

′) =
∞∑

i

~Ei(~r) ~Ei(~r
′)

k2
i

(E.8)

and,

GA
k(~r, ~r

′) = GA(~r, ~r ′)−GA
o(~r, ~r

′) ⇒ GA
k(~r, ~r

′) = k2
∞∑

i

~Ei(~r) ~Ei(~r
′)

k2
i (k

2
i − k2)

(E.9)
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Moreover, in Chapter 2, we have shown that the singularity of the dyadic GF can be extracted
in closed form. Thus, the static term of the dyadic Green’s function may be decomposed:

GA
o(~r, ~r

′) = Go
s(~r, ~r

′) +GA
o,r(~r, ~r

′) =
1

8πR
(I +

~R~R

R2
) +GA

o,r(~r, ~r
′) (E.10)

Therefore, we can finally write:

GA(~r, ~r ′) = GA
o(~r, ~r

′) +GA
k(~r, ~r

′) =

=
1

8πR
(I +

~R~R

R2
) +GA

o,r(~r, ~r
′) + k2

∞∑

i

~Ei(~r) ~Ei(~r
′)

k2
i (k

2
i − k2)

(E.11)

The dual expression gives us the dyadic Green’s function for the electric vector potential:

GF (~r, ~r ′) = GF
o (~r, ~r

′) +GF
k(~r, ~r

′) =

=
1

8πR
(I +

~R~R

R2
) +GF

o,r(~r, ~r
′) + k2

∞∑

i

~Hi(~r) ~Hi(~r
′)

k2
i (k

2
i − k2)

(E.12)

where GA
o,r and GF

o,r are regular dyadic functions at R = 0.

Next, we present some useful properties of the dyadic functions defined above. From
equations (E.1a) and (E.1c), it can be easily observed the following:

ge(~r ′, ~r) =
∞∑

i

φi(~r
′)φi(~r)
µ2
i

= ge(~r, ~r ′) (E.13)

GA(~r ′, ~r) =
∞∑

i

~Ei(~r
′) ~Ei(~r)

k2
i − k2

=
(
GA(~r, ~r ′)

)
T

(E.14)

where T denotes transpose. Analogously, the dual expressions can be obtained.

By applying the curl operator (C.14b) and (C.14d) to (E.1c) and (E.1d), we have:

∇×GA(~r, ~r ′) =
∞∑

i

(∇× ~Ei(~r)) ~Ei(~r
′)

k2
i − k2

=
∞∑

i

ki ~Hi(~r) ~Ei(~r
′)

k2
i − k2

(E.15a)

∇×GF (~r, ~r ′) =
∞∑

i

(∇× ~Hi(~r)) ~Hi(~r
′)

k2
i − k2

=
∞∑

i

ki ~Ei(~r) ~Hi(~r
′)

k2
i − k2

(E.15b)

∇′×GA(~r, ~r ′) =
∞∑

i

~Ei(~r)(∇′× ~Ei(~r
′))

k2
i − k2

=
∞∑

i

ki ~Ei(~r) ~Hi(~r
′))

k2
i − k2

(E.15c)

∇′×GF (~r, ~r ′) =
∞∑

i

~Hi(~r)(∇′× ~Hi(~r
′))

k2
i − k2

=
∞∑

i

ki ~Hi(~r) ~Ei(~r
′))

k2
i − k2

(E.15d)

where we have used ∇× ~Ei(~r) = ki ~Hi(~r) and ∇× ~Hi(~r) = ki ~Ei(~r). From expressions
(E.15), we can conclude:

∇×GA(~r, ~r ′) = ∇′×GF (~r, ~r ′) (E.16a)

∇′×GA(~r, ~r ′) = ∇×GF (~r, ~r ′) (E.16b)
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It is also useful to calculate the following expressions:

∇×∇×GA(~r, ~r ′) =
∞∑

i

(∇×∇× ~Ei(~r)) ~Ei(~r
′)

k2
i − k2

=
∞∑

i

k2
i

~Ei(~r) ~Ei(~r
′)

k2
i − k2

(E.17)

∇′×∇′×GA(~r, ~r ′) =
∞∑

i

~Ei(~r)(∇′×∇′× ~Ei(~r
′))

k2
i − k2

=
∞∑

i

k2
i

~Ei(~r) ~Ei(~r
′)

k2
i − k2

(E.18)

Comparing these last expressions, we can wirte:

∇×∇×GA(~r, ~r ′) = ∇′×∇′×GA(~r, ~r ′) (E.19)

It can be easily verified that the dual expression also holds,

∇×∇×GF (~r, ~r ′) = ∇′×∇′×GF (~r, ~r ′) (E.20)

By proceding analogously with the definition of the static dyadic defined in (E.8) and its
dual expression, we can also obtain the following:

∇×GA
o(~r, ~r

′) = ∇′×GF
o (~r, ~r

′) (E.21a)

∇′×GA
o(~r, ~r

′) = ∇×GF
o (~r, ~r

′) (E.21b)

∇×∇×GA
o(~r, ~r

′) = ∇′×∇′×GA
o(~r, ~r

′) (E.21c)

∇×∇×GF
o (~r, ~r

′) = ∇′×∇′×GF
o (~r, ~r

′) (E.21d)

E.1 Singular dyadic term of the static part of the Green’s
function for the potential vector

In this section, we focus our attention in the singular dyadic term of the Green’s function for
the potential vector:

Go
s(~r, ~r

′) =
1

8πR
(I +

~R~R

R2
) (E.22)

Next, we will demonstrate that this singular dyadic satisfies the following properties:
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Go
s(~R) = −∇×∇×RI

8π

= −∇′×∇′×RI
8π

(E.23a)

∇×Go
s(~R) = −∇×∇×

~R× I

8πR
(E.23b)

∇′×Go
s(~R) = −∇′×∇′×

~R× I

8πR
(E.23c)

∇×Go
s(~R) = ∇′×Go

s(~R) = −(∇×Go
s(~R))T (E.23d)

∇×∇×Go
s(~R) = ∇′×∇′×Go

s(~R) = (∇×∇×Go
s(~R))T (E.23e)

The curl operator and the singular Dyadic in the coordinate system {x̂}
Firstly, in order to demonstrate (E.23a) and (E.23b), let apply the identity (C.6) to obtain

the following expression:

∇×RI
8π

=
1

8π
(∇R)× I +R∇×I =

~R× I

8πR
(E.24)

Thus, we can also write:

∇×
~R× I

8πR
=

1

8π
[(∇R−1)× (~R× I) +R−1∇×(~R× I)]

=
1

8π
[−

~R

R3
× (~R× I) +R−1∇×(~R× I)] (E.25)

To develop the right hand side of (E.25), we have to evaluate the following identities:

~a× (~b× C) = ~b(~a · C)− (~a ·~b)C ⇒ ~R× (~R× I) = ~R~R−R2I (E.26)

and

∇×(~R× I) = −2I (E.27)

To achieve this last result, we have considered that

∇×(~R× I) =
∑

j

∇×(~R× ~Ij)x̂j (E.28)

Since,

~R× ~Ij =
∑
mqs

εmqsRq(Ij)sx̂m =
∑
mqs

εmqsRqδjsx̂m =
∑
mq

εmqjRqx̂m , (E.29)
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where εijk is the Levi-Civita symbol. Then we have

∇×(~R× ~Ij) =
∑

ptl

εptl∂xt(~R× ~Ij)lx̂p =
∑

ptlq

εptl∂xtεlqjRqx̂p =
∑

ptlq

εptlεlqjδtqx̂p

=
∑

ptl

εptlεltjx̂p = −∑

ptl

εptlεjtlx̂p = −2
∑
p

δpjx̂p = −2x̂j (E.30)

where we have used the identity
∑
tl εptlεjtl = 2δpj .

Thus, by substituting equation (E.30) in (E.28), we obtain the identity (E.27). And finally
introducing the expressions (E.27) and (E.26) in (E.25), we obtain:

∇×


~R× I

8πR


 =

1

8π
[R−3(−~R~R +R2I)− 2R−1I]

= − 1

8πR

( ~R~R
R2

+ I
)

= −Go
s(~R) (E.31)

And therefore, making use of expressions (E.24) and (E.31) , we can demonstrate (E.23b)
and the first term of the expression (E.23a):

Go
s(~R) = −∇×∇×RI

8π
(E.32a)

∇×Go
s(~R) = −∇×∇×

~R× I

8πR
(E.32b)

In addition, by using (C.6) and (E.22), we can write the curl of the singular dyadic as
follows:

∇×Go
s(~R) = ∇×

[
1

8πR
(I +

~R~R

R2
)
]

=
1

8π


(∇R−1)× (I +

~R~R

R2
) +R−1∇×(I +

~R~R

R2
)


 (E.33)

Next, we evaluate the term ∇×(I +
~R~R
R2 ),

∇×(I +
~R~R

R2
) = ∇×

~R~R

R2
= (∇R−2)× ~R~R +R−2∇× ~R~R (E.34)

Taking into account the following identities:

(∇R−2)× ~R~R = −2
~R

R4
× ~R~R = 0 (E.35)
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and,

∇× ~R~R =
∑

j

∇×(~RRj)x̂
′
j =

∑

j

(∇Rj × ~R +Rj∇× ~R)x̂′j

=
∑

j

(x̂j × ~R)x̂′j =
∑

j

−(~R× x̂j)x̂
′
j = −~R× I (E.36)

where we have used, ∇Rj =
∑
i ∂xi

(xj − x′j)x̂i =
∑
i δijx̂i = x̂j and ∇× ~R = 0. Then we

have:

∇×(I +
~R~R

R2
) = −

~R× I

R2
(E.37)

And thus, introducing (E.37) in (E.33), we obtain:

∇×Go
s(~R) =

1

8π


−

~R

R3
× (I +

~R~R

R2
)−R−1

~R× I

R2


 = −

~R× I

4πR3
(E.38)

where we have used

∇R−1 = −
~R

R3
(E.39)

Making use of these results, we can obtain the following expression:

∇×∇×Go
s(~R) = ∇×


−

~R× I

4πR3




= − 1

4π

[
(∇R−3)× (~R× I) +R−3∇×((~R× I))

]

= − 1

4π

[
− 3

~R

R5
× (~R× I) +R−3∇×(~R× I)

]

= − 1

4π

[
− 3R−5(~R~R−R2I)− 2R−3I

]
=

1

4πR3

[
I − 3

~R~R

R2

]
(E.40)

Furthermore, using (C.6), it is easy to verify that

∇× I

R
= ∇R−1 × I

and thus, we can also write:

∇×∇×Go
s(~R) = ∇×


−

~R× I

4πR3


 =

1

4π
∇×(∇R−1 × I) = ∇×∇× I

4πR

= ∇∇ 1

4πR
− I

4π
∇2 1

R
= −∇∇′ 1

4πR
+ Iδ(~R) (E.41)



186 Properties of the Green’s functions used to calculate the L matrix.

where δ(~R) is the Dirac delta function. To obtain this last result, we have used the dyadic
identity ∇×∇×(ψI) = ∇∇ψ − I∇2ψ, being ψ a scalar fucntion, and the equation:

∇2 1

R
= −4πδ(~R)

The curl operator and the singular Dyadic in the coordinate system {x̂′}
In this case, in order to demonstrate (E.23a) and (E.23c), we apply the identity (C.15) to

obtain the following expressions:

∇′×RI
8π

=
1

8π

[
R∇′×I − I × (∇′R)

]
=
I × ~R

8πR
=

~R× I

8πR
(E.42)

and

∇′× I ×
~R

8πR
=

1

8π
[R−1∇′×(I × ~R)− (I × ~R)× (∇′R−1)]

=
1

8π
[R−1∇′×(I × ~R)− (I × ~R)×

~R

R3
] (E.43)

where we have used ∇′R−1 = ~R/R3 and ~a × I = I × ~a. To develop the right hand side of
the last expression, we have to evaluate the following identities:

(I × ~R)× ~R = (~R× I)× ~R = ~R× (I × ~R) = ~R× (~R× I) = ~R~R−R2I (E.44)

and

∇′×(I × ~R) = −2I (E.45)

To achieve this last result, we have taken into consideration that

∇′×(I × ~R) =
∑

j

x̂′j∇′×(~Ij × ~R) (E.46)

Since,

~Ij × ~R =
∑
mqs

εmqs(Ij)qRsx̂
′
m =

∑
mqs

εmqsRsδjqx̂
′
m =

∑
ms

εmjsRsx̂
′
m , (E.47)

then we have

∇′×(~Ij × ~R) =
∑

ptl

εptl∂x′t(
~Ij × ~R)lx̂

′
p =

∑

ptls

εptl∂x′tεljsRsx̂
′
p = −∑

ptls

εptlεljsδtsx̂
′
p

= −∑

ptl

εptlεljtx̂
′
p = −∑

ptl

εptlεjtlx̂
′
p = −2

∑
p

δpjx̂
′
p = −2x̂′j (E.48)
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By substituting equation (E.48) in (E.46), we obtain the identity (E.45). Thus, introduc-
ing the expressions (E.45) and (E.44) in (E.43), we can write:

∇′×


~R× I

8πR


 =

1

8π
[−2R−1I −R−3(~R~R−R2I)]

= − 1

8πR

( ~R~R
R2

+ I
)

= −Go
s(~R) (E.49)

And therefore, making use of expressions (E.42) and (E.49), we can demonstrate (E.23c)
and the second term of the expression (E.23a):

Go
s(~R) = −∇′×∇′×RI

8π
(E.50a)

∇′×Go
s(~R) = −∇′×∇′× I ×

~R

8πR
(E.50b)

In addition, by using (C.15) and (E.22), we can write ∇′×Go
s(~R) as follows:

∇′×Go
s(~R) = ∇′×

[
1

8πR
(I +

~R~R

R2
)
]

=
1

8π


R−1∇′×(I +

~R~R

R2
)− (I +

~R~R

R2
)× (∇′R−1)




=
1

8π


R−1∇′×

~R~R

R2
− I × (∇′R−1)


 (E.51)

And using again (C.15), we have:

∇′×(
~R~R

R2
) = R−2∇′×(~R~R)− ~R~R×∇′R−2 = R−2∇′×(~R~R) = −I ×

~R

R2
(E.52)

where we have used,

∇′× ~R~R =
∑

i

x̂i∇′×(Ri
~R) =

∑

i

x̂i((∇′Ri)× ~R +Ri∇′× ~R)

=
∑

i

x̂i(−x̂′i × ~R) = −I × ~R (E.53)

Using ∇′R−1 = ~R/R3, and introducing (E.52) in (E.51), we finally obtain

∇′×Go
s(~R) =

1

8π


−R−1 I × ~R

R2
− I ×

~R

R3


 = −I ×

~R

4πR3
(E.54)
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Therefore, since ~R × I = I × ~R, by comparing (E.38) and (E.54), we demonstrate
that the property expressed by (E.23d) is satisfied. Furthermore, using the dyadic identity,
~a× C = −(CT × ~a)T , we can write

(∇×Go
s(~R))T = −(~R× I)T

4πR3
=
I × ~R

4πR3
= −∇×Go

s(~R) (E.55)

Finally, by using these last results, we can obtain another useful expression:

∇′×∇′×Go
s(~R) = ∇′×


−I ×

~R

4πR3




= − 1

4π

[
(R−3∇′×(I × ~R)− (I × ~R)× (∇′R−3)

]

= − 1

4π

[
R−3∇′×(I × ~R)− 3(I × ~R)×

~R

R5

]

= − 1

4π

[
− 2R−3I − 3R−5(~R~R−R2I)

]
=

1

4πR3

[
I − 3

~R~R

R2

]
(E.56)

It is easily observed that this expression is a symmetric dyadic. Moreover by comparing
it with equation (E.40), the identity (E.23e) is validated.

E.2 Regular dyadic term of the static part of the Green’s
function for the potential vector

In this section, we focus our attention on the regular dyadic term of the static part of the
Green’s function for both the electric and magnetic potential vectors,

GA
o,r(~r, ~r

′) = GA
o(~r, ~r

′)−Go
s(~r, ~r

′) (E.57)

GF
o,r(~r, ~r

′) = GF
o (~r, ~r

′)−Go
s(~r, ~r

′) (E.58)

Applying the curl opertaor to these expressions and making use of (E.21), (E.23d) and
(E.23e), we can easily conlcude the following:

∇×GA
o,r(~r, ~r

′) = ∇′×GF
o,r(~r, ~r

′) (E.59a)

∇′×GA
o,r(~r, ~r

′) = ∇×GF
o,r(~r, ~r

′) (E.59b)

∇×∇×GA
o,r(~r, ~r

′) = ∇′×∇′×GA
o,r(~r, ~r

′) (E.59c)

∇×∇×GF
o,r(~r, ~r

′) = ∇′×∇′×GF
o,r(~r, ~r

′) (E.59d)

Next, if we particularise equation (E.4a) for k = 0, we have:

∇×∇×GA
o(~r, ~r

′) = Iδ(~r, ~r ′)−∇∇′ge(~r, ~r ′) (E.60)
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and introducing now (E.6) and (E.10) into this differential equation, we may write

∇×∇×Go
s(~R) +∇×∇×GA

o,r(~r, ~r
′) = Iδ(~r, ~r ′)−∇∇′ 1

4πR
−∇∇′ger(~r, ~r

′) (E.61)

Finally, taking into account (E.41), we can conclude the following:

∇×∇×GA
o,r(~r, ~r

′) = −∇∇′ger(~r, ~r
′) (E.62)

Moreover, due to (E.59c), we can also write:

∇′×∇′×GA
o,r(~r, ~r

′) = −∇∇′ger(~r, ~r
′) (E.63)

It is easy to obtain the dual expression following an analogous procedure:

∇×∇×GF
o,r(~r, ~r

′) = −∇∇′gmr (~r, ~r ′) (E.64)
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Appendix F

Auxiliary series and functions used in the
aperture of the access ports

F.1 Auxiliary series used in the aperture of the access ports

As described in Chapter 4, to proceed with the apertures of the lateral and top access ports
of the rectangular cavity, we need to calculate the matrices G(γ,ξ)

m,n , T (γ,ξ)
m,n and W (ξ)

m,n. For this
purpose, we have made use of the following series [120]:

∞∑

nz=0

εnz cos(kz z)

k2
t + k2

z

=
lz
kt

cosh [kt(lz − z)]

sinh(kt lz)
(F.1)

∞∑

nz=0

(−1)nz
εnz cos(kz z)

k2
t + k2

z

=
lz
kt

cosh(kt z)

sinh(kt lz)
(F.2)

∞∑

nz=0

kz sin(kz z)

k2
t + k2

z

=
lz
2

sinh [kt(lz − z)]

sinh(kt lz)
(F.3)

∞∑

nz=0

(−1)nz
kz sin(kz z)

k2
t + k2

z

= − lz
2

sinh(ktz)

sinh(kt lz)
(F.4)

∞∑

nz=0

k2
z

(k2
t + k2

z)
2

=
lz
4kt

(
coth(kt lz)− kt lz

sinh2(kt lz)

)
(F.5)

∞∑

nz=0

(−1)nz
k2
z

(k2
t + k2

z)
2

=
lz

4kt sinh(kt lz)

(
1− kt lz

tanh(kt lz)

)
(F.6)

In all these expressions we have that kz = nzπ
lz

.
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F.2 Auxiliary functions used in the aperture of the access
ports

The expressions of the matrices G(γ,ξ)
m,n and T (γ,ξ)

m,n obtained in the equations (4.164) and
(4.180)–(4.183) of Chapter 4 have been written in terms of the following functions:

ρ(γ,ξ)
m,n =





√
εmxγ

εnxξ
, if γ = 1, 2 y ξ = 3, 4

√
εmyγ

εnxξ
, if γ = 1, 2 y ξ = 5

√
εmyγ

εnyξ
, if γ = 3, 4 y ξ = 5

(F.7)

ψ(γ,ξ)
m,n =





(−νγ)nxξ ν
mxγ

ξ δmyγ ,nyξ
, if γ = 1, 2 y ξ = 3, 4

(−νγ)nxξ (−νξ)myγ δmxγ ,nyξ
, if γ = 1, 2 y ξ = 5

ν
nyξ
γ (−νξ)myγ δmxγ ,nxξ

, if γ = 3, 4 y ξ = 5

(F.8)

χ(γ,ξ)
m,n =





k2
nyξ

εnyξ
(εnyξ

−1)

εmxγ
, if γ = 1, 2 y ξ = 3, 4

k2
nyξ

εnyξ
(εnyξ

−1)

εmyγ
, if γ = 1, 2 y ξ = 5

k2
nxξ

εnxξ
(εnxξ

−1)

εnyγ
, if γ = 3, 4 y ξ = 5

(F.9)

ϕ(γ,ξ)
m,n =





εmxγ
− 1, if γ = 1, 2 y ξ = 3, 4

εmyγ
− 1, if γ = 1, 2, 3, 4 y ξ = 5

(F.10)

ζ(γ,ξ)
m,n =





knyξ

√
εnxξ

, if γ = 1, 2 y ξ = 3, 4, 5

knxξ

√
εnyξ

, if γ = 3, 4 y ξ = 5
(F.11)

θ(γ,ξ)
m,n =





√
εmxγ

, if γ = 1, 2 y ξ = 3, 4

√
εmyγ

, if γ = 1, 2 y ξ = 5

−√εmyγ
, if γ = 3, 4 y ξ = 5

(F.12)
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τ (γ,ξ) =





1, if γ = 1, 2 y ξ = 3, 4

−1, if γ = 1, 2, 3, 4 y ξ = 5
(F.13)

λ(γ,ξ)
m,n =





knxξ
, if γ = 1, 2 y ξ = 3, 4, 5

−knyξ
, if γ = 3, 4 y ξ = 5

(F.14)

In these expressions, εn is the Neumann factor defined in (A.6); δm,n is the Kronecker delta,
and νξ is defined in (4.156).
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• J. Gil, A.M. Pérez, B. Gimeno, M. Bressan, V.E. Boria and G. Conciauro, “Analysis
of cylindrical dielectric resonators in rectangular cavities using a state-space integral-
equation method,” IEEE Microwave and Wireless Components Letters, vol. 16, pp.636-
638, December 2006.

• J. Gil, A.A. San Blas, C. Vicente, B. Gimeno, M. Bressan, V.E. Boria, G. Conciauro
and M. Maestre, “Full-wave analysis and design of dielectric-loaded waveguide fil-
ters using a state-space integral-equation method,” IEEE Transactions on Microwave
Theory and Techniques, vol. 57, pp.109-120, January 2009.

• A.A. San Blas, F. Mira, J. Gil, V.E. Boria and B. Gimeno, “Efficient analysis and
design of compensated turnstile junctions using advanced modal techniques,” Progress
In Electromagnetics Research Letters, vol. 12, pp.21-30, 2009.

Publications in international congress:

• J.Gil, A.A. San Blas, C. Vicente, B. Gimeno, M. Bressan, V.E. Boria, G. Conciauro
and M. Maestre, “Analysis and design of waveguide filters with dielectric resonators
using the state-space integral equation formulation,” in Porc. XVII RiNEm Riunione
Nazionale di Elettromagnetismo 2008, (Lecce, Italy), pp. 4, September 2008.

• S. Cogollos, V.E. Boria, J. Gil, C. Vicente and B. Gimeno, “FEST3D: A software tool
for the analysis, synthesis and design of waveguide filters for satellite applications,”
in Proc. 2008 Applied Computational Electromagnetics Society (ACES) Conference,
(Ontario, Canada), pp. 588-593, April 2008.
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