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ABSTRACT 

The zeolite Beta is considered as a promising additive for FCC catalyst in diesel oil 

production. In this article, it is shown that hierarchical zeolite Beta obtained by an optimized 

desilication procedure increases Diesel and propylene yields during gas-oil cracking reaction. 

The alkaline treatment of zeolite Beta (Si/Al = 22) by desilication with NaOH and 

NaOH&TBAOH was investigated. The catalytic performance improvement of desilicated 

zeolite Beta has been rationalized by deep characterization of the samples including  X-ray 

diffraction, low temperature adsorption of nitrogen, solid-state 29Si MAS NMR and IR studies 

of acidity. Finally, the catalytic performance of the zeolites Beta was evaluated in the 

cracking of n-decane, 1,3,5-tri-iso-propylbenzene and vacuum gas oil. It was found that 

desilication with NaOH&TBAOH ensures the more uniform intracrystalline mesoporosity 

with the formation of narrower mesopores, while preserving full crystallinity resulting in 

catalysts with the most appropriated acidity and then, with better catalytic performance. 
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1. INTRODUCTION 

Zeolites are well known catalysts of high surface area, high hydrothermal and thermal 

stability, structural pores of molecular dimensions, and hosting strong Brønsted and Lewis 

acid sites. These unique properties are responsible for their application as catalysts in many 

major chemical processes [1, 2]. The main advantages of the micropores of molecular 

dimensions are their extremely high surface area and shape selectivity. However, also 

diffusional limitations are frequently observed when large molecules are processed, which 

induce fast catalyst deactivation [3]. To improve the catalyst effectiveness in chemical 

reactions, desilication i.e. controlled silicon extraction from the zeolite framework in alkaline 

aqueous solution has been developed as one of the most efficient methods to design micro- 

and mesoporous (hierarchical) zeolites [4, 5]. The desired intracrystalline mesoporosity is 

ruled by the interplay of micro- and mesopores and is, however, influenced by the value of the 

framework Si/Al ratio [6, 7]. It has been reported that aluminium atoms in framework 

positions play a crucial role in silicon extraction directing the mesopore formation process, as 

the AlO4
- tetrahedra are reported to protect Si atoms in the neighbourhood against OH- ions 

attack due to electrical repulsion [8]. Alkaline leaching, performed in aqueous NaOH and 

tetraalkylammonium hydroxides mixtures, leads to the dissolution of both Si and smaller 

amounts of Al  species from the framework. Nevertheless, most of these extracted Al species 

are able to realuminate on the mesopore surface, resulting in the lowering the Si/Al ratio of 

the hierarchical [9, 10]. Zeolite desilication has been successfully applied to produce a large 

number of hierarchically structured zeolites MFI [11, 12]MTW [13], MOR[14, 15], FER [16, 

17], FAU [18], and Beta [19, 20]. Nevertheless, the benefits of desilicated zeolite Beta for 

catalytic cracking reaction have not been shown in previous studies. 

Zeolite Beta belongs to a complex family, consisting in intergrowth of two  

polymorphs (polymorph A and B) [21, 22] and it is characterized by a 3D channel system 

formed by micropores limited by 12-MR windows (ca. 0.7 nm in diameter). The remarkably 

lower stability of zeolite Beta structure during desilication in comparison to ZSM-5 and 

mordenite has been reported [20]. Also, the influence of framework aluminum content for 

controlled desilication was shown [8]. Therefore, it can be assumed that the low stability of Al 

atoms in the framework positions in zeolite Beta [23], caused by the presence of high 

concentration of structural defects [24], can also affect the desilication process and the high 

amount of EFAL species can be detected. Framework silicon extraction from zeolite Beta 

(Si/Al = 220) upon treatment with NaOH revealed the extensive mesopore formation of 
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intracrystalline nature, meanwhile the micropore volume and crystallinity of the desilicated 

materials was severely reduced [19]. This clearly show that basic treatments, even at mild 

conditions, destructively affect the structural and acidic properties of zeolite Beta, contrarily 

to that observed on MFI, MOR and MTW [11, 12]. 

The application of desilicated hierarchical large pore zeolites for gasoil cracking have 

been recently studied for zeolite USY [25] and mordenite [26].In these studies the 

mesoporosity enhancement increases the yield of middle distillates, while preserving or even 

increasing overall catalytic activity and olefinicity in C3-C4 gas fraction. Zeolite Beta has 

been considered as an alternative to ZSM-5 as potential additive for the USY-based FCC 

catalyst for increasing C3-C4 olefins with low penalty in the yield of gasoline [27, 28, 

29].However, the commercial use of zeolite Beta as FCC additive is limited due to its faster 

deactivation when compared to ZSM-5. 

In this work, we describe first study of the applicability of hierarchical zeolite Beta for 

industrially relevant gas oil cracking reaction. The catalytic performance, including gas oil, n-

decane and TIPB cracking on hierarchical zeolites Beta has been explained on the basis of 

their textural and acidic properties.  We demonstrate that an optimized desilication procedure 

able to produce well controlled mesoporosity in zeolite Beta improves the catalytic 

performance, increasing its overall gas-oil cracking activity with high yields to propylene and 

middle distillates and lower coke production.  
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2. EXPERIMENTAL 

2.1. Catalyst preparation 

The parent zeolite NH4Beta of Si/Al = 22 was purchased from Zeolyst (CP814C). 

Desilication was carried out in the 0.2 M solutions of NaOH and NaOH&TBAOH 

(tetrabutylammonium hydroxide) mixture (TBAOH/(NaOH+TBAOH) = 0.4) at the 

temperature of 65 oC for 0.5 h. After desilication the suspension was cooled down in ice-bath, 

filtered and washed with distillate water until neutral pH. Next fourfold Na+/NH4
+ ion-

exchange with 0.5 M NH4NO3 was performed at 60 oC for 1 h. Finally, the resulting samples 

were again filtrated, washed and dried at room temperature.  

2.2. Characterization methods 

The powder X-ray diffraction (XRD) measurements were carried out using a 

PANalytical Cubix X’Pert Pro diffractometer, with CuKα radiation, λ=1.5418 Å in the 2θ 

angle range of 2-40°. Powder X-ray patterns were used for structural identification of the 

relative crystallinity value (%Cryst) for all the zeolites. The determination of the relative 

crystallinity value was based on the intensity of the characteristic peaks in the range between 

20.0o to 24.0o.  

Si and Al content in the parent and desilicated zeolites were determined by ICP OES 

spectroscopy on an Optima 2100DV (PerkinElmer) instrument.  

The X-ray photoelectron spectra (XPS) were measured on a Prevac photoelectron 

spectrometer equipped with a hemispherical VG SCIENTA R3000 analyser. The 

photoelectron spectra were measured using a monochromatized aluminum AlKα source 

(E=1486.6 eV) and a low energy electron flood gun (FS40A-PS) to compensate the charge on 

the surface of nonconductive samples. The base pressure in the analysis chamber during the 

measurements was 5·10-9 mbar. Spectra were recorded with constant pass energy of 100 eV 

for the survey and for high resolution spectra. The binding energies were referenced to the Si 

2p core level (103.0 eV). The composition and chemical surrounding of the sample surface 

were investigated on the basis of the areas and binding energies of Al 2p, Si 2p and O 1s 

photoelectron peaks. The fitting of high resolution spectra was provided through the CasaXPS 

software. 
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The solid state MAS NMR spectra were acquired on an APOLLO console (Tecmag) at 

the magnetic field of 7.05 T (Magnex). For the 29Si MAS-NMR spectra a 3 μs rf pulse (π/2 

flipping angle) was used, 4 kHz spinning speed, and 256 scans with the delay of 40 s were 

acquired. The 27Al spectra were recorded using the 2 μsrf pulse (π/6 flipping angle), 8 kHz 

spinning speed, and 1000 scans with acquisition delay 1 s. The frequency scales in ppm were 

referenced to TMS and to 1 M solution of Al(NO3)3, for the 29Si and 27Al spectra, 

respectively. The spectra were normalized to the mass of sample. 

The N2 sorption processes at -196 oC were studied on an ASAP 2420 Micromeritics 

after activation in vacuum at 400 oC for 12 h. Surface Area (SBET) and micropore volume 

(Vmicro) were determined by applying the BET and t-plot methods, respectively. Pore size 

distribution and volume of mesopores (Vmeso) were obtained by applying the BJH model to 

the adsorption branch of the isotherm. 

The QE-TPDA measurements of n-hexane and n-nonane were performed  with use of 

the flow TPD system equipped with thermal conductivity detector (Micro Volume TCD, 

Valco) presented more into detail earlier [30, 31]. Prior each measurement a sample (ca. 10 

mg) was activated by heating in He flow (10 °C/min to 500°C). Adsorption was carried out at 

room temperature by replacing pure helium used as the carrier gas with helium containing 

small concentration of hydrocarbon (ca 0.4 vol%). After completed adsorption the QE-TPDA 

experiment was performed by cyclic heating and cooling the sample (2 or 10 °C/min up to 

500 °C) in He/HC flow (6.5 cm3/min). Desorption-adsorption cycles were separated with 1 h 

isothermal segments at room temperature. In the micro- and mesopore volume calculations, 

the experimental desorption maxima were integrated and related to the calibration data. 

Density of the adsorptive was assumed as equal to that of the liquid. 

For FTIR studies, the samples were pressed into the form of self-supporting discs (ca. 

5 mg/cm2) and evacuated in a quartz IR cell at 530 oC under vacuum for 1 h. Spectra were 

recorded with a Bruker Equinox 55 spectrometer equipped with a MCT detector. The spectral 

resolution was of 2 cm-1. The CO adsorption was performed at -100 oC. Pyridine (Py) was 

adsorbed at 170 oC, the concentration of Brønsted and Lewis acid sites determined in 

quantitative IR studies of pyridine adsorption, according to the procedure given in ref. [32]. 

The values of 0.10 cm2/μmol and 0.07 cm2/μmol were obtained for the 1450 cm-1 band of 

pyridine coordinatively bonded to Lewis sites (PyL) and for the 1545 cm-1 band of pyridinium 

ion (PyH+), respectively. The ammonia adsorption experiments were performed according to 
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following procedure. An excess of ammonia, sufficient to neutralize all the acid sites, was 

adsorbed at 130 oC [33] and the physisorbed molecules were removed by evacuation at the 

same temperature. The concentration of Brønsted and Lewis sites was calculated from the 

intensities of 1450 cm-1 and 1620 cm-1 bands of ammonium ions (NH4
+) and ammonia 

interacting with Lewis sites (NH3L) and their extinction coefficients. The extinction 

coefficient of NH4
+ 1450 cm-1 band was determined as a slope of the linear dependence of the 

intensity of this band versus the amount of ammonia adsorbed in zeolite NaHY containing 

only protonic sites (the value 0.11 cm2/μmol was obtained). The extinction coefficient of 

NH3L band was determined in the experiments in which ammonia was sorbed in zeolite HY 

dehydroxylated at 800 oC containing practically only Lewis acid sites. The value of extinction 

coefficient was calculated from the linear dependence of 1620 cm-1 band versus the amount of 

ammonia interacting with Lewis sites (the amount of ammonia sorbed minus the amount of 

ammonia reacting with protonic sites, the small amount of which remained upon pre-

treatment at 1070 K). The value 0.026 cm2/μmol was obtained.  

2.3. Catalytic cracking tests 

The cracking experiments were performed in a MAT (Micro Activity Test) unit 

described previously [34, 35]. Pellets of zeolites were crushed and sieved; fraction of the 

0.59–0.84 mm was taken for cracking reactions. For each catalyst, catalytic experiments were 

carried out, preserving the amount of catalyst (cat) constant and varying feeds amounts (oil). 

Three cracking reactions with different cat-to-oil ratios of 1,3,5-tri-iso-propylbenzene (TIPB) 

were performed at 500 oC and for 60 s time on stream (TOS), with 200 mg of catalyst. For n-

decane cracking at 500 oC and for 60 s TOS,300 mg of catalyst was diluted in 2.5 g of inert 

silica, and five experiments were performed. In case of gas oil cracking five experiments with 

different cat-to-oil ratio were also performed and 500 mg of catalyst was diluted in 2.5 g of 

inert silica; with reaction temperature of 520 oC and with TOS of 30 s. For first and last 

experiments the amount of feed was maintained in order to investigate the stability of 

catalysts. Gases were analysed by Gas Chromathography in a Rapid Refinery Gas Analyser 

from Bruker (450-GC) and simulated distillation of liquids in a Bruker SIMDIS. LCO was 

analysed by comprehensive two-dimensional gas chromatography (GC × GC) on a Agilent 

7890A GC described elsewhere[36]. 

Kinetic rate constants (K) were calculated by fitting the conversions (X) to a first-

order kinetic equation for a plug flow reactor (1) for n-decane and TIPB or to a second order 
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kinetic equation for a plug flow reactor (2) for gas oil, assuming that the deactivation is 

enclosed in the kinetic constant and taking into account the volumetric expansion factor (3), 

K =−(cat oil−1TOS)−1[εX+(1+ε) ln(1−X)]    (1) 

K =−(cat oil−1TOS)−1[X/(1−X)]     (2) 

ε =(Σmolar selectivities of products) −1    (3) 

These rate constants were used to compare the activities of the catalysts with their 

textural and acidic properties. 

 

  



8 
 

3. RESULTS AND DISCUSSION 

3.1. Structural and chemical analysis of hierarchical zeolites Beta 

3.1.1. XRD results 

 The XRD patterns (Figure 1) of parent and desilicated zeolites present the typical 

diffraction pattern of zeolite Beta. The % of crystallinity of desilicated samples is given in 

Table 1.  It can be noticed that desilication with NaOH&TBAOH mixture did not decrease the 

crystallinity of resulting material. On the contrary, there is an important loss of crystallinity 

for NaOH treated samples, resulting in a relative drop of crystallinity down to 66%, what 

indicates that the desilication with pure NaOH leads to partial amorphisation of Beta zeolite 

as has been observed previously [19, 20]. Low stability of Beta zeolite under NaOH treatment 

is in a line with previous studies [19] that reported complete amorphisation upon NaOH 

treatments.  

The influence of aluminium content on desilication processes and stability of zeolite 

structure under alkaline treatment have been widely discussed in literature [8]. It is generally 

accepted that AlO4
- tetrahedra are protect neighbouring Si atoms against the OH- attack. 

Therefore zeolites of low Si/Al are less prone to both Si extraction and to amorphisation. 

According to the data presented in Figure 1, the addition of TBAOH to the desilication media 

protects zeolite against amorphisation, pointing to the important role of TBAOH in this 

process. Similar results were reported by Verboekend et al. [19], who studied the effect of the 

addition of various organic cations to NaOH on porosity and structure of zeolites Beta and 

USY.  

3.1.2. Bulk and Surface chemical compositions: Chemical analyses and XPS. 

Selective silicon extraction during alkaline treatment results in the decrease of Si/Al 

ratio of obtained hierarchical Beta zeolites, from 22 to 13 and 16 (Table 1), for zeolites treated 

with NaOH and with NaOH&TBAOH solutions, respectively. Less extensive desilication of 

zeolite Beta in presence of TBAOH is assigned to its protective influence on zeolite structure, 

resulting from the known affinity of quaternary organic cations to surface of zeolites [37, 38]. 

The analysis of filtrate solutions obtained after desilication confirmed high selectivity of 

alkaline treatments for silicon extraction, and as expected higher amount of Si was extracted 

during NaOH treatment. Additionally, this silicon extraction was accompanied by minor 

aluminum removal (Table 1).  
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One of the most important features responsible for enhanced catalytic performance in 

hierarchical zeolites is presence of aluminium gradients across the zeolite crystals. To answer 

the question XPS measurements were performed. Table 1 shows (Si/Al)bulk from chemical 

analysis and (Si/Al)surf from XPS experiments. The (Si/Al)surf/(Si/Al)bulk ratio informing on Si 

or Al excess or deficit on grain surface if comparing with the bulk are presented as well. The 

(Si/Al)surf/(Si/Al)bulk of parent zeolite is higher than 1 indicating that the external surface of  

parent material is enriched in silicon respect to the bulk, while in alkaline treated solids the 

reverse situation occurs (i.e. their external surfaces are enriched in Al). This can be 

rationalized by considering that the chemical attack of hydroxyl anions will occur 

preferentially at the external surface of the solids and therefore, selective Si extraction will 

occur at the outer part of the zeolite particle. Now, comparing the external Al concentration of 

NaOH treated sample to that obtained upon NaOH&TBAOH desilication, it is observed that 

the Al enrichment of former sample is more pronounced than in the latter material. This is an 

evidence of the protective role of TBA+ cations during desilication. They are attached at the 

external surface of the Beta zeolite, since has strong diffusional limitations, and force NaOH 

to enter pores and then attack the zeolite from inside the structure [39, 40]. This resulted in 

more homogeneous desilication across the zeolite particle, being the external and bulk Si/Al 

ratios very similar (Table 1).  

It is generally accepted that neighbouring Al atoms in negatively charged tetrahedra 

AlO4
- are responsible for the protection of Si atoms against OH- attack. As result, the enriched 

in AlO4
- surface zone of highly siliceous zeolite ZSM-5 is more resistant for desilication in 

basic solutions than the bulk of crystal [32, 41]. In zeolite Beta surface zone is poorer in Al 

than the bulk; therefore the Si atoms extraction is more effective form the surface zone than 

from the bulk. 

3.1.3. The 29Si MAS NMR results 

The 29Si MAS NMR spectra (normalized to the sample mass) of parent zeolite and 

desilicated zeolites are presented in Figure 2. The spectrum of the parent zeolite shows an 

strong signal at 112 ppm of Si(4Si,0Al) and a less intense one at 105 ppm assigned to 

Si(3Si,1Al) unit. The desilication with 0.2 M NaOH and NaOH&TBAOH results in a 

decrease of the intensity of the Si(4Si,0Al) signal due to decrease of the Si/Al ratio of the 

sample upon desilication. It is noteworthy to notice that the Si(3Si,1Al) signal practically does 

not change upon desilication. All these findings indicate that Si atoms bonded (via oxygens) 
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to four Si in Si(4Si,0Al) units are extracted by the alkaline treatment in the first order and 

before those Si atoms which are placed in the neighbourhood of the Si(3Si,1Al) units. In other 

words, the presence of AlO4
- stabilizes neighbouring Si atom (in the Si(OH)Al groups) by the 

repulsion of OH- ions. Similar results were reported in our earlier study on the desilication of 

zeolite ZSM-5 [41]. 

3.2. Textural properties of desilicated zeolites Beta 

3.2.1. Low temperature N2 adsorption studies 

The isotherms measured for the parent zeolite Beta can be identified as the type I 

typical of purely microporous material (Figure 3). The analysis of low temperature N2 

adsorption isotherm of the parent zeolite (Table 2) shows the presence of minor mesopore 

surface area and large micropore volume (0.18 cm3g-1) as typically found for zeolite Beta.  

The treatment of the parent zeolite Beta with alkaline solution resulted in larger uptake 

of N2 at high relative pressures in the isotherms (Figure 3). This is a clear indication of higher 

adsorption capacity in the mesopore range of the desilicated samples in comparison to the 

parent zeolite. Indeed, the adsorption isotherms for desilicated samples are typical of 

materials containing both micro and mesoporosity and can be classified as type IV isotherms. 

The analysis of the corresponding isotherms show that the micropore volume of NaOH treated 

zeolite decreases, being consistent with the XRD results and evidences the loss of crystallinity 

for NaOH desilicated zeolite with respect to the parent material. However, the analysis if the 

N2 adsorption isotherm of zeolite treated with NaOH&TBAOH shows that most of the 

microporosity is preserved upon alkaline treatment in good agreement to XRD results. This 

clearly indicates that NaOH&TBAOH treatment for desilication of zeolite Beta has a less 

aggressive effect on the zeolite structure.  

Also, the TEM micrographs (Figure 4) indicate that, at macroscopic level, the 

desilication mechanism of NaOH&TBAOH is different than that in NaOH media. In Figure 

4c, it is seen that samples treated with NaOH&TBAOH shows a more uniform mesopore 

system that spreads through the whole zeolite particle, while the NaOH treatment results in a 

core-shell particle (Figure 4b) in which mesoporosity is located at the external surface of the 

particle and the inner part remains almost unmodified.  

In addition, the influence of TBAOH as pore directing agent can be obtained from 

BJH pore size distribution analysis of the N2 adsorption isotherms pointing to the formation of 
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mesopores of narrower average diameter in comparison to pure NaOH treatment (Fig. 3). 

Finally, it can be concluded that the desilication performed in the presence of TBAOH results 

in the formation of a mesoporous secondary system, while preserving the crystallinity of the 

zeolite Beta. 

3.2.2. The QE-TPD results of alkanes adsorption 

The QE-TPDA profiles of n-hexane, shown in Figure 5a, exhibit a similar high 

temperature maximum at 180 °C, resulting from desorption of the molecules filling the 

micropores. Similar thermodesorption profiles were already reported for Beta zeolites [31]. 

Additional low temperature desorption maxima at 35 °C, observed for the desilicated zeolites 

should be attributed to the strong adsorption sites on the mesopore surface [42]. Values of the 

pore volume calculated by integration of the QE-TPDA profiles, are compared in Table 2 with 

the corresponding values obtained from N2 adsorption data. For the desilicated zeolites 

corrected values of the micropore volume, with contributions of the low temperature peaks 

subtracted, are also shown. Both QE-TPDA profiles and adsorption capacity data show that 

desilication with NaOH resulted in considerable decrease of the micropore volume, while for 

NaOH&TBAOH desilicated zeolite it remained unchanged. This may indicate that in case of 

zeolite Beta treated with pure NaOH some part of the dissolved zeolitic matrix formed 

amorphous aluminosilicates.  

The QE-TPDA profiles of n-nonane, plotted in Figure 5b, were recorded in 

temperatures limited to 120 °C, in order to eliminate negative effects of catalytic reactions of 

n-nonane (observed above 300 °C) on porosity of the studied samples. Based on these QE-

TPDA profiles, the pore size distributions (Figure 5c) were calculated according to the 

modified BJH scheme [43]. These results show that desilication with NaOH results in 

formation of larger and wider pores, while use of NaOH&TBAOH as a desilicating agent 

leads to formation of narrower and more uniform mesopores. These results fully agree to that 

concluded from N2 isotherms and TEM studies as discussed above. 

3.3. Acid properties of zeolites 

3.3.1. The Si(OH)Al groups  

The spectra of the hydroxyls groups in parent and desilicated zeolites are presented in 

Figure 6. The 3604-3714 cm-1 band of the acidic Si(OH)Al groups, the 3730 cm-1 band of the 

Si-OH in defects and the 3740 cm-1 of silanols on external surfaces and mesopore surfaces can 
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be distinguished. The desilication of Beta zeolite, both with NaOH and NaOH&TBAOH 

mixture, led to the distinct increase of the silanols amount on mesopore surfaces. This 

enhancement is particularly significant for zeolite treated with NaOH and corresponds to the 

development of mesoporosity (Table 2). The slight increase of the acidic hydroxyls band is 

related to the increase of Al content in zeolite framework. The maximum shift of the 

Si(OH)Al band to higher frequency points toward decrease of acid strength after desilication. 

The acid strength of desilicated zeolites will be deeper discussed when considering the results 

of CO and pyridine adsorption studies (Section 3.3.4).  

3.3.2. The concentration of Brønsted and Lewis acid sites  

The concentration of both Brønsted and Lewis acid sites was determined by 

quantitative IR studies of pyridine (Py) and ammonia (NH3) adsorption experiments.  

The values of the concentrations of both Brønsted and Lewis sites in parent zeolite and 

zeolites desilicated with NaOH and NaOH&TBAOH mixture determined in IR experiments 

with both Py and NH3 (Table 3) were compared with the Al content from chemical analysis. 

The total concentrations of acid sites, (entries L+B in Table 3), determined with both probe 

molecules are close to the Al content obtained from the chemical analysis, validating the 

accuracy of our experimental procedure for the quantification of the acid sites. Additionally, 

since the total concentration of acid sites is consistent with the concentration of Al, it is 

suggested that each Al atom is able to form either Si(OH)Al group or highly dispersed Lewis 

acid site.  

Desilication of zeolite resulted in the increase of concentration of both Brønsted and 

Lewis sites (the decrease of Si/Al) when comparing with parent zeolite due to the increase of 

the Al concentration in the treated materials, as generally accepted.  

It is worth mentioning that in parent zeolite only ca. 65% of Al is engaged in the 

formation of the Si(OH)Al groups; the rest of Al exists as the electron acceptor 

extraframework species [32, 44]. However, this proportion decreases to 40% in the NaOH 

treated zeolite Beta, while is fully preserved (or even slightly increased) in the 

NaOH&TBAOH modified zeolite. These findings strongly support the less extensive 

destruction of zeolite framework in the presence of NaOH&TBAOH than of NaOH, as 

evidenced by XRD studies. 
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3.3.3. Lewis acid sites 

The nature of the acid sites was studied by low temperature CO adsorption. Narrow 

and well resolved bands of CO engaged into interaction with both Brønsted and Lewis sites 

appear in the region: 2135 - 2150 cm-1. The spectra of CO adsorbed on the parent and 

desilicated zeolites Beta (Figure 7a) show three bands: the 2175 cm-1 band of CO interacting 

with the Si(OH)Al groups, the 2190 cm-1 band of CO bonded to  extraframework aluminium 

species, and the  2230  cm-1 band of CO interacting with Lewis sites formed by 

dehydroxylation [45]. The presence of the 2230 cm-1 bands of higher intensities for the 

desilicated materials clearly evidences a significant contribution of the Lewis sites originating 

from the dehydroxylation process. Also, the intensity of the band at 2175 cm-1 increases upon 

desilication processes. This could be attributed to the decrease of the Si/Al ratio of the zeolite 

Beta upon alkaline treatment. Then, the number of Brønsted and Lewis sites increases upon 

desilication. Notably, the largest increase of intensities of the bands attributed to CO adsorbed 

on Lewis sites was found for the sample treated with NaOH that also show the lowest 

crystallinity. The sample desilicated with NaOH&TBAOH shows an intermediate absorbance 

in the characteristic bands of CO bonded to Lewis sites. These results are in full agreement to 

the results of quantitative measurements with ammonia and pyridine (Table 3) and support the 

hypothesis of the formation of Lewis sites  

3.3.4. The acid strength of the Si(OH)Al groups and of Lewis acid sites 

The information on the acid strength of the Si(OH)Al groups was provided from: (i) 

the frequencies of the IR band of free Si(OH)Al groups, (ii) the frequency shifts ΔνOH···CO of 

the band of the Si(OH)Al groups interacting with CO (Figure 7b) as well as (iii) from pyridine 

thermodesorption experiments. All the data presented in Table 3 evidenced the decrease of the 

acid strength of the Si(OH)Al groups upon desilication: the frequencies of the IR band of free 

Si(OH)Al groups increase and the frequency shift ΔνOH…CO decreases for desilicated 

materials. The same conclusion may be drawn from pyridine thermodesorption experiments, 

the procedure of which is given below. All acid sites were neutralized by pyridine and 

physisorbed molecules were subsequently removed by evacuation at 170 ºC. In the second 

step, desorption was carried out at 300 oC to remove weakly bonded pyridine molecules. The 

ratio A300/A170, where A170 and A300 were the intensities of PyH+ bands (1545 cm-1) measured 

after each step of desorption, was taken as the measure of the acid strength of protonic sites. 

The A300/A170 values for desilicated zeolites are lower than for parent one evidencing the 
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decrease of the acid strength. Similar results were previously described for zeolites ZSM-5 of 

different Al contents [32]. 

 This decrease of the acid strength of protonic sites can be related to the extraction of 

some Al atoms from zeolite in alkaline. The most likely, these Al atoms involved into 

formation of the most acidic Si(OH)Al groups are the less stable in tetrahedral framework 

positions of zeolite and in consequence, are extracted by alkali treatment in the first order. 

Such an interpretation was proposed in our earlier study of desilicated zeolite ZSM-5 [10]. 

The information on the acid strength of Lewis sites was also obtained in pyridine 

thermodesorption experiments following a similar procedure than for Brønsted sites. 

However, A170 and A300 were the intensities of the band pyridine coordinatively bonded to 

Lewis sites (1450 cm-1).  The A300/A170 values (Table 3) in desilicated zeolites are distinctly 

higher than in parent one evidencing the noticeable increase of the acid strength. This effect 

can be explained by considering the nature of Lewis sites. In parent zeolite Beta majority of 

the Lewis acid sites have origin in the extraframework Al atoms, which have been extracted 

during thermal decomposition of template. In the case of desilicated zeolites Beta, the 

formation some amorphous silica-alumina species and therefore having weak Lewis acidity 

can explain the presence of this high concentration of Lewis acid sites of relatively low acid 

strength. 

The most of Lewis acid sites in desilicated zeolites were formed by the 

dehydroxylation of the protonic sites created by the reincorporation of Al atoms previously 

removed (together with Si) from zeolite during mesopore formation. The acid strength of both 

kinds of Lewis sites is considerably different. The sites originated from dehydroxylation are 

much more acidic than those being extraframework aluminium species. This was evidenced 

by higher frequency of the band of CO interacting with the respective sites (2230 and 2190 

cm-1). What is more, high contribution of strongly acidic Lewis sites results in an increase of 

the average acid strength of Lewis sites in desilicated zeolite as evidenced by the increase of 

A300/A170 values obtained from pyridine thermodesorption (Table 3). 

3.4. Catalytic cracking performance of hierarchical Beta zeolites 

The evaluation of hierarchical Beta zeolites in cracking reactions was performed with 

use of different feeds:1,3,5-tri-iso-propylbenzene (TIPB), n-decane and vacuum gas oil. It is 

expected that the activity of zeolite samples in cracking of TIPB molecules, which are not 
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able to penetrate the 12 MR channels, reveal the differences in accessibility of acid sites on 

the catalysts’ surface. The influence of differences in intrinsic Brønsted acidity on catalytic 

cracking will be discussed with regard to n-decane cracking reactions, which are more 

demanding on the concentration and the strength of acid sites and is able to diffuse through 

the complete system of channels. Finally, the study is completed using a real FCC feed, since 

zeolite Beta is one of the proposed additives. Indeed, it has been claimed that zeolite Beta 

improves the yield to light olefins, while preserves the yield of gasoline. However, the major 

drawback of zeolite Beta as FCC additive is the fast deactivation due to coke formation [46]. 

The desilicated Beta zeolites with secondary system of mesopores are expected to overcome 

the limitations of typical microporous Beta zeolite. Catalytic cracking results were verified 

with regard to acidity IR data as well as to textural parameters. 

3.4.1. Study of accessibility: TIPB cracking 

The total TIPB cracking conversion versus catalyst to oil ratio is shown in Figure 8. 

Also, Table 4 gives the first order kinetic activity for TIPB cracking on the zeolites Beta 

samples studied here. From these results, it is clear that NaOH&TBAOH desilicated samples 

gives the highest activity, while the parent zeolite Beta and NaOH desilicated solid give 

approximately the same conversion and kinetic constants. The best catalytic performance for 

TIPB on NaOH&TBAOH Beta can be related to the highest mesopore surface area and 

therefore, the better accessibility to molecules that cannot penetrates into the microporous 

such as the bulky TIPB molecules. The following catalyst in activity is the parent zeolite Beta 

despite of the very low external surface area (i.e. very low mesoporosity). This could be 

explained by considering that the acid sites in the parent material are fully zeolitic and 

therefore, showing the strongest acidity with a very high turnover frequency, resulting in a 

relatively high conversion of TIPB. Finally, NaOH desilicated Beta shows the lowest activity 

for TIPB cracking, even though very close to the parent zeolite. The low activity of NaOH 

treated material is attributed to the presence of amorphous silica-alumina, which is located at 

the outer part of the particle (as discussed above) and therefore, TIPB molecules react on 

relatively weak acid sites corresponding to amorphous silica-alumina [47, 48] resulting in a 

very low overall conversion. Then, from these results, it could be concluded that 

NaOH&TBAOH-zeolite Beta combines both features for having the best catalytic 

performance for large molecules conversions, on one hand very good accessibility due to the 

formation of mesoporosity during alkaline treatment, and on the other hand the presence of 

strong zeolitic Si-OH-Al acid sites, excluding the formation of amorphous silica-alumina, 
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being a true hierarchical meso- and microporous zeolite in which most of its active acid sites 

corresponds to zeolitic sites. 

3.4.2. The cracking of n-decane molecule and the gas oil 

For the n-decane cracking the decisive factor is the density and the strength of acid 

sites of the bulk catalysts, since n-decane is able to diffuse through all the system of channels.  

As can be seen in Figure 9 and Table 4 the total conversion of n-decane is comparable for 

both parent and desilicated with NaOH&TBAOH what matches with IR acidity results (Table 

3), while the sample desilicated with NaOH gives the lowest activity. This tendency fully 

agrees with our previous conclusion based on TIPB cracking results, that suggested the 

NaOH&TBAOH treated and the parent catalysts possess the most strong acid sites and 

therefore provides the highest catalytic activity, while the presence of amorphous silica-

alumina in NaOH-treated zeolite Beta diminishes its averaged acid strength resulting in a 

lowering of its activity for n-decane cracking. 

The observed selectivity during n-decane cracking gives very useful information about 

the acidity and diffusivity of reactant and products. NaOH&TBAOH treated zeolite Beta, that 

provides the shortest reaction path of the catalysts under study, gives the highest olefinicity in 

the C3 and C4 fraction (see Figure 9, C3=/C3, C4=/C4, iC4=/iC4 ratios), while produce less 

coke and dry gases. Indicating that less recracking is occurring in this material as could be 

expected by its improved diffusion properties. On the contrary, the NaOH-treated material 

gives the worst performance despite of containing also a large mesoporosity. However, as we 

discussed above, this is mostly formed by an amorphous silica-alumina lying on top of the 

zeolitic core. Then, n-decane must diffuse through a nearly inactive outer layer before 

reaching active sites with strong enough acidity for cracking this relatively refractory 

molecule. Then, the unique effect of this mesoporosity is increasing the catalyst tortuosity and 

this is clearly reflected in the highest C3/C4 ratio [49] and recracking and hydrogen transfer 

products (i.e. coke, paraffins, dry gases).  

 Finally, the results of gas oil cracking clearly show the benefit of having a true 

hierarchical meso- and microporous zeolite. Indeed, the NaOH&TBAOH treated zeolite Beta 

gives the highest total conversion of gasoil, but even more important, with the best selectivity 

towards the desired LCO fraction and having the highest olefinicity (Table 5, Figure 10). This 

could open a way for solving an open problem in FCC catalysts, which is to find catalysts that 

at the same time improve propylene yields, increasing LCO selectivity [50]. 
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Our main conclusion is that the zeolite Beta treated with NaOH&TBAOH succeeds in 

all objectives: both the LCO and C3=/C3 ratios are higher than in case of parent and NaOH 

treated material (Table 5, Figure 10). 

In addition, the higher yield to LCO obtained with zeolite Beta desilicated with 

NaOH&TBAOH confirms the ability of true hierarchical meso- and microporous zeolites to 

facilitate the accessibility of large molecules of VGO to the acid sites with subsequent 

diffusion of LCO produced without further secondary cracking. Moreover, the quality of the 

LCO, analysed by GCxGC (Table 6),  is also optimum with a higher amount of paraffins and 

lower content in polyaromatics. 

The present work unambiguously demonstrates the dependence of the catalytic 

performance with different feeds of desilicated zeolites Beta on their textural and acidic 

properties. The catalytic performance in TIPB as well as n-decane cracking is governed either 

by the accessibility or the acid strength of sites, respectively. Among studied zeolites, the 

most effective is the zeolite treated with NaOH&TBAOH, for which the development of 

secondary system of mesopores does not disturb the intrinsic acidity of zeolite.  

 



18 
 

4. CONCLUSIONS 

In this work, it has been demonstrated that by a well-adjusted desilication procedure, 

combining the employ of NaOH and TBAOH as alkaline sources, it is possible to produce a 

hierarchical zeolite that combines mesoporosity and zeolitic microporosity without disturbing 

the intrinsic acidity of the parent zeolite. Both acid sites concentration and their strength have 

been reflected in catalytic activity and selectivity. As a result, an optimized catalyst with very 

high LCO and propylene selectivities during gas-oil cracking reaction has been achieved. 
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FIGURES CAPTIONS 

Figure 1. X-ray diffraction patterns of the parent zeolite Beta and zeolite treated with 0.2 M NaOH 

and 0.2 M NaOH&TBAOH mixture. 

Figure 2. 29Si MAS NMR spectra of the parent zeolite Beta and zeolite desilicated with 0.2 M NaOH 

and 0.2 M NaOH&TBAOH mixture. 

Figure 3. Adsorption isotherms of N2 and BJH pore size distribution (inset) of the parent zeolite Beta 

and zeolite treated with 0.2 M NaOH and 0.2 M NaOH&TBAOH mixture. 

Figure 4. TEM microphotographs of the parent zeolite Beta (a/500 nm and a’/200 nm) and zeolite 

treated with 0.2 M NaOH (b/500 nm and b’/200 nm) and 0.2 M NaOH&TBAOH mixture (c/500 nm 

and c’/200 nm). 

Figure 5. 

a – QE-TPDA profiles of n-hexane on Beta zeolites  

b – QE-TPDA profiles of n-nonane on Beta zeolites 

c – Mesopore size distribution calculated for Beta zeolites from QE-TPDA profiles of n-nonane for the 

parent zeolite Beta and zeolite treated with 0.2 M NaOH and 0.2 M NaOH&TBAOH mixture. 

Figure 6. The IR spectra in the region of OH groups vibration of parent zeolite Beta and zeolites 

treated with 0.2 M NaOH and 0.2 M NaOH&TBAOH mixture. 

Figure 7.The spectra of CO sorbed at -100 oC in parent zeolite and zeolite treated with NaOH and 

NaOH&TBAOH mixture in the C≡O vibrations region (a) and in the region of stretching hydroxyls 

vibration (b). 

Figure 8. Total conversion and selectivities in the cracking of TIPB at 500 oC and 60 s time on stream 

over parent and hierarchical Beta zeolites. 

Figure 9. Total conversion and selectivities in the cracking of n-decane at 500 oC and 60 s time on 

stream over parent and hierarchical Beta zeolites. 

Figure 10. Total conversion and selectivities in the cracking of vacuum gas oil at 520 oC and 30 s time 

on stream over parent and hierarchical Beta zeolites. 
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Table 1. The relative crystallinity values (%Cryst) derived from XRD, the composition 

determined by chemical analysis (Si/Al)bulk, the composition of surface zone from XPS 

measurements (Si/Al)surf, the (Si/Al)surf/(Si/Al)bulk factor, the % of Si and Al extracted during 

desilication. 

 

zeolite Beta %Cryst (𝑺𝑺𝑺𝑺/𝑨𝑨𝑨𝑨)𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃 (𝑺𝑺𝑺𝑺/𝑨𝑨𝑨𝑨)𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 
(𝑺𝑺𝑺𝑺/𝑨𝑨𝑨𝑨)𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔
(𝑺𝑺𝑺𝑺/𝑨𝑨𝑨𝑨)𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃

 % Siext % Alext 

parent 
NaOH 

NaOH&TBAOH 

100 
66 

100 

22 
13 
16 

27 
10 
15 

1.23 
0.77 
0.94 

- 
52 
41 

- 
2.3 
1.5 
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Table 2. The textural parameters from low temperature N2 adsorption and from QE-TPDA of 

hydrocarbons for parent zeolite Beta and zeolites desilicated with NaOH and NaOH&TBAOH 

mixture. 

zeolite Beta 
SBET 

[m2 g-1] 
Smeso 

[m2 g-1] 
Vmicro[cm3 g-1] Vmeso[cm3 g-1] Dmeso[nm] 

n-hexane N2 n-nonane N2 n-nonane N2 
parent 
NaOH 

NaOH&TBAOH 

567 
668 
793 

44 
510 
468 

0.18 
0.15 (0.13*) 
0.22 (0.18*) 

0.18 
0.10 
0.14 

0.09 
0.53 
0.35 

0.06 
0.40 
0.35 

- 
5.3 
4.1 

- 
5.5 
3.8 

*values corrected for the low temperature desorption contribution. 
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Table 3. The composition of the parent Beta zeolite and hierarchical ones determined by chemical analysis (Si/Al)bulk, the concentration of Al 

atoms from chemical analysis, the concentration of Brønsted (B) and Lewis acid sites (L) from IR spectroscopy measurements with pyridine and 

ammonia as probe molecules as well as the acid strength of the Si(OH)Al groups and Lewis acid sites derived from IR studies of pyridine 

thermodesorption and low temperature CO sorption (expressed by ∆νO-H···CO). 

 

zeolite Beta (𝑺𝑺𝑺𝑺/𝑨𝑨𝑨𝑨)𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃 Al  
[μmol·g-1] 

Py [μmol·g-1] NH3 [μmol·g-1] 
Strength  

of Brønsted a.c. 
Strength  

of Lewis a.c. 
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Table 4. The first-order kinetic rate constants for TIPB (KTIPB), n-decane (Kn-decan e) and the 

second-order kinetic rate constants for vacuum gas oil (Kgas oil) cracking reactions. 

zeolite Beta 
Experimental kinetic rate constants [goil gcat-1 s−1] 

KTIPB Kn-decane Kgas oil 
parent 0.107 0.108 0.041 
NaOH 0.104 0.071 0.026 

NaOH&TBAOH 0.137 0.099 0.048 
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Table 5. Interpolated yields and olefinicity ratios at 75wt% of Total Conversion in the 

catalytic cracking of VGO at 500ºC and Time On Stream of 30s. 

zeolite Beta parent NaOH NaOH&TBAOH 
cat/oil ratio (wt/wt) 2.62 3.26 2.27 
Yields (wt%) 

   gasoline 19.12 26.46 22.46 
LCO 20.77 10.17 25.38 
gases C1-C4 29.24 32.68 22.94 
coke 5.87 5.69 4.23 
hydrogen 0.04 0.05 0.04 
methane 0.92 1.06 0.87 
ethane C2 0.80 0.87 0.73 
ethylene C2= 1.51 1.72 1.14 
propane C3 4.23 3.02 1.90 
propylene C3= 6.18 8.31 5.61 
isobutane 6.02 6.01 4.13 
n-butane 2.26 1.81 1.22 
trans-2-butene 1.69 2.27 1.67 
but-1-ene 1.29 1.76 1.30 
isobutylene 3.08 4.11 3.10 
cis-2-butene 1.23 1.67 1.22 

Ratios (wt/wt)    C4=/C4 0.88 1.25 1.36 
C3=/C3 1.46 2.75 2.96 
(C1+C2)/iC4 0.54 0.61 0.66 
C3/C4 0.67 0.64 0.59 
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Table 6. The GCxGC analysis of LCO fraction (C12-C20) in the catalytic cracking of VGO at 

500ºC and Time On Stream of 30s on parent and desilicated samples at 75wt% of conversion 

level 

zeolite Beta parent NaOH NaOH&TBAOH 
LCO yield 20.77 10.17 25.38 
yields (wt%)    

saturates 6.94 3.19 9.01 
monoaromatics 3.89 2.12 5.11 
diaromatics 6.28 3.21 6.93 
triaromatics 3.65 1.66 4.33 

selectivity (wt%)    
saturates 33.43 31.35 35.51 
monoaromatics 18.75 20.80 20.12 
diaromatics 30.25 31.54 27.31 
triaromatics 17.57 16.31 17.06 
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