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1. Introduction 1 
 2 
The button mushrooms (Agaricus bisporus) are one of the most popular and valuable edible fungi. The 3 

shelf life of these mushrooms is limited to a few days, mainly because they have no cuticle to protect 4 

them from physical or microbial attacks and water loss. In the same way, the important content in 5 

nutrients, the high respiration rate and their high tyrosinase and phenolic content make them very 6 

susceptible to enzymatic reactions (Aguirre et al. 2009). All these factors induce a fast deterioration after 7 

harvest (Kotwaliwale et al. 2007) including the softening, due to the loss of moisture through respiration, 8 

and the browning due to enzymatic breakdown of cells (Mohapatra et al. 2010). These phenomena result 9 

in reduced product acceptability since consumer´s preference is for white, unblemished and hard texture 10 

mushrooms. In view of their highly perishable nature, mushrooms must be processed to extend their 11 

commercial shelf life for off-season use (Devece et al. 1999). In this sense, most mushroom crops are 12 

preserved by canning and only a small portion treated by other methods such as freezing or drying 13 

(Coskuner and Ozdemir, 1996). The production of heat-sterilized preserves represents most usual long-14 

term preservation and accounts for more than 60 % of industrial processed mushrooms (Biekman et al., 15 

1996). In the preparation process of sterilized mushrooms, blanching is an important pre-treatment, which 16 

main objectives are: i) to inactivate enzymatic browning by thermal inactivation of the enzyme 17 

polyphenoloxidase (PPO) and ii) to induce shrinkage in such a way that it will not occur during 18 

sterilization (Wu et al., 1981) and ensure control of post-process yield (ratio of drained weight to fill 19 

weight) (Sensoy and Sastry, 2003). Although both objectives are important, it has been found (Lespinard, 20 

et al., 2009) that shrinkage is the limiting factor to determine the processing time at blanching 21 

temperatures above 60 ºC.  22 

However, depending on the processing conditions applied, the quality and bioactivity of the final product 23 

can be negatively affected due to the destruction of nutrients relatively unstable to heat, the loss of water-24 

soluble components by leaching and the induced changes in texture and colour (Gamboa-Santos et al. 25 

2012). 26 

In this regard, blanching at low temperature, in the range of 55–75 °C, can be used in order to improve 27 

the firmness of cooked vegetables and fruits, reducing physical breakdown during further processing and 28 

providing an excellent and safe way of preserving texture (Verlinden et al. 2000). 29 

The increased consumer’s awareness by the relationship between diet and health has increased the interest 30 

of the food industry for mild processing technologies that provide final products with improved 31 
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characteristics as compared to those obtained by conventional thermal treatments (Soria and Villamiel 32 

2010). In this sense, the introduction of new technologies could lead to a reduction of the processing time, 33 

the improvement in operating conditions or the reduction of the processes energy needs, thereby 34 

decreasing both environmental and economic costs. Ultrasound is an example of these new technologies 35 

to intensify food processes (Cárcel et al. 2011). The use of high intensity ultrasound has been considered 36 

to enhance heat and mass transfer for different products and processes such as drying (De la Fuente et al. 37 

2006; García-Pérez et al. 2006; Gallego-Juárez et al. 2007), atmospheric freeze drying (García-Pérez et al. 38 

2012), osmotic dehydration (Cárcel et al. 2007a; Fernandes and Rodrigues, 2007; Jambrak et al. 2007b), 39 

brining (Cárcel et al. 2007b; Gabaldón-Leyva et al. 2007; Siró et al. 2009), freezing (Delgado et al. 2009) 40 

and in many other food applications such as sterilizing, blanching, extracting, degassing, filtrating or 41 

enhancing oxidation (Leadley and Williams 2002; Mason 1998; Ortuño et al. 2013; Peralta-Jimenez and 42 

Cañizares-Macías 2012; Horžić et al. 2012). In blanching process, the combination of ultrasound with 43 

classical heat treatments is an interesting alternative since it allows using milder conditions reducing 44 

processing time and increasing efficiency of enzyme inactivation processes (López et al. 1994; López and 45 

Burgos 1995; De Gennaro et al. 1999; Cruz et al. 2009; Cheng et al. 2013).  46 

Lespinard et al. (2009) found that the volume change, the rate of heat transfer and the deteriorative 47 

reactions are the main features to be taken into account during the design and optimization of mushrooms 48 

blanching processes. In this respect, in the available literature only a few references can be found on 49 

modelling of volume contraction and heat transfer during the thermal processing of mushrooms (McArdle 50 

and Curwen 1962; Konanayakam and Sastry 1988; Sheen and Hayakawa 1991; Biekman et al. 1997; 51 

Sensoy and Sastry 2004). With regard to the application of ultrasound during blanching of mushrooms, 52 

only some studies had been found (Sastry et al. 1989; Lima and Sastry 1990; Jambrak et al. 2007a; Cheng 53 

et al. 2013), being the effect of ultrasound treatment on the shrinkage not reported elsewhere. On the 54 

other hand, mushroom quality is defined by a combination of parameters, including whiteness and texture 55 

(Gormley 1975). In this regard, none of the aforementioned references have studied the influence of 56 

ultrasound on texture and colour variations during the blanching of mushrooms. 57 

The overall goal of this work was to evaluate the effect of the simultaneous application of heat and 58 

ultrasound on the volume contraction, heat transfer and the changes in quality factors of mushrooms, and 59 

develop a mathematical model that allows finding the optimal processing conditions.  60 

 61 
2. Materials and Methods 62 
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 63 
2.1. Samples 64 

Freshly harvested mushrooms (Agaricus bisporus) were purchased in a local market in Valencia (Spain) 65 

and maintained in refrigeration (4 ºC) until experiments were carried out (less than 24 h). Mushrooms 66 

were selected taking into account visual similarity of size (with an average diameter and height of 0.036 67 

and 0.040 m, respectively) and colour and gently washed with tap water at room temperature to remove 68 

foreign materials that could be adhered to their surface.  69 

 70 

2.2. Blanching processing 71 
 72 
In order to evaluate the effects of ultrasound on the mushrooms, conventional (CB) and ultrasonic 73 

assisted blanching (UB) experiments were carried out. For that purpose, mushrooms were placed in a 74 

sample holder and submerged into distilled water in a thermostatically controlled bath. Blanching 75 

processes were carried out at different water-bath temperatures (50, 60, 70, 80 and 90 ºC) until a sample 76 

size contraction of 18 % (80 % of the highest size reduction) was reached in all cases as suggested by 77 

Lespinard et al. (2009). These authors studying the influence of blanching on shrinkage and PPO activity 78 

found that this size contraction value was the limiting factor to estimate the processing time for blanching 79 

temperatures higher than 60 °C. Then, samples were removed from the bath and immediately sunk in a 80 

water-ice mixture for 2 min. Finally, they were conveniently drained and dried with absorbent paper to 81 

remove the excess of water.  82 

In the case of UB experiments, ultrasound (25 kHz, 400W) was applied through a probe system (UP400S, 83 

Hielscher Ultrasonics GmbH, Teltow, Germany) provided with a 40 mm diameter titanium alloy sound 84 

probe. For that purpose, the probe was immersed (1 cm) in the thermostatically controlled bath and placed 85 

above the samples at a fixed distance (3 cm; Fig. 1). The treatments were carried out at the maximal 86 

power capacity of the equipment and ultrasound was continuously applied. 87 

 88 

Fig.1 Scheme of experimental set-up for ultrasonic assisted blanching treatments 89 

 90 

2.3. Size variation determination 91 

The size variation of mushrooms during the blanching process was determined by measuring, for each of 92 

the five temperatures tested, the diameter (d) and height (l) of the samples with a Vernier calliper, before 93 

processing and at different times of processing. Two independents runs were performed for each 94 
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condition and three different pieces were measured in each run. The experimental variation of d and l 95 

with time was studied from a dimensionless shape factor (D*) and it was fitted to a first-order kinetics 96 

model (Eq. 1), 97 

 98 

            1

0

* ( * )
t eq

eq

D D
D  exp K t

D D


  


                                    (1)                                 99 

 100 

where Dt is the instantaneous value of the characteristic dimension (d or l) at a time t (min); D0 is its 101 

initial value; Deq the equilibrium dimension (after blanching for over an hour) and K1 is the temperature-102 

dependent rate constant.  103 

Considering that the radial and longitudinal shrinkages were similar (Lespinard et al. 2009), the values of 104 

the rate constants (K1) for the variation of d and l were averaged obtaining an overall rate constant (Km) 105 

that represented the global shrinkage for each process condition tested.  106 

The Km temperature dependence was modelled through an Arrhenius-type relationship (Eq. 2), where K0 107 

is the pre-exponential factor, Ea is the activation energy, Rg is the universal gas constant (0.00831 kJ mol
-108 

1
 K

-1
), and T is the water bath temperature.  109 

                                                                          0

Ea

RgT

mK K e


                                                               (2) 110 

Shrinkage experiments were performed in three replicates and in duplicate runs. 111 

 112 

2.4. Modelling of heat transfer 113 

To model the heat transfer in the mushroom, a set of experiments were independently carried out at the 114 

same test conditions described in Section 2.2. In these experiments, the temperature in the water bath and 115 

in the thermal centre of three mushrooms (geometric centre of mushroom head) were monitored every 15 116 

s using rigid type K thermocouples and recorded using a multi-channel data acquisition system (HP Data 117 

Logger 34970 A, Hewlett-Packard Española, S.A., Madrid, Spain).  118 

A mathematical model was developed to describe conduction heat transfer through the mushroom (Eq. 3), 119 

for conventional and ultrasonically assisted blanching, considering as uniform the initial temperature (Eq. 120 

4) and convective boundary conditions (Eq. 5).  121 

 P

T
C k T

t



 


                                                     (3) 122 
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0T (x, y,z, t 0)  T                                                             (4) 123 

k  T  h (T T)                                                  (5) 124 

where ρ, Cp, k are the density, specific heat capacity and thermal conductivity of mushroom, respectively 125 

(Cp = 3883 J kg
-1

 K
-1

 and k = 0.4324 W m
-1

 K
-1 

obtained from Sastry et al. 1985; ρ = 699.4 ± 20.5 kg m
-3

 126 

obtained by liquid displacement method); h is the convective heat transfer coefficient; T∞ is the heating 127 

medium temperature and T0 is the initial temperature of mushroom.  128 

The mathematical model was solved using the finite element method. Shrinkage was coupled to the heat 129 

transfer model through Eq. 1 using an arbitrary Lagrangian-Eulerian method (COMSOL AB, 2005). The 130 

boundary condition for shrinkage was computed through the velocity of the geometric boundaries 131 

changes-variation obtained from time derivative of the characteristic dimension (Eq. 6),  132 

1 0 1( )exp( )t
D eq

dD
v K D D K t

dt
                                   (6) 133 

where vD is the velocity of size change in the characteristic dimension direction D. The moving boundary 134 

displacement was then propagated throughout the domain, obtaining a smooth mesh deformation over all 135 

the sample volume. To construct simulation domain, mushrooms were assumed to be bodies with 136 

rotational symmetry. To make valid this assumption the mushrooms employed in experiments were 137 

selected taking into account its symmetry grade. Therefore, geometries of the mushrooms, employed as 138 

simulation domain, were built from images of transversal cuts of samples. These images were digitally 139 

processed to obtain the mushroom contour according to the procedure described by Santos and Lespinard 140 

(2011). Finally, to obtain the two-dimensional axial-symmetric domain, the contour was transformed into 141 

a solid object and it was scaled considering the measured dimensions (d and l).  142 

To run the finite element model the two-dimensional axial-symmetric domain was imported into a mesh 143 

generator and discretized using triangles. An unstructured mesh with 685 nodes and 1264 triangular 144 

elements was developed. To achieve this meshing, a maximum element size of 1 mm and an element 145 

growth rate of 1.3 were specified. This will give the adequate number of elements. The use of finer mesh 146 

showed no significant effect on the accuracy of the solution. 147 

The heat transfer coefficient between the mushroom and the liquid medium was estimated from the 148 

evolution of temperature measured in the centre of a bronze mushroom shaped object (Lespinard et al. 149 

2009). 150 
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Finally, the heat transfer model developed was validated by comparing experimental and simulated 151 

mushroom temperatures. These comparisons were performed calculating the correlation coefficient (R
2
) 152 

and the average relative differences (Er ave) (Eq. 7), 153 

                                                        

1

100 m
s e

r ave

i e

T T
E  

m T


                                                             (7)

 
154 

where m is the number of experimental values, Ts are simulated temperatures and Te are experimental 155 

temperatures. 156 

 157 

2.5. Evaluation of quality indexes 158 
 159 
All the quality parameters considered were measured in three different samples for each of the two run 160 

carried of each experimental condition tested (time, temperature of treatment and ultrasound application). 161 

That means a minimum of 120 samples were used for the determination of each quality parameter. The 162 

results were presented as percentage of relative variation with regard the unprocessed sample.  163 

 164 
2.5.1. Determination of texture 165 
 166 
Hardness of mushrooms was estimated from compression tests carried out with a texturometer TA-XT2i 167 

(Stable Micro Systems Ltd, Godalming, Surrey, UK). The experimental data were recorded and processed 168 

with the Texture Expert Exceed software. After cutting the tail, the heads of mushrooms were compressed 169 

on their round face with a cylindrical probe (10 mm in diameter) at a test speed of 5 mm s
-1

 and 30 % 170 

compression of the sample height. From the force-deformation curves, the maximum force (N), as an 171 

indicator of hardness, was obtained.  172 

  173 

2.5.2. Determination of colour 174 
 175 
The influence of different treatments on colour of samples was studied from the measurement of the 176 

lightness, L* parameter of the CIELab scale (CIE, 1978). This parameter was considered since whiteness 177 

is the most important parameters used to evaluate mushroom quality (Gonzales-Fandos et al. 2000). In 178 

fact mushroom colour has been commonly measured using only the L value (Ananthewaram et al. 1986; 179 

Jolivet et al. 1998; Brennan et al., 2000; Cliffe-Byrnes and O’Beirne 2007; Gonzales-Fandos et al. 2000). 180 

The determinations were carried out using a Minolta colorimeter CR 300 Series (Osaka, Japan) with a 181 

measuring area of 8 mm diameter and provided with a 10
o
 standard observer and a D65 standard 182 

illuminant. The instrument was calibrated with a standard white plate (sY = 93.2, sx = 0.3133, sy = 183 
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0.3192). Measurements on each sample were performed at three points on the mushrooms surface and 184 

averaged.  185 

 186 

2.5.3. Cooking value  187 
 188 
The final quality of the blanched product depends on the received average intensity of the thermal 189 

treatment. The effect of the heat treatment on quality factors can be evaluated by C-value (Cooking value) 190 

equations, which are similar to the F-value equations that represent the effect on the microorganisms. The 191 

cooking value concept was introduced by Mansfield (1962) and nowadays is included in the standard 192 

nomenclature used for heat treatments (Holdsworth, 1997). In the present work, to evaluate an average 193 

deterioration of quality parameters in mushrooms, the average cooking value (Cave) was determined by 194 

numerical integration (Eq. 8), using the simulated temperatures for the mushroom domain (Ω) obtained 195 

through the simulation model. A reference temperature (Tref) of 100 ºC and a thermal reference factor (zc) 196 

value of 23 ºC were considered for estimations. The value of zc was chosen as the average of those values 197 

corresponding to the deterioration kinetics of mushroom quality parameters (Ohlsson 1980). 198 

                                   

( , )

0

10

ref

c

p

T t T

z
t

aveC t

 





 
 
  

 
 
 





                                       (8) 199 

 200 

2.5.4. Enzymatic activity of polyphenoloxidase  201 

Considering that the enzymatic activity of polyphenoloxidase (PPO) is a limiting factor of the processing 202 

time, the influence of ultrasound application on this parameter was also studied. For that purpose, an 203 

enzymatic kinetic model developed by Cheng et al. (2013) was linked to the predictive heat transfer 204 

model to determine surface enzyme activity retention (ARsur) of PPO (Eq. 9). The residual enzyme 205 

activity was calculated as the percentage of remaining activity,  206 

               

 

0

1
10

0
0

1
(%) 100

10 d 100

T Tref
zct

ref

dt
D

t
sur

A
AR

A

 
 
 

  
  

 
      

                                       (9)   207 

where A0 is the initial activity, At is the residual activity at time t and Г is the mushroom surface. The Dref 208 

-value is the time (min) needed to reduce the initial activity by 90 % and it was calculated in terms of K-209 

value as given by Eq. 10, 210 
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ln(10)

refD
K

                                                         (10) 211 

K is the inactivation rate constant and can be estimated by an Arrhenius-type relationship (Eq.11), 212 

                                              0

Ea

RgTK K e


                                                          (11) 213 

where Ea is the activation energy, K0 is the pre-exponential factor, Rg is the universal gas constant 214 

(0.00831 kJ mol
-1

 K
-1

) and T is the mushroom temperature. The kinetic parameters values employed were 215 

214 kJ mol
-1

, 2.43 10
32

 min
-1

 and 10.3 °C for Ea, K0 and zc, respectively. These values were based on 216 

those obtained for inactivation kinetics of PPO in mushrooms during blanching by Cheng et al. (2013). 217 

On the other hand, PPO generates numerous oxidation products, such as o-quinones, which may lead by 218 

polymerization to the formation of brown pigments. This implies that PPO activity is directly related to 219 

colour changes in the mushrooms (Devece et al. 1999). However, colour changes are more dependent on 220 

the residual enzyme activity evolution than on its final value. Therefore, in order to estimate the 221 

relationship between PPO activity and colour loss, integrated residual PPO activity was calculated by Eq. 222 

12: 223 

                                                                                
0

0

pt
t

sur

A
IAR dt

A

 
  

 
                                                 224 

(12)                                                   225 

2.6. Statistical analysis 226 

All treatments were performed in duplicate, and all of the parameters studied were also determined per 227 

triplicate for each treatment. Statistical analysis was done to determine the significance of the effect of 228 

ultrasound on shrinkage, texture and colour. All experimental data were statistically analyzed using 229 

analysis of variance (ANOVA) from software STATGRAPHICS Plus 4.0. (Manugistics Inc., USA). The 230 

difference between mean values was analyzed by Tukey’s test (p<0.05). The parameters of the shrinkage 231 

kinetics (K0 and Ea) were estimated by a linear regression analysis using the OriginPro software (version 232 

8; Origin Lab Corp., Northampton, MA). Results were expressed as mean ± standard deviation (SD). 233 

 234 
3. Results and Discussion 235 
 236 
3.1. Size variation 237 
 238 
Blanching produced the shrinkage of mushroom samples. The results showed (Fig. 2) two stages: a rapid 239 

size reduction at the first stages of heating which becomes slower at higher process times. Konanayakam 240 
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and Sastry (1998) explained this mushroom shrinkage pattern through the concept of water-holding 241 

capacity. During the first stage, the mushroom ability to hold immobilized water weakened (perhaps due 242 

to protein denaturation) and the rapid loss of mass produced the product shrinkage. In this sense, Jasinski 243 

et al. (1984), in a study on the effect of thermal processing on the structure of mushrooms, found that the 244 

heat caused the coagulation of cytoplasmic material and the disruptions of intracellular membranes, 245 

which resulted in the loss of water holding capacity of the tissue. However, the loss of semipermeability 246 

of membrane tissue and the loss of intracellular water makes that the rapid shrinkage phase ended and the 247 

slow shrinkage began to appear. This phase could be attributed to loss of some bound water.  248 

As can be seen in Fig. 2, the variation of the dimensionless size was dependent on the different processing 249 

temperatures and the application of ultrasound. Thus, the higher the blanching temperatures applied, the 250 

greater the observed shrinkage rate was. In this regard, Biekman et al. (1997) found that temperature 251 

increase during blanching of mushrooms is directly related with sample shrinking. It is known that the 252 

higher temperatures increase the protein denaturation that decrease the water holding capacity and 253 

increase the shrinkage. In this sense, the longer time of treatment increases the temperature effects.  254 

With regard to the application of ultrasound, in the range of temperatures from 50 to 80 ºC, the shrinkage 255 

rate of UB experiments was higher than CB ones. This fact can be attributed to several effects produced 256 

by ultrasound. The successive compressions and expansions of mushrooms induced by high intensity 257 

acoustic waves, mechanism known as “sponge effect” (Gallego-Juárez et al. 2007), could accelerate the 258 

movement of water outside the solid and enhance the degassing of the immersed mushroom. Simal et al. 259 

(1998) suggested that the degassing effect observed under sonication may be similar to that observed 260 

under vacuum treatment. According to Biekman et al. (1997), during the shrinkage process, up to 50 % of 261 

the fluid within the tissue is lost in an internal movement of water towards the surface of the mushroom 262 

that also contribute to the increase of heat transport. The asymmetric collapse of cavitation bubbles close 263 

to mushroom surface can generate microjets in the direction of the surface that enhance heat and mass 264 

transfer. In this regard, Sastry et al. (1989) found that the natural convective heat transfer coefficient can 265 

be approximately doubled when ultrasound is applied. Moreover, Jambrak et al. (2007a) showed that 266 

ultrasound disturbs the cell walls of mushrooms and thereby facilitates the removal of the cell contents. 267 

These authors concluded that disrupts in biological membranes could be caused by a combination of the 268 

cavitation phenomena and the associated shear disruption, localized heating, and the free radical 269 

formation. 270 
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Shrinkage difference between CB and UB was higher at the lowest temperatures tested, decreasing with 271 

the increase of temperature. For instance, at 60 °C and after 10 min of blanching, the shrinkage obtained 272 

in UB was 1.4 times higher than the one obtained in CB, and at 80 °C (10 min) was only 1.1 times higher. 273 

At the highest temperature tested, 90 °C, non-significant differences (p> 0.05) were observed between 274 

both treatments, CB and UB. This fact could be attributed to at these conditions, the effects of ultrasound 275 

can be masked by those produced by the temperature self. Moreover, the increase of vapor pressure of 276 

water at higher temperatures which makes the collapse of cavitation bubbles less violent (Sala et al. 277 

1995). 278 

On the other hand, after the maximum processing time considered, 30 min (a conventional industrial 279 

process include the immersion in water at 80-90 °C for 8-9 min, Devece et al. 1999), the treatments 280 

carried out at 50 ºC only reached the 4.5 % and the 10.4 % of shrinkage for CB and UB, respectively, far 281 

from the target set shrinkage (18 %). For this reason, this treatment temperature was not considered in the 282 

following sections of this work. 283 

 284 
Fig. 2 Variation of dimensionless size during the tested processes of blanching: Conventional (×) 50 °C, 285 
(▲) 60 ºC, (♦) 70 ºC, (●) 80 ºC, (■) 90 ºC and Ultrasonic assisted (×) 50 °C, (▲)60 ºC, (♦) 70 ºC, (●) 80 286 
ºC, (■) 90 ºC. Values predicted by the first-order kinetics model are shown through continuous lines. Bars 287 
represent mean ± standard deviation 288 
 289 

 290 
As can be seen in Fig. 2, the dependence of the dimensionless size variation with time was adequately 291 

fitted (R
2
>0.98) by the first-order kinetics model (Eq. 1). From modelling it was possible to quantify the 292 

effects of both, temperature and ultrasound application on samples size variation (Table 1). Calculated 293 

values of Km showed an increase with water bath temperature for both treatments, CB and UB, which 294 

means an augmentation of the contraction rate with temperature. For instance, Km obtained at 90 °C was 295 

8.4 times higher than at 60 °C for CB treatments. Regarding UB, as it is shown in Table 1, ultrasound 296 

application enhanced the shrinkage rate of mushrooms compared to CB, particularly at low temperatures. 297 

For instance, the identified shrinkage rate in UB experiments at 60 °C was 4.6 times higher than CB 298 

experiments carried out at the same temperature. These differences between rates decreased when the 299 

medium temperature increased from 60 to 90 ºC.  300 

The influence of temperature on the increase of the shrinkage rate of both types of experiments, CB and 301 

UB, was well described by an Arrhenius type equation. As can be observed in Table 1 the R
2
 of the fitting 302 

was above 0.9.  In general, the activation energy values obtained for CB experiments was higher than 303 
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those found for UB experiments indicating that the shrinkage in these experiments was less sensitive to 304 

temperature when ultrasound was applied. 305 

From modelling, it was also possible to estimate the processing time necessary to achieve a size reduction 306 

of 18 % at the different conditions tested (Fig. 3). As expected, the results obtained showed that the 307 

application of ultrasound significantly reduced the blanching time in the range of temperatures studied 308 

(except for 90 ºC), being this reduction greater as temperature considered was lower. Thus, the reduction 309 

in process time was 39.1, 46.0 and 30.7 % for blanching temperatures of 60, 70 and 80 ºC, respectively. 310 

 311 

Fig. 3 Estimated process time to achieve a size reduction of 18 % for conventional and ultrasonic assisted 312 

blanching at different temperatures. Bars represent mean ± standard deviation 313 

 314 
3.2. Implementation of the simulation model  315 
 316 
The heat transfer model developed was numerically solved to simulate the evolution and distribution of 317 

mushrooms temperatures during the application of the different blanching processes tested. For the 318 

correct implementation of the model, experimental measurements of heat transfer coefficients were 319 

employed (Lespinard et al. 2009). The values of heat transfer coefficients for the CB and UB and the 320 

relative difference percentage between both processes are shown in Table 2. The values obtained for CB 321 

increased with the bath temperature and resulted similar to those found by Lespinard et al. 2009, for the 322 

same conditions. Results presented in Table 2 also indicate that in all cases, the ultrasound application 323 

significantly (p<0.05) increased the convective heat transfer coefficient from 205 % at 90 ºC to 599 % at 324 

60 ºC. 325 

The extent of ultrasonic enhancement was found to be dependent on the processing temperature. The 326 

influence of ultrasound application was higher at the lowest temperatures, decreasing with the increase of 327 

temperature. These results are in agreement with those presented by Lima and Sastry (1990) who found 328 

that the convective heat transfer coefficient was increased (260 %) from 562 to 2028 W/m
2
°C by assisting 329 

blanching with ultrasound. 330 

The simulation model was validated successfully since Er ave and R
2
 between predicted and experimental 331 

temperatures of the thermal center of the mushroom were lower than 5 % and greater than 0.98, 332 

respectively, for all the tests carried out.        333 

 334 
3.3. Texture  335 
  336 
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In all cases studied, a decrease of the treated sample hardness was observed compared to that of the 337 

unprocessed samples (Fig. 4). According to Zivanovic and Buescher (2004) these results can be attributed 338 

to losses of cell wall integrity due to processing temperatures. These authors reported that loss of 339 

mushroom toughness after blanching agreed with the solubilization of cell wall polymers. In the present 340 

work, texture losses (i.e., hardness reduction) in the range of 74.6-77.7 % were observed after the 341 

conventional blanching processes tested (to achieve 18 % shrinkage), showing no significant differences 342 

(p>0.05) among the different temperatures studied (Fig. 4). This similar hardness decrease can be 343 

explained by the fact that equivalent heat treatments were applied: low temperatures involved long 344 

processing times (33.6 min at 60 °C) and high temperatures reduced the heat treatment time (3.9 min at 345 

90 °C). 346 

On the other hand, the hardness of the mushrooms was larger when blanching at temperatures of 60 and 347 

70 °C was assisted by ultrasound. Then, at 60 ºC the reduction in hardness loss in UB compared to CB 348 

was of 40.8 % and the processing time reduction of 39.8 %. In the same way, the UB at 70 °C reached a 349 

reduction of 25.2 % and 46.5 % in hardness loss and processing time, respectively. However, UB carried 350 

out at 80 and 90 ºC showed similar reduction hardness values than CB. This fact could be explained 351 

because at these blanching temperatures the reductions in the processing times were lower. Other authors 352 

(McArdle et al. 1974; Jasinski et al. 1984; Konanayakam and Sastry 1988) reported that high 353 

temperatures during blanching probably caused protein denaturation, membrane disruption, and loss of 354 

weight and volume of mushroom tissue. Moreover, it is possible that blanching at temperatures close to 355 

the boiling point of water disrupted hydrogen and other noncovalent bonds between cell wall polymers 356 

(Finley, 1985), loosened the strength of the wall network, and resulted in loss of toughness. On the other 357 

hand, blanching at low temperature (55-75 °C) activates pectin-methyl-esterase (PME) and improves 358 

textural properties as a result of PME action on the cell wall. PME acts on the cell wall pectic substances 359 

causing demethoxylation and produces free carboxyl groups. The formation of free carboxyl groups 360 

increases the possibilities and the strength of calcium and magnesium links between pectin polymers, 361 

hence increasing firmness (Sanjuán et al. 2005). Consequently, lower processing temperatures are 362 

desirable to minimize changes in texture during blanching of mushrooms. However, as reported in the 363 

present work, if these low temperatures are maintained for long process times, equivalent decrease in 364 

mushroom hardness are obtained than those found for high temperatures. Therefore, a reduction in the 365 
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process time, by the application of high power ultrasound at low blanching temperatures, can result into a 366 

reduction in mushroom hardness losses. 367 

   368 
Fig. 4 Relative percentage of hardness loss for (■) conventional and (■) ultrasonic assisted blanching at 369 
different temperatures. Proposed combined treatments: (○) CT-15 and (∆) CT-30. Bars represent mean ± 370 
standard deviation. 371 
  372 
 373 

3.4. Colour  374 

The colour parameter L* (lightness) decreased during blanching showing the darkening of samples (Fig. 375 

5). This darkening could be attributed to the fact that, at temperatures above 45ºC, a damage of cellular 376 

membrane of mushrooms occurs favoring the contact between PPO and its substrate and producing the 377 

sample browning (Biekman et al. 1997). Furthermore, enzymes as PPO may be active from the beginning 378 

of blanching treatment until the temperature in the tissue increased above the inactivation temperature of 379 

the enzyme. Thus, the lightness (L*) reduction linearly decreased as the water bath temperature increased. 380 

This behavior was in agreement with that reported by Gouzi et al. (2012) who concluded that, in the 381 

context of browning inhibition in Agaricus bisporus, high temperature and short time should be preferred 382 

to long heating time at lower temperatures, to achieve efficient deactivation of PPO. 383 

On the other hand, the influence of the ultrasound application on the lightness retention was significant 384 

(p<0.05) at the lowest temperatures tested, 60 and 70 ºC reducing the lightness decrease by 13.8 and 16.8 385 

%, respectively, compared to CB. This fact could be attributed to the lower processing time in UB (39.7 386 

and 46.5 % lower for 60 and 70 °C, respectively). However, the highest lightness retention was achieved 387 

when the blanching was carried out at 90 °C, being in this case the L* relative decrease similar between 388 

conventionally and ultrasonically assisted blanching. 389 

 390 
Fig. 5 Relative percent decrease of lightness after (■) conventional and (■) ultrasonic assisted blanching 391 
at different temperatures. Proposed combined treatments: (○) CT-15 and (∆) CT-30. Bars represent mean 392 
± standard deviation. 393 
 394 
                                                                                                                                                                                                395 
 396 
3.5. Cooking value  397 
 398 
The Cave obtained for CB experiments at 60, 70 and 80 ºC was quite similar varying around a mean value 399 

of 0.54 min (Fig. 6). On the contrary, the Cave obtained for UB experiments, for the same temperatures 400 

(60, 70 and 80 ºC), increased as the bath temperature rose. Practically, no difference was found between 401 

the Cave values identified for the 80 and 90 ºC ultrasonically assisted treatments. The textural changes in 402 
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the blanched mushrooms shown in section 3.3 should be related to the Cave. In this regard, a significant 403 

linear relationship (HL(%)=223.11Cave-16.54) (R
2
=0.93) between hardness losses (HL) and cooking 404 

values (Cave) were found for UB in the range of Cave from 0.27 to 0.39 min. However, no significant 405 

relationship (p>0.05) was found between the hardness losses and the Cave for CB in the range of Cave from 406 

0.42 to 0.60 min. This fact could indicate that there is a threshold value of Cave (close to 0.4) above which 407 

no difference of hardness losses is found, being the average hardness loss of 75 % when the cooking 408 

value exceeds that value. Therefore, the results obtained indicate that cooking values of UB samples at 409 

temperatures of 60, 70 and 80 ºC are lower than those of CB, which explains the lower hardness changes 410 

found in UB mushrooms at those temperatures. Moreover, it is possible to use the Cave for the estimation 411 

of hardness changes in mushrooms during blanching when its value is lower than 0.4 min. 412 

 413 
Fig. 6 Average cooking values (Cave), simulated for (■) conventional and (■) ultrasonic assisted blanching 414 
at different temperatures. Proposed combined treatments: (○) CT-15 and (∆) CT-30 415 
                                                                                                                                                                                                416 
 417 
3.6. Enzymatic activity of polyphenoloxidase 418 

 419 
The final residual activity of mushroom PPO after CB and UB treatments (at the estimated process time 420 

to achieve a size contraction of 18 %), is presented in Table 3. As can be observed, mushroom PPO was 421 

inactivated in treatments carried out at 70, 80 and 90 ºC (reduction higher than 99 %) but not completely 422 

inactivated at 60 ºC. Therefore, the PPO activity reduction appears to be the limiting factor controlling the 423 

needed processing time only at blanching temperatures below 70 °C. On the other hand, for blanching 424 

temperatures from 70 °C to 90 °C the time needed to achieve a size contraction of 18 % was enough as to 425 

inactivate the enzymatic activity of mushrooms. 426 

The inactivation kinetics curves of mushroom PPO for conventional and ultrasonically assisted treatments 427 

are shown in Fig. 7. It can be seen that the inactivation rate of mushroom PPO increased dramatically 428 

with temperature. For instance, to achieve a residual mushroom PPO activity of 32.2 % a treatment time 429 

of 15 min was needed for a conventional process at 60 °C, whereas only 0.9 min was needed for the 430 

complete inactivation of the enzyme at 90 ºC.  431 

On the other hand, the ultrasound application during blanching enhanced the inactivation, of PPO in 432 

mushrooms compared with conventional thermal treatment. This effect is appreciated even at high 433 

temperatures. For instance, a residual mushroom PPO activity of 35.0 and 0.16 % were achieved after 0.4 434 

min at 90 °C for CB and UB, respectively.  435 

 436 
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Fig. 7. Variation of surface residual PPO activity estimated from modelling during different blanching 437 
conditions: Conventional (∆) 60 ºC, (◊) 70ºC, (○) 80 ºC, (□) 90 ºC, and Ultrasonic assisted (▲)60 ºC, (♦) 438 
70 ºC, (●) 80 ºC, (■) 90 ºC. A zoom of the dotted area is shown. 439 
 440 

 441 
The final enzyme activity obtained (Table 3) did not correspond with the observed lightness changes (Fig. 442 

5). However, the values obtained for IARsur (Fig. 8) showed the same effect of temperature and ultrasound 443 

than colour (Fig. 5). These results confirm that the colour of mushrooms after processing is strongly 444 

influenced by the PPO activity evolution. In this regard, Rodríguez-López et al. (1999) indicated that 445 

browning reactions in mushrooms are directly related to the inactivation rate of PPO and pointed to the 446 

importance of rapid PPO inactivation to reduce browning of mushroom. Moreover, non-lineal 447 

relationships (R
2
>0.99) between lightness losses (LL) and integrated residual PPO activity (IARsur) were 448 

obtained for CB (LL(%) = 3.65·ln(IARsur) + 9.94) and UB (LL(%)=2.23·ln(IARsur) + 10.97). Therefore, the 449 

prediction of the integrated residual activity through the heat transfer model resulted to be a useful 450 

parameter to estimate changes in colour during blanching of mushrooms.   451 

 452 

Fig. 8 Integrated residual PPO activity (IARsur) after (■) conventional and (■) ultrasonic assisted 453 
blanching at different temperatures. Proposed combined treatments: (○) CT-15 and (∆) CT-30 454 
 455 

3.7. Combined treatment 456 

From the results obtained, it can be stated that the blanching treatment that provided the best retention of 457 

texture was the UB treatment at 60 ºC, while to maintain the colour of mushrooms it was the CB and UB 458 

at 90 ºC (Figs. 4 and 5). These opposed values of temperature makes it difficult to optimize the process in 459 

order to maximize simultaneously both the texture and colour retention. For this reason, an interesting 460 

alternative could be the application of a two stage combined treatment (CT) which consists of a first stage 461 

of immersing the mushrooms in water at 90 °C for a short period of time and then a second stage applying 462 

an ultrasonically assisted blanching at 60 °C. The goal was to take advantage of the benefits of both 463 

treatments, obtaining a fast inactivation of the enzyme PPO that minimize the colour changes in the first 464 

stage (conventional blanching at 90 ºC) and reaching the desired shrinkage in the second stage by an 465 

ultrasonic assisted blanching at 60 ºC which would maximize the texture retention. 466 

For that purpose, two processing experiments were carried out varying the treatment time for the first 467 

stage, 15 and 30 s, (CT-15 and CT-30 respectively) and maintain a fixed time of 19.9 min for the second 468 

stage (estimated time to reach 18 % shrinkage, Fig. 3). As can be seen in Fig. 4, the introduction of a first 469 

stage of conventional treatment at 90 ºC in the ultrasonically assisted blanching at 60 ºC, produced a 470 
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small increase of the hardness loss. The difference between measured hardness in CT-15 and CT-30 471 

experiments was not significant (p>0.05). On the other hand, the combined treatment CT-15 reduced  472 

significantly the decrease of L* compared to UB at 60 °C. This reduction was even greater, and 473 

equivalent to that obtained by treatment at 90 °C (Fig. 5), when CT-30 was applied. This could be 474 

explained by the fact that the residual activity of PPO obtained after the first stage of treatment was very 475 

different between both treatments (69.6 and 18.3 % for CT-15 and CT-30, respectively). Moreover, the  476 

PPO activity during the entire combined treatments, quantified by integrated residual activities (IARsur), 477 

reached values of 8.2 and 2.0 min (Fig. 8) which were in agreement with lightness losses (13.0 and 6.5 % 478 

for CT-15 and CT-30, respectively, Fig. 5). To sum up, the best conditions in terms of simultaneous 479 

texture and colour retention were obtained for the CT-30 treatment. 480 

 481 
4. Conclusions 482 
 483 
Kinetics of mushroom shrinkage was developed and coupled to a heat transfer model for describing 484 

conventional and ultrasonic assisted blanching. This model was employed to predict temperature, quality 485 

parameters and PPO activity evolution for both types of processes. Hardness and lightness changes were 486 

related with the cooking value and the integrated residual activity of PPO, respectively, determined by 487 

means of temperature predictions using the heat transfer model. The application of ultrasound reduced the 488 

blanching time and enhanced hardness and lightness retention compared to conventional heat treatment, 489 

particularly at low temperatures. A two-stage ultrasonically assisted blanching was found to 490 

simultaneously maximize hardness and lightness retention. Finally we can conclude that the present 491 

findings will help to optimise the design of mushrooms blanching conditions with heat and ultrasound. 492 
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Table 1 Kinetic constants for the modelling of mushrooms shrinkage during blanching. 

 Conventional 

blanching 

 Ultrasonic assisted 

blanching 

Temperature (ºC) Km (s
-1

) x 10
3 

 Km (s
-1

) x 10
3
  

50 0.10±0.01
a,A 

 0.30±0.03
a,B 

 

60 0.78±0.17
b,A 

 1.28±0.22
b,B 

 

70 1.62±0.13
c,A 

 3.02±0.06
c,B 

 

80 2.31±0.29
d,A 

 3.35±0.16
c,B 

 

90 6.53±0.51
e,A 

 6.77±0.31
d,A 

 

Ea (kJ mol
-1

) 90.79  70.71 

K0  (s
-1

) 8.36 10
10  

1.19 10
8 

R
2 

0.935  0.922 
a-e Mean values within the column followed by the same lowercase letter are not significantly different (p<0.05). A-B Mean values within 

the row followed by the same capital letter are not significantly different (p<0.05). 
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 Table 2 Convective heat transfer coefficients between the mushroom and the heating medium.  

Temperature 

(ºC) 

Conventional blanching Ultrasonic assisted blanching Relative difference  

h (W m
-2

 K
-1

) h (W m
-2

 K
-1

) (%) 

60 579.49±20.43
a,A 

4044.79±161.53
a,B 

599 

70 650.63±16.01
b,A 

3743.39±175.61
b,B 

475 

80 862.97±42.60
c,A 

3438.12±145.66
c,B 

298 

90 968.97±50.64
d,A 

2960.62±96.09
d,B 

205 

a-d Mean values within the column followed by the same lowercase letter are not significantly different (p<0.05). A-B Mean values within 

the row followed by the same capital letter are not significantly different (p<0.05). 
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Table 3 Calculated surface enzymatic activity retention of PPO (ARsur).  

 

 Conventional blanching US assisted blanching 

Temperature (ºC) ARsur (%) ARsur (%) 

60 6.9 18.5 

70 <1.0 <1.0 

80 <1.0 <1.0 

90 <1.0 <1.0 

 Combined treatment
 

 ARsur (%) 

CT-15 12.0
 

CT-30
   3.1 
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Abstract 

 

The main aim of this work was to assess the influence of the application of power ultrasound during 

blanching of mushrooms (60-90ºC) on the shrinkage, heat transfer, and quality parameters. Kinetics of 

mushroom shrinkage was modelled and coupled to a heat transfer model for conventional (CB) and ultrasonic 

assisted blanching (UB). Cooking value and the integrated residual enzymatic activity were obtained through 

predicted temperatures and related to the hardness and colour variations of mushrooms, respectively. The 

application of ultrasound led to an increase of shrinkage and heat transfer rates, being this increase more 

intense at low process temperatures. Consequently, processing time was decreased (30.7-46.0%) and a 

reduction in hardness (25.2-40.8%) and lightness (13.8-16.8%) losses were obtained. The best retention of 

hardness was obtained by the UB at 60 ºC, while to maintain the lightness it was the CB and UB at 90 ºC. For 

enhancing both quality parameters simultaneously, a combined treatment (CT), which consisted of a CB 0.5 

min at 90°C and then an UB 19.9 min at 60°C, was designed. In this manner, compared to the conventional 

treatment at 60°C, reductions of 39.1, 27.2 and 65.5% for the process time, hardness and lightness losses were 

achieved, respectively. These results suggest that the CT could be considered as an interesting alternative to 

CB in order to reduce the processing time and improve the overall quality of blanched mushrooms. 
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