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!��
 "����: artificial microRNAs, experimental evolution, next generation sequencing, 

population genetics, resistant plants, virus evolution 

 

�
�����
 ���: Dynamics of virus escape mutants 




�#������ 

Plant artificial microRNAs (amiRs) have been engineered to target viral genomes and induce 

their degradation.  However, the exceptional evolutionary plasticity of RNA viruses threatens 

the durability of the resistance conferred by these amiRs.  It has recently been shown that 

viral populations not experiencing strong selective pressure from an antiviral amiR may 

already contain enough genetic variability in the target sequence to escape plant resistance in 

an almost deterministic manner.  Furthermore, it has also been shown that viral populations 

exposed to sub inhibitory concentrations of the antiviral amiR speed up this process.  In this 

paper, we have characterized the molecular evolutionary dynamics of an amiR target 

sequence in a viral genome under both conditions.  The use of Illumina ultra deep sequencing 

has allowed us to identify virus sequence variants at frequencies as low as 2×10
−6

, and to 

track their variation in time before and after the viral population was able of successfully 

infecting plants fully resistant to the ancestral virus.  We found that every site in the amiR 

target sequence of the viral genome presented variation, and that the variant that eventually 

broke resistance was sampled among the many coexisting ones.  In this system, viral 

evolution in fully susceptible plants results from an equilibrium between mutation and genetic 

drift, whereas evolution in partially resistant plants originates from a more complex dynamics 

involving mutation, selection and drift. 
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MicroRNAs (miRNAs) are short RNAs found in eukaryotic cells that operate as post 

transcriptional regulators of gene expression (He and Hannon 2004).  They regulate the 

abundance of target mRNAs by guiding the RNA induced silencing complex (RISC) to 

cleave the corresponding complementary sequence.  As changes in the 21 nt long miRNA 

sequence do not affect miRNA biogenesis and maturation (Guo et al. 2005; Vaucheret et al. 

2004) it is possible to redesign the miRNA sequence to target different transcripts using 

different pre miRNAs as backbones (Niu et al. 2006; Schwab et al. 2006; Qu et al. 2007; 

Warthman et al. 2008).  One application of this technology is to produce plants expressing 

artificial miRNAs (amiRs) targeting viral genomes, thus conferring resistance to viral 

infection (Niu et al. 2006; Qu et al. 2007).  Niu et al. (2006) used the pre miRNA159a 

precursor as backbone to construct two different amiR159 with sequences complementary to 

the RNA genome of 	
����
������
������
���
� (TYMV) and 	
����
������
���
� (TuMV), 

respectively.  In short, the original sequences forming the stem of the pre miRNA159a were 

replaced by the appropriate viral target sequences in complementary polarities to maintain the 

correct stem loop structure and subsequent processing by the DCL1 nuclease (Niu et al. 

2006).  Transgenic expression of these amiRs in �����������
�������� conferred high levels of 

specific resistance against the corresponding virus.  Similarly, a gene silencing mechanism 

(RNAi) has been used in ��
����� assays as antiviral agent to inhibit the replication of human 

viruses such as �
���
���
������������
���
� type 1 (HIV 1; Coburn et al. 2002), ���������


�
���
� (Krönke et al. 2004) and ����
����
�
���
� (Ge et al. 2003).  In all these experiments, 

a single amiR was expressed and thus resistance strictly depended on the match between this 

amiR and the corresponding viral sequence. 

A major issue confronting these amiR based antiviral strategies has been the emergence 

of resistant virus variants (Boden et al. 2003; Das et al. 2004; Gitlin et al. 2005; Westerhout et 
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al. 2005; Lin et al. 2009; Lafforgue et al. 2011).  These variants differ from the wild type 

virus by at least one point mutation in the 21 nt target leading to imperfect matching with the 

corresponding amiR, and hence to inefficient or ineffective processing by RISC (Sabariegos 

et al. 2006; von Eije et al. 2008; Westerhout et al. 2005).  Whereas the RNAi machinery 

tolerates changes in some positions of the 21 nt target, it is sensitive to changes in some 

others, particularly at the center of the target site (Elbashir et al. 2001; Westerhout and 

Berkhout 2007; Lin et al. 2009).  Moreover, it has been shown that the 21 TuMV genotypes 

resulting from introducing every single synonymous mutation in the 21 nt target  that 

successfully infected transgenic plants expressing amiR accumulated additional changes at 

alternative sites within the 21 nt target, further jeopardizing the resistance of the transgenic 

plants (Lin et al. 2009). 

Taken together, these results show that some changes in the 21 nt target sequence may 

generate virus escape variants.  However, the relevance of these escape variants in natural 

viral populations has not been clarified.  In other words, in order to evaluate the viability of 

antiviral therapies based on the transgenic expression of amiRs in plants it is essential to 

understand how likely are viral populations to contain escape variants which may be 

subsequently transmitted to immunized plants.  Moreover, it is also crucial to evaluate 

whether variation in the expression of amiR transgenes in different tissues or at different 

stages of plant development, especially at sub inhibitory concentrations, might affect the 

accumulation and evolution of viral escape mutants.  More specifically, we are interested in 

addressing the following issues:  (1) What is the likelihood of virus escape mutations arising 

and accumulating in a wild type (WT) host population?  (2) Does partial resistance favor the 

accumulation of escape mutants?  (3) At what frequencies are these mutant viruses 

maintained in susceptible hosts?  (4) What sites in the 21 nt target are more critical for 

escaping from amiR surveillance? 
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To address the first of these issues, in a previous study we experimentally evolved 25 

independent lineages of TuMV (family �����������) in susceptible WT ��
�������� plants. At 

each passage until resistance was broken (Lafforgue et al. 2011), we evaluated the infectivity 

of the evolving populations in transgenic ��
 �������� plants (line 12 4) that were fully 

resistant to the ancestral virus due to high level expression of amiR159 HCPro, an engineered 

variant of miRNA159 that is complementary to 21 nt within the TuMV cistron that encodes 

for the multifunctional protein HC Pro (Niu et al. 2006).  .  In the same work, we addressed 

the second issue, by evolving in the same way 25 additional TuMV lineages in ��
 �������� 

transgenic plants (line 10 4) expressing the amiR159 HCPro at sub inhibitory concentrations.  

Our results showed that TuMV populations replicating in both susceptible hosts (WT and 10 

4) accumulated resistance breaking alleles, resulting in overcoming the resistance of 12 4 

plants.  The rate at which resistance was broken was significantly faster for TuMV 

populations experiencing sub inhibitory concentrations of the antiviral amiR159 HCPro 

during their evolution, thus suggesting that TuMV escape alleles were at higher frequencies in 

the partially resistant plants, possibly because of a selective advantage.  This previous study 

mainly focused on making quantitative inferences about the likelihood of resistance breaking.  

We confirmed that resistance breaking had a genetic basis by characterizing the consensus 

sequence of the TuMV population isolated from the 12 4 resistant plants that first showed 

infection symptoms.  However, we did not determine whether escape mutants were already 

present in the evolving populations prior to being inoculated in the 12 4 plants nor the level of 

polymorphism in the population replicating in these plants (especially whether they contained 

a fraction of non resistant TuMV genotypes). 

To address these issues, classical Sanger dideoxynucleotide sequencing methods are not 

appropriate, as they only allow the detection of viral variants present in the population at 

frequencies around 2×10
 1

 (e.g., Zagordi et al. 2011).  On the other hand, next generation 
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sequencing (NGS) techniques can generate massive amounts of genetic data, which can be 

used to detect variants at much lower frequencies (Wang et al. 2007; Eriksson et al. 2008; 

Solmone et al. 2009; Cordey et al. 2010; Eckerle et al. 2010; Murcia et al. 2010; Zagordi et al. 

2010; Willerth et al. 2010; Bunnik et al. 2011; Guo et al. 2011; Wright et al. 2011).  In the 

present study, we have generated tens of millions of short reads with Illumina sequencing to 

obtain an unprecedented ultra deep coverage of amiR targets in the TuMV genome, thus 

characterizing in great detail the genetic composition of TuMV lineages evolving in WT and 

10 4 plants at different time points during the experimental evolution process and right after 

the first successful infection of 12 4 resistant plants.  While in general the limited length of 

Illumina reads makes it difficult to assess linkage among mutations, in our particular case this 

was not an issue because the 21 nt sequences corresponding to the amiR159 HC Pro target 

were completely covered by the 76 nt long reads.  The validity of the Illumina technology for 

assessing virus diversity has been proved with studies of the ������
 ��
��
 �����������


��������
���������
� (Eckerle et al. 2010), �
���
��������
� (Cordey et al. 2010), HIV 1 

(Willerth et al. 2010) and ���� ��� ��
��
�������
���
� (Wright et al. 2011). 

 

���������
���
��� ���


Plant material and growth conditions 

Two homozygous T4 transgenic ��
 �������� Col 0 lines expressing amiR159 HCPro were 

used in this study: 10 4 and 12 4 (Niu et al. 2006; Lafforgue et al. 2011).  Plants were 

maintained in a growth chamber under 16 h light 25 ºC/8 h darkness 22 ºC.  12 4 plants were 

fully resistant to infection with the ancestral TuMV clone whereas 10 4 plants showed 

incomplete penetrance and variable expressivity of the resistance character (Lafforgue et al. 

2011). 
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Population passages and evaluation of pathogenicity in ��
�������� 12 4 plants 

Details of the evolution experiments and evaluation of the pathogenicity of evolving 

populations were described elsewhere (Lafforgue et al. 2011).  In short, a large stock of 

infectious sap was obtained from TuMV infected !��������
����������� inoculated with a 

plasmid containing a TuMV cDNA (GenBank accession no. AF530055.2).  Saps were 

obtained by grinding infected tissues with 20 volumes of grinding buffer (50 mM potassium 

phosphate pH 7.0, 3% polyethylene glycol 6000).  Aliquots of 5 �L 10% Carborundum were 

applied to three different ��
�������� leaves, and inoculation was done mechanically by gentle 

rubbing with a cotton swab soaked with infectious sap.  Twenty five WT and 25 transgenic 

10 4 ��
 �������� plants were inoculated.  Each plant represented the starting point for an 

independent evolutionary lineage.  Fourteen days post inoculation (dpi), symptomatic tissue 

was collected for each lineage and ground in a mortar with liquid N2 and stored at −80 ºC.  A 

portion of the ground tissue was extracted with grinding buffer and used to inoculate the next 

set of plants.  A second portion was used for the pathogenicity tests in 12 4 plants.  A third 

portion was used to purify RNA for RT PCR amplification of TuMV cDNA. 

For the pathogenicity tests, 20 plants from the 12 4 line were inoculated as described 

above.  Infection was determined 14 dpi and the frequency of infected plants, that is 

pathogenicity, recorded.  These challenge experiments were performed after every passage for 

each of the 50 evolving lineages. 

 

RNA preparation and RT PCR amplification of a TuMV cDNA 

TuMV infected tissue from ��
 �������� plants (0.2 g) was ground with mortar and pestle in 

the presence of liquid N2 and RNA purified by chromatography using silica gel spin columns 
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(Zymo Research).  RNA was finally eluted from the columns with 12 VL 20 mM Tris HCl, 

pH 8.5 and quantified by spectrophotometry (Nanodrop, Thermo Scientific). 

RNA aliquots from TuMV infected ��
 �������� plants (100 ng) were subjected to 

reverse transcription with 50 U M MuLV reverse transcriptase (Fermentas) in the presence of 

5 pmol primer PI (5’ CAAGCAGAAGACGGCATACGAGCCTGATTCTGTTGTGACAC 

3’, sequence complementary to TuMV AF530055.2 positions 2095 2115 underlined) in 10 

VL reactions for 45 min at 42 ºC, 10 min at 50 ºC and 5 min at 60 ºC.  Prior to the reaction, 

the primer was allowed to anneal to the RNA by incubation for 1.5 min at 98 ºC and snap 

cooling on ice.  Reverse transcription reactions were stopped by heating at 72 ºC for 15 min.  

PCR amplifications were performed in 20 VL with 0.4 U of the high fidelity Phusion DNA 

polymerase (Finnzymes) in HF buffer (Finnzymes) and 3% dimethyl sulfoxide, 0.2 mM 

dNTPs and 1 VL of the previous reverse transcription reaction.  Reactions also contained 0.5 

VM primer PI and 0.5 VM of a particular version of primer PII.  For multiplex deep 

sequencing, a series of 45 different PII primers was designed including a constant 5’ sequence 

required for the deep sequencing protocol, a variable 4 nt sequence (XXXX) for bar coding 

and a constant 3’ sequence (underlined) homologous to TuMV AF530055.2 positions 2011 

2031: 5’ 

AATGATACGGCGACCACCGACAGGTTCAGAGTTCTACAGTCCGACGATCXXXXG

AAAGGCGAACCGGTAGAAC 3’.  The reactions were incubated for 30 s at 98 ºC followed 

by 20 cycles of 10 s at 98 ºC, 30 s at 55 ºC and 30 s at 72 ºC and a final extension of 10 min at 

72 ºC.  PCR products were separated by electrophoresis in 2% agarose gels in buffer TAE (40 

mM Tris, 20 mM sodium acetate, 1 mM EDTA, pH 7.2) and stained with ethidium bromide.  

The TuMV cDNA amplification products (177 bp) from the different reactions were eluted 

from the gel using silica gel spin columns (Zymo Research) and quantified by 

spectrophotometry. 
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Next generation sequencing 

The amplified TuMV cDNAs from the evolution experiments in WT and 10 4 plants were 

mixed in separate pools.  Each pool contained normalized amounts of the different cDNAs at 

18 ng/VL.  The two cDNA pools were subjected to NGS using the Illumina HiSeq 2000 

sequencer at the Rockefeller University Genomics Resource Center. 

 

Data filtering and analysis of sequence diversity 

To exclude the considering sequencing or experimental miscalls as true mutations, we 

carefully considered the nucleotide qualities provided by the Illumina sequencing platform.  

Each nucleotide in each read has a quality score ", which can be translated to measure of the 

probability, �# of it being an erroneous call with the expression � � 1 �1 � 10� �	⁄ �⁄ .  The 

average error probability increased with nucleotide position along the reads and reached 1% 

after nucleotide 65: these levels are incompatible with the reliable identification of low 

frequency polymorphisms.  Typically, this poor average performance is due to a restricted 

number of very low quality reads, which suffered some problems during the base calling 

process.  Therefore, we removed from the analysis all the reads with an average sequencing 

error per nucleotide higher than 0.1% (corresponding to 5%   15% of the sample total).  The 

coverage of the samples obtained with the filtered reads ranged between 3.5×10
5
 and 8.5×10

5
 

fold.  Reads were then aligned to the reference sequence with a simple score assigning 

routine, and new, sample specific consensus sequences were obtained. 

Subsequently, we estimated the frequency of site specific polymorphisms from the 

frequency of mismatches to the reference genome found in the aligned reads.  A proportion of 

these mismatches are expected to be artifacts, arising from base miscalling.  In order to 
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discriminate between real variation and sequencing artifacts, we used a variation of the 

method developed by Wright et al. (2011): we considered the probability of a sequencing 

error appearing at genome position � in read $, ��$, and we averaged over all the reads to obtain 

�� � ∑ ���
��
��� , where �� is the coverage of site �.  Values of �� around 0.03% corresponded to " 

= 35.  If all the erroneous callings are independent, the probability of a mutation appearing in 

% reads at site � to be a sequencing error follows a binomial distribution &(%�|��/3, ��), where �� 

is the coverage of site �, and ��/3 is the average probability of observing a specific base calling 

error.  �� is averaged over all the nucleotides aligned at site � bearing a mutation with respect 

to the consensus.  Furthermore, we assumed that all possible sequencing errors occur with the 

same probability (e.g., A can be mistaken for C, G or U with no preferences). 

At each site, we ranked the frequencies of the nucleotides observed in the reads, and 

assigned a score to each variant, defined as ��' = &(%�#'|��/3, ��), where %�' is the number of 

reads aligned at site � bearing nucleotide ' ∈ {A, C, G, U}.  ��' increases if a mutation is 

observed in a large number of reads, making it unlikely to be a sequencing error: when ��' is 

small, we can reject the hypothesis “the observed mutation is generated by sequencing error”.  

We considered only mutations where ��' < (, with ( being a threshold chosen to be 0.05.  All 

these analyses were performed with custom made C scripts. 

Finally, we estimated the probability of re sequencing the same fragment more than 

once.  Let ) be the initial number of fragment present in the sample, and ! the coverage of a 

site: the probability of sampling a fragment �
 times is distributed according to the binomial 

law &(�|1/), !), where 1/) is the probability of choosing a particular fragment among the ) 

available.  Therefore, the probability of re sequencing the same fragment is: ��� � 1� �

∑ ���	|1/�,�
��� 	 �.  For the typical values ! = 5×10

5
 and ) = 1.2×10

11
 (De la Iglesia et al. 

2012), �(� > 1) ≈ 8×10
 12

, which is sufficiently small to be ignored. 
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Population genetic analyses were performed with ARLEQUIN 3.1 (Excoffier et al. 

2005).  The average nucleotide diversity per site (π) and the average number of pairwise 

nucleotide differences (') were computed for each population.  Using these two estimates, we 

computed Tajima’s * statistics (Tajima 1989) to evaluate whether the observed patterns of 

variability were compatible with the neutral expectation (* = 0), with the action of directional 

selection/population growth (* < 0) or with balancing selection/population subdivision (* > 

0). 

Patterns of nucleotide substitutions in the amiR159 HCPro target in TuMV genome 

were analyzed using MEGA5 (Tamura et al. 2011).  Nucleotide substitution matrices and 

ratios of transitions to transversion rates (κ) were estimated by maximum likelihood for each 

evolutionary lineage under the general time reversible (GTR) model with uniform rates 

among sites and using a neighbor joining phylogenetic tree (Saitou and Nei 1987).  

Substitution rates per synonymous (��) and nonsynonymous (�!) sites were estimated using 

Nei Gojobori’s modified method and bootstrap SEM (1000 pseudo replicates). 

IBM SPSS version 19 was used for all additional statistical analyses reported. 

 

���
���
���
����
�����


To study the population dynamics of evolving TuMV sequence variants and the escape 

mutants able to break resistance in fully resistant 12 4 plants by NGS, we chose four 

evolutionary lineages from our previous work (Lafforgue et al. 2011).  The first lineage, 

labeled as L20.Col 0, consisted of 19 passages in WT.  At each passage a pathogenicity test 

was performed (see Material and Methods).  All tests were negative until passage 19.  The 

TuMV population replicating in the infected 12 4 plants were analyzed by NGS and are 

referred in Figure 2A as passage 20 (highlighted in light green).  In this case, the escape allele 
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identified by Sanger sequencing as the most abundant one contained the mutation C11U 

(numbering referred to the 21 nt of the amiR159 HCPro target), a synonymous mutation that 

appeared in 7 out of the 25 independent lineages evolved in this host.  For the other three 

lineages evolution took place in partially resistant 10 4 plants and occurred faster.  Lineage 

L11.10 4 also contained the C11U escape allele and it arose after only 2 passages in 10 4 

plants followed by a successful pathogenicity test in 12 4 plants (labeled as passage 3 and 

highlighted in green in Figure 3A).  Finally, lineages L1.10 4 and L10.10 4 consisted, 

respectively, of 3 and 4 evolutionary passages in 10 4 plants plus the subsequent positive 

pathogenicity tests in 12 4 plants (labeled as passages 4 and 5 and highlighted in green in 

Figures 3B and 3C, respectively).  Consensus sequencing of escape alleles for these two 

lineages showed mutations A19C (K to T amino acid replacement) and G12A (V to M, a 

conservative amino acid change), respectively (Lafforgue et al. 2011). 

 

Description and filtering of Illumina data 

Samples from all the evolution passages for the four lineages described above were sent out 

for Illumina sequencing and the resulting data were subjected to the quality analyses 

described in the corresponding section of the Material and Methods.  Figure 1A illustrates the 

quality scores "� of the sequence reads translated into error probabilities ��.  The "� associated 

with each nucleotide decreased toward the end of the reads, as the reliability of the 

sequencing process decreases with the number of cycles in the Illumina sequencing platform; 

therefore �� increased along the reads.  After discarding reads with an average � > 0.2%, the 

error profile became flatter (dashed line in Figure 1A).  The number of valid reads varied 

widely among lineages and among samples within each lineage.  For L20.Col 0 the number 

of valid reads ranged from 291,348 for passage 9 to 858,037 for passage 15 or to 598,784 for 

the 20
th

 passage, when the resistance of 12 4 plants was broken, with a median value of 
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485318.  For lineage L1.10 4 the number of valid reads ranged 609,097 – 678,729, with a 

median of 620,168 reads.  For lineage L10.10 4 the range went from 477,218 to 1,222,462 

valid reads (median 729,630).  Finally, for lineage L11.10 4, the number of valid reads runs 

within the interval 502,642 – 637,476, with a median value of 531,402.  Only nucleotides 

with " > 30 were used to determine haplotypes. 

Figure 1B shows the log log relationship between the number of reads and the number 

of detected haplotypes.  The power law relationship between the number of valid reads and of 

detected haplotypes (+
2
 = 0.962, �1,30 = 749.42, � < 0.001) imposes a certain degree of 

uncertainty about the number of different haplotypes existing in each viral population 

sampled: since the power law has no asymptotic value, the more reads analyzed the more new 

haplotypes detected.  In other words, an infinite number of valid reads would be necessary to 

estimate the exact number of haplotypes contained in a viral population.  This being said, we 

can still make some valid inferences from our data.  For instance, we can ask whether the 

number of haplotypes differed significantly between samples and/or lineages.  For lineage 

L20.Col 0, the number of haplotypes per passage ranged between 19 (for passage 8) to 287 

(for passage 20), with a median value of 28.  Interestingly, the median number of haplotypes 

was larger for the three lineages evolved in the partially resistant 10 4 plants: for lineage 

L1.10 4, the number spanned between 44 and 256 (median 114), for lineage L10.10 4 

between 38 and 255 (median 41), and for lineage L11.10 4 between 29 and 129 (median 57).  

An ANCOVA on the log number of haplotypes using lineage as random factor and the log 

number of valid reads as covariable revealed a significant difference in the median number of 

haplotypes between the lineage evolved in WT and the three lineages evolved in 10 4 plants 

(�4,24 = 9.072, � < 0.001).  In other words, the expression of sub inhibitory amounts of an 

amiR by the host plant facilitates the accumulation of genetic variability in the virus amiR 

target.  Furthermore, the analysis also detected a significant effect of the random factor on the 
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slope of the regression line (�3,24 = 5.595, � = 0.005), which suggests that the underlying 

power law relationship may be different for each experiment.  Here we are not exploring 

further whether this difference in slopes among lineages reflects some underlying biological 

process or, by contrast, it may result from some more trivial reasons (e.g., the fact that the 

number of reads is different for each lineage). 

For the sake of simplicity, in the following sections we will concentrate our discussion 

only on the 50 most abundant haplotypes detected in each evolutionary lineage. 

 

Dynamics of molecular evolution in the TuMV target of amiR159 HCPro: 

passages in WT plants 

Figure 2A shows the change in relative abundance for the 50 most common haplotypes that 

arose in the TuMV lineage evolved in fully susceptible WT plants (e.g., lineage L20.Col 0).  

The last passage represented, the 20
th

, corresponds to the infectivity test in which lineage 

L20.Col 0 broke the amiR159 HCPro mediated resistance of 12 4 plants for the first time.  

Several striking conclusions can be drawn from these results.  First, and most notably, no less 

than 21 potential escape alleles were present in the evolving population from the very 

beginning of the evolution experiment.  The median frequency of haplotypes carrying 

potential escape mutations across passages was 0.02%.  Indeed, the haplotype containing the 

escape mutation C11U that turned out to be the most abundant one in the population infecting 

the 12 4 plants at passage 20 (62.88%) also had the highest population frequency during most 

intermediate passages (ranging from 0.02% at passage 18 to 0.09% at passage 11; median 

0.06%) except in passages 9 and 10.  The second most abundant haplotype (17.73%) found in 

the 12 4 plants had mutation G12A; four other haplotypes had frequencies in the range 4.82% 

– 1.23%.  Interestingly, when the diversity indexes ' and π
were computed pooling data from 

consecutive passages, we found that ' was 13.3 fold larger in the comparison between 
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passages 19 and 20 (' = 0.096) than in any other of the previous 19 pairs (average ' = 

(7.215±0.162)×10
 3

; � score, � < 0.001).  Similarly, π was 25.6 fold larger (� score, � < 

0.001) in the comparison between passages 19 and 20 (π = 4.575×10
 3

) than across all the 

other pairs (average π = (3.435±0.077)×10
 4

).  These results suggest that the viral population 

composition changed substantially after the TuMV population was moved from WT to 12 4 

hosts. 

The temporal persistence of these potential escape mutations suggests that the event of 

successfully infecting 12 4 resistant plants after passage 19 was not dependent on a steady 

increase of its frequency or on the accumulation of different escape alleles until some critical 

value was reached. Rather, the TuMV genotype that finally overcame the resistance of 12 4 

plants was randomly chosen among the many coexisting ones.  This can be explained by the 

transmission bottlenecks followed by strong selection of resistance alleles in presence of the 

amiR159 HCPro.  Indeed, that breaking resistance does not depend only on the previous 

presence of escape mutation is supported by two additional sources of evidence.  First, there 

is no correlation between the frequency of the different haplotypes in the 12 4 plant (the 20
th

 

passage) and their median frequency across the different passages in WT plants (Spearman’s 

�� = −0.195, 48 df, � = 0.176).  Second, Tajima’s * statistic was significantly smaller than 

zero in every passage (supplementary Figure 1, Supplementary Material online), thus 

suggesting that the observed excess of low frequency polymorphisms can be simply explained 

by the population bottlenecks associated with each transmission event.  These results support 

the hypothesis of Lafforgue et al. (2011) that TuMV populations evolving in WT plants were 

at the mutation drift balance. 

A second observation is that 28 of the haplotypes identified in the 12 4 plant (passage 

20) did not qualify between the 50 most abundant in any of the previous passages in WT.  

Very interestingly, 25 of these haplotypes carried two mutations in the amiR159 HCPro 
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target, in comparison with all the 21 pre existing haplotypes, all of which had only a single 

nucleotide substitution, being the difference in the number of mutations per haplotype 

between both groups statistically significant (Fisher’s exact test � < 0.001).  Eighteen of these 

double mutant haplotypes contained the most abundant mutation C11U, four of them 

contained the second most abundant mutation G12A, and one contained both mutations. The 

other three double mutant haplotypes had mutations G16C/A18G, G14A/A18G, and 

C17U/A19C, respectively.  Mutation A18G was already detected in most passages in WT 

plants.  By contrast, mutation A19C was the third most common single mutation haplotype 

found in the 12 4 plant (passage 20) but it was not observed in any of the previous passages in 

WT plants.  Therefore, we can conclude that most of these double mutant haplotypes arose 

when resistance was broken and resulted from imperfect replication of pre existing single 

mutation haplotypes that were strongly selected upon inoculation in 12 4 plants.  This result is 

in good agreement with the observation by Lin et al. (2009) that additional mutations in the 

amiR target arise and facilitate escape. 

A third, very interesting observation was that the TuMV ancestral sequence was still 

found in 12 4 plants at a frequency of 0.69%, ranking the 25
th

 in this population.  The 

presence of the ancestral TuMV sequence in 12 4 plants can be explained by three non 

mutually exclusive hypotheses.  First, the ancestral TuMV genome is capable of evading 

amiR resistance only when it represents a minor fraction of the population, suggesting that the 

efficiency of the RNA silencing machinery in detecting allelic variation in the target depends 

on a threshold concentration.  Second, the escape mutants that dominate the population 

express the silencing suppressor HC Pro that interferes with the RNA silencing machinery 

and blocks its action.  The ancestral TuMV genotypes simply take advantage of this situation 

by coinfecting cells along with mutant viruses.  Third, the ancestral TuMV sequence is being 

constantly created by back mutation from the other more abundant mutant genotypes.  We 
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find this third possibility less plausible than the others.  Using a recent estimate of TuMV 

mutation rate in ��
�������� (De la Iglesia et al. 2012) of ∼6×10
−5

 per replication event and the 

fact that TuMV replication mostly proceeds via a stamping machine (Martínez et al. 2011), 

the expected population frequency of reversion mutants produced by backward mutation 

during replication of the numerically dominant resistant haplotype should be ∼0.006%, a 

value about 115 fold smaller than the observed frequency.  Therefore, we can conclude that 

the observed frequency of TuMV genomes carrying the ancestral amiR159 HCPro target 

sequence is much higher than expected by backward mutation and therefore likely to be a 

consequence of inefficient RNA silencing machinery or of complementation with escape 

mutants during cell coinfection. 

Finally, Figure 2A shows that the temporal dynamics of the 50 most abundant 

haplotypes is complex, with frequent stochastic fluctuations and haplotypes that appear, 

disappear (i.e., went beyond experimental detection limit) and, in some cases, bounce back 

later in time. 

Next, we investigated the evolution of variability at the different positions of the amiR 

target.  Figure 2B shows the evolution of diversity in each of the 21 nucleotides in the 

amiR159 HCPro target.  During the 19 passages in WT plants, all positions of the amiR159 

HCPro target showed variability.  Under the hypothesis of neutral accumulation of mutations, 

we should expect all sites to show approximately the same variability.  Furthermore, under 

the same assumption, we should expect this variability to fluctuate around a value resulting 

from a balance between mutation and the stochastic genetic drift associated with the passage 

events.  To explore whether the first expectation would hold up, we fitted the frequency data 

to an ANCOVA model in which variability at each nucleotide site was treated as a random 

variable and passage as a covariable.  This analysis detected significant differences among 

nucleotide sites (�21,357 = 38.343, � < 0.001), thus rejecting the null hypothesis of all sites 
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accumulating mutations at equal frequency.  Further, a 2 step cluster analysis found that the 

optimal number of groups into which sites could be classified was six, with site 1 being the 

least variable one (average frequency across passages 0.02%) and site 11 accumulating almost 

twice as many variants (average frequency across passages 0.05%).  The ANCOVA analysis 

also revealed that the frequency of variants per site remained constant along the experimental 

evolution process (�1,357 = 0.458, � = 0.499), which supports our second expectation.  

However, this equilibrium composition changed radically upon successful infection of the 

transgenic 12 4 plant (passage 20; Figure 2B).  In this new situation, 52.52% of the 

sequences, regardless their haplotype, had a change at position 11 of the amiR159 HCPro 

target.  This change is a synonymous replacement.  The second most variable site was 

position 12, with 22.24% of the sequences (again, regardless their haplotype) containing a 

mutation.  This mutation results in the conservative amino acid replacement V to M.  

Positions 3, 9, 16, 17, 18, and 19 had frequencies of variation around 1%.  This distribution of 

variation along the amiR159 HCPro target within a single evolutionary lineage matches the 

distribution of mutations found by Lafforgue et al. (2011) for 25 independent lineages.  In that 

case, positions 11 and 12 were overwhelmingly associated with resistance breaking and 

positions 17, 18 and 19 were also frequently associated with escapes.  Using an heterologous 

system of transgenic ��
 �������� plants expressing amiR159 P69 targeting an engineered 

TuMV genome that contained 21nucleotides from the TYMV P69 cistron, Lin et al. (2009) 

showed that positions 3, 9 and 12 were critical for resistance breaking, although other sites, 

qualified as crucial (4, 5 and 6), did not show particularly high frequencies of variants in our 

study.  By contrast, position 11 was considered as of moderate importance for resistance 

breaking (Lin et al. 2009) but turned out to be the most important one in our study.  A critical 

difference between Lin et al. (2009) study and ours is that in their case the amiR159 P69 

target sequence was neutral for the virus, whereas here the target is a coding region of TuMV 
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HC Pro cistron and, consequently, mutations in successful escape variants must result from a 

balance between avoiding recognition by amiR159 HCPro and retaining biological function.  

Indeed this neutrality effect may explain why Lin et al. (2009) observed an excess of critical 

positions at the 5’ end of the amiR159 P69.  The importance of the two central positions may 

be explained by the fact that imperfect pairing with central mismatches in sRNA target 

hybrids promotes translational repression as it excludes slicing (Brodersen et al. 2008).  This 

observation suggests the possibility that imperfect pairing between the amiR159 HCPro and 

mutated targets might lead to translational repression rather than to viral RNA cleavage.  In 

contrast to the catalytic effect of amiR mediated viral RNA cleavage, translational repression 

requires stoichiometric amounts of amiRs and therefore is not as efficient an antiviral 

mechanism that may allow for residual viral replication. 

 

Dynamics of molecular evolution in the TuMV target of amiR159 HCPro: 

passages in partially resistant 10 4 plants 

Figures 3A C show the change in frequency of the 50 most common haplotypes for each of 

three independent lineages evolved in the partially resistant 10 4 plants.  The patterns 

described in these figures are qualitatively homogeneous and similar to that previously 

discussed for lineage L20.Col 0, although the event of resistance breaking took place much 

earlier.  In all cases, haplotypes containing mutations in the amiR159 HCPro target were 

present in the populations since the very first experimental passage.  Another remarkable 

difference is that whereas in the L20.Col 0 lineage the frequency of haplotypes containing 

putative escape mutations was in the range 0.0001 – 0.001, in the three lineages evolved in 

10 4 plants this frequency fluctuated between 0.001 and 0.01, ca.10 fold higher, an 

observation that is consistent with the hypothesis that in these partially resistant plants escape 
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mutations confer a fitness advantage to the viral genotypes bearing them (Lafforgue et al. 

2011). 

In the case of lineage L1.10 4 (Figure 3A), the resistance of 12 4 plants was broken 

after only two serial passages in 10 4 plants.  The most abundant escape mutant haplotype 

contained an A19C mutation in the amiR159 HCPro target and it completely dominated the 

population infecting the 12 4 plant (99.59% frequency).  The other 17 haplotypes identified in 

the end point population (among the 50 more abundant during the evolution process) had 

frequencies that were in the range 0.01%   0.03%, including the ancestral TuMV genotype, 

which was retained at a frequency of ∼0.02%.  All but one non ancestral haplotypes present 

in this population contained the A19C mutation plus an additional one, an observation that is 

compatible with the notion that they were produced by mutation during replication of the 

numerically dominant haplotype.  The remaining haplotype carried mutation A19U and it was 

present at a frequency slightly lower than 0.02%. 

As illustrated in Figure 3B, lineage L10.10 4 was able to successfully infect 12 4 plants 

after three serial passages.  In this case, the most abundant haplotype in the successful 

population had mutation G12A (99.48%), but the population still retained 17 additional 

haplotypes at frequencies between 0.04% and 0.02%.  The ancestral TuMV genotype was also 

present in the population at a frequency of ∼0.03%.  In this case, all the low frequency 

haplotypes (aside from the ancestral one) carried two mutations in the target, with G12A 

always being present, thus suggesting that they are being generated from replication of the 

dominant haplotype. 

Lineage L11.10 4 showed a similar evolutionary pattern (Figure 3C).  In this case, it 

took four consecutive passages in partially susceptible 10 4 plants to break the resistance 

imposed by plants 12 4.  As in previous cases, a single haplotype containing a point mutation 

in the amiR159 HCPro target dominated (98.06%) the population found in the 12 4 plant.  In 
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this case the escape mutation was C11U, described in detail above.  Twenty other haplotypes 

were identified, with frequencies in the range 0.01%   0.76%, including the ancestral sensitive 

TuMV genotype (0.04% frequency).  As in the two previous lineages, all minority haplotypes 

also contained the C11U mutation plus an additional one. 

Similarly to what has been described above for the L20.Col 0 lineage, also for these 

lineages Tajima’s * was significantly negative in all cases (supplementary Figure 1, 

Supplementary Material online), thus suggesting that bottlenecks played a major role in 

configuring the genetic composition of these lineages. Putting together this observation and 

the previous one of a higher frequency of escape mutants in the partially resistant plants 

provide support to the hypothesis of Lafforgue et al. (2011) that TuMV populations evolving 

in this host were at mutation selection drift balance: mutation and selection being relevant 

within a plant (and specially after the resistance breaking event) and drift being relevant 

during the serial transmission events. 

Figures 3D F show the evolution in diversity for each of the 21 nucleotides in the amiR 

target for the three 10 4 evolved lineages.  In all cases variability per site fluctuated both 

among sites and along time, although an ANCOVA test using lineage and nucleotide site as 

random factors and time as covariate showed that variation among sites did not have a net 

significant effect.  This can be interpreted as indicating that no site is particularly variable or 

conserved, but only in the context of interaction with passage (�20,126 = 3.067, � < 0.001) and 

in the three way interaction (�40,126 = 3.414, � < 0.001), meaning that in some particular 

passages and lineages, certain sites are more polymorphic than others.  This is quite obvious 

for instance in lineage L1.10 4 (Figure 3D), where sites 11, 12 and 16 are more variable 

(∼1%) at the 2
nd

 passage than at any other whereas site 19 is the most variable in the 

population replicating in the 12 4 plant.  A similar situation can be described for passage 3 of 
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lineage L10.10 4 (Figure 3E), in which sites 3, 11, 12, 16, 17, and 19 had frequencies of 

variants in the range 0.1%   1%. 

 

Evolutionary molecular dynamics outside the amiR159HC Pro target 

The Illumina approach used in this study generates reads that are longer than the amiR159 

HCPro 21 nt target analyzed in the two previous sections.  Indeed, the analysis of the flanking 

sequences (50 nucleotides in total) may still provide useful and interesting information.  For 

example, we can hypothesize that if the amiR159 HCPro target is what drives the 

evolutionary transition from sensitivity to the resistance observed in the last passage of Figure 

2A and Figure 3A C, then variation outside the target would not be the object of selection and 

thus would simply reflect the mutation selection balance.  In the case of lineage L20.Col 0, 

the ancestral sequence was preserved along the entire evolution experiment, with its 

frequency oscillating in the narrow range 99.07% – 99.62% (median value 99.50%).  Only 

three other haplotypes remained in all the passages, with frequencies in the range 0.02% – 

0.04%.  Looking at the per site variability, all sites showed variation, but it was lower than 

0.4% for all sites and passages (median 0.02%).  A similar situation was found in the three 

lineages evolved in the partially resistant 10 4 plants.  For lineage L1.10 4 the ancestral 

TuMV haplotype had a median frequency across the three passages of 99.36%, with an 

average frequency of variants per site of ∼0.02%.  In the case of lineage L10.10 4 the median 

frequency of the ancestral haplotype was 99.38% across the four passages and the average 

frequency of variants per site in the amiR159 HCPro target was ∼0.02%.  Finally, the 

ancestral sequence also dominated all passages of lineage L11.10 4 (99.42% on median) and 

the average variation per site was equivalent to that observed in the other lineages (∼0.02%). 

Interestingly, all the haplotypes characterized outside the target contained a single 

nucleotide substitution, even those found in the population infecting the 12 4 resistant plants, 
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thus confirming our interpretation that the additional mutations found in the target were 

produced within the 12 4 plant during replication of a genome that already contained a point 

mutation that facilitated escape from the RISC machinery and providing further support for 

the strong effects of drift 

 

Patterns of nucleotide substitution 

Figure 4 shows the pattern of nucleotide substitutions estimated by maximum likelihood from 

the 50 most abundant haplotypes identified in the four evolutionary lineages.  A first 

remarkable observation from this figure is the significant heterogeneity among the 

substitution patterns estimated for each lineage (χ
2
 = 97.136, 15 df, � < 0.001).  However, 

this heterogeneity is completely driven by the peculiar pattern observed for lineage L1.10 4, 

characterized by an excess of AC/UG and GU/CA transversions and a defect of transitions.  

After removing this lineage from the analysis, no heterogeneity among the remaining three 

lineages was observed (χ
2
 = 17.225, 10 df, � = 0.070). 

Consistent with the principle that transitions are biochemically more likely than 

transversions and that they are more often silent at the codon level, the maximum likelihood 

estimates of the overall rate of transitions to transversions κ
were > 4 for lineages L20.Col 0 

(κ = 4.26), L10.10 4 (κ = 4.50) and L11.10 4 (κ = 4.42).  This excess also occurred when 

purines or pyrimidines were considered separately.  Indeed, the observed frequencies of 

transitions among purines and among pyrimidines were similar (Figure 4) and by far the most 

frequent type of mutation in these three lineages.  In sharp contrast, but consistent with the 

above mentioned excess of transversions over transitions, κ = 0.97 for lineage L1.10 4.  

Overall, we can conclude that TuMV replicase produces, on average, ∼4/5 transitions and 

∼1/5 transversions.  This result is in qualitative agreement with the mutational spectrum 
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described for another potyvirus, TEV, for which 2/3 of the observed point mutations were 

transitions and 1/3 transversions (Tromas and Elena 2010). 

Under the observed mutational spectrum, the equilibrium base composition was 

homogenous among the four lineages (χ
2
 = 0.799, 9 df, � = 1) and equal to 24.25% A, 

20.25% U, 18.75% C, and 36.75% G.  This distribution significantly deviated from the 

expectation by sheer chance (χ
2
 = 32.720, 15 df, � = 0.005) and the deviation was mainly 

driven by the 47% excess in G that compensated the defect in both pyrimidines. 

Next, we sought to evaluate the impact of nucleotide substitutions in the TuMV HC Pro 

protein amino acid sequence.  In all four lineages the number of nonsynonymous mutations 

was larger than that of synonymous mutations; the largest observed difference corresponded 

to lineage L20.Col 0 (23 nonsynonymous and 6 synonymous) and the smallest to L1.10 4 (18 

nonsynonymous and 9 synonymous), although no significant difference in the distribution of 

both types of substitutions was found among lineages (χ
2
 = 1.584, 3 df, � = 0.663).  To 

evaluate whether this pattern of synonymous and nonsynonymous changes was compatible 

with a model of neutral evolution, we estimated the difference between substitutions rates per 

nonsynonymous and synonymous sites, �! – ��.  For lineages L20.Col 0 (–0.182±0.128), 

L1.10 4 (–0.026±0.055), and L10.10 4 (–0.077±0.055) the differences between rates were 

negative but not large enough as to reject the null hypothesis of neutral evolution (in all cases 

� score, � ≥ 0.078).  In the case of lineage L11.10 4, however, the difference was positive 

(0.249±0.131) and significant (� = 0.028), although the test was not significant when the 

sequential Bonferroni correction for multiple tests of the same null hypothesis was applied.  

Therefore, we may conclude that selection at the amino acid level has played a minor role, if 

any, in shaping the observed patterns of nucleotide substitutions. 

 

Concluding remarks 
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We had previously shown that the durability of plant resistance to RNA viruses generated by 

transgenic expression of amiRs targeting viral genomes can be jeopardized by mutations in 

the viral genome (Lafforgue et al. 2011).  In this previous study, we showed the emergence of 

escape alleles containing mutations in the target that are likely to affect the binding of the 

amiR, and consequently slicing by RISC.  Now, we have characterized the molecular 

evolutionary dynamics of TuMV populations evolving either in a fully susceptible or in a 

partially resistant host.  Using Illumina ultra deep sequencing, we have reached an 

unprecedented detection limit, allowing us to detect variants in the viral populations at a 

frequency as low as 2×10
−6

.  We have shown that variation in the amiR159 HCPro target was 

generated and maintained along evolutionary time and that every nucleotide in the target 

sequence underwent mutation.  In fully susceptible plants, new variants emerged to 

frequencies below 0.001.  Some variants persisted for several passages, while others had a 

transient existence.  The escape variant that finally succeeded in infecting fully resistant 12 4 

plants was present in the evolving population from the very beginning of the evolution 

experiment.  These results are compatible with a mutation drift model (substantiated by 

significant, negative Tajima’s *).  TuMV populations evolving in partially resistant plants 

showed a qualitatively similar behavior although with a quantitatively important difference: 

the frequency of escape variants in the evolving populations was more than one order of 

magnitude higher in partially resistant than in fully susceptible plants.  These results are 

compatible with a mutation selection drift model of evolution and explain why resistance was 

broken much more easily in the former case.  In both cases, the selective fixation of variants 

was due to changes in the nucleotide sequences and not by changes in the amino acid 

composition of the HC Pro, since the rates of synonymous and nonsynonymous substitutions 

were equivalent. 
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FIG. 1.   (A) Average errors per nucleotide in the 76 nt reads, computed with base qualities.  

The average error increased greatly towards the ends of the reads (solid line).  The dashed line 

shows the average error after filtering.  Positions 37   57 within the reads correspond to the 

21 nt amiR159 HCPro target.  (B) Relationship between the number of valid reads (+) per 

sample and the number of different haplotypes (�) detected in a sample.  The solid line 

represents the fit to the power model � = 0.391+
0.567

 (+
2
 = 0.962, �1,30 = 749.420, � < 0.001).  

The dashed lines correspond to the 95% confidence interval of the model. 

 

FIG. 2.   Diversity evolution in one TuMV lineage evolved in fully susceptible ��
 �������� 

plants (WT).  (A) Evolution of frequency for the 50 more abundant haplotypes detected for 

the amiR159 HCPro target sequence along the evolution experiment.  The red line 

corresponds to the ancestral TuMV haplotype.  At passage 20 we show the haplotypic 

composition found after resistance breaking in the 12 4 plants (shadow in light green): the 

numerically dominant haplotypes carry mutations in the target.  However, the ancestral 

TuMV haplotype was still present at a detectable frequency in the population.  (B) Observed 

diversity per each of the 21 nt in the amiR159 HCPro target along the 20 serial passages.  In 

both panels, abscises axes are in decimal log scale. 

 

FIG. 3.   Diversity evolution in three TuMV lineages evolved in partially resistant ��
�������� 

10 4 plants.  (A) – (C) Evolution of frequency for up to the 50 more abundant haplotypes 

detected for the amiR target sequence along the evolution experiments.  At the final positive 

pathogenicity test passages (3, 4 and 5, respectively), we show the haplotypic composition 

(shadow in light green).  (D) – (F) Observed diversity per each of the 21 nt in the amiR target 

at each passage.  Panels A and D corresponds to lineage L1.10 4, panels B and E to lineage 

L10.10 4, and panels C and F to lineage L11.10 4.  Diversity at the last indicated passage 
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corresponds to that observed in the population that broke the 12 4 resistance (shadow in light 

green).  Abscises axes are in decimal log scale. 

 

FIG. 4.   Observed rates for the different types of nucleotide substitutions.  Each column 

groups mutations rendering complementary pairs and, thus, can occur during the synthesis of 

TuMV genomic or antigenomic strains.  Each lineage is represented by a different color, as 

indicated in the legend.  For any given lineage, rates have been made relative so they add up 

to one. 
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