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Abstract

We describe the topology of any cosmic space and any ℵ0-space in terms of special bases defined
by partially ordered sets. Using this description we show that a Baire cosmic group is metrizable.
Next, we study those locally convex spaces (lcs) E which under the weak topology σ(E,E′) are
ℵ0-spaces. For a metrizable and complete lcs E not containing (an isomorphic copy of) `1 and
satisfying the Heinrich density condition we prove that (E, σ(E,E′)) is an ℵ0-space if and only if
the strong dual of E is separable. In particular, if a Banach space E does not contain `1, then
(E, σ(E,E′)) is an ℵ0-space if and only if E′ is separable. The last part of the paper studies
the question: Which spaces (E, σ(E,E′)) are ℵ0-spaces? We extend, among the others, Michael’s
results by showing: If E is a metrizable lcs or a (DF )-space whose strong dual E′ is separable,
then (E, σ(E,E′)) is an ℵ0-space. Supplementing an old result of Corson we show that, for a
Čech-complete Lindelöf space X the following are equivalent: (a) X is Polish, (b) Cc(X) is cosmic
in the weak topology, (c) the weak∗-dual of Cc(X) is an ℵ0-space.
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1. Introduction

The class of ℵ0-spaces in sense of Michael [30] is the most immediate extension of the class of
separable metrizable spaces.

Definition 1.1. (see [30]) A topological space X is called
(i) cosmic, if X is a regular space with a countable network (a family N of subsets of X is called

a network in X if, whenever x ∈ U with U open in X, then x ∈ N ⊂ U for some N ∈ N );
(ii) an ℵ0-space, if X is a regular space with a countable k-network (a family N of subsets of X is

called a k-network in X if, whenever K ⊂ U with K compact and U open in X, then K ⊂
⋃
F ⊂ U

for some finite family F ⊂ N ).
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Note that the both of these classes of topological spaces are closed under taking subspaces,
countable Tychonoff products, countable direct sums, etc. [30] (see also [2]). The concept of
network is one of a well recognized good tool, coming from the pure set-topology, which turned out
to be of great importance to study successfully renorming theory in Banach spaces, we refer the
reader to the recent survey of Cascales and Orihuela [12].

Michael [30] characterized cosmic and ℵ0-spaces: A regular space is a cosmic (resp. ℵ0−) space
if and only if X is a continuous (resp. continuous compact-covering) image of a separable metric
space. Consequently, every cosmic space (hence ℵ0-space as well) is Lindelöf. Another characteri-
zation of ℵ0-spaces is given by Guthrie in [24]. It is known [33] that an ℵ0-space (even an ℵ-space)
which is either first countable or locally compact is metrizable. For further properties of ℵ0-spaces
we refer to papers [19, 22, 31]. Although Michael’s (above) result provides a nice characterization of
cosmic and ℵ0-spaces, it seems that there does not exist an appropriate description of the topology
of cosmic and ℵ0-spaces. For example, each countable regular space X is cosmic as a continuous
image of the discrete underlying countable space X. However, this does not describe the topology
of X.

In the first part of the paper we describe the topology of cosmic and ℵ0-spaces in terms of
special bases defined by partially ordered sets (Theorem 2.2). The second part of the paper deals
with ℵ0-spaces in the class of locally convex spaces (lcs) E. We examine the following two natural
problems being well motivated both from topology and functional analysis.

Problem 1.2. Characterize those lcs E which are weakly ℵ0-spaces, i.e. E with the weak topology
σ(E,E′) is an ℵ0-space.

Problem 1.3. Describe possible large class of lcs which are weakly or weakly∗ ℵ0-spaces, i.e. the
topological dual E′ of E with the weak∗ topology σ(E′, E) is an ℵ0-space.

Michael [30, §7] proved the following two facts for a Banach space E: (i) If E is separable, the
normed dual E′ is a weakly∗ ℵ0-space. (ii) If E′ is also separable, E is a weakly ℵ0-space. Problems
1.2 and 1.3 have been also studied for Banach spaces and for E being a separable metrizable lcs
with E′ endowed with the compact-open topology in [3, Sections 11 and 12].

If E is a Banach space with separable normed dual E′, then, by [14, Theorem (1)-(4), p.215],
the space E does not contain (an isomorphic copy of) `1, but E is a weakly ℵ0-space. Let now
(E, ξ) be a separable Banach space with the Schur property (i.e., every weakly null-sequence in E
converges in the original topology ξ), for example `1. Then the Eberlein-Šmulian theorem implies
that σ(E,E′) and ξ have the same compact sets. So, (E, σ(E,E′)) is an ℵ0-space trivially because
E is an ℵ0-space. Hence each of the following two conditions guarantees that a separable Banach
space E is a weakly ℵ0-space: (1) the normed dual E′ is separable, and (2) E has the Schur
property. Note that the space E := `1 × `2 is a weakly ℵ0-space, but E does not have the Schur
property and its normed dual is nonseparable.

For a lcs E by the strong dual of E we mean the dual E′ endowed with the strong topology
β(E′, E). By a Fréchet lcs space we mean a metrizable and complete lcs. Having in mind Problem
1.2 first we prove the following general fact for any lcs which is a weakly ℵ0-space.

Proposition 1.4. Let E be a lcs which is a weakly ℵ0-space. Then the strong dual E′ of E is
trans-separable if and only if every bounded set in E is Fréchet-Urysohn in the weak topology of E.

Next, we extend some recent results of Barroso, Kalenda and Lin [4], which with Proposition
1.4 provide the following

Theorem 1.5. Let E be a Fréchet lcs and E′ be its strong dual. Then
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(i) If E′ is separable, then E is a weakly ℵ0-space.

(ii) If E is a weakly ℵ0-space not containing `1, then E′ is trans-separable.

It is natural to ask whether the trans-separability in Theorem 1.5(ii) can be strengthened to
separability. Since for metrizable spaces trans-separability and separability coincide, the space
whose strong dual has bounded sets metrizable is of interest. It is known that the class of Fréchet
lcs E for which the strong dual E′ has bounded sets metrizable coincides with the class of Fréchet
lcs which satisfy the density condition of Heinrich; it contains every Fréchet-Montel lcs and every
quasinormable Fréchet lcs (in sense of Grothendieck). The latter class of lcs contains the most
usual function spaces, all Banach spaces, as well as every (FS)-space. These spaces were studied
in [6], [7]. We prove the following

Theorem 1.6. Let E be a Fréchet lcs satisfying the Heinrich density condition and not containing
`1. Then E is a weakly ℵ0-space if and only if the strong dual of E is separable.

Consequently, for a Banach space E not containing `1 the normed dual E′ is separable if and
only if E is a weakly ℵ0-space (noticed also in [3, Theorem 12.3]). The James tree space JT (see
[14]) is a separable Banach space having a nonseparable normed dual and containing no isomorphic
copy of `1. So JT is not a weakly ℵ0-space (also mentioned in [3, §12]).

Applying recent results of Cascales, Orihuela and Tkachuk [10], we extend Michael’s results [30,
§7] by showing, among the others, that if E is a metrizable lcs or a (DF )-space whose strong dual
E′ is separable, then (E, σ(E,E′)) is an ℵ0-space (Theorem 4.5).

By Cc(X) and Cp(X) we denote the space C(X) of all real-valued continuous functions on a
completely regular Hausdorff space X endowed with the compact-open topology and the pointwise
topology, respectively. Corson proved [30, Proposition 10.8] that for an uncountable compact
metrizable space X, the Banach space Cc(X) (clearly the normed dual is not separable) is not a
weakly ℵ0-space. Nevertheless, we show that for a Čech-complete Lindelöf space X the following
are equivalent (Proposition 4.7): (a) X is Polish, (b) Cc(X) is cosmic in the weak topology, (c) the
weak∗-dual of Cc(X) is an ℵ0-space. As an application we prove that if there exists a continuous
linear surjection from Cc(X) onto Cp(Y ), every closed first countable subspace Z of Y is Polish
provided X is Polish (Corollary 4.8); this extends a Pelant’s result [2, Theorem 3.27].

2. Description of the topology of cosmic and ℵ0-spaces

Let Ω be a set and I a partially ordered set with an order ≤. We say that a family {Ai}i∈I
of subsets of Ω is I-decreasing (respectively, I-increasing) if Aj ⊂ Ai (respectively, Ai ⊂ Aj) for
every i ≤ j in I. One of the most important example of partially ordered sets is the product NN

endowed with the natural partial order, i.e., α ≤ β if αi ≤ βi for all i ∈ N, where α = (αi)i∈N and
β = (βi)i∈N. For every α = (αi)i∈N ∈ NN and each k ∈ N, set

Ik(α) :=
{
β ∈ NN : βi = αi for i = 1, . . . , k

}
.

The following concept is used in our description.

Definition 2.1. A topological space (X, τ) has a small base if there exists an M-decreasing base
U = {Uα : α ∈M} of τ for some M ⊆ NN.
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If a topological space X has a small base U = {Uα : α ∈ M} in X, we define the countable
family DU of subsets of X by

DU := {Dk(α) : α ∈M, k ∈ N}, where Dk(α) =
⋂

β∈Ik(α)∩M

Uβ,

and say that U satisfies the condition (D) if Uα =
⋃
k∈NDk(α) for every α ∈M. A similar condition

naturally appears and is essentially used in [21].
Next theorem describes the topology of cosmic and ℵ0-spaces.

Theorem 2.2. Let (X, τ) be a topological space. Then:

(i) X has a countable network (and is cosmic) if and only if X has a small base U = {Uα : α ∈M}
satisfying the condition (D) (and is regular). In that case the family DU is a countable network
in X.

(ii) X has a countable k-network (and is an ℵ0-space) if and only if X has a small base U =
{Uα : α ∈M} satisfying the condition (D) such that the family DU is a countable k-network
in X (and is regular).

In both cases we can find a small base U such that Uα 6= Uβ for α 6= β and U = τ , what means
that for every W ∈ τ there exists α ∈M such that W = Uα.

Proof. (i) Assume that X is cosmic with a countable network D = {Di : i ∈ N}. Let f : τ → NN

be the map defined by f(W ) = (an)n, where an = 1 if Dn ⊆ W , and an = 2 if Dn * W , for each
W ∈ τ . Let M := {f(W ) : W ∈ τ} and for each α = (an)n ∈M let

Uα :=
⋃
{Dn : n ∈ N, an = 1} .

Note that W = Uf(W ) for each W ∈ τ because D is a network. Now it is clear that the family
U := {Uα : α ∈M} is a small base, Uα 6= Uβ for α 6= β and U = τ .

Let α = (an) ∈M and k ∈ N. If β ∈ Ik(α) ∩M, then from the formula⋃
{Dn : n ∈ N, n 6 k, an = 1} ⊂ Uβ

it follows that⋃
{Dn : n ∈ N, n 6 k, an = 1} ⊂

⋂
{Uβ : β ∈ Ik(α) ∩M} = Dk(α) ⊂ Uα.

On the other hand, from

Uα =
⋃
k

[⋃
{Dn : n ∈ N, n 6 k, an = 1}

]
⊂
⋃
k

Dk(α) ⊂ Uα

we deduce the equality Uα =
⋃
kDk(α). It proves that U verifies the condition (D). Conversely,

if X has a small base satisfying the condition (D) it is clear that the family DU is a countable
network of X.

(ii) Assume that X is an ℵ0-space with a countable k-network D = {Di : i ∈ N}, and let
U := {Uα : α ∈M} be the small base constructed as in (i) satisfying the condition (D). We show
that the countable family DU is also a k-network in X.
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Fix Uα ∈ U and a compact subset K, with K ⊂ Uα. As D is a countable k-network, there exists
a finite increasing set {ni : 1 6 i 6 h} such that

K ⊂
⋃
{Dni : 1 6 i 6 h} ⊂ Uα.

If β ∈ Inh
(α) ∩M, then

K ⊂
⋃
{Dni : 1 6 i 6 h} ⊂ Uβ,

and therefore
K ⊂

⋂
{Uβ : β ∈ Inh

(α) ∩M} = Dnh
(α) ⊂ Uα.

Hence the family DU is a countable k-network of X. The converse assertion is trivial.

We were kindly informed by Prof. Tkachenko that the following Corollary 2.3 has been also
proved in [38, Corollary 3.23].

Corollary 2.3. Let G be a Baire topological group. Then G is cosmic if and only if G is metrizable
and separable.

Proof. It is enough to show that, if G is a Baire and cosmic, then G is metrizable. We prove
that G has a countable base of neighborhoods at the unit e. By Theorem 2.2 there exists a
small base U = {Uα : α ∈ M} satisfying the condition (D). We show that the countable family

{Dk(α) ·Dk(α)
−1

: α ∈M, k ∈ N} contains a base of neighborhoods at e in G. Let W be an open
neighborhood of e. Choose V , a symmetric open neighborhood of e such that V · V ⊂ V · V ⊂W .
There exists α ∈ M with V = Uα =

⋃
kDk(α). Since Uα is open in G, there exists k ∈ N such

that Uα ∩ Dk(α) has a non-empty interior in Uα, so also in G. Therefore Dk(α) · Dk(α)
−1

is a
neighborhood of e, contained in W .

The cofinality of a partially ordered set P we denote by cf(P ). The cofinality of NN is denoted
by d. It is well known that ℵ1 ≤ d ≤ c and that the hypothesis d < c is consistent with ZFC.

Example 2.4. There is a subset P of NN such that cf(P ) = c.

Proof. Let G = (Z, τb) be the group of integers Z endowed with the Bohr topology τb. It is well-
known that χ(G) = c. Since G is countable it is a cosmic space. Now Theorem 2.2(i) implies that
G has a small base U = {Uα : α ∈M} with Uα 6= Uβ for α 6= β and U = τb. Set P := {α ∈M : 0 ∈
Uα}. Then P is a base at 0. Hence c = χ(G) ≤ cf(P ) ≤ |P | ≤ c. Thus cf(P ) = c.

Note that the condition (D) is essential in Theorem 2.2, since there is a compact noncosmic
abelian group (H, τ) with a small base U satisfying U = τ , see Example 2.6. First we prove the
following useful

Proposition 2.5. If a regular topological space (X, τ) has a dense subset A with a small base
U = {Uα : α ∈ M} such that Uα 6= Uβ for α 6= β and U = τ |A, then X also has a small base V
such that V = τ .

Proof. Since A is dense, the assumption on U implies that, for every V ∈ τ there exists a unique
α ∈M such that Uα = V ∩A. Set Vα := V . Then the family {Vα : α ∈M} is as required.

Example 2.6. There is a compact abelian group with a small base which is not a cosmic space.

Proof. Let H = bZ be the Bohr compactification of Z with discrete topology. SoH is the completion
of the group G defined in Example 2.4. Now the proof of Example 2.4 and Proposition 2.5 imply
that H has a small base. Since H is not metrizable, it is not cosmic by Corollary 2.3.
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It is well known that any Baire lcs is barrelled. Next example shows that Corollary 2.3 cannot be
extended to barrelled ℵ0-spaces. Recall that E is Fréchet-Montel if E is a metrizable and complete
lcs whose every closed bounded set is compact; we refer to [34, 8.5.8, p.283] for concrete examples.

Example 2.7. The strong dual E′ of an infinite-dimensional Fréchet-Montel space E is a barrelled
nonmetrizable lcs which is an ℵ0-space.

Proof. Let (Un)n be a decreasing basis of neighbourhoods of zero in E; set Kn := U◦n for each n ∈ N.
Being a Fréchet-Montel space, E is separable and every null-sequence in σ(E′, E) is a null-sequence
in β(E′, E) by [25, 11.6.2]. So (E′, σ(E′, E)) is submetrizable and every σ(E′, E)-compact set is
β(E′, E)-compact and metrizable. Hence each Kn is β(E′, E)-compact and metrizable, so E′ is an
ℵ0-space (as every β(E′, E)-compact set is contained in some Kn and we apply [30, Proposition
7.7]). The strong dual E′ is barrelled by [25, 11.5.4]. Also E′ is nonmetrizable since, otherwise,
E has a fundamental sequence of bounded sets. So E is normable [25, 12.4.4] and hence finite-
dimensional, a contradiction.

3. Weakly ℵ0-spaces not containing a copy of `1

Recall that a topological space X has the property (α4) if for any {xm,n : (m,n) ∈ N×N} ⊂ X
with limn xm,n = x ∈ X, m ∈ N, there exists a sequence (mk)k of distinct natural numbers and a
sequence (nk)k of natural numbers such that limk xmk,nk

= x.
Recall also that a topological space X is strongly Fréchet-Urysohn if for every x ∈ X and for

each decreasing family (An) of X with x ∈
⋂
nAn, there are xn ∈ An (n ∈ N) with limn xn = x

(see [13]). A topological group G is Fréchet-Urysohn if and only if it is strongly Fréchet-Urysohn
(see [1] or [13]).

Recall that a uniform space (X,N ) is trans-separable (see [26] or [34]), if for every entourage
N in N there exists a countable subset Q of X such that X =

⋃
x∈Q UN (x), where UN (x) :=

{y ∈ X : (x, y) ∈ N}. Every metrizable trans-separable uniform space is separable. A lcs E is
trans-separable if and only if for each neighbourhood of zero U in E there exists a countable subset
N of E with E = N + U . Note that a lcs E does not contain `1 provided the strong dual E′ is
trans-separable. In order to prove Theorem 1.5 we recall the following result from [16] (see also
[26, Corollary 6.8]).

Lemma 3.1 ([16]). The strong dual of a lcs E is trans-separable if and only if every bounded set
in E is metrizable in the weak topology σ(E,E′) of E.

We need the following lemma; its proof uses some technics from [13, Lemma 1.3].

Lemma 3.2. Let E be a topological vector space (resp. topological group) such that every bounded
(resp. precompact) set is Fréchet-Urysohn. Then, every bounded (resp. precompact) set has the
property (α4) and therefore it is strongly Fréchet-Urysohn.

Proof. For the case when E is a topological group, we assume that E is not discrete; otherwise,
the conclusion holds trivially. By 0 we will denote the neutral element of E.

Let B be a bounded (resp. precompact) subset and suppose that xm,n ∈ B, for each (m,n) ∈
N×N, and that limn xm,n = x ∈ B for every m ∈ N. Then B′ = B−x contains each zm,n := xm,n−x
and limn zm,n = 0 ∈ B′ for every m ∈ N. To prove that B has the property (α4) it is enough to
find sequences (pk)k and (nk)k in N, with pk < pk+1 for each k ∈ N, such that limk zpk,nk

= 0. The
proof is obvious if the set {m ∈ N : zm,n = 0 for some n ∈ N} is infinite. Therefore we assume that
zm,n 6= 0 for each (m,n) ∈ N× N.
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Choose any sequence (vm)m ⊂ B′\{0} with limm vm = 0. Define

ym,n :=

{
vm, if zm,n+m = vm

zm,n+m − vm, if zm,n+m 6= vm
(m,n ∈ N) .

Clearly, 0 6= ym,n ∈ B′ −B′ for all n,m ∈ N. It follows from limm vm = 0 and limm limn(zm,n+m −
vm) = 0 that 0 belongs to the closure of the bounded (resp. precompact) set {ym,n : (m,n) ∈ N×N}
(note that B′ −B′ is bounded (resp. precompact)). Therefore there exist two sequences (pk)k and
(sk)k such that limk ypk,sk = 0.

Since vm → 0 if m→∞, we have to show that the sequence (pk)k is unbounded. Suppose for a
contradiction that (pk)k is bounded. We may suppose (taking a subsequence if it was necessary) that
pk = p for every k ∈ N. If the sequence (sk)k is unbounded we may assume (taking a subsequence
if it was necessary) that sk < sk+1 for each k ∈ N. Since vp = zp,sk+p or vp = zp,sk+p − yp,sk , from
the facts limk yp,sk = limk ypk,sk = 0 and limk zp,sk+p = 0 we deduce that vp = 0, a contradiction.

If the sequence (sk)k is bounded we may suppose (taking a subsequence if it was necessary) that
sk = s for each k ∈ N. Then yp,s = limk ypk,sk = 0, that contradicts the choice of yp,s. So (pk)k is
unbounded. Thus B has the property (α4).

The set B is strongly Fréchet-Urysohn by [13, Proposition 1.4].

We are ready for the proof of Proposition 1.4.

Proof of Proposition 1.4. If E′ is trans-separable, then every bounded set in E is metrizable in
σ(E,E′) by Lemma 3.1. Conversely, if every bounded set in E is Fréchet-Urysohn in σ(E,E′), we
apply Lemma 3.2 to see that every bounded set B in E is strongly Fréchet-Urysohn in σ(E,E′). As
a subspace of the ℵ0-space (E, σ(E,E′)), the set B is also an ℵ0-space. By [31, Theorem 9.11], B is
second countable, hence metrizable. Finally, again Lemma 3.1 applies to get the trans-separability
of E′.

A lcs E will be said to have the Rosenthal property if every bounded sequence in E either (R1)
has a subsequence which is Cauchy in the weak topology σ(E,E′), or (R2) has a subsequence
which is equivalent to the unit vector basis of `1. Recently, Ruess [36, Proposition 3.3] proved the
following

Proposition 3.3 ([36]). Every sequentially complete lcs E whose every bounded set is metrizable
has the Rosenthal property.

Note that there is a quite large class of spaces E satisfying the assumptions quoted by Ruess:
The strong dual of any metrizable lcs with the Heinrich density condition is an example of a space
E of this type (see [6, Theorem 2]). In particular all quasinormable metrizable lcs satisfy the
Heinrich density condition (see [6] for more details about this class).

A family {Aα : α ∈ NN} of subsets of a set E covering E is called a resolution if Aα ⊂ Aβ
whenever α ≤ β. Following Cascales and Orihuela [9], a lcs E is said to be in class G if E′ admits a
σ(E′, E)-resolution {Aα : α ∈ N} (called a G-representation for E) such that every sequence in any
Aα is equicontinuous, see [26] for several results about this class. The class G contains “almost all”
important lcs (including (LM)-spaces (hence metrizable lcs), (DF )-spaces, etc.), and it is stable
under taking subspaces, Hausdorff quotients, countable direct sums and products.

A family U = {Uα : α ∈ NN} of neighborhoods of zero in E is called a G-base if U is an NN-
decreasing base of neighborhoods of zero [9, 26]. Topological groups with a G-base were considered
in [20]. A lcs E is quasibarrelled (barrelled) if every β(E′, E)-bounded (σ(E′, E)-bounded) set in
E′ is equicontinuous [34]. Metrizable lcs are quasibarrelled. By [11], a quasibarrelled lcs E has a
G-base if and only if E is in class G.
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Recall that a lcs E is called a (DF )-space if E has a fundamental sequence of bounded absolutely
convex sets and E is ℵ0-quasibarrelled (see [34, 8.3]). Every normed space is a (DF )-space. The
strong dual of a metrizable lcs is a complete (DF )-space [34, 8.3.9] and the strong dual of a (DF )-
space is a metrizable and complete lcs [34, 8.3.7].

The following lemmas extend [27, Theorem 2.4] and [4, Lemma 3.6, Proposition 4.4], although
the main ideas for the proofs are similar.

Lemma 3.4. Let E be a lcs in class G having the Rosenthal property (R1). Then every bounded,
separable set of E is Fréchet-Urysohn in the weak topology.

Proof. Let B ⊂ E be a bounded, separable set having the Rosenthal property (R1). Since the
linear span of B is separable, and every linear subspace of E is in class G, we can assume that E
is separable. So, there exists a resolution

{
Vα : α ∈ NN} of (E′, σ (E′, E)) consisting of relatively

countably σ (E′, E)-compact sets. Since E is separable, E′ admits a coarser metrizable locally
convex topology. Then Šmulyan’s theorem [18, 3.2 Theorem] guarantees that every Vα is relatively

σ (E′, E)-compact. Hence, {V σ(E′,E)
α : α ∈ NN} is a σ (E′, E)-compact resolution of (E′, σ (E′, E)).

By Talagrand’s theorem (see [9, Theorem 15]) the space (E′, σ (E′, E)) is analytic. Thus, there
exists a continuous surjection G : NN → (E′, σ (E′, E)) .

Now, similarly as in the proof of [4, Lemma 3.6], define the map H : E → RNN
by the formula

H(x)(α) = G(α)(x), where x ∈ E, α ∈ NN. We can easily verify that H is a linear homeomorphism
of (E, σ (E,E′)) onto H(E) and elements of H(E) are continuous functions defined on NN. As
every sequence of B has a σ (E,E′)-Cauchy subsequence, each sequence of H(B) has a Cauchy

subsequence in the topology induced from RNN
. Hence, by [27, Corollary 2.2], the closure of H(B)

is Fréchet-Urysohn. Thus, B is Fréchet-Urysohn in the weak topology.

Lemma 3.5. Let E be a quasibarrelled lcs in class G. Then the following assertions are equivalent.
(i) Any bounded subset of E is Fréchet-Urysohn in the weak topology.
(ii) Any bounded sequence in E has a weakly Cauchy subsequence.

Proof. (i) ⇒ (ii): See the proof of [4, Proposition 4.4, i)⇒ii)].
(ii) ⇒ (i): Let B be a bounded set of E. By [26, Theorem 4.8] the space (E, σ(E,E′)) has

countable tightness. Hence for any x ∈ Bσ(E,E′)
we can select a countable subset C ⊂ B such that

x ∈ Cσ(E,E
′)
. Now Lemma 3.4 applies.

The following corollary provides a nonmetrizable counterpart of [4, Proposition 4.4].

Corollary 3.6. Let E be the strong dual of a metrizable lcs F with the Heinrich density condition.
Then the following assertions are equivalent:

(i) Every bounded set is Fréchet-Urysohn in the topology σ(E,E′).

(ii) Every bounded sequence in E contains a weakly Cauchy subsequence.

(iii) E does not contain `1.

Proof. By assumptions on F , every bounded set in E is metrizable and E is barrelled, see [6, § 1
and Theorem 2]. Further, E is a complete (DF )-space, so it belongs also to class G, see [26, 11.1]
. Apply Lemma 3.5 and Proposition 3.3.

Proof of Theorem 1.5. (i) follows from Theorem 4.5(ii) below.
(ii) Assume E does not contain `1 and E is a weakly ℵ0-space. Since E is metrizable, it is

quasibarrelled and has trivially a G-base; so E is in class G. Proposition 3.3 implies that E has
the Rosenthal property (R1). So every bounded set in E is Fréchet-Urysohn in σ(E,E′) by Lemma
3.5. Finally Proposition 1.4 yields that E′ is trans-separable.
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Remark 3.7. The same conclusion as in Theorem 1.5 holds for E being the strong dual of a
metrizable lcs with the Heinrich density condition. Indeed, Corollary 3.6 enables to apply the same
argument as above.

4. Weakly and weakly∗ cosmic and ℵ0-spaces

Let P := NN. Following [10] we say that a topological space X is (strongly) P-directed (in
[39] called (strongly) dominated by irrationals) if X has a compact resolution covering X (and
swallowing compact sets of X), i.e., there exists a P-increasing compact cover {Kα : α ∈ P} of X
(and every compact set is contained in some Kα).

Let K(P) be the family of all compact subsets of P. A space X is said to be (strongly) P-
dominated if there exists a family F := {FK : K ∈ K(P)} of compact sets covering X such that
FK ⊂ FL if K ⊂ L (and every compact set M in X is contained in some FK), where K,L ∈ K(P).
If the same holds when P is replaced by a Polish space, or a second countable space, we say that
X is (strongly) dominated by a Polish space, or a second countable space.

Note the following easy fact; its proof is the same as for [10, Proposition 2.2].

Lemma 4.1. The following conditions are equivalent for a topological space X: (i) X has a compact
resolution swallowing compact sets; (ii) X is strongly P-dominated; (iii) X is strongly dominated
by a Polish space.

Second part of Theorem 4.2 follows from the first one and Lemma 4.1. Recall that a topological
space X is submetrizable if it admits a weaker metric topology.

Theorem 4.2. ([10, Theorem 3.6]) A submetrizable space X is an ℵ0-space if and only if X is
strongly dominated by a second countable space. Consequently, X is an ℵ0-space if X has a compact
resolution swallowing compact sets.

The submetrizabilty of X cannot be removed. Indeed, consider the locally compact space
X = [0, ω1). Under the assumption ω1 = b, the space X has a compact resolution swallowing
compact sets (see [17]). Every compact set in X, being countable, is metrizable. As X is not
separable, it is not an ℵ0-space.

Note that each Polish space has a compact resolution swallowing compact sets (see [8]). Analo-
gously, every metrizable topological vector space E has a bounded resolution swallowing bounded
sets. Indeed, if (Un)n is a decreasing base of neighborhoods of zero in E, then the family {Bα : α ∈
P}, where Bα :=

⋂
k αkUk for α = (αk) ∈ P, is as required.

Part (ii) of the next proposition is a substantial extension of Michael’s [30, Corollary 7.10].

Proposition 4.3. (i) Let E be a separable lcs in class G. Then E is a weakly ℵ0-space if and only
if (E, σ(E,E′)) is strongly dominated by a second countable space.

(ii) A (barrelled) lcs E in class G is separable if and only (E′, σ(E′, E)) is cosmic (an ℵ0-space).

Proof. (i): If E is a separable lcs in class G, then its weak∗-dual is separable [9, Theorem 14], so
(E, σ(E,E′)) is submetrizable. Now we apply Theorem 4.2.

(ii): Let {Aα : α ∈ P} be a G-representation for E. By definition each set Aα is σ(E′, E)-
relatively countably compact. Assume that E is separable. Then, the space E′σ := (E′, σ(E′, E))
admits a weaker metrizable topology. Therefore each set Aα is σ(E′, E)-relatively compact. Now [9,
Theorem 15] implies that E′σ is analytic, i.e. a continuous image of P, so E′σ is cosmic. Conversely,
if E′σ is cosmic, (E, σ(E,E′)) is cosmic (see Theorem 4.5 (i)), so E is separable.

Now assume that E is barrelled and separable in class G. By the remark before Lemma 3.4, E
admits a G-base {Uα : α ∈ P}. For α ∈ P, let U◦α := {f ∈ E′ : |f(x)| 6 1, x ∈ Uα} be the polar of
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Uα. Then the family F := {U◦α : α ∈ P} is a compact resolution in E′σ. If K is a compact subset
in E′σ, then K is equicontinuous by [37, IV.5.2], so K ⊂ U◦α for some α ∈ P. Hence F is a compact
resolution in E′σ swallowing compact sets of E′σ. Now Theorem 4.2 applies.

Question 4.4. Does there exist a quasibarrelled separable lcs E in class G whose weak∗-dual is not
an ℵ0-space?

Recall also that E is a (strict) (LF )-space if E is the (strict) inductive limit of an increasing
sequence (En)n of Fréchet spaces. We refer to [5] for concrete classes of (reflexive, strict, regular,
etc) (LF )-spaces which applies to Theorem 4.5 below.

Theorem 4.5. Let E be a lcs. Then the following statements hold.

(i) (E, σ(E,E′)) is cosmic if and only if (E′, σ(E′, E)) is cosmic.

(ii) If E is metrizable such that the strong dual (E′, β(E′, E)) of E is separable, then E is a weakly
ℵ0-space.

(iii) If E is separable and metrizable, then (E′, σ(E′, E)) is a cosmic space. If additionally E is
barrelled, then (E′, σ(E′, E)) is an ℵ0-space.

(iv) If E is a (DF )-space whose strong dual is separable, then E is a weakly ℵ0-space.

(v) If E is a separable (LF )-space, then (E′, σ(E′, E)) is an ℵ0-space. Moreover, if E is reflexive,
the same holds for (E, σ(E,E′)).

(vi) If E is a strict (LF )-space such that the strong dual of E is separable, then E is a weakly
ℵ0-space.

Proof. (i) follows from (E, σ(E,E′)) ⊂ Cp(E′, σ(E′, E)), (E′, σ(E′, E)) ⊂ Cp(E, σ(E,E′)), and [30,
Proposition 10.5].

(ii): Let E be a metrizable lcs such that the strong dual space E′β := (E′, β(E′, E)) of E is
separable. Then E′β is a complete (DF )-space by [34, 8.3.9]. As E′β is separable, it is quasibarrelled,
hence barrelled by [34, 8.3.13, 8.3.44].

Let (Un)n be a decreasing base of absolutely convex neighborhoods of zero in E. For each
α = (αk)k∈N ∈ P, set Uα :=

⋂
k αkUk. Then the family {Uα : α ∈ P} is a bounded resolution

swallowing bounded sets in E. Therefore the polars U◦α of the sets Uα form a G-base in E′β. We
apply Proposition 4.3(ii) to conclude that the space (E′′, σ(E′′, E′)) is an ℵ0-space. Finally, E is a
weakly ℵ0-space.

(iii) follows from Proposition 4.3(ii).
(iv): Let E be a (DF )-space. Then E′β is a metrizable and complete lcs by [34, 8.3.7]. Hence,

E′β is barrelled [34, 8.3.13, 8.3.44] and trivially has a G-base. Again Proposition 4.3(ii) applies to
deduce that (E′′, σ(E′′, E′)) is an ℵ0-space. Thus E is a weakly ℵ0-space.

(v): Let E be the inductive limit of a sequence (En) of Fréchet spaces. We claim that E has a
G-base. Indeed, if (Ukn)n is a decreasing basis of neighborhoods of zero in Ek for each k ∈ N, then
the sets of the form Uα :=

⋃
k∈N

(
U1
α1

+ U2
α2

+ · · ·+ Ukαk

)
, where α = (αi)i∈N ∈ P, form a base of

neighbourhoods of zero in E. Finally, as E is also barrelled [37, II.7], the space E′ is a weakly∗

ℵ0-space by Proposition 4.3(ii).
Now assume that E is reflexive. Then (E, σ(E,E′)) is locally complete [25, 11.2.4] and every

bounded set in E is relatively σ(E,E′)-compact [37, IV.5 Corollary 2]. Since every (LF )-space is a
quasi-(LB)-space in sense of Valdivia (see [26, 3.3 Example 1]), we apply Valdivia’s [26, Theorem
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3.5] to derive that Eσ := (E, σ(E,E′)) has a compact resolution swallowing compact sets. So Eσ
is separable in class G. Now Proposition 4.3(i) applies.

(vi): Let E be the strict inductive limit of a sequence (En) of Fréchet spaces and the strong
dual E′β of E be separable. For each n ∈ N, the strong dual (E′n)β of En is a (DF )-space. Since
E is the strict inductive limit, the space E′β is linearly homeomorphic with the projective limit of
the sequence ((E′n)β)n of complete (DF )-spaces, see [23]. Moreover, as E′β can be continuously
mapped onto each (E′n)β,each (DF )-space (E′n)β is separable. Then any En is a weakly ℵ0-space
by the case (ii). By Michael’s theorem [30], for each n ∈ N there exists a metrizable and separable
space Xn and a continuous compact covering map from Xn onto En(σn) := (En, σ(En, E

′
n)). Since

σ(En, E
′
n) = σ(E,E′)|En, and every compact set in (E, σ(E,E′)) is contained in some En (note that

the inductive limit is strict), the composition of the induced maps
⊕

nXn →
⊕

nEn(σn)→
⋃
nEn,

where the latest space is endowed with the topology σ(E,E′), is a continuous compact covering
map. This proves that E is a weakly ℵ0-space.

It is well known that, if Ω ⊂ Rn is an open set, then the space of test functions D(Ω) is
a complete separable Montel strict (LF )-space. So its strong dual, the space of distributions
D′(Ω), is a complete ultrabornological (hence barrelled) non-metrizable space (see [23]). Hence, by
reflexivity and Theorem 4.5 (v) we note the following corollary (which completes the corresponding
part of [3, Corollary 11.14] for D′(Ω)).

Corollary 4.6. The space of distributions D′(Ω) is a weakly ℵ0-space.

We know that if X is compact, Cc(X) is a weakly ℵ0-space if and only if X is countable, [30,
Proposition 10.8]. However, Cc(X) is weakly cosmic for every Polish space X.

Proposition 4.7. Let X be a Čech-complete space. The following assertions are equivalent:

(i) X is Polish.

(ii) Cc(X) is an ℵ0-space.

(iii) Cc(X) is a cosmic space.

(iv) Cc(X) is a weakly cosmic space and X is Lindelöf.

(v) Cc(X) is separable and X is Lindelöf.

(vi) The weak∗-dual space of Cc(X) is an ℵ0-space and X is Lindelöf.

(vii) The weak∗-dual space of Cc(X) is a cosmic space and X is Lindelöf.

(viii) Cc(X) is hereditarily separable.

Proof. Set E := Cc(X), Eσ := (E, σ(E,E′)) and E′σ := (E′, σ(E′, E)). Note also that Čech-
complete spaces are completely regular. The implications (i)⇒(ii) and (ii)⇔(iii) follow from [30,
(A) and 10.3].

(ii)⇒(i): By [30, 10.3], the space X is an ℵ0-space. Hence X is second countable by [15,
3.9.E(c)]. Thus X is a separable metrizable space. Being Čech-complete, the space X is Polish by
[15, Theorem 4.3.26].

(iii)⇒(iv): By [30, 10.2], Eσ is cosmic. X is Lindelöf by [30, (D) and 10.3].
(iv)⇒(v): As any cosmic space is separable, Eσ is separable, so is E, as well.
In what follows we need the following two general facts.
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Fact 1: (see [21]) Any Čech-complete Lindelöf space X has a compact resolution swallowing
compact sets. Hence E = Cc(X) has a G-base. Indeed, it is well known that X is a Čech-complete
Lindelöf space if and only if it is a pre-image of a Polish space under a perfect surjective map, see
[22, Corollary 3.7] and [15, Theorem 3.9.10].

A direct proof : There exists a sequence (Om)m of open sets in βX such that
⋂
mO

m = X. Since
X is regular and Lindelöf, for each m ∈ N there exists an increasing covering (Omn )n of X such
that

⋃
nO

m
n ⊂ Om, where the closures are taken in βX. If K is a compact set in X, there exists

α = (nm) ∈ P with K ⊂ Omnm
, consequently K ⊂ Kα and Kα :=

⋂
mO

m
nm

is βX-compact. Hence,
{Kα : α ∈ P} is as required. Finally, the space E has a G-base by [17, Theorem 2].

Fact 2: If X is Lindelöf it is realcompact [15, 3.11.12], and hence the space E = Cc(X) is
barrelled by [34, 10.1.12].

(v)⇒(vi): By Facts 1, 2 and Proposition 4.3(ii) E′σ is an ℵ0-space.
(vi)⇒(vii) is clear.
(vii)⇒(v) follows from Facts 1 and 2 and Proposition 4.3(ii).
(v)⇒(ii): Since E = Cc(X) is separable, X admits a weaker separable metric topology [29,

4.4.2]. Now Fact 1 and Theorem 4.2 imply that the space X is an ℵ0-space. Hence E is an ℵ0-space
by [30, 10.3].

(ii)⇒(viii): If E is an ℵ0-space, then E is hereditarily separable [30].
(viii)⇒(v): Assume E is hereditarily separable. Then E has countable tightness, so X is Lin-

delöf.

This proposition combined with Valov’s [40, Corollary 4.5] extends Pelant’s result, see [2, The-
orem 3.27].

Corollary 4.8. Let X be a Polish space and Y a regular space. If there exists a continuous linear
surjection from Cc(X) onto Cp(Y ), then every closed first countable subspace Z of Y is Polish.

Proof. Since Cc(X) is cosmic, Cp(Y ) is cosmic as well. Hence Y is cosmic, [30, Proposition 10.5],
so Y is Lindelöf. By Valov’s [40, Corollary 4.5], the cosmic space Z is Čech-complete. Hence Z is
second countable [15, 3.9E(c)], so metrizable. Consequently Z is Polish.

Theorem 1.6 and Theorem 1.5 may suggest the question whether the trans-separability of the
strong dual E′ of E can be replaced by separability for any Fréchet lcs E. We propose only the
following

Proposition 4.9. (MA+¬CH) Let E be a quasibarrelled lcs in class G which is trans-separable.
Then (E, σ(E,E′)) is cosmic. In particular, E is separable.

Proof. The completion of a lcs in class G is still in class G, and the completion of a quasibarrelled lcs
is barrelled. As a subset of a cosmic space is also cosmic, so we may assume that E is a (complete)
barrelled lcs in class G. Since every quasibarrelled lcs in class G has a G-base by [26, Lemma 15.2],
there exists a G-base {Uα : α ∈ NN} in E. For each α ∈ NN, let Kα be the polar of Uα equipped
with the topology σ(E′, E). Then {Kα : α ∈ NN} is a compact resolution of (E′, σ(E′, E)). As E is
barrelled, every σ(E′, E) compact set K in E′ is equicontinuous, so K is contained in Kα for some
α ∈ P. Therefore {Kα : α ∈ NN} swallows compact sets. By assumption E is trans-separable, so
every Kα is σ(E′, E)-metrizable by a result of Pfister, see [26, Proposition 6.8]. Consequently, every
σ(E′, E)-compact set is metrizable and (E′, σ(E′, E)) is K-analytic by [26, Theorem 12.2, Theorem
12.3]. By MA + ¬CH the space (E′, σ(E′, E)) is analytic (Fremlin [35, Theorem 5.5.3]), hence
(E′, σ(E′, E)) is submetrizable by Talagrand’s [26, Proposition 6.3]. Finally, we apply Theorem 4.2
to derive that (E′, σ(E′, E)) is an ℵ0-space. Hence, (E, σ(E,E′)) is cosmic by Theorem 4.5(i).
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The following example motivates also Proposition 4.9.

Example 4.10. Let X := [0, ω1). The space Cc(X) is a non-separable but trans-separable space
which is not quasibarrelled. Assuming (CH) the space Cc(X) is in class G. Under (MA+ ¬CH)
the space Cc(X) is not in class G.

Proof. Clearly Cc(X) is not separable, since Cp(X) is not separable. Moreover, as Morris and
Wulbert observed, Cc(X) is not quasibarrelled [32]. As every compact set in X is metrizable,
Cc(X) is trans-separable (by Schmets [26, Lemma 6.5]). Under (CH) the space X has a compact
resolution swallowing compact sets by [39, Theorem 3.6]. Hence Cc(X) is in class G by [17]. The
space Cc(X) is not in class G if we assume (MA + ¬CH), since by mentioned [39, Theorem 3.6]
the space X even does not have a compact resolution, so by the same reason as above (use again
[17]) the space Cc(X) is not in class G.

To prove Theorem 1.6 we need the following proposition (which provides another fact, more
general then discussed in Köthe’s [28, Proposition 28.5 (3)]).

Proposition 4.11. Let (E, ν) be a lcs and N be the uniformity on E generated by the locally
convex structure of E. Let A ⊂ E be an absolutely convex bounded subset of E such that the set
(4A, ν|4A) is metrizable. Then there exists a metric d on 4A such that

(i) d(x− y, 0) = d(x, y) for all x, y ∈ 4A with x− y ∈ 4A,

(ii) the topology generated by d on 2A coincides with ν|2A,

(iii) the uniformity M on 4A generated by the metric d and N coincide on A.

Proof. Set P := 4A. Since P is metrizable, P has a decreasing basis {Um}m of absolutely convex
neighbourhoods of zero such that 2Um+1 ⊂ Um for every m ∈ N, see [25, 9.2.4] or [7, Corollary
3 (proof)]. Note that each Um is absorbing in P . We show that, for every x ∈ 2A, the sequence
{(x+Um)∩2A}m is a basis of neighbourhoods of x. Indeed, for every Um in P choose an absolutely
convex neighbourhood V ⊂ E of zero with V ∩ P ⊂ Um. Then (x + V ) ∩ 2A ⊂ (x + Um) ∩ 2A.
Conversely, for an absolutely convex neighbourhood of zero W in E we have Up ⊂W ∩P for some
p ∈ N, so (x+ Up) ∩ 2A ⊂ (x+W ) ∩ 2A.

If pm denotes the gauge of Um, we define

d(x, y) :=
∑
m

2−m min{2pm(2−1x− 2−1y), 1}

So d(x, y) is a metric on P satisfying the condition d(x − y, 0) = d(x, y) for all x, y ∈ P with
x− y ∈ P . This proves (i).

To prove (ii), fix x ∈ 2A. If x ∈ Um, then d(x, 0) < 2−m. If x 6∈ Um−2 (m > 2), then x/2 6∈ Um−1
and d(x, 0) ≥ 2−(m−1). Thus

Um ∩ 2A ⊆ Hm := {x ∈ 2A : d(x, 0) < 2−m} ⊆ Um−2 ∩ 2A.

Finally note that if x, y ∈ 2A, then y ∈ (x+Hm) if and only if d(x, y) < 2−m. This implies that d
induces the relative topology on 2A inherited from E.

Now we prove (iii). As N is the uniformity on E generated by its locally convex structure,
the uniform topology τN generated by N coincides with the locally convex topology of E. If
ξ is the topology on 2A induced by the metric d, we have τN |2A = ξ by (ii). Let U be an
absolutely convex neighbourhood of zero in E. There exists ε > 0 such that Mε(0) ⊂ U ∩2A, where
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Mε(0) := {y ∈ 2A : d(y, 0) < ε}. A base for the uniformity induced by the metric d on A is given by
sets Mε := {(x, y) ∈ A×A : d(x, y) < ε}. If (x, y) ∈Mε, then (i) implies x− y ∈Mε(0) ⊂ U ∩ 2A.
Hence (x, y) ∈ NU ∩ (A×A), where

NU := {(x, y) ∈ E × E : x− y ∈ U}.

Conversely, if δ > 0, there exists an absolutely convex neighbourhood of zero V in E such that
V ∩ 2A ⊂Mδ(0). Hence, if (x, y) ∈ NV with x, y ∈ A, then x− y ∈ V ∩ 2A, so x− y ∈Mδ(0) and
d(x, y) < δ. This proves that NV ∩ (A×A) ⊂Mδ ∩ (A×A).

Corollary 4.12. Let (E, ν) be a lcs having a sequence {Qn}n∈N of absolutely convex bounded sets
covering E such that (Qn, ν|Qn) is metrizable for every n ∈ N. Then E is trans-separable if and
only if E is separable.

Proof. Applying Proposition 4.11 to A = Qn, n ∈ N, we obtain that the trans-separable uniformity
on Qn is metrizable, so Qn is separable. Thus E =

⋃
nQn is separable. The converse is trivial.

Proof of Theorem 1.6. Clearly the strong dual E′ is a (DF )-space with a fundamental sequence
(Qn)n of absolutely convex bounded subsets of E′. Since E satisfies the density condition, every
bounded set Qn is metrizable by [7, Corollary 3].

Assume that E is a weakly ℵ0-space. By Theorem 1.5 the strong dual E′ is trans-separable.
Now Corollary 4.12 implies that E is separable. Conversely, if E′ is separable, we apply Theorem
4.5(ii) to complete the proof.

We end with the following question.

Question 4.13. Is there a weakly ℵ0 Fréchet lcs E not containing `1 whose strong dual E′ is not
separable?
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