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Abstract

Partitioned architectures isolate software components into independent partitions whose
execution will not interfere with other partitions, preserving temporal and spatial iso-
lation. Hierarchical scheduling can effectively be used to schedule these systems.
Schedulability analysis of hierarchical real-time systems is based on prior knowledge
of the local and the global scheduling algorithms.

In a partitioned system with safety and security issues and certification assurance
levels, global scheduling is usually generated using a static table. Therefore, each par-
tition must allocate task jobs only in the temporal windows reserved for that partition.
Even if the static table can come originally from a periodic server or other scheduling
policy, the final plan may be modified due to changes in the system requirements. As
a consequence, the CPU assignment to a partition does not have to correspond to any
known policy. In this case, it is not possible to use existing scheduling analysis for
hierarchical systems.

This paper studies a new scheduling problem: a hierarchical system in which global
policy is not known but provided as a set of arbitrary time windows.
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1. Introduction

In many domains such as avionics, space or industrial control systems, hard real-
time constraints, safety and security issues and certification assurance levels are com-
monly required. Integrated Modular Avionics (IMA) is an architectural proposal that
emerged as a design concept to integrate several applications with different levels of
criticality in a hardware platform. The IMA approach proposes to encapsulate func-
tions into partitions configuring a partitioned system. Partitioned architectures isolate
software components into independent partitions whose execution must not interfere
with others, preserving temporal and spatial isolation. Several projects have been suc-
cessfully developed using this approach in the avionic market.

In the last decade, the European space sector has adapted the initial IMA approach
for the space requirements for the new generation of satellites [1]. The IMA-SP project
focused on mono-processors [2]. The platform defines a virtualization layer (hyper-
visor) that permits execution of several partitions. Each partition can contain a guest
operating system and the application software. The hypervisor is in charge of ensuring
temporal and spatial isolation of partitions.

An IMA development process involves several roles like:

e System Architect (SA): The SA is responsible for defining the overall system
requirements and system design, including optimal decomposition into hosted
partitions jointly with the detailed resource allocation per partition.

e System Integrator (SI): The SI is responsible for verifying the feasibility of the
system requirements defined by the SA, as well as responsible for the configura-
tion and integration of all components.

e Application Suppliers (AS): An AS is responsible for developing an application
according to the overall requirements from the SA and the SI. AS must verify
compliance with the allocated budget and safety parameters. Assuming that each
application is located in a partition and a partition can have only one application,
an AS can also be called Partition Developer (PD).

There are other roles in the process but due to space restrictions we only detail
those interesting for the purpose of this article. For a complete description of the main
roles and responsibilities see ([3]).

A key element in the development process and the final execution is the configura-
tion of the system defined by the SA, which includes the description of the components
and resource allocation. This is identified as configuration data or configuration file. In
order to preserve the confidentiality of the development process, configuration data is
split and delivered to each PD with the required information for developing the appli-
cation.

The Sl is responsible for CPU allocation of temporal resources to applications while
the PD manages the time budget assigned to its tasks by the SI. Based on the proposed
software architecture in an IMA system where a hypervisor supports the execution
of several temporal and spatial isolated partitions, the system can be modeled as a
hierarchical real-time system in which tasks are allocated to partitions. The SI allocates



CPU in the global level, according to the scheduling algorithm of its choice, while
the PD internally schedules tasks with its own scheduling algorithm and the assigned
CPU budget. The SI is responsible for ensuring feasibility in the global level while
PD ensures feasibility in the corresponding local level. Figure 1 shows the structure
of a partitioned system. The scheduling plan in the global level schedules partitions
according to an offline plan defined in the static configuration file of the system.

Partition 1 Partition m

Local scheduler Local scheduler

e ] T = | pm | [ pm |
CPU supply for P1 CPU supply for Pm

™~

Ccnﬁg Plan {global level]
File > p1 Je3] Pm [pi] Pm | -
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Figure 1: General overview of the partitioned system

Thus, a partition does not have all the time assigned to schedule its tasks, but only
certain slots throughout the hyper-period. An example is shown in Figure 2, where a
partition with a set of periodic tasks is scheduled under EDF (Earliest Deadline First)
policy.
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Figure 2: Execution chronogram and CPU supply of a partition

In the previous figure, the global scheduler peridically assigns the CPU to the task
set, that is, the partition receives a periodic resource supply that provides 3 units of
CPU every 10 units of time. The black rectangles at the bottom of the figure represent
the slots assigned to the partition. Obviously, tasks cannot execute outside these slots,
since they are reserved for other partitions.

The list of assigned slots is provided by the SI, responsible for ensuring the feasi-
bility in the global level. Thus, PD gives the SI its temporal requirements, normally in
the form of CPU bandwidth. The SI calculates and assigns this bandwidth to partitions
using a well known bandwidth server or cyclic scheduling. ARINC 653 standard [4]
defines a hierarchical scheduling where a static cyclic executive scheduler is used in



the global level.

If the assignment is made using a bandwidth algorithm or a periodic resource
model, the corresponding feasibility tests are available in the literature so the PD can
apply them to know if its tasks are schedulable with this slots assignment (see section
8). On the contrary, if the SI makes the asignment arbitrarily (i.e. not following any
existing scheduling algorithm) the authors are not aware of any article that addresses
and solves this problem.

Below, we present an example of why a partition can be assigned an arbitrary se-
quence of slots. Let us assume a partitioned system with three partitions (P1, P2 and
P3) and the scheduling plan shown in Figure 3(a).

If the temporal requirements of P2 changefor any reason, P2 will be scheduled in
the empty slots not used by P1 and P3 (Figure 3(b)). These slots do not correspond to
any periodic reservation so we can consider that the sequence of slots provided by SI
to PD of P2 are arbitrary. Of course, we can also re-schedule the entire system but then
the scheduling of P1 and P2 would change, requiring certification of partitions whose
requirements do not change. Such an effort must be avoided if possible.

P1 P2 P3

(a) Initial situation
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(b) One of the partitions changes its temporal parameters.

Figure 3: Changing temporal parameters in one partition.

If we later add a fourth partition to the system (P4) we will have to schedule P4
in the idle slots not used by P1, P2 and P3. Again, the slots reserved for P4 can be
considered arbitrary (Figure 4(b)).

These two situations show two different scenarios where a partition must be sched-
uled in time slots that do not follow any known allocation. Schedulability tests for
hierarchical systems are based on calculating the worst case response time of tasks in
the local level and adding the worst case overhead due to the global level. This last
overhead cannot be calculated if the scheduling policy in the global level is not known.
Thus, the existing literature does not give a solution to this problem. For this reason,
we provide a solution to analyze the schedulability of a task set of a partition where the
scheduling algorithm is arbitrary at global level.
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(b) Addition of a new partition.

Figure 4: Adding partitions to the partitioned system.

1.1. Contributions and outline

The problem to be addressed is concerned with the schedulability of a hierarchical
system composed of two levels. The global level policy is not known but provided by
the SI as a set of arbitrary time slots. By arbitrary we understand that the sequence of
slots is not derived from any known scheduling algorithm in the global level. This is
the most important difference with respect to existing papers in the area.

This article provides a method for determining a sequence of slots provided by the
SI that makes the local level schedulable. Specifically, we define two different slots
assignments.

We also provide a basic schedulability analysis so the PD can accept the slots as-
signment. In the local level, we assume EDF. Obviously, our results can be used even
if the scheduling algorithm in the global level is known.

The article is organized as follows: Section 2 presents the model and notation used,
while in section 3 the calculation of schedulable supply bound functions is explained.
Section 4 presents some results for the schedulability areas defined between the supply
bound functions presented in the previous section. The schedulability test is presented
in section 5. Section 6 contains the evaluation of our proposal while section 7 presents
a comparison with a similar work. Section 8 reviews the most important works in the
field of hierarchical scheduling. Finally, section 9 summarizes the contributions of the
article and future lines of work.



2. System model and notation

Our model is concerned with the pre-emptive scheduling of real-time applications
on a uniprocessor. Each application consists of a number of partitions Py, .., P,,. Each
partition comprises a number of tasks. Thus, our hierarchical system has two levels,
the partition (or global) level and the task (or local) level, each of them with its own
scheduling policy. In this work, we will assume that the local level is scheduled under
EDF scheduling policy and the global level is scheduled under any scheduler. The
information regarding the global scheduling is provided as temporal windows or slots
in which a partition is allowed to execute.

From now on, the sub index used to refer to a partition will be omitted to simplify
the notation. Therefore, formally, a partition P can be defined! as a tuple P = {7, R}
where:

o 7 ={71,72,.., T} is a set of n tasks. A task 7; is characterized by a tuple 7; =
{¢s, Cy, Dy, T; } where ¢; is the offset, C; is the worst case computation time, D;
is the relative deadline and 7; is the period. When all parameters in the system
are integers, we may assume without loss of generality that all preemptions occur
at integer time values. We then assume, for the remainder of the article, that all
parameters are indeed integers. Moreover, constrained deadlines are assumed so
D; <T,.

o An arbitrary CPU supply R is represented by a sequence of p intervals Iy, Io, ..., I,.
Every I; / 1 < i < pis aclosed interval I; =: [s;, e;] repeated every lcm., 2, so
that 0 < s; < e; < s;41 and e, < lem,.

Therefore, V¢ exists a unique interval I; so that s; < t < e;. The CPU supply
R for a partition determines the p temporal slots in which tasks allocated to the
partition are allowed to execute.

The problem to solve is concerns the schedulability of the partition, that is, if task
set 7 can be scheduled without deadline misses in the slots defined by R.

2.1. Supply bound function

Although we have characterized R as a set of intervals, it can also be represented
graphically.

Figure 5 shows two possible CPU supplies for the example of Figure 2 with a peri-
odic supply R=(6, ), where the global level provides 6 units of time each 7 units. In
the figure # = 3 and m = 10 so both supplies are non-decreasing functions that grow
with a slope of 45 degrees at least 3 units every 10 units. wecsbfg(t) represents the
worst case because provides the 3 units of CPU as late as possible while sbfg(t) rep-
resents other specific allocation of the periodic supply. Therefore, we call the function
that represents any specific allocation, the supply bound function of R (sbfg(t)). In
this case, note that sbfr(t) totally coincide with the slots allocation of Figure 2 in the
sense that the partition is allowed to execute only when sbfg(¢) function increases.

!In the definition of the partition we omit all non-temporal resources
2Least Common Multiple of 17, .., Ty,
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Figure 5: Periodic supply bound functions (f = 3, 7 = 10)

Given a CPU supply R and an interval of length t, the supply bound function gives
the amount of resource that model R is guaranteed to supply in any time interval of
length t [5]. We can define the supply bound function of R, accordingly with the above
definition.

Definition 1. The supply bound function (sbfr(t)) of an arbitrary supply R expressed
as a set of intervals is:

S(ei—s) 4 t—s; i Tifte [shel,

=0

Sbe(t) =

J
Z(ei—si) ifﬂj/ej<t<sj+1.
=0

, where s; is the starting point of an interval and e; is its ending point. From s; to
e;, the tasks of the partition can be executed. In Figure 5, these intervals correspond
with the intervals where sb f(t) increases. Then, a CPU supply R can be characterized
either by a set of intervals I; or by its sbfr(¢).

Moreover, the following definitions will be used in the next sections.

Definition 2. [6] The function G, (t) represents the computation time demanded from
initial time to time t for a tasks set 7. It can be calculated as:

oS4

i=1



It is a positive and non-decreasing function that only increases when a task is re-
leased, that is, it grows as many units as time computation are required by the task that
has been activated.

If tasks are simultaneously activated at time t = 0 (i.e. ¢; = 0 for all the tasks so
the task set is synchronous), then:

Definition 3. [7][8] The maximum cumulative execution time requested by jobs of T
whose absolute deadlines are less than or equal to t is:

- t+T, - D;
dvf-(t) = C; {TJ

i=1

It is a positive and non-decreasing function that only increases in the so-called
scheduling points that is, when a deadline arrives.

To generalize, when the task set is asynchronous (i.e. J¢; # 0), the processor
demand function in interval [t1, ¢2) is defined as:

Definition 4. [9][8]
dbf(t1,t2) =Y mi(t1,t2)Ci
i=1

where:

to—¢i — D b — ¢
i e B e A

From now on, let us assume the task set is synchronous. Therefore, definition 3
will be used to deduct the minimum supply bound function, in spite of the possibility
of using definition 4 to obtain any other demand function.

ni(t1,t2) = max{0, ({



3. Schedulable supply bound functions

In this section, we will define specific sbfr(t) that ensure the schedulability of task
sets, 7. Specifically, two functions are obtained: gsbf.(t) and msbf;(t).

3.1. Schedulable sbf,(t) based on G(t)

This section presents the demanded computation supply function (gsbf;(t)). This
function gives a schedulable supply for 7. We will base our method on the G (t)
function (Definition 2).

Definition 5. A characteristic point, t;, of G, (t) is the one complying with:
G,(tj—e) <G (tj+¢e) 0<t; <lem; Ve—0
, so that ¢; coincides with the activation of 7; € 7.
Property 1. [7] Let T be a schedulable task set. Let t,. be an instant t,. such that:
G(ty) <Ly

Then, the processor must have been idle for at least ¢, — G (t,;) time units from initial
time.

From Definition 2 and Property 1, the demanded computation supply function
(gsbf-(t)) is presented.

Definition 6. The gsbf,(t) is defined as:

t— jf(siﬂ —ei) if3j/t € [sj el
gsbf-(t) = =
G-(t) ifdj/e; <t <sjq1.
, where:
s;=1t;+0;

=ty Gt~ + Gty 0 46
0; = max{0, (elj—l - tj)}

and each t; is an characteristic point of G (t;).

Figure 6 shows how the function is obtained graphically in the first intervals. In
this Figure, the characteristic points are depicted (1, to, ...) and, applying Definition 6,
the start and end points of the intervals of gsbf;(t) are calculated. They correspond to
the intervals where gsbf, (t) increases.
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Figure 6: Calculation of gsbf-(t) in [0, t4)

To obtain a more compact definition, let us replace the values of s; and e;:

j—1
D (sit1—ei) = (s1—€0) + (s2 —e1) + ..+ (55 — ;1)
i=0
=t1+ 61— (to — Gr(to —€) + Gr(to + €) + 6o+
+to+ 02— (t1 —Gr(t1 —€) + Gr(t1 +¢) + 01+
+ ..+
+tj—1+0j-1— (tj—1 — Gr(tj—2 — )+
+Gr(tj—2+e€)+0;_2)+
+tj+0; —(t; — Gr(tj—1 —€) + Gr(tj—1 +€) +0,-1)+
= —to +G7—(t0 — 6) — 6o +1; +9j — GT(tj71 +6)

Asty = G-(to —€) =60y = 0and G-(t;—1 + €) = G-(t; — €), then, one more
compact definition of gsbf, () is:

t—tj—ej-f—GT(tj—E) 1f3]/te [sj,ej],
gsbf-(t) =
G-,—(t) 1fEIj/e] <t<5j+1.

Once gsbf,(t) has been defined, the schedulability of 7 under this CPU supply can
be demonstrated. For this reason, the concept of initial critical interval (ICI) must be
introduced. ICI [10] is defined as the temporal interval between initial time and the first
instant R, when all requests have already been served and no additional requests have
arrived yet, assuming that the processor is not idle while tasks are pending. Therefore,
this range is [0, R).

10



Lemma 1. [10] [11] Let 7 be a synchronous periodic task set and [O,R) its initial
critical interval (ICI). T is schedulable if and only if it can be scheduled in ICI.

Next theorems are used to construct the gsbf,(t) interval by interval and, in each
interval, the condition gsbf, (t) < t will be checked.

Theorem 1. Let t1 € N so that:

mtin t1:G.(t1) <t; Vte (0,lem,]

Then,
gsbf(t) =t ifte0,t1)

PROOF. Because of the definition of ICI, in the range [0,R) there is no CPU idle time.
For this reason, from O to 1, the processor must be always busy. So, t; = R.

Theorem 2. Let ty € N so that:

mtin to:Gr(te —€) <G (tate€) t1 <ts<lem, VYe—0

, that is, to is a characteristic point of G (t).
Then,
t ift €[0,t1),

gsbf-(t) = {GT(t) ift € [ti,ta).

PROOF. The proof is based on the addition of a new task 7,11, which will be executed
only when CPU is idle, that is, when 7 is not executing. This time corresponds to the

interval [t1,t2). Let
=7 U Tnt1

where
Pp+1 =1
Cry1 =12 — 1
Dyy1 =1

Tn+1 = mal"{ébla ey ¢N7 ¢n+1} +2- lcm'r[g]
= ¢nt1+2-lem,

Once this task has been added, let’s check that the first interval, R, when all requests
have already been served and no additional requests have arrived yet, is [0, ¢2).

G/ (t) =G (t) + Grn1 (1)

2 t t
- i:ZICi ’VT;‘ Tl =) ’Vd’n-i—l +2- lcmT-‘
=>C {Tﬂ + (ty — t1)

i=1 v

11



When t = t5 — €, G, (t) = t; the result of the previous equation is:
GT’(tQ - 6) = GT(tQ - 6) + Grnt1 (f,g — 6)

_;CJ T W+(t2 t1)
=t + (ta — t1)
:tQ

It is clear that, adding this new task set, G,/ (t) = ¢ and the new ICI is [0, ¢2). So,
as a result of Lemma 1, to prove schedulability of 7/, the condition dbf (t) < ¢t must
be held in all the scheduling points in [0, ¢2).

Let us assume that ¢, is a scheduling point in [0,2). As t, < Djy1 clearly
dbf,(ty) = dbf-(tz) < t;. Therefore, the schedulability of 7 has been demostrated
because of its schedulability in ICI.

As aresult of the previous theorem, we derive the next interval.
Lemma 2. Lett3, ty € N so that:
t3:Gr(ta+€) —Gr(ta —€) + to
ty:Gr(tg —€) <G (ts +€)
, where to <tz <ty <lem,, Ve—0

Then,
t lft S [07t1)’
B G- (1) ift € [t1,t2),
ngf‘r(t) T )4 (ta —t1) ift € [ta,t3),
G- (1) ift € [ts,ts).

PROOF. Following the same reasoning as Theorem 2, we add a new task whose com-

1 l |
=T Tn Tn

where

Pnt1 =t
Chny1 =1t — 11
Dy =t

Tn+1 - ma${¢1, veey ¢N7 d)nJrla ¢n+2} + 2- lcm'r
= Qni2 +2-lem;

¢n+2 = t3
Chia =t4 —t3
Dyyo =14

Tot2 = max{o1, ..., 0N, Pnt1, Gny2} + 2 - lem,
= ¢n+2 +2-lem,

12



Once this task has been added, let us calculate the ICI in this new scenario:

GT” (t) = G‘r (t) + C;‘r”Jrl (t) + GT”+2 (t)
" t t
= ;Ci ’71—‘1—‘ + (to — 1) [¢n+2 2. lcm.r—‘ +

+ (tg —t3) [tw

Onto +2-lem,

- ;C {Tﬂ + (ta —t1) + (ts — t3)

When t =ty — €, G, (t) = t1 + (t3 — t2). Therefore:

It can be concluded that, adding a new task set,7,,12, G, (t) = tint = t4 so
the new ICL is [0, ¢4). So, as a result of Lemma 1, to prove schedulability of 7"/, the

G (t4 — 6) = GT(t4 — 6) + G rnt1 <t4 —€)+ Grnt2 (t4 — 6)

~ t4—€
:;CJ T

=t1—|—(t3—t2)+(t2—t1)+(t4—t3)
:t4

|+t =+ -

condition dbf,~ (t) < t must be held in all the scheduling points in [0, ¢4).

Let us assume that ¢, is a scheduling point in [0,t4). As t, < Dy, in Theorem 2
it has been demonstrated that dbf,~ (t;) = dbf,/(t;) < t;. So, 7" is schedulable in

the hyperperiod because of its schedulability in ICIL.

From these first intervals, the complete definition of the demanded computation
supply function can be built recursively. Values of s; and e; are deduced according to

the different shapes of the function, depending on how G (¢) is built.
The algorithm that implements the slot construction is presented in Listing 1.

0NN WN

—
N - O O

Listing 1: gsbf(t) algorithm
function gsbf(7) is
j,ej,Sj,to,t1=0;
e — 0;
while(t1 <lcm.) loop
if G(t() — 6) < G(t() + 6) then
6o = mazx {0,e; —to};
s; = to + bo;
€e; = to — G(to — E) + G(to + 6) + Oo;
end if ;
to++; J++;
end while;
end gsbf;

13



The gsbf,(t) represents a set of temporal windows that can successfully schedule
7. Many sets of slots fulfil this purpose, however, because CPU time is supplied only
when a task is activated, that is, as soon as possible. And for this reason, the resulting
schedule exactly coincides with the schedule resulting from assigning all CPU time to
the partition.

3.1.1. Example of gsbf.(t) use
Let’s consider a partition with three tasks (7 = {71, 72, 73}). Task parameters are
listed in Table 1. The definition of gsbf.(¢) in definition 6 is used to calculate the

Table 1: Task parameters

C. [ D, | T,
ol 1| 45
| 6 |10]15
™ | 5 | 21 | 30

function. The first step consists in calculating G (t) and all its characteristic points
in [0,lcm.;]. Table 2 shows all these values. Now, applying Definition 6, s; and e;

Table 2: Characteristic points of gsbf(t)
t 0 5 | 10| 15 1] 20 |25
G.() (1213 |14 |21 | 22 | 23

are calculated within [0,lcm,| and represented in Table 3. The last step is to calcu-

Table 3: Definition of [s;, e;]
1 0 1 2 3 4 5
s | 0O |12 13| 15]22 |25
e; | 12|13 | 14 | 22 | 23 | 26

late gsbf,(t) inside each interval. Once it has been calculated, the representation of
the function is shown in Figure 7. As seen, CPU will be busy in the intervals where
gsbf.(t) grows. These intervals are defined in Table 4. The execution chronogram of
the task set considering that the CPU supply R coincides with the demanded computa-
tion supply function is depicted in Figure 8. As seen, the task set is schedulable in this
slot assignment.

Thus, the schedulability of the gsb f, () function for a task set and the methodology
for calculating it have been demonstrated.

3.2. Schedulable sbf,(t) based on dbf,(t)

In Section 3.1, a valid supply that gives CPU when tasks are activated has been
presented. Now, another valid supply is being presented but, in this new situation,
CPU is supplied just before the deadlines arrive. If gsbf,(¢) consists on supplying

14
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Figure 7: Representation of gsbf-(t)

Table 4: Definition of [s;, €;]

S; €;
L | 0|14
I, | 15| 23
I; | 25| 26

CPU as soon as possible (for task activation), msbf(t) will consist in supplying CPU
as late as possible.

To obtain msbf,(t), we base our method on the demand bound function for a task
set. We build msbf,(t) by intervals and we prove that in each interval there are no
deadline misses. Thus, msbf,(t) will be generalized.

Theorem 3. Lett1 € N so that:

t;1 —dbf:(t1) = mtin(t —dbf.(t)) Vte (0,lem,]

And,

msbfr(t)

t—t1+dbf-(t1) iftets —dbfr(t1) ta],
0 ift €[0,t1 —dbfr(t1)).

If sbfr(t) = msbf.(t) then T is schedulable.

PROOF. The proof is based on adding a new task 7,,+1. This task can only be executed
when 7 is not allowed to execute, that is, in [0,¢; — dbf,(t1)) and we demonstrate that

15
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Figure 8: Execution chronogram of 7 with gsbf- (¢) in Table 4

the new set is schedulable. Then, computation time of 7,1 is increased in order to
check that the new set is not schedulable.

Let
=7 U Tn+1

Cny1 =11 —dbf(t1)
Dy =1t —dbf(t1)
Thv1 = max{d1, ... ON} + 2 lem,
Pny1 =0
To prove schedulability of 7/, the condition dbf,/(t) < t must be met in all the
scheduling points in [0, ¢;]. Let us assume that a is a scheduling point in [0, ¢1]. If

a < Dpy1, obviously dbf,/(a) = dbf;(a) < a. If @ > Djp4q the demand bound
function of the new task set 7/ is:

where

dbfr(a) = dbfr(a) + Cpi1
= dbf‘r(a‘) +i1 - dbf‘r(tl)
Asty —dbf,(t1) = mtm(t —dbf,(t)) then

b — dbf-(t) < (a — dbf-(a))
So,
dbfr(a) < dbf,(a) +a— dbf(a)
<a

1"
T = TU’Tn+1

Coir = t1 — dbfs (t1) + €

Dy =t —dbf-(t1) + €

Thi1 = max{dy,....,on}++2 - lem,
Gny1 =0

Now, let us assume

and
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being € a small positive number such that 0 < € < 1.
Following the same reasoning:

dbfrr(t1) = dbf-(t1) +t1 — dbfr(t1) + €
=1 +e€

so 7" is not schedulable.

As a result of the previous theorem, msbf(t) until ¢1, expressed as a set of inter-
vals, is msbf,(t) = Iy = [t1 — dbf;(t1),t1]. Using a similar approach we derive the
next interval.

Lemma 3. Letto € N, t1 < ty so that:

to — dbf-(t2) = mtin(t —dbf,(t)) Vte (t1,lem;]

And
t—t1 +dbfr(t1) ift €[t —dbf-(t1),t],
dbf,(t1) ift € (t1,
to — dbf.(t2) + dbf,(t1))
t—1ts + dbff(tg) l.ft S [tg — dbf-,—(tg)
+dbfr(t1), t2],
0 ift €[0,t1).

msbf;(t) =

If sbfr(t) = msbf,(t) then T is schedulable.

PROOF. Schedulability in [0, ¢1] is assured due to Theorem 3. Following the same
reasoning as Theorem 3, we add a task whose computation time coincides with the idle
time between I and ST; and its deadline is equal to the start time of I (s1).

Let

where

Cny1 =t —dbf-(t1)

Dpy1 =ty —dbf-(t1)

Thv1 = max{d1, ... ON} + 2 lem,
Gny1 =0

Cri2 =tz — dbfr(t2) +dbfr(t1) — 1
Dypio =t — dbf,(t2) + dbfr(t1)
Thia = max{dy,....,on}++2-lem,
Gnyo =11
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Let us assume that a is a scheduling point in (¢1,t2]. If a < D42, then dbf,(a) =
dbf,(a), so the new task set is schedulable. If @ > D,, 1 o, following the same reason-
ing as in Theorem 3, the computation time of 7,11 and 7,42 is added to sbf./ (t):

dbfr(a) = dbf,(a) + t1 — dbf, (t1)+
+ 1o — dbf'r(tZ) + dbf'r(tl) -1
= dbf.(a) + to — dbf.(t2)

Given
ty — dbf'r(tQ) < (a - dbf'r(a))

that

dbf‘r’ (a) < dbfT (a’) ta-— dbf‘r (CL)
<a

Theorem 3 and Lemma 3 provide a method for obtaining the first two intervals of
msbf;(t) function and it has been proved that this function is schedulable. Figure 9
shows graphically how the function is obtained.

—  msbf(t) in [0,t,]

dbfi(t,)

dbf(t,)

Hh A

v

t
Figure 9: Calculation of msbf-(t) in [0, 2]
It is straightforward to recursively construct all the minimum supply slots needed

by 7 to maintain feasibility: finding ¢; points in where it holds that t; — dbf- (¢;) is the
minimum value in (¢;_1,lcm.]. We call these points the minimum scheduling points
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t;. Therefore, the msbf-(t) is defined as in Definition 1 but now we can give specific
values to s; and e;:

J
Z(ei—si)—i—t—ej ifﬂj/te[sj,ej],
1=0

msbf, (1) =
J
Z(ei*Si) lle_]/ej <t<5j+1~
=0

where S; = tj — dbf-r(tj) + dbf(tj,ﬁ and e = tj.
Replacing the values of s; and e; in the previous definition:

Z(ei — Sl> =11 —t1 + dbf-,—(ﬁl) — dbf(t0)+
1=0

+to — 1o + dbf-,—(tg) — dbf(t1) + ..
Assuming that ¢y = 0 and dbf(0) = 0:

J
> (i — si) = dbf-(t))
i=0
Therefore, we can provide a more compact definition for msbf, (t).

Definition 7. The definition of the minimum supply bound function msbf,(t) is:

t—tj+dbfr(t;) if3j/t € [s;, e,
mef‘r(t) =
dbf.,-(tj) lfaj/ej <t < Sj+1-

The algorithm that implements the slot construction is presented in Listing 2.

Listing 2: msbf(t) algorithm

function msbf(7) is
i , €i,8i,t1,t2=0;
while(t2 <lcm.) loop
b=, e, (dbf-(1));

S; = ta — dbff(tz) + dbf-r(tl)Q
e; = ta;
ty = ta;
1++;
end while;
end msbf;

[e>RENoRNe N e V)] EENEOVEN ST

—_

The previous function is obtained from dbf(t) in Definition 3, particularized for
synchronized tasks. If we assume the possibility of asynchronism between tasks (i.e.,
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¢; # 0), this algorithm is also valid due to the inclusion of the offset in Definition 4.
If a task set is synchronous, Definition 3 will be applied to obtain dbf,(t) and, con-
sequently, msbf,(t). However, if any task does not start at the same time as others,
then another dbf, () will be obtained because of this offset and, consequently, other
msbf(t), which will also meet the criteria of schedulability of all tasks.

The previous algorithm works over the entire hyperperiod (lcm ), which depending
on the values of task periods can be a large value. To overcome this disadvantage, we
can use the results presented by Brocal and Balbastre In [12], an algorithm is presented
that can be used to compute the minimum hyperperiod for a set of periodic activities
when period is specified as a range. If, in spite of considering periods as specific
values, we treat them as ranges of valid values, [12] will select the value inside each
interval which causes the minimum hyperperiod. This method drastically reduces the
hyperperiod.

As noted in the conclusions section, we are working on an upper bound of msbf (1)
to reduce the complexity of the algorithm.

Once msbf(t) is obtained, the following theorem provides the schedulability con-
dition of {7, R}.

Theorem 4. A task set 7 is schedulable under a CPU supply R if and only if:

YVt sbfgr(t) = msbf.(t)

PROOF. We prove that for any time point a :

msbfr(a) > dbf-(a) Va € [0,lcm,]
We assume two cases:
e Case l: a ¢ [sj,e;].
e Case2: a € [sj,¢;].

Case 1: If @ ¢ [sj,e;], then 3j so e; < a < s;41. Applying the second case in the
msbf.(t) definition:

msbf- (a) =dbf- (a')
Case 2: If a € [s;, €;], applying the first case of the msbf definition:

msbf-(a) =a—t; +dbf(t;)
As dbf.(t) is a positive and monotonic increasing function it holds that [10]:
If a <t;thendbf,(a) < dbf-(t;)
And, as 7 is schedulable then dbf-(t;) —t; < 0.
Therefore:

msbf;(a) > dbfr(a) — dbf-(t;) —t;
> dbf-(a)

In any case: msbf.(a) > dbf;(a).
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3.2.1. Example of msbf,(t) use

Let us consider a partition with three tasks (7 = {71, 72, 73}). Task parameters are
listed in Table 1. Figure 10 shows the execution chronogram for the task set scheduled
under EDF policy if the partition is the only one in the system, that is, the CPU supply
is a unique slot Iy = [0, 30]. As the figure shows, the task set is schedulable since there
are no missed deadlines throughout the hyperperiod (Icm.).

o LI TR Th TR Th 1
no | (. 1

N |

Figure 10: Execution chronogram of 7 with R = Iy = [0, 30]

Let us consider now that there are more partitions in the system so the SI assigns to
the considered partition a CPU supply R which matches the msbf, (t).

To find out whether the CPU supply R is able to successfully schedule the task set,
we obtain msbf.(t). The methodology, as explained in the previous sections consists
of calculating the minimum ¢ — dbf(t) in [0, lcm.]. Table 5 shows t — db .. (t) for all
the scheduling points in [0,30].

Table 5: Scheduling points
t 419 (10| 14|19 |21 |24]25]|29

b, (t) 289 [10]15]16]22] 23
t—dbf(t) |3|7] 2]5]9]6]8]3]6

—

The scheduling point with the minimum slack (¢ — dbf.(t)) is t; = 10. Therefore,
according to Theorem 3, the first slot of msb f; (t) is Iy = [t1 — dbf-(t1),t1] = [2, 10].

In the second iteration, we must search for the next scheduling point with the min-
imum slack in (10,30]. This point is to = 25. Therefore, the next slot of msbf; (t) is
Iy = [