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Abstract 
Large portions of Earth’s terrestrial surface are arid or semiarid. As in these 

regions the hydrological cycle and the vegetation dynamics are tightly 

interconnected, a coupled modelling of these two systems is needed to fully 

reproduce the ecosystem behaviour and to predict possible responses to 

climate change. In this paper, the performance of two parsimonious dynamic 

vegetation models, suitable for the inclusion in operational ecohydrological 

models and based on well-established but different approaches, are compared 

in a semiarid Aleppo Pine region. The first model (WUE-model) links growth to 

transpiration through water use efficiency (WUE); the second model (LUE-

model) simulates biomass increase in relation to absorbed photosynthetically 

active radiation (APAR) and light use efficiency (LUE). Furthermore, an analysis 

of the information contained in MODIS products is presented to indicate the 

best vegetation indices to be used as observational verification for the models. 

EVI is reported in literature to be highly correlated with leaf area index so it is 

compared with modelled LAImod (rWUE-model=0.45; rLUE-model=0.57). In contrast, 

NDVI appears highly linked to soil moisture, through the control exerted by this 

variable on chlorophyll production, and is therefore used to analyze LAI*mod, 

models’ output corrected by plant water-stress (rWUE-model=0.62; rLUE-model=0.59). 

MODIS LAI and ET are found to be unrealistic in the studied area. The 

performance of both models in this semiarid region is found to be reasonable. 

However, the LUE-model presents the advantages of a better performance, the 

possibility to be used in a wider range of climates and to have been extensively 

tested in literature. 

 

1 Introduction 
A large portion of Earth is arid or semiarid (Renard et al., 1993). These water-

limited ecosystems are complex and their dynamics depend on multiple 

interconnections between climate, soil and vegetation (Rodriguez-Iturbe et al., 

2001). Projections of the IPCC (IPCC, 2007) indicate the high probability of an 

increase in the extent of drought-affected regions and a decrease in water 

resources in many semiarid areas. The potential adverse impacts on sectors 



such as agriculture or water supply makes an in-depth knowledge of the 

dynamics of these environments vital (Cayrol et al., 2000). 

In the last few years there has been an increasing awareness of the critical role 

of vegetation in soil moisture dynamics (Scanlon et al., 2005; Teuling and 

Troch, 2005; Ponce-Campos et al., 2013) and groundwater resources (Le 

Maitre et al., 1999; Scanlon et al., 2006). For this reason, a great deal of effort 

has been made by ecohydrologists in modelling vegetation dynamics along with 

the hydrological cycle (Zalewski et al., 1997; Hannah et al., 2004). In order to be 

suitably coupled with operational hydrological models, vegetation models need 

to only require information commonly available in practical hydrological 

applications (Arora, 2002; Montaldo et al., 2005). 

Two different parsimonious approaches to hydrological-vegetation modelling in 

arid and semiarid environments can be found in literature. The first group of 

models simulates gross primary production (GPP) as a function of plant 

transpiration (T) through an ecosystem water use efficiency (WUE), which is the 

amount of carbon gained for unit of water loss (Williams and Albertson, 2005; 

Istanbulluoglu et al., 2012). The second group of models simulates GPP as a 

function of intercepted light and light use efficiency (LUE), the ratio between the 

unstressed canopy carbon assimilation rate and the photosynthetically active 

radiation absorbed by the canopy (APAR) (e.g. Arora, 2002; Polley et al., 2011). 

With the objective of identifying reliable ecohydrological models, and to explore 

new strategies to solve the problem of model validation, we present on the one 

hand a comparison between the described modelling approaches and on the 

other hand an analysis of collocated satellite data. Moderate-Resolution 

Imaging Spectroradiometer (MODIS) remote sensing products are evaluated in 

order to ascertain the value of the information that can be extracted from remote 

sensing data, and therefore determine how useful they may be as observational 

verification for the analysed models. This evaluation foreruns the model 

comparison and takes into account the fact that external conditions (e.g. soil 

moisture, soil colour) and the canopy structure can alter the computed 

vegetation indices values (Jackson and Huete, 1991). Satellite data information 

is contrasted with published observations regarding LAI reference values and 

seasonality in Mediterranean forests. 



Therefore, in this paper we address the following questions. (1) Which of the 

two proposed parsimonious approaches to vegetation modelling performs best 

in a semiarid environment and hence should be recommended in a coupling 

process with an operational hydrological model? (2) Which satellite data sets 

are most suitable for characterizing vegetation dynamics in semiarid 

environments and could be used to assess the performance of the models? 

 

2 Methods 
2.1 Study area 
The research site (centred in 37º46’N, 2º00’W) is a 20 km2 Aleppo Pine (P. 

halepensis Mill.) open forest in the Valdeinfierno catchment, south east of Spain 

in the Andalusia region. Altitude is between 850 and 1350 m a.s.l.. The soil is a 

dolomitic lime. Rainfall occurs mostly in the autumn and spring and the average 

annual precipitation over the period 1933 – 2010 was 320 mm, having 

fluctuated between 99 mm and 884 mm. Mean monthly maximum air 

temperature ranges between 11ºC (December and January) and 31ºC (July and 

August), while mean monthly minimum temperature ranges between 1ºC (from 

December to February) and 15ºC (July and August). The mean annual 

reference evapotranspiration (ETo) is 1130 mm (Hargreaves equation; 

Valdeinfierno meteorological station data: 1933 - 2010), much higher than 

annual mean precipitation, making water a strongly limiting resource. According 

to Köppen climatic classification, the climate is defined as semiarid. 

 

2.2 Satellite Data 
MODIS instruments flying onboard the Terra and Aqua satellites have been 

designed to provide valuable information on vegetation state at basin scale. 

Processed data are made openly available through online tools such as Reverb 

and GloVis. The satellite information used in this study is the following: the 

Normalized Difference Vegetation Index (NDVI) and the Enhanced Vegetation 

Index (EVI), both included in the products MOD13Q1 and MYD13Q1 (Huete et 

al., 2002) and provided every 16 days at 250-meters spatial resolution; the Leaf 

Area Index (LAI), included in the products MOD15A2 and MYD15A2 (Myneni et 

al., 2002) and provided every 8 days at 1000-meters spatial resolution; the 



actual Evapotranspiration (ET), included in the MOD16A2 (Mu et al., 2011) 

product and provided every 8 days at 1000-meters spatial resolution. 

LAI is defined as the one sided green leaf area per unit ground area in 

broadleaf canopies, or as the projected leaf area per unit ground area in needle 

canopies. 

NDVI and EVI are directly calculated from the reflectance registered by the 

satellite sensors in the Near-Infrared (NIR) (841-876nm), Red (620-670nm) and 

Blue (459-479nm) wavelengths as follows: 
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where L, C1, C2 and G are parameters that, in the MODIS-EVI algorithm, 

assume the values: 1; 6; 7.5; and 2.5 respectively. NDVI is sensitive to green 

leaf biomass (Tucker, 1979) while EVI has been found to be responsive to both 

LAI and canopy structure (Gao et al., 2000). For these reasons, these two 

vegetation indices provide complementary information, extremely valuable 

when studying vegetation by means of remote sensing. 

MOD15A2 and MYD15A2 LAI datasets are created by an algorithm that exploits 

the spectral information content of MODIS surface reflectances, requiring at the 

same time a land cover classification (Myneni et al., 2003). This algorithm 

utilizes data from the MODIS Surface Reflectance Product (MODAGAGG) and 

the MODIS Land Cover Product (MOD12Q1). 

As an alternative, LAI can be obtained from NDVI through an application of 

Beer’s general equation as in Lacaze et al. (1996) and Gigante et al. (2009): 
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where NDVIcan (canopy) is the value to which NDVI tends at high vegetation 

density, NDVIback (background) is the NDVI value corresponding to very low 



vegetated soil and k is the extinction coefficient. NDVIcan and NDVIback may be 

retrieved from the NDVI images (Anselmi et al., 2004). The parameters used in 

this study were NDVIcan = 0.9915; NDVIback = 0.0549 and k = 0.212 (Anselmi et 

al., 2004). 

The ET product contains data evaluated using Mu et al.’s algorithm (2011), 

which is based on the Penman-Monteith equation (Monteith, 1965). Land cover 

classification, albedo, LAI and FPAR information, necessary for the calculations, 

are obtained from the MODIS Land Cover Product (MOD12Q1), the MODIS 

Land Surface Albedo Product (MOD43B3) and the MODIS Leaf Area Index and 

Fractional Photosynthetically Active Radiation Product (MOD15A2) respectively. 

 

2.3 Vegetation models 
Two approaches to dynamic vegetation modelling are implemented here to 

evaluate their ability to simulate the evolution of carbon and water exchange 

processes in a semiarid region. Simulations are performed with a daily time 

step, on a per unit ground area basis. Equations are solved with finite difference 

approximations, using at each time step the variable values calculated at the 

previous one. The dynamics of vegetation biomass are in both cases modelled 

through a mass balance. In one case growth is based on transpiration (T) and 

takes into account the Water Use Efficiency (WUE) factor; in the other case 

carbon uptake is based on photosynthesis, simulated through the Absorbed 

Photosynthetically Active Radiation and the Light Use Efficiency (LUE) factor. 

Both approaches consider respiration in order to estimate net primary 

production. Part of this total production is allocated to leaves, according to the 

maximum leaf biomass that can be sustained by the system. The modelled 

state variable is the leaf biomass (Bl, kg DM m-2 vegetation cover; where DM 

denotes dry matter), from which leaf area index (LAImod, m2 leaf m-2 ground) can 

be calculated by means of the specific leaf area (SLA, m2 leaf kg-1 DM) and the 

fraction of vegetated area (ft, m2 vegetation cover m-2 ground), providing the 

possibility to compare models results with satellite products. Turnover, caused 

by leaf ageing, is then taken into account. 

Real structural LAI changes more slowly than remotely sensed NDVI, which 

reflects chlorophyll and leaf angle adjustments before loss of structural tissues 

and leaf drop. In fact, Mediterranean summer drought is reported to induce a 



generalized decrease in chlorophyll, as a mechanism of protection (Kyparissis 

et al., 1995). In particular, Aleppo Pine showed a 25% reduction in chlorophyll 

content when a 30 month water stress treatment was applied and soil water 

potential was maintained at -400 kPa (Baquedano and Castillo, 2006). For this 

reason, to compare model results with LAINDVI, it is advisable to scale LAImod by 

vegetation water stress (see Appendix A), as in Sellers et al. (1996) and 

Williams and Albertson (2005), obtaining in this way LAI*mod (m2 green leaf m-2 

ground). Considering the properties of the model outputs and of the available 

satellite indices, it appears suitable to compare LAI*mod with LAINDVI and also 

LAImod with EVI, the latter being very responsive to structural LAI. 

Soil moisture in the effective root zone is the result of the balance between 

incoming precipitation (P) and leaf interception (I) and the losses produced by 

evaporation from bare soil (E), transpiration (T) and leakage (L). The effective 

soil depth is divided into two layers: a shallow layer that is implicated in the 

processes of bare soil evaporation and superficial roots’ transpiration, and a 

second underlying layer that provides soil moisture to deeper roots. Actual 

evapotranspiration (see Appendix B) is based on reference values, corrected by 

a water stress function. Models are forced by daily inputs of precipitation, air 

temperature and radiation. 

 

2.3.1 Carbon balance for WUE-model 

Similar to Williams and Albertson (2005) the leaf biomass dynamics are modelled 

as: 
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where Bl is the leaf biomass (kg DM m-2 vegetation cover). φl is fractional leaf 

allocation, kl is leaf natural turnover factor, and Re is respiration, each 

described with more details in Appendix A. ρv and ω are the density of water 

(Mg m-3) and the conversion of CO2 exchange to dry matter (kg DM kg-1 CO2), 

needed to convert the units. WUE is calculated with air diffusivities of CO2 and 



H2O vapour, ambient CO2 concentration and saturated specific air humidity 

dependence, as in Williams and Albertson (2005). 

This model is built on the hypothesis that water is the limiting factor for 

vegetative growth: the assumption made is that the control exerted over 

transpiration by soil moisture can be shifted to growth, so that it results in 

growth itself being controlled only by water availability. Consequently, the very 

basis of this model makes it appropriate only for simulations in arid and 

semiarid climate, excluding any environment where factors, other than water 

availability, control vegetation development. 

 

2.3.2 Carbon balance for LUE-model 

It has been hypothesized (Monteith, 1972; Monteith and Moss, 1977; Jarvis et 

al., 1983) that there should be a strong positive relationship between plant 

biomass production by terrestrial vegetation and absorbed photosynthetically 

active radiation in ideal conditions. The proportionality between dry matter 

production and light absorption is known as light use efficiency (LUE), and this 

relationship has been widely used in vegetation modelling (e.g. Knorr and 

Heimann, 1995; Ruimy et al., 1999; Running et al., 2000; Running et al., 2004; 

Montaldo et al., 2005). Stress conditions, such as water or nutrient deficit, tend 

to diminish LUE value (Green et al., 1985; Li et al., 2008) so that a correction 

factor has to be applied in these situations. 

The second tested model simulated the leaf biomass (Bl, kg DM m-2 ground) as 

follows: 
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where ε takes into account the reduction in LUE due to stress sources. In this 

study, because of the semiarid climate, the water deficit was considered 

dominant over other causes of stress; hence ε is calculated as (1-ζ), where ζ is 

water stress. Monthly averaged photosynthetically active radiation (PAR) was 

obtained from the incident global radiation provided by the World Radiation 

Data Centre, using a constant ratio of 0.48 MJ (PAR) MJ-1 (global radiation) 



(McCree, 1972). The total fraction of incident PAR absorbed by the canopy 

(FPAR) was estimated with the Beer’s law: 

 

 ( )( )mod0.95 1 expFPAR k LAI= ⋅ − − ⋅   (6) 

 

where k is the light extinction coefficient over canopy. LAImod is the value of LAI 

as simulated by the model. Details are given in Appendix A. As in the WUE-

model, Re, φl and kl are respiration, fractional leaf allocation and leaf natural 

decay factor respectively, and are described in Appendix A. 

 

Table 1. Range of parameters values considered for calibration and sensitivity 

analysis.  

Parameter

s 
Description Minimum bound Maximum bound Sourcesa 

LAImax Maximum LAI [m2 leaf m-2 vegetation] 1 2 1, 2 

SLA Specific leaf area [m2 leaf kg-1 DM] 1.5 2.5 3 

ω Conversion of CO2  to DM [kg DM kg-1 

CO2] 

0.4 0.7 4 

LUE Light use efficiency [kg C m-2 MJ-1] 1.8 2.2 5 

Imax Maximum interception [mm d-1] 0.5 5 6 

r1 Fraction of roots in upper soil layer [-] 0.1 0.4 7 

d1 Thickness of first soil layer [mm] 30 100 7 

d2 Thickness of second soil layer [mm] 500 1100 7 

ft Vegetation fractional cover 0.7 1 7 
a Sources: 1. Ceballos and Ruiz de la Torre (1979); 2. López-Serrano et al. 

(2000); 3. Awada et al. (2003); 4. De las Heras et al. (2013); 5.Yuan et al. 

(2007); 6. Crockford and Richardson (1990); 7. field campaigns. 

 

2.4 Sensitivity analysis 
To obtain an insight into the models’ functioning and to assess which 

parameters mostly affect their performances, a general sensitivity analysis 

(GSA) (Hornberger and Spear, 1980) was performed on the two models. Eight 

parameters for each model were taken into account for the sensitivity analysis 

(Table 1). The parameters were selected because either specific of the plant 

species and the study site or difficult to be estimated from literature. The GSA 



was based on the Monte Carlo technique; parameters values were randomly 

sampled from uniform distributions within ranges based on literature estimations 

or field observations, as specified in Table 1. 60,000 independent sets of 

parameters were generated; for each of them, LAI*mod time-series were 

simulated and the objective function Root Mean Square Error (RMSE) 

calculated, contrasting model outputs with LAINDVI (See section 3.1). 

A threshold, identified by an RMSE value of 0.2, divided the parameters values 

sets into two groups: behavioural parameters, which led to satisfactory 

simulations (with a RMSE equal or less than the adopted threshold), and non-

behavioural ones, that produced non-acceptable results (RMSE above the 

adopted threshold). A threshold of 0.2 was chosen because it was considered a 

reasonable RMSE, taking into account the models’ potential performance. In 

addition, as the objective was the comparison between the two models, the 

choice of the same reasonable value for both models reduced the importance of 

the value itself. The analysis resulted in 3958 behavioural and 56042 non-

behavioural simulations for the WUE-model, 16893 behavioural and 43107 non-

behavioural simulations for the LUE-model. As in Medici et al. (2012), the 

cumulative probability distributions of the two groups were obtained and the 

Kolmogorov-Smirnov two-sample test (KS) was used to evaluate the relative 

importance of each parameter’s contribution to the model simulation (Wade et 

al., 2001). The KS index test statistic is equivalent to the maximum vertical 

distance between the cumulative probability distributions for the behaviours and 

non-behaviours. The larger the value of the KS index, the greater the 

importance of the considered parameter in determining the simulation result. 

The sensitivity analysis found that the parameter that most influences the WUE-

model’s outputs is LAImax (KS index = 0.44), followed by Imax (KS = 0.31) and ft 

(KS = 0.28). In the case of the LUE-model, the most influential parameter is d1 

(KS = 0.23), followed by LAImax (KS = 0.2) and d2 (KS = 0.12). 

To test the models’ robustness and their capability in reproducing the satellite-

derived vegetation dynamics, a General Likelihood Uncertainty Estimation 

(GLUE) (Beven and Binley, 1992) was performed, taking into account only the 

behavioural sets of parameters. In this way, it was possible to calculate the 

likelihood-weighted distribution of the outputs corresponding to the accepted 

sets of parameters, and to compute the 5% and 95% GLUE bands. The GLUE 



bounds are depicted in Figure 1. As far as the percentage of LAINDVI data 

included within the GLUE bands, 63% of the “observed” data were included 

within the WUE-model GLUE bounds, while 53% of them lie between the LUE-

model bounds. Both models showed their lowest performances during autumn 

2005 and from autumn 2007 to spring 2008 (Figure 1). In the first case, the 

recovery of LAI*mod after the summer minimum was too slow compared to 

LAINDVI evolution; in the second case, there was a much stronger decline in 

LAI*mod values with respect to LAINDVI ones, starting in November and till April. 

The GSA and GLUE analyses provide the possibility of understanding the 

simulation capability of the models. In this case, they reveal similar behaviours 

of the two models and a general accordance with satellite NDVI information. 

Analysing the two periods of poorest accordance between simulated LAI*mod of 

both models and LAINDVI, they appear clearly linked with the drought periods. 

The low precipitation periods in the study region (Figure 2) are reflected in the 

satellite data as well, but the effect is not as marked as in the models’ 

simulations. 

 
Figure 1. LAINDVI, as calculated from the satellite-recorded NDVI, with the 90% 

GLUE bands for the WUE-model (A) and the LUE-model (B). 



 
Figure 2. Seasonal precipitation (mm). Prolonged periods of low precipitation 

are shown in red, while the rainiest seasons of the studied period are shown in 

blue. 

 

3 Results and discussion 
3.1 Satellite data evaluation 
Satellite EVI, NDVI, LAI and ET were analysed for the period 2000 – 2011 over 

the study area, averaging the spatial distributed data (320 cells in case of 250 m 

data spatial resolution, 80 cells in case of 500 m resolution) to obtain the 

evolution through time. A partial analysis of single cells was also performed, 

obtaining patterns that were similar to those of averaged datasets. This 

averaging process was nonetheless needed because at this stage the 

vegetation models, which refer to the satellite data as observational verification, 

work at an aggregate level. 

All four products showed a marked seasonal quasi-sinusoidal behaviour, but 

differences between them, and particularly involving the NDVI, were noticed 

regarding the timing of peaks. This is perhaps surprising, as leaf area and NDVI 

would be expected to be correlated. 

EVI peaks in April – May, followed by a decline until late autumn (Figure 3A). 

The peak of the index corresponds to the spring sprouting typical of Aleppo 

Pine in the Spanish area (Weinstein, 1989; Pardos et al., 2003), and the drop is 

likely related to the summer shedding of needles accumulated in the previous 1 

- 3 years (García-Plé et al., 1995; Borghetti et al., 1998; Calatayud et al., 2000; 

Muñoz et al., 2003). This suggests that EVI is responding to variations in LAI, 

as have been reported elsewhere (Gao et al., 2000; Huete et al., 2002). 



With respect to the observations of NDVI, this index is sensitive to the 

“greenness” of the target and reaches its annual maximum between November 

and February (Figure 3A), when plants have completely recovered from the 

summer drought and leaf chlorophyll content is high (Kyparissis et al., 1995; 

Baquedano and Castillo, 2006). Therefore, comparing EVI and NDVI series, it 

could appear that NDVI is shifted with respect to EVI. As a matter of fact, a 

second peak of NDVI occurs, presumably due to spring sprouting, and is 

correlated with EVI maximum. Hence NDVI is sensitive to different phenomena, 

recovery of pre-drought photosynthetic pigments level and growth of new 

shoots, with two distinct peaks. Similar contrasts between NDVI and EVI were 

found by Evrendilek and Gulbeyaz (2008) in Mediterranean forests in Turkey, 

although in that case, probably due to lower time resolution, NDVI double peaks 

were not identified, while just an apparent shift between the two indices was 

underlined. 

The scatter plot of NDVI and EVI (Figure 3B) indicates a low general correlation 

between these datasets. A t-test was performed, and the presence of a 

significant correlation between NDVI and EVI series rejected at the 5% level. 

However, when dividing the data sets into two groups, one referring to months 

from October to March, and the other referring to months from April to 

September, still no correlation was found between the two indices for the former 

data group, while a significant positive correlation (r = 0.66) was highlighted for 

the latter group of data, suggesting that in this period the two indices are 

influenced by the same phenomenon (i.e. spring sprouting and summer 

shedding). 

As far as the MOD15A2 product is concerned, the values of LAI provided, 

ranging between 0.2 and 0.8 (Figure 4), appear to be very low compared to 

values reported in literature (Sabaté et al., 2002; Sprintsin et al., 2007; Vicente-

Serrano et al., 2010; Molina and del Campo, 2012) for the same species in 

similar climatic conditions. Molina and Del Campo (2012), for example, report 

values of LAI = 0.5 and forest cover = 16% for high-intensity thinning treatment 

in Aleppo Pine forests. The vegetation in the study area is not as sparse as to 

justify similar LAI values. A likely explanation was found on analysing the data, 

where we found that the land cover classification, on which the algorithm used 

to compute LAI is based, does not correspond to the actual vegetation. The 



area is classified partly as shrublands and partly as savanna. A similar problem 

was detected by Sprintsin et al. (2009) for the Yatir Aleppo Pine forest located 

in an arid-semiarid climatic area. For these reasons it was decided to reject the 

MOD15A2 data and refer only to EVI and NDVI for the estimation of vegetation 

biomass. Nevertheless, the timing of maxima and minima of satellite-derived 

LAI, which corresponds to EVI’s one, appears to be correct considering the 

forest phenological cycle.  

The product MOD16A2 provides an estimation of actual ET, ranging between 

0.1 and 1.8 mm/d, and is statistically correlated with daily reference 

evapotranspiration (ETo), with a Pearson coefficient r = 0.79. However, this high 

correlation is suspect, considering the semiarid climate that determines water 

stress, and therefore a decrease in transpiration rates, during the periods of 

highest ETo. Considering that the MOD16A2 product that provides ET 

assessment is derived using MOD15A2 LAI product, and having rejected the 

MOD15A2 data, MOD16A2 is also considered potentially unreliable. 

Having rejected the MOD15A2 product for the study area, it was necessary to 

rely on LAINDVI, which was calculated from NDVI through the Beer’s law-derived 

approach. The apparent dependence of NDVI on leaf water content for 

Mediterranean forest is transferred to the derived index, making necessary a 

correction to the model’s results by water stress as described in Appendix A, to 

allow comparison with LAINDVI. The calculated LAINDVI differed from MOD15A2 

LAI product in timing (as between MODIS NDVI and LAI data) and in the range 

of variation, being LAINDVI higher in values and varying between 0.7 and 1.5 

(Figure 4A). The scatter plot (Figure 4B) suggests the presence of two distinct 

groups of pairs of data. The total Pearson correlation coefficient is negative and 

statistically significant (r = -0.37). When dividing, as for NDVI and EVI, the 

datasets into two groups (April to September and October to March) the 

correlations result 0.63 and -0.29 respectively. 



 
Figure 3. Comparison between EVI and NDVI, as obtained from satellite data: 

evolution in time (A) and scatter plot (B). In cyan blue, data referring to the 

months April to September; in yellow, data referring to the months October to 

March. 

 
Figure 4. Evolution in time of LAI (MODIS MOD15A2 product) and LAINDVI 

obtained from NDVI data (A) and scatter plot of the two variables (B). In cyan 



blue, data referring to the months April to September; in yellow, data referring to 

the months October to March. 

 

3.2 Models evaluation 
After evaluating the models’ sensitivity, the same 8 parameters analysed in the 

sensitivity analysis were calibrated for each model, using the satellite 

information. A genetic algorithm was used to minimize the relative RMSE 

between the simulated LAI*mod and the LAINDVI. 

A 4 months spin-up period was used, after which the system was found to be 

independent from the initial conditions. The simulations were finally run for the 

period June 2000 – June 2011, as satellite data were available for the same 

timespan. The final values assigned to parameters and constants, in order to 

run the simulations, are reported in Table 2. 

The application of the two dynamic vegetation models gave the results in Figure 

5 to Figure 8. Pearson correlation coefficients (r) between LAImod and EVI series 

were 0.45 for the WUE-model (Figure 5) and 0.57 for the LUE-model (Figure 7). 

When comparing LAI*mod and LAINDVI, r resulted in 0.61 and 0.60 for the WUE-

model and the LUE-model respectively (Figure 6 and Figure 8), while the RMSE 

was 0.181 in the first case and 0.162 in the second one. Two tailed t-distribution 

statistical tests were performed to test the existence of statistically significant 

correlations between the considered variables (i.e.: LAImod vs. EVI and LAI*mod 

vs. LAINDVI, for both WUE-model and LUE-model). All correlations were highly 

significant, with p<0.0001. Figure 9 shows the 11-year average of monthly 

LAI*mod and LAINDVI: seasonality is reasonably reproduced by both models, with 

LUE-model performing on average better. 

After the calibration, the models presented the same qualities and problems 

indicated by the sensitivity analysis. In addition, for the WUE-model two further 

periods of discrepancy were found: winter-spring 2002 and spring 2004. The 

high precipitation rates (Figure 2), in conjunction with high reference 

evapotranspiration, resulted in elevated simulated plant transpiration. 

Considering that the WUE-model assumes a direct dependence of biomass 

production on transpiration, the simulated LAI*mod exceeds satellite-derived 

LAINDVI. 



As a whole, the LUE-model performed best, with the lowest RMSE and the best 

agreement with averaged LAINDVI at monthly timescales for both amplitude and 

phase (Figure 9). This result is maybe unexpected, considering the fact that 

WUE-model has been specifically developed to be applied to arid and semiarid 

systems, and LUE should not be the driver of LAI in such environments. The 

better performance of the LUE-model might be explained by the fact that in this 

model the seasonal solar cycle reflected in PAR induces a seasonality on 

vegetation growth, concurring with the phenology of plant leaf onset. It is 

possible that this seasonality, modulated by water stress through the coefficient 

ε, is the driver of the good results and not much the fact that light availability is 

directly controlling plant growth. WUE-model has a less clear component of 

seasonality and tends to emphasize periods of water stress and above average 

water availability, which leads to a lower performance. 

In addition to the better performance showed in this paper in semiarid 

environments the LUE-model has the capability to simulate vegetation 

dynamics in a wide range of environments (Medlyn, 1998), and the potential to 

take into account different types of stresses through a change in the formulation 

of ε, the LUE correction factor. Finally, it has been extensively used and 

evaluated in literature. For these reasons, it is probably the best choice when 

looking for a parsimonious vegetation model to be coupled to a conceptual 

hydrological model. 

Although considered potentially unreliable because based on rejected MODIS 

LAI products, ET data provided by NASA were contrasted with the model 

simulations , to have the chance to better discuss the model results. The two 

sets of data presented the same seasonality, but two main differences could be 

identified: while satellite data did not show marked inter-annual variability in the 

peak values, both models presented significant differences between years, with 

the highest annual maximum value in 2002 and the lowest annual maximum 

value in 2005. In addition, simulations exhibited a relevant fall in ET values in 

August, when water stress reached its maximum values, while data processed 

from satellite information showed minor or no decline in the same period. These 

drops in the simulated ET values are sensible, considering the behaviour of 

plants at high levels of water stress, reinforcing the suspect of unreliability that 

lies on MOD16A2 data. 



Table 2. Model Parameters and Constants. 

Parameters and 

constants 
Description Values Sourcesa 

LAImax Maximum LAI [m2 leaf m-2 vegetation] 1.4 calib. 

kl Leaf natural decay factor [d-1] 0.00137 1, 2 

SLA Specific leaf area [m2 leaf kg-1 DM] 1.6 calib. 

Imax Maximum interception [mm d-1] 1 calib. 

θlim,θcr Limit (lim), critical (cr) soil moisture [m3 H2O m-3 soil] 0.109, 0.256 calc.(3) 

r1 Fraction of roots in upper soil layer [-] 0.1 calib. 

d1,d2 Thickness of soil layers [mm] 50, 950 calib. 

Ψae Air entry matric potential for loam [MPa] 1.43E-03 3 

Ψlim, Ψcr Matric potential at limit (lim), critical (cr) points [MPa] 3, 0.03 4 

n Porosity [m3 void m-3 soil] 0.451 3 

b Soil parameter for loam [-] 5.39 3 

ω Conversion of CO2  to DM [kg DM kg-1 CO2] 0.54 calib. 

ρv Density of water [kg m-3] 103 - 

LUE Light use efficiency [kg C m-2 MJ-1] 2.1 calib. 

ft Vegetation fractional cover 0.89 calib. 
aSources: 1. Ceballos and Ruiz de la Torre (1979); 2. Calatayud et al. (2000); 3. 

Clapp and Hornberger (1978); 4. Laio et al. (2001). 

 

 
Figure 5. Results of the WUE-model where mod l tLAI B SLA f= ⋅ ⋅ . Evolution in 

time and scatterplot. 



 
Figure 6. Results of the WUE-model, where LAI*mod is LAImod corrected by 

water stress; LAINDVI is the LAI obtained from NDVI as in Gigante et al. (2009). 

Evolution in time and scatterplot. 

 

 
Figure 7. Results of the LUE-model, where mod l tLAI B SLA f= ⋅ ⋅ . Evolution in 

time and scatterplot. 



 
Figure 8. Results of the LUE-model, where LAI*mod is LAImod corrected by water 

stress; LAINDVI is the LAI obtained from NDVI as in Gigante et al. (2009). 

Evolution in time and scatterplot. 

 

 



Figure 9. Satellite-derived LAINDVI and modelled LAI*mod averaged for each 

month of the year for the period 2000 to 2011, with bars indicating ±1 standard 

deviation, for the WUE-model (A) and for the LUE-model (B). 

 

4 Conclusions 
Vegetation-related satellite products for a semiarid region of Spain were 

analysed in order to assess their relation with vegetation state and 

development. NDVI showed a strong dependence on soil moisture and leaf 

water content, explainable by the impact of water-stress on chlorophyll content 

in Aleppo Pine leaves. The EVI proved to be strongly related to biomass 

dynamics and to LAI in particular. As for the LAI values provided by LP DAAC, 

they are too low relative to published ranges for the same species in similar 

climatic conditions. A possible explanation for this difference was found in the 

wrong land cover classification used by the algorithm that provides an 

estimation of this index, based on satellite data. An in-depth analysis of satellite 

information prior to its use appears therefore crucial because, while well 

performing at a global scale, at a regional or local extent it may present 

important issues. 

Once assessed the reliability of remote sensing EVI and NDVI, two 

parsimonious vegetation models, namely the WUE-model and the LUE-model, 

were tested in order to evaluate their capacities to reproduce the information 

gathered from the satellite vegetation indices. The two approaches proved 

capable of simulating the vegetation dynamics and performed similarly, with the 

LUE-model achieving slightly better results, particularly during the periods of 

concurrent high available soil moisture and high ETo. In these cases the WUE-

model, linking growth to transpiration, overestimates biomass. Furthermore, 

considering that the WUE-model is specific for water limited environments only, 

while the LUE-model can be adapted to other types of ecosystems, the use of 

the latter is recommended when seeking a broadly applicable, simple 

vegetation model to be coupled with a conceptual hydrological model. 

Nonetheless, the WUE-model may be considered a valid option when dealing 

with water-limited systems, provided that the limits of this model, identified in 

the present study, are taken into account.  



The research presented helps identifying the correct strategy to use remotely 

sensed data on Mediterranean ecosystems for model validation purposes, 

highlighting possible problems in some remotely sensed products that are 

commonly used in ecohydrological applications. Moreover, the performed 

simulations allow to identify the level of reliability of the vegetation models 

selected. 

 

Appendix A: Carbon Balance Terms 
The carbon balance equations specific for each tested model are discussed in 

section 2.3. In this appendix the common terms for both models will be 

presented. 

Maintenance respiration (Re, kg DM m-2 d-1) is calculated as in Sitch et al. 

(2003) based on tissue specific C:N ratios, air temperature, tissue biomass and 

phenology. 

Part of the daily net primary production (NPP, kg DM m-2), namely 

( )RevT WUE ρ ω⋅ ⋅ ⋅ −  for the WUE-model and ( )ReLUE PAR FPARe⋅ ⋅ ⋅ −  for the 

LUE-model, is allocated to leaves through the fractional leaf allocation factor φ: 

 

 
max

1 LAI
LAI

ϕ = −   (A1) 

 

where LAI is the simulated leaf area index within vegetated areas and LAImax 

(m2 leaf m-2 vegetated area) is the maximum LAI supported by the system, 

considering the plant species and the type of environment. 

Leaf area index within vegetated areas is simulated through the specific leaf 

area factor (SLA, m2 leaf kg-1 leaf DM): 

 

 lLAI B SLA= ⋅   (A2) 

 

To obtain ground based leaf area index (LAImod, m2 leaf m-2 ground) it is 

necessary to scale LAI by the vegetation fractional cover: 

 

 mod tLAI LAI f= ⋅   (A3) 



 

In addition, to make LAImod comparable with the LAI obtained from NDVI, 

average plant water stress of the previous 10 days ( 10ζ ) is taken into account 

as in Williams and Albertson (2005): 

 

 ( )10mod modI* 1LA LAI ζ= ⋅ −   (A4) 

 

This is because NDVI is influenced by leaf water content (Dawson et al., 1998) 

because of changes in chlorophyll content, as discussed in section 2.3. 

The water stress is obtained as in Porporato et al. (2001) 
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  (A5) 

 

where index i (=1 or 2) identifies the shallower or the deeper soil layer. 

Vegetation total water stress ζ is calculated as ( ) ( ) ( )1 1 2 11H r H rζ ζ⋅ + ⋅ − . 

 

Appendix B: Hydrological processes 
Water balance is performed daily for the two superimposed layers into which 

the effective root zone is divided: a surficial layer, with thickness d1 (mm) and 

water content H1 (mm H2O), and a deep layer, with thickness d2 (mm) and water 

content H2 (mm H2O), similar to Scanlon and Albertson (2003): 

 

 ( )1
1

dH P I D E T
dt

= − − − −   (B1) 

 

 2
2

dH D L T
dt

= − −   (B2) 

 



where t is time (d), P is precipitation, I is leaf interception, D is vertical water flux 

from the first to the second soil compartment, L is leakage, E is bare soil 

evaporation, and T is plant transpiration, all with dimensions of mm d-1 per unit 

of ground area. Subscripts 1 and 2 refer to surficial and deep soil layer 

respectively. The process of bare soil evaporation has access to the soil 

moisture of the surficial zone, while plants can use water from both zones, in 

proportion to the root density in each one. 

Interception follows: 

 

 ( )maxmin ,t tI P f I f J= ⋅ ⋅ −   (B3) 

 

where Imax is the maximum possible leaf water interception (mm d-1), ft is the 

fractional cover and J (mm) is the interception storage, which is subjected to 

evaporation: 

 

 ( )min ,o t
dJ I ET f J
dt

= − ⋅   (B4) 

 

Vertical soil water flux (D) and leakage (L) are calculated as “overflows” from 

the first and the second soil compartments respectively, as in the cascading 

bucket models: when water thickness of a soil layer exceeds the maximum 

storage capacity for that zone (H1max, H2max), the excess of water flows to the 

following soil layer (D, from layer 1 to layer 2) and percolates out of the effective 

root depth (L, when storage capacity of layer 2 is exceeded). Bare soil 

evaporation is simulated as: 

 

 ( )1o b bE ET f Hb= ⋅ ⋅   (B5) 

 

where 1b tf f= −  is the bare soil fraction and βb is the bare soil water limitation 

function. 

Plant transpiration (T=T1+T2) is modelled taking into account the reduction of 

available energy due to evaporation of intercepted water: 

 



 ( )( ) ( ) ( )1 mod 1 1min , min ,1o t o t tT ET f ET f J LAI H rβ= ⋅ − ⋅ ⋅ ⋅ ⋅   (B6) 

 

 ( )( ) ( ) ( ) ( )2 mod 2 1min , min ,1 1o t o t tT ET f ET f J LAI H rβ= ⋅ − ⋅ ⋅ ⋅ ⋅ −   (B7) 

 

where LAImod is the simulated leaf area index, βt is the water limitation function 

for trees and r1 is the fraction of tree roots in the upper soil layer. Reference 

evaporation (ETo, mm d-1) was estimated following the Hargreaves equation as 

calibrated in the study area by Gavilán et al. (2006): 

 

 ( ) max min0.0023 17.8o aET R Temp Temp Temp= ⋅ ⋅ + ⋅ −   (B8) 

 

where Ra is the water equivalent of the extraterrestrial radiation in mm d-1 (Allen 

et al., 1998); Temp, Tempmax and Tempmin are the daily mean, maximum and 

minimum air temperature (Cº) where Temp is the average of Tempmax and 

Tempmin. The soil water limitation functions are 
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where subscript j (= b or t) indicates bare soil or tree land cover respectively, 

and it is linked to exponent m (= 1 for bare soil; = 3 for vegetation). Subscript i 

(= 1 or 2) refers to the soil layer involved. Hlim and Hcr are the water storages 

(mm) corresponding respectively to the wilting point and the critical point, below 

which transpiration is limited (Laio et al., 2001). Water storage values are 

obtained multiplying soil depth (d1 and d2) by soil moisture. The power function 

proposed by Clapp and Hornberger (1978) is used as soil water retention 

relationship to obtain soil moisture (θ) at specific soil states: 

 

 
b

ae
nψ ψ
θ
 = ⋅ 
 

  (B10) 



 

where Ψ (MPa) is the matric potential at the analyzed state, Ψae (MPa) is the air 

entry matric potential, n is porosity, b is an index related to porosity distribution 

and θ (m3 H2O m-3 soil) is the volumetric soil moisture. For wilting and critical 

points, Ψ assumes the values 3 and 0.03 MPa respectively (Laio et al., 2001). 
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