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Abstract

The present Ph.D. thesis is devoted to study, develop and apply approaches com-
monly used in chemometrics to the emerging field of systems biology. Existing
procedures and new methods are applied to solve research and industrial ques-
tions in different multidisciplinary teams. The methodologies developed in this
document will enrich the plethora of procedures employed within omic sciences
to understand biological organisms and will improve processes in biotechnological
industries integrating biological knowledge at different levels and exploiting the
software packages derived from the thesis.

This dissertation is structured in four parts. The first block describes the frame-
work in which the contributions presented here are based. The objectives of the
two research projects related to this thesis are highlighted and the specific topics
addressed in this document via conference presentations and research articles are
introduced. A comprehensive description of omic sciences and their relationships
within the systems biology paradigm is given in this part, jointly with a review
of the most applied multivariate methods in chemometrics, on which the novel
approaches proposed here are founded.

The second part addresses many problems of data understanding within metabo-
lomics, fluxomics, proteomics and genomics. Different alternatives are proposed
in this block to understand flux data in steady state conditions. Some are based
on applications of multivariate methods previously applied in other chemometrics
areas. Others are novel approaches based on a bilinear decomposition using el-
emental metabolic pathways, from which a GNU licensed toolbox is made freely
available for the scientific community. As well, a framework for metabolic data
understanding is proposed for non-steady state data, using the same bilinear de-
composition proposed for steady state data, but modelling the dynamics of the
experiments using novel two and three-way data analysis procedures. Also, the
relationships between different omic levels are assessed in this part integrating
different sources of information of plant viruses in data fusion models. Finally,
an example of interaction between organisms, oranges and fungi, is studied via
multivariate image analysis techniques, with future application in food industries.
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The third block of this thesis is a thoroughly study of different missing data prob-
lems related to chemometrics, systems biology and industrial bioprocesses. In the
theoretical chapters of this part, new algorithms to obtain multivariate exploratory
and regression models in the presence of missing data are proposed, which serve
also as preprocessing steps of any other methodology used by practitioners. Re-
garding applications, this block explores the reconstruction of networks in omic
sciences when missing and faulty measurements appear in databases, and how cal-
ibration models between near infrared instruments can be transferred, avoiding
costs and time-consuming full recalibrations in bioindustries and research labora-
tories. Finally, another software package, including a graphical user interface, is
made freely available for missing data imputation purposes.

The last part discusses the relevance of this dissertation for research and biotech-
nology, including proposals deserving future research.
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Resumen

Esta tesis doctoral se centra en el estudio, desarrollo y aplicación de técnicas
quimiométricas en el emergente campo de la biología de sistemas. Procedimientos
comúnmente utilizados y métodos nuevos se aplican para resolver preguntas de
investigación en distintos equipos multidisciplinares, tanto del ámbito académico
como del industrial. Las metodologías desarrolladas en este documento enrique-
cen la plétora de técnicas utilizadas en las ciencias ómicas para entender el fun-
cionamiento de organismos biológicos y mejoran los procesos en la industria biotec-
nológica, integrando conocimiento biológico a diferentes niveles y explotando los
paquetes de software derivados de esta tesis.

Esta disertación se estructura en cuatro partes. El primer bloque describe el marco
en el cual se articulan las contribuciones aquí presentadas. En él se esbozan los ob-
jetivos de los dos proyectos de investigación relacionados con esta tesis. Asimismo,
se introducen los temas específicos desarollados en este documento mediante pre-
sentaciones en conferencias y artículos de investigación. En esta parte figura una
descripción exhaustiva de las ciencias ómicas y sus interrelaciones en el paradigma
de la biología de sistemas, junto con una revisión de los métodos multivariantes
más aplicados en quimiometría, que suponen las pilares sobre los que se asientan
los nuevos procedimientos aquí propuestos.

La segunda parte se centra en resolver problemas dentro de metabolómica, fluxómi-
ca, proteómica y genómica a partir del análisis de datos. Para ello se proponen
varias alternativas para comprender a grandes rasgos los datos de flujos metabóli-
cos en estado estacionario. Algunas de ellas están basadas en la aplicación de
métodos multivariantes propuestos con anterioridad, mientras que otras son téc-
nicas nuevas basadas en descomposiciones bilineares utilizando rutas metabólicas
elementales. A partir de éstas se ha desarrollado software de libre acceso para la co-
munidad científica. A su vez, en esta tesis se propone un marco para analizar datos
metabólicos en estado no estacionario. Para ello se adapta el enfoque tradicional
para sistemas en estado estacionario, modelando las dinámicas de los experimentos
empleando análisis de datos de dos y tres vías. En esta parte de la tesis también
se establecen relaciones entre los distintos niveles ómicos, integrando diferentes
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fuentes de información en modelos de fusión de datos. Finalmente, se estudia la
interacción entre organismos, como naranjas y hongos, mediante el análisis multi-
variante de imágenes, con futuras aplicaciones a la industria alimentaria.

El tercer bloque de esta tesis representa un estudio a fondo de diferentes problemas
relacionados con datos faltantes en quimiometría, biología de sistemas y en la
industria de bioprocesos. En los capítulos más teóricos de esta parte, se proponen
nuevos algoritmos para ajustar modelos multivariantes, tanto exploratorios como
de regresión, en presencia de datos faltantes. Estos algoritmos sirven además como
estrategias de preprocesado de los datos antes del uso de cualquier otro método.
Respecto a las aplicaciones, en este bloque se explora la reconstrucción de redes en
ciencias ómicas cuando aparecen valores faltantes o atípicos en las bases de datos.
Una segunda aplicación de esta parte es la transferencia de modelos de calibración
entre instrumentos de infrarrojo cercano, evitando así costosas re-calibraciones en
bioindustrias y laboratorios de investigación. Finalmente, se propone un paquete
software que incluye una interfaz amigable, disponible de forma gratuita para
imputación de datos faltantes.

En la última parte, se discuten los aspectos más relevantes de esta tesis para la
investigación y la biotecnología, incluyendo líneas futuras de trabajo.
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Resum

Aquesta tesi doctoral es centra en l’estudi, desenvolupament, i aplicació de tèc-
niques quimiomètriques en l’emergent camp de la biologia de sistemes. Proced-
iments comúnment utilizats i mètodes nous s’apliquen per a resoldre preguntes
d’investigació en diferents equips multidisciplinars, tant en l’àmbit acadèmic com
en l’industrial. Les metodologies desenvolupades en aquest document enriquixen la
plétora de tècniques utilitzades en les ciències òmiques per a entendre el funciona-
ment d’organismes biològics i milloren els processos en la indústria biotecnològica,
integrant coneixement biològic a distints nivells i explotant els paquets de software
derivats d’aquesta tesi.

Aquesta dissertació s’estructura en quatre parts. El primer bloc descriu el marc
en el qual s’articulen les contribucions ací presentades. En ell s’esbossen els ob-
jectius dels dos projectes d’investigació relacionats amb aquesta tesi. Així mateix,
s’introduixen els temes específics desenvolupats en aquest document mitjançant
presentacions en conferències i articles d’investigació. En aquesta part figura
una descripació exhaustiva de les ciències òmiques i les seues interrelacions en
el paradigma de la biologia de sistemes, junt amb una revisió dels mètodes mul-
tivariants més aplicats en quimiometria, que supossen els pilars sobre els quals
s’assenten els nous procediments ací proposats.

La segona part es centra en resoldre problemes dins de la metabolòmica, fluxòmica,
proteòmica i genòmica a partir de l’anàlisi de dades. Per a això es proposen diverses
alternatives per a compendre a grans trets les dades de fluxos metabòlics en estat
estacionari. Algunes d’elles estàn basades en l’aplicació de mètodes multivari-
ants propostos amb anterioritat, mentre que altres són tècniques noves basades
en descomposicions bilineals utilizant rutes metabòliques elementals. A partir
d’aquestes s’ha desenvolupat software de lliure accés per a la comunitat científica.
Al seu torn, en aquesta tesi es proposa un marc per a analitzar dades metabòliques
en estat no estacionari. Per a això s’adapta l’enfocament tradicional per a sistemes
en estat estacionari, modelant les dinàmiques dels experiments utilizant anàlisi de
dades de dues i tres vies. En aquesta part de la tesi també s’establixen relacions
entre els distints nivells òmics, integrant diferents fonts d’informació en models de
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fusió de dades. Finalment, s’estudia la interacció entre organismes, com taronges
i fongs, mitjançant l’anàlisi multivariant d’imatges, amb futures aplicacions a la
indústria alimentària.

El tercer bloc d’aquesta tesi representa un estudi a fons de diferents problemes
relacionats amb dades faltants en quimiometria, biologia de sistemes i en la indús-
tria de bioprocessos. En els capítols més teòrics d’aquesta part, es proposen nous
algoritmes per a ajustar models multivariants, tant exploratoris com de regressió,
en presencia de dades faltants. Aquests algoritmes servixen ademés com a estratè-
gies de preprocessat de dades abans de l’ús de qualsevol altre mètode. Respecte
a les aplicacions, en aquest bloc s’explora la reconstrucció de xarxes en ciències
òmiques quan apareixen valors faltants o atípics en les bases de dades. Una segona
aplicació d’aquesta part es la transferència de models de calibració entre instru-
ments d’infrarroig proper, evitant així costoses re-calibracions en bioindústries i
laboratoris d’investigació. Finalment, es proposa un paquet software que inclou
una interfície amigable, disponible de forma gratuïta per a imputació de dades
faltants.

En l’última part, es discutixen els aspectes més rellevants d’aquesta tesi per a la
investigació i la biotecnologia, incloent línies futures de treball.
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Prologue





Chapter 1

Justification, Objectives and
Contributions

1.1 MultiScaleS and SynBioFactory projects

The present thesis has been developed with funding from a research personnel
formation (FPI)) grant from the Spanish Ministry of Economy from 2012 to 2016.
This grant was related to a project entitledMulti-scale inference, monitoring, opti-
mization and control: from engineered cells to bioreactors (MultiScaleS) (reference
DPI2011-28112-C04-02), which was carried out between 2012 and 2014. Multi-
ScaleS is now continued through another, still in progress, project called Synthetic
biology for bioproduction enhancement: design, optimization, monitoring and con-
trol (SynBioFactory) (reference DPI2014-55276-C5-1R), which will last until 2017.
MultiScaleS and SynBioFactory are projects coordinated among different research
groups in different sites across Spain: Multivariate Statistical Engineering Group
(GIEM) and Group of Control of Complex Systems (GCSC) from the Techni-
cal University of Valencia (UPV), BioProcess Engineering Group (BPEG) from
Marine Research Institute - Spanish Research Council (IIM-CSIC), and Group
of Statistics and Stochastic Processes (GSSP) from the Technical University of
Cartagena (UPCT). Biopolis S.L., a tailor-made biotechnology company, acted as
an active partner in both research projects.

White (industrial), green (agriculture) and red (health) biotechnology use en-
hanced and/or engineered microorganisms as cell factories to produce high-added
values specialty metabolites (e.g. amino acids, vitamins, and food additives, biofu-
els, biofilms and tissues). Biotechnological engineering is of paramount importance
for the future of health, chemical, food and other process industries. Yet, the cur-
rent state-of-the-art, characterized by uncertainty and lack of in-depth real-time
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knowledge about the process state, forces industry to operate their bioprocesses
at too conservative, suboptimal and not intensified regimes, so as to avoid unde-
sirable microorganism physiological states. Such practices cause problems such as
poor efficiency, lack of process stability and increased waste of product.

In order to surmount these difficulties, there is a need of identifying desirable me-
tabolic (physiological) states (such as ones of high productivity) and of developing
bioreactor optimization, monitoring and control methods so as to lead the system
to the desired state in the course of a process, while considering the metabolic state
and constraints. This implies considering processes in a wide range of temporal
scales (from seconds for metabolic fluxes, minutes for the aggregated population
and extracellular metabolites dynamics, to hours for genetic regulation) and spa-
tial ones (from the intracellular dynamics to the microorganisms population inside
the bioreactor).

With the new paradigm established by systems biology, it is unsufficient to anal-
yse a single biological level (metabolic) to fully understand the behaviour of living
organisms. For this, other biological levels have to be studied (genomic, transcrip-
tomic, proteomic) to find relationships among them and describe systematically
and accurately how changes ocurred at a single level are transferred as a cascade
to subsequent biological layers.

Within the systems and synthetic bioprocesses context, the aim of MultiScaleS was
to provide systematic methods, tools and protocols for inference, real-time mon-
itoring, optimization and feedback control of biosystems by means of multiscale
strategies, spanning from micro (e.g. metabolic, protein and genetic networks) to
macro scales (e.g. population macroscopic dynamics as used in the context of biore-
actors monitoring and control). MultiScaleS expected results were instrumental
to achieve end products inside specifications and optimal productivity while oper-
ating at intensified regimes. These results were also expected to be applied within
other industrial contexts characterized by muti-scale dynamics and coordination
of dynamical agents.

The project focused on:

1. Investigating, improving and exploiting topics concerning multi-scale model
building and analysis methods and tools, including systematic model build-
ing and experimental design, grey modelling, scaling-up, inference in biolog-
ical systems, and multicellular coordinated dynamics analysis.

2. Novel multi-scale optimization and control methods, including new meta-
heuristics for optimization and optimal control in metabolic engineering, op-
timal integrated design and control (steps towards synthetic biology), model-
based software sensors (observers) accounting for multiple scales, bioreactor
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control considering the metabolic state and constraints, and control of cell
interactions.

3. Application to biotechnological industrial production, with special emphasis
on how low level biological metabolic states can be controlled at the biore-
actor level.

The continuation of the previous project, SynBioFactory, is an application driven
project targetting several challenging methodological problems in the interface
between synthetic biology (SynBio), systems engineering, and bioprocess engi-
neering. The project will apply SynBio for bioproduction enhancement, with an
emphasis on the role that engineering design methods can play exploiting opti-
mization, monitoring and feedback control. Its ultimate goal is to help SynBio
to become an engineering discipline. SynBioFactory, thus, emphasizes engineering
principles and methodology in designing, constructing and characterizing biologi-
cal systems from traditional genetic engineering research. Within this framework,
SynBioFactory addresses two practical problems in the bioprocess industry that
have the common final objective of understanding and driving the microorganism
to the desired state in order to maximise yield and productivity:

1. Develop efficient production systems for protein synthesis and expression,
with emphasis on control of protein expression variability and host-circuit
interaction.

2. Rational design and optimization of synthetic pathways for the synthesis
of commodities, with emphasis on methods and circuits to drive metabolic
fluxes so as to maximise yield and productivity, and to manage metabolic
burden.

SynBioFactory does not forget neither the relevance of the methodological as-
pects, nor the current SynBio need of availability of biological parts (biobricks),
biological devices, and software tools to decouple design from implementation.
Therefore, transversal to the executive goals above, two methodological ones will
be considered:

1. Fostering SynBio to become engineering by making the process of designing
more systematic (standarized), modular, predictable, robust, scalable, and
efficient.

2. Implementation of software methods and biobricks on an open-source, public-
access basis.

To achieve these goals, SynBioFactory uses methods from the areas of mathe-
matical optimization, systems engineering and control, and multivariate statistics.
These methods are the essential enabling technologies that, along with metabolic
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engineering and DNA synthesis and assembly, allow to provide proper solutions to
the previous challenges.

1.2 Objectives of this thesis

In this thesis, some of the previous project aims are addressed, specifically the
goals concerning the model reduction and analysis of biological systems, and the
application of these methods to biotechnological production, providing tools for
data understanding. The objectives of this thesis are: i) build models integrat-
ing information from different biological levels, ii) develop missing data (MD)
methods and outlier detection and correction procedures in systems biology and
bioprocesses, and iii) address near infrared (NIR) spectroscopy and image analysis
problems in bioprocesses.

Objective 1: Build models integrating information from different bio-
logical levels

To understand the behaviour of microorganisms, and relate the biological informa-
tion at different levels, multivariate models are fitted to different kinds of biodata.
In particular, this thesis focuses on:

• Developing hybrid-modelling methodologies to combine first principles and
data-driven models.

• Fitting latent variable and soft modelling methods to build small metabolic
models of steady state flux data sets.

• Studying elemental pathways in metabolic networks and developing new
methods for relating their activation patterns with the behaviour of the or-
ganism.

• Analysing non-steady state metabolic data and proposing a new framework
to establish differences between experimental conditions.

• Fusing biological information at different levels to identify functional modules
in networks.

Objective 2: Develop missing data methods and outlier detection and
correction procedures in systems biology and bioprocesses

One of the big challenges in data analysis in any research field is how to deal
with missing and faulty data. Especially in systems biology this problem is of
paramount importance, since experiments at small scale and large scale biopro-
cesses are controlled using instruments, which may eventually fail during data
acquisition. In this area, the following issues are addressed:
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• Building exploratory and predictive models using incomplete data sets.

• Inferring biological networks with missing values and outliers.

• Transferring missing data imputation methods to the scientific community
via user-friendly software.

Objective 3: Address NIR and image analysis problems in bioprocesses.

The ultimate goal of MultiScaleS and SynBioFactory consist of developing method-
ologies to analyse data from bioprocesses. For this, some problems commonly faced
in (bio)industries at this level are studied in this thesis. The interest is focused
on:

• Solving the problem of calibration transfer between near infrared instru-
ments.

• Applying multivariate models to hyperspectral images for discrimination
purposes.

Regarding the Objective 1, two contributions are presented in Chapter 5, adressing
the first two bullet points. Instead of working only with first principles information
or only with experimental measurements, a grey modelling approach is proposed
in this work, combining a given metabolic model of Pichia pastoris and a set of
extracelullar fluxes measured in different cultures. Using this modelling the coher-
ence between both sources of information is assessed and the internal fluxes can
be inferred using monte carlo (MC) sampling. Afterwards, different multivariate
exploratory approaches are applied. On the one hand, principal component anal-
ysis (PCA) enhanced by missing data methods in the context of exploratory data
analysis (MEDA) are used in order to find the orthogonal pathways representing
the main traces of flux data. On the other hand, a soft modelling method called
multivariate curve resolution (MCR) is applied on the same data set, including
biological constraints to improve the interpretability of the pathways. Both works
are a collaboration with the GCSC and the bio-based company Biopolis.

In Chapters 6 and 7, steady and non-steady state fluxes, respectively, are anal-
ysed using a new framework modelling based on elementary flux mode bilinear
decomposition. This methodology consists of projecting the flux data in the set
of elementary modes (EMs) of the metabolic network, which are the simplest
pathways in networks from a stoichiometric point of view. Chapter 6 presents
the principal elementary mode analysis (PEMA) method and toolbox, a PCA-like
method to find the common set of active EMs across different experiments. In
Chapter 7, dynamic elementary mode analysis (dynEMA) and dynamic elemen-
tary mode regression discriminant analysis (dynEMR-DA) are described, which
are exploratory and regression techniques, respectively, to non-steady state flux
analysis integrating time dynamics using N -way modelling. The first work is a col-
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laboration between GIEM group and the Systems Biology Engineering group at
the New University of Lisbon (UNL), and it has been developed during a research
stay in 2014, under the supervision of Prof. Rui Oliveira. The second contribution
is a collaboration among different universities: UPV, University of Amsterdam
(UvA), Free University of Amsterdam and University of Groningen. This work
has been done during a 4-month research stay at UvA, within the BioData Anal-
ysis group, and under the supervision of Dr. Huub C.J. Hoefsloot and Prof. Age
K. Smilde.

A data fusion approach is presented in Chapter 8, combining different sources
of biological information: genomic, proteomic and phenotypic. This work seeks
to model the effect that mutations performed at the ribonucleic acid (RNA) of
Potyviruses provoke in the protein-protein interaction network (PPIN) of the or-
ganism, and how the two biological layers affect the physiological performance
of the virus. The two contributions associated to this chapter represent a joint
project among GIEM, GCSC and the Evolutionary Systems Virology group at the
Institute of Cellular and Molecular Plant Biology - CSIC (IBMCP-CSIC).

Different works are presented to cover the second objective of the present the-
sis. The first work addressing the missing data problem is described in Chapter
10, where new methods for PCA model building with missing data are presented
and compared to other state-of-the-art techniques. The proposed methods are
regression-based approaches adapted from the PCA model exploitation context to
model building. Afterwards, these novel methods are integrated in a MATLAB
graphical user-friendly interface (GUI) called Missing Data Imputation (MDI)
Toolbox in Chapter 12. This way, these novel competitive approaches are com-
bined with a graphical interface in MATLAB platform, allowing researchers to
impute their missing values in data sets in a straightforward way. Also within ex-
ploratory techniques, these methods are adapted to a maximum-likelihood (ML)
environment in Chapter 13, where they are integrated in maximum likelihood PCA
(MLPCA) algorithm. The accuracy in the reconstruction of metabolic flux data
sets with missing measurements is tested, among other data sets, in this chapter.
Also, NIR and Fourier transformed infrared (FTIR) microspectroscopic data sets
are analysed in Chapters 10 and 13, respectively. Finally, the imputation methods
presented in Chapter 10 are adapted to a predictive environment in Chapter 15,
when fitting partial least squares (PLS) regression algorithms. Contributions in
Chapters 10, 12, 13 and 15 are a collaboration between GIEM and the Catholic
University of Valencia (UCV).

The effect of both missing measurements and outliers is addressed in Chapter 11.
In this work, a new methodology is presented to preprocess biological data as
a prior step of network inference, particularly for metabolic and gene regulatory
networks. This way, the effect of the imputation and the outlier correction is
assessed jointly with a state of the art network inference method based on mutual
information distance and entropy reduction (MIDER). MIDER uses information
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theory concepts such as entropy associated to a variable or common information
between two variables. This contribution was achieved during a 2-week research
stay at the IIM-CSIC in Vigo (Spain), and respresents a collaboration between
GIEM and BPEG, both groups members of MultiScaleS and SynBioFactory.

The third objective has been attained via two collaborative projects between
parties outside MultiScaleS and SynbioFactory projects. The first one, address-
ing the calibration transfer problem, is a collaboration with Shell Global Solu-
tions B.V. One of the most common problems in experimental sciences, and also
(bio)industries, consists of transferring calibration models, developed on one in-
strument, to another one. To provide an efficient solution to this problem, avoiding
time-consuming complete recalibrations, different methods are proposed in Chap-
ter 14. Among these approaches, two are based on the results of Chapters 10 and
13.

The second chapter related to Objective 3 is a collaboration between GIEM and the
Valencian Institute for Agricultural Research (IVIA). This food industry project
is aimed at developing multivariate discriminant models to detect early stages of
rottenness in visible/NIR (VIS/NIR) hyperspectral images taken from oranges.
For this, different orange and tangerine varieties are used in an experiment versus
control study to elucidate which wavelengths of an hyperspectral camera are the
most relevant ones for discrimination between groups. The final output of this work
consists of developing on-line camera systems in fruit packinghouses to remove the
slightly decayed fruit from the chain before storing them. The results of this study
are presented in Chapter 9.

Based on the previous objectives, the thesis is structured as follows. Within the
present part Prologue, the content of the thesis is outlined in Chapter 1, an in-
troduction to chemometrics and systems biology are presented in Chapters 2 and
3, respectively, and some comments on the materials used in the thesis are made
in Chapter 4. In Part II: Modelling biological organisms, the chapters covering
the first objective are presented, including also the multivariate modelling of hy-
perspectral images in food industry (Chapter 7). In Part III: Missing data, the
contributions addressing Objective 2 are presented in chapter form, including the
NIR calibration transfer problem presented in Chapter 14. Finally, the conclusions,
relevance and future work of this thesis are included in the last part Epilogue.
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1.3 Contributions

1.3.1 Articles in peer-reviewed journals

[1] González-Martínez, J.M., Folch-Fortuny, A., Llaneras, F., Tortajada, M., Picó,
J. & Ferrer. A. Metabolic flux understanding of Pichia pastoris grown on hetero-
geneous culture media. Chemometrics and Intelligent Laboratory Systems 134,
89-99 (2014).

[2] Bosque, G., Folch-Fortuny, A., Picó, J., Ferrer, A. & Elena, S.F. Topology
analysis and visualization of Potyvirus protein-protein interaction network, BMC
Systems Biology 8:129 (2014). Highly accessed article.

[3] Folch-Fortuny, A., Tortajada, M., Prats-Montalbán, J.M., Llaneras, F., Picó,
J. & Ferrer, A. MCR-ALS on metabolic networks: Obtaining more meaningful
pathways. Chemometrics and Intelligent Laboratory Systems 142, 293-303 (2015).

[4] Folch-Fortuny, A., Arteaga, F. & Ferrer, A. PCA model building with missing
data: New proposals and a comparative study. Chemometrics and Intelligent
Laboratory Systems 146, 77-88 (2015). #8 in TOP25 from July-September 2015.

[5] Folch-Fortuny, A., Villaverde, A.F., Banga, J.R. & Ferrer, A. Enabling net-
work inference methods to handle missing data and outliers. BMC Bioinformatics
16:283 (2015).

[6] Folch-Fortuny, A., Bosque, G., Picó, J., Ferrer, A. & Elena, S.F. Fusion of ge-
nomic, proteomic and phenotypic data: the case of potyviruses, Molecular BioSys-
tems 12, 253-261 (2016).

[7] Folch-Fortuny, A., Marques, R., Isidro, I., Oliveira, R. & Ferrer, A. Principal
elementary mode analysis (PEMA). Molecular BioSystems 12, 737-746 (2016).
2016 Hot Article.

[8] Folch-Fortuny, A., Arteaga, F. & Ferrer, A. Missing Data Imputation Tool-
box for MATLAB, Chemometrics and Intelligent Laboratory Systems 154, 93-100
(2016).

[9] Folch-Fortuny, A., Arteaga, F. & Ferrer, A. Assessment of maximum likelihood
PCA missing data imputation. Journal of Chemometrics 30, 386-393 (2016).

[10] Folch-Fortuny, A., Prats-Montalbán, J.M., Cubero, S., Blasco, J. & Ferrer,
A. VIS/NIR hyperspectral imaging and N-way PLS-DA models for detection of
decay lesions in citrus fruits. Chemometrics and Intelligent Laboratory Systems
156, 241-248 (2016).
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1.3 Contributions

1.3.3 Software

PEMA toolbox. Built in MATLAB. In colaboration with UNL. Available in http:
//mseg.webs.upv.es.

MDI toolbox. Built in MATLAB. In colaboration with UCV. Available in http:
//mseg.webs.upv.es.

MD and outlier detection and correction modules in MIDER software for network
inference. Built in MATLAB/Octave. In colaboration with IIM-CSIC. Available
in http://gingproc.iim.csic.es/mider.html.

1.3.4 Awards

Best oral presentation (audience award) at the 1st Meeting of PhD Students of
the UPV.

Accessit in 12th University Contest “Arquimedes” for the Introduction to Scientific
Research.

Special Prize of CSIC in 12th University Contest “Arquimedes” for the Introduction
to Scientific Research.
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2.1 Introduction

2.1 Introduction

Univariate and bivariate statistics have been applied to solve problems since early
20th century. Student’s t tests, bivariate correlations, analysis of variance (ANOVA)
and linear regression have been used in many research areas by the first applied
statisticians, like Fisher, Tukey, Youden, Gosset or Box [14, 15]. As the technology
evolved in many research areas, these techniques became insufficient to exploit the
data-rich environments, especially in engineering, chemistry and biology. The rel-
ative low cost of measuring devices allows registering a wide range of variables at
high sampling rates during experiments and (bio)processes. Thus, in the 70s and
80s new methods were developed to deal with multivariate different-source data
sets coming from chemistry and process industry, which are the basis of what it is
known today as chemometrics.

Chemometric approaches can be strongly divided in two groups: exploratory and
regression models. The first group seeks to understand high dimensional data
sets, via compression and selection of the most relevant features in data. The
second group aims at relating different sources of information, being the most
common situation a set of explanatory or predictor variables and a set of dependent
variables or responses. These methods are used mainly for classification among
classes, discrimination and prediction.

Several methodologies have been proposed in chemometrics to give support and
improve the performance of the aforementioned models. Among the main con-
cerns in chemometrics [16], arise how to: preprocess data, deal with missing data,
detect outliers, design experiments, validate models, transfer multivariate models,
optimize processes, fit nonlinear data, and deal with N -way data structures.

In this thesis, some of the previous problems are faced within the context of sys-
tems biology. In this way, existing methods and new approaches are proposed,
in collaboration with multidisciplinary teams, to deal with different problems in
omic sciences and bioprocess industries.

2.2 Notation

In this thesis, scalar values will be represented always as italic capital letters
(e.g. N ) and indices will appear as italic lower-case letters (e.g. i). When an
index is related to a particular scalar, the same letter will be used for both (e.g.
n = 1, . . . , N).

Column vectors are represented as bold lower-case letters (e.g. v) and row vectors
as vT, representing T the operator transposed. When referring to the elements
within a vector, scalars with subindices will be used between brackets (e.g. v =
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[v1, . . . , vK ]). If a vector is built concatenating two vectors, the previous notation
will be also used omitting the commas (e.g. uT = [vT wT]).

Matrices will appear in this work as bold capital letters (e.g. X). Observations
or individuals within matrices are usually represented by rows, while variables are
represented as columns. When a matrix is built concatenating submatrices, the
same notation as in vectors will be used (e.g. Z = [X Y]). The same notation
commented on vectors is applicable to rows and columns of matrices (e.g. the rows
of matrix X will be represented as xT

n , and columns as xk). When possible, the
same letters will be used for the dimension of a mode and the index of one of its
elements (e.g. kth column of a matrix with K variables).

N -dimensional arrays will be denoted as bold capital letters underlined as many
times as each additional dimension above two (e.g. X is a three-way data struc-
ture).

Either latin and greek characters will be used to represent scalars, vectors and
matrices. When a vector or matrix has the same value in all entries, bold numbers
will be used (e.g. 1TN is a row vector with N ones).

The mathematical operator × is used in this thesis to denote the size of the
modes of a matrix (e.g. Y is a N ×M array). No mathematical operator is used
for products between scalars, vectors and matrices. Operator ◦ will denote the
Hadamard element-wise product between vectors or matrices:

v ◦w = [v1, v2, v3] ◦ [w1, w2, w3] = [v1w1, v2w2, v3w3] (2.1)

and finally, ⊗ will denote the Kronecker tensor product between vectors or matri-
ces, that is:

X⊗Y =

[
x11 x12
x21 x22

]
⊗Y =

[
x11Y x12Y
x21Y x22Y

]
(2.2)

Squares and rectangles are used throughout this thesis in figure drawings as a repre-
sentation of matrices. N -way arrays are represented when possible (e.g. three-way
arrays).

Finally, after the Bibliography, the index of abbreviations and acronyms is shown,
referencing the first appearance in the document. When two pages are included
for a single item, the second one references a more specific description of the
corresponding term.
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v1

v2

v3

v1

v2

v3

PC1

PC2

Figure 2.1: Small example of a projection of a bunch of 3-dimensional points to the
2-dimensional loadings plane of PCA, obtaining the score values in the latent space.

2.3 Exploratory data analysis

2.3.1 Principal component analysis (PCA)

The aim of principal component analysis (PCA) [17] is to find the subspace of the
variable space where data mostly vary [18]. The original variables, commonly cor-
related, are linearly transformed into a lower number of uncorrelated variables, the
so-called principal components, (PCs). Figure 2.1 shows an example to illustrate
this process. The PCA model has the following expression:

X = TPT + E (2.3)

where X is a N × K data matrix, T is the N × A score matrix containing the
projection of the objects in the A PCs subspace, P is the K × A loading matrix
containing the linear combination of the variables represented in each of the PCs,
and E is the N × K residual matrix. The choice of the number of PCs in the
model, A, depends on the aim of the study [19].

Outliers in PCA

When a PCA model is fitted, two types of outliers can appear [20]: squared pre-
diction error (SPE) and Hotelling-T 2 outliers. Figure 2.2 illustrates the difference
between both types of outliers. SPE measures the squared euclidean (perpendicu-
lar) distance from an observation in the K-dimensional original variable space to
the A-dimensional latent subspace [21]. It is expressed as:

SPEn = eTnen (2.4)
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v2 

v1 

Figure 2.2: Small example of a two-variable data set with a one dimensional latent
space (straight black line). The solid squares (triangles) represent Hotelling-T 2 (SPE)
outliers.

where eTn is the nth row of the residual matrix E = X − TPT. By taking the
eigenvalues of the covariance matrix of the residual matrix (λA+1, . . . , λK), the
control limit of the SPE [22] is computed as follows:

SPEα = θ1

[
zα
√

2θ2h20
θ1

+ 1 +
θ2h0(h0 − 1)

θ21

]1/h0

(2.5)

where θk =
∑K
j=A+1(λj)

k, h0 = 1− 2θ1θ3
3θ22

and zα is the 100(1− α) percentile of a
standard Normal distribution.

The second type of outlier in PCA is detected via the Hotelling-T 2 statistic, which
represents the estimated squared Mahalanobis distance [23] from the center of
the latent subspace to the projection of an observation onto this subspace [21].
This statistic is used in multivariate monitoring to compute the squared distance
between one object and the model’s centre according to the covariance structure
[24]. When the data is centered (the mean of each column ofX is equal to zero), the
distance between an observation xT

n and the centre of the original K-dimensional
variable space is:

χ2
n = xT

nΣ−1xn (2.6)
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2.3 Exploratory data analysis

where Σ is the real covariance matrix of the original K-dimensional variable space,
and χ2

n follows a χ2 distribution with K degrees of freedom. In practice, the
mean and the covariance matrix are estimated by the data matrix X as S =
XTX/(N−1). So the approximation to the Mahalanobis distance is the Hotelling-
T 2:

T 2
n = xT

nS
−1xn (2.7)

The control limit for the Hotelling-T 2 [25] is computed as:

T 2
α =

(N2 − 1)A

N(N −A)
Fα(A,N −A) (2.8)

where Fα(A,N − A) is the 100(1 − α) percentile of a Snedecor’s F distribution
with (A,N −A) degrees of freedom.

2.3.2 Missing-data methods for exploratory data analysis
(MEDA)

MEDA [26] can be seen as a substitute of rotation methods with better properties.
First of all, it is more accurate than rotation methods in the detection of relations
between pairs of variables. Also, it is robust to the overestimation of the number
of PCs and it does not depend on the normalization of the loadings.

Let X be a N ×K data matrix. Once the PCA has been performed, the MEDA
approach consists of the following steps for each variable k:

1. Build matrix X̃k, a N ×K matrix full with zeros except in the kth column,
where it contains the kth column of X, xk:

X̃k = [0, . . . ,0,xk,0, . . . ,0] (2.9)

2. Estimate the scores from X̃k using the missing data method known data
regression (KDR), which is statistically superior to other imputation tech-
niques [27]:

T̂ = MD(X̃k) (2.10)

3. Estimate the reconstruction of the original data with A components and
compute the estimation error:
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X̂ = T̂PT (2.11)

E = X− X̂ (2.12)

where P is the estimated loading matrix from X, X̂ is the estimation matrix
and E the estimation error matrix:

4. Compute an index of goodness of prediction [28] in all columns except the
kth one

Q2
kl = 1−

∑N
n=1(Enl)

2∑N
n=1(Xnl)2

, ∀l 6= k (2.13)

where Xnl is the element located at the nth row and the lth column of X,
and Enl is its estimation error. The closer Q2

kl is to 1, the more related are
variables k and l.

Once the values of Q2
kl for all possible combinations of k and l are computed,

a matrix Q2 can be constructed so that Q2
kl is located at row k and column l.

This matrix is similar in nature to the element-wise squared correlation matrix.
Structural relations between variables are detected as high values in Q2, but the
direct/inverse pair-wise relation is not represented on the matrix because of the
squared values. To avoid obvious relations, the values of principal diagonal of Q2

matrices are set to zero. When the number of variables is large, matrix Q2 can be
shown as a grey map to improve interpretability.

2.3.3 Maximum likelihood principal component analysis
(MLPCA)

Let X be an N by K matrix, xT
n its nth row and xk its kth column. Each row

represents a point in the K-dimensional space of the X observations, and each
column a point in the N -dimensional space of the X variables. Row n can be
decomposed in xT

n = x0,T
n + εTn , where x0,T

n are the true values and εT are their
measurement errors [29, 30]. As well, column k can be decomposed in its true and
error parts: xk = x0

k + η. Both errors are assumed normally distributed in each
of the K and N dimensions, respectively.

The maximisation of the likelihood is obtained by minimising the following objec-
tive function:

S2 =

N∑
n=1

(xT
n − x̂T

n )Σ−1n (xn − x̂n) =

N∑
k=1

(xT
k − x̂T

k )Ψ−1k (xk − x̂k) (2.14)
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where Σn is the covariance matrix of the errors εTn of observation xT
n , and Ψk

is the covariance matrix of the errors η of variable xk. The estimation of both
vectors arise from:

x̂n = P̂(P̂
T
Σ−1n P̂)−1P̂

T
Σ−1n xn (2.15)

x̂k = Û(Û
T
Ψ−1k Û)−1Û

T
Ψ−1k xk (2.16)

where Û (N ×A), D̂ (A×A) and P̂ (K ×A) represent the singular value decom-
position (SVD) of X̂ = ÛD̂P̂

T
= [x̂1 . . . x̂K ] = [x̂1 . . . x̂N ]T, using A dimensions

or components.

MLPCA algorithm is an alternating least squares procedure that starts imputing
initial guesses for Û and P̂ based on the SVD decomposition of X. At each iter-
ation, the algorithm has two steps. The first one consists of projecting the rows
xT
n on the columns of P̂, computing the objective function, and recalculating Û

and P̂ from an SVD using the estimations. The second step consists of projecting
the columns xk on the columns of Û, computing also the objective function, and
finally recalculating again Û and P̂ from an SVD. Convergence is achieved when
the difference between the estimations of the observations are below a specified
threshold [24, 29].

2.3.4 Multivariate curve resolution (MCR)

MCR [31–33] focuses in performing a bilinear decomposition of a mixture in their
pure components:

X = CST + E (2.17)

where S is a matrix containing in its columns the spectra of the pure components,
C gathers the concentration profiles of each component, and E is the residual
matrix [34]. One of the most used versions of MCR is its alternating least squares
(ALS) implementation, that is MCR-ALS, implemented in the MCR-ALS toolbox
for MATLAB [35, 36].

MCR-ALS needs an initial estimate of either C or S matrices to trigger the ALS
procedure. Despite many initial guesses can be used [34], the most used ones are
simple-to-use interactive self-modeling analysis (SIMPLISMA) [37–39] and evolv-
ing factor analysis (EFA) [40, 41]. The first one works selecting in a sequential
way the variables in the row or in the column direction that have less information
in common with the previously selected ones. EFA locates the increase and decay
of a component through the variation of rank, so the concentration window of each
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one can be determined, and then the approximate concentration profiles can be
generated [34].

2.4 Regression models

2.4.1 Principal component regression (PCR)

The PCs extracted by a PCA model can be related to a set of dependent variables
Y arranged by columns. This model is known as principal component regression
(PCR). Given a score matrix T, fulfilling:

T = XP (2.18)

where P is the loading matrix of a PCA, Y can be expressed as:

Y = TB + F (2.19)

where F is the residual matrix, and B is the regression matrix obtained solving
2.19 using a least squares approach:

B̂ = (TTT)−1TTY (2.20)

As opposed to multivariate linear regression (MLR) the inversion of TTT should
give no problem, since scores are orthogonal [42]. Also, the PCs whose correspond-
ing eigenvalues are close to zero can be left out to avoid collinearity problems [43].

2.4.2 Partial least squares regression (PLS)

Partial least squares regression (PLS) is a multivariate projection method com-
monly applied to model the inner relationships between a set of X (N × K)
variables (descriptors, predictors or process variables) and a set of Y (N ×M)
variables (output, responses or quality variables) reducing significantly the dimen-
sionality of the initial data set [42]. As opposed to PCR, the PLS model finds a
set of A latent variables (LVs) that maximise the covariance between X and Y.

The first step of PLS consists of obtaining the score matrix T (N × A) of X as
linear combinations of its original variables:

T = XW∗ (2.21)
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Figure 2.3: Scheme of PLS data matrices.

where W∗ is the normalized weights K ×A matrix.

These new variables are, multiplied by the loading matrix P (K ×A), good sum-
maries of X, i.e. the residual matrix E (N ×K), in equation X = TPT + E, has
entries close to zero. Additionally, the T variables are built in such a way [44] that
they are good predictors of Y.

The Y variables can be reconstructed as:

Y = UQT + G (2.22)

where U (N ×A) and Q (M ×A) are the score and loading matrices of Y in the
PLS model, and G is the N ×M residual matrix. The inner relationship between
scores in X and Y is U = T + G.

Since T are good predictors of Y, the dependent variables can be expressed as
follows:

Y = TQT + F = XW∗QT + F = XB∗ + F (2.23)

where F (N ×M) is the residual matrix and B∗ (K ×M) is the PLS regression
coefficient matrix and the normalized weights are obtained asW∗ = W(PTW)−1.
All matrices can be visualised in Figure 2.3.
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Cross-validation and jackknife confidence intervals

Cross-validation (CV) is a resampling technique widely used in statistics and
chemometrics [45]. The aim of CV is to assess the number of relevant components
to be extracted in the multivariate model. This procedure groups the observations
and then fits as many PLS models as groups, leaving each time a single group out.
Then, the sum of squares of the differences between the actual Y values and the
predicted ones is used to estimate the predictive ability of the model [44]. CV is
usually performed one component after another, until the predictive power of the
model decreases. When one single sample is left out of the model, the leave one out
version is being applied. Simultaneously with the CV, the Jackknife confidence
intervals (CI) for the PLS regression coefficients can be computed, at a certain
confidence level, from all models fitted.

2.4.3 Joint-Y PLS (JYPLS)

JYPLS regression is a non-linear iterative partial least squares (NIPALS) algorithm
variant, initially developed for modelling the latent variable structure shared by
two or more sets of data (say Xs) via a PLS-based regression against their cor-
responding responses (say Ys). When only two different couples of data blocks
are dealt with, namely Xa-Ya and Xb-Yb, the mathematical formulation of the
JYPLS model is given by:

Y =

[
Ya

Yb

]
=

[
Ta

Tb

]
QT + F (2.24)

Xa = TaPT
a + Ea (2.25)

Xb = TbPT
b + Eb (2.26)

Ta = XaW∗
a (2.27)

Tb = XbW∗
b (2.28)

where Ta/Tb, Pa/Pb and W∗
a/W

∗
b are the JYPLS scores, loadings and weighting

matrices related to Xa/Xb, respectively. The originality of this approach concerns
the fact that only one single set of loadings, Q, is derived for both Ya and Yb,
which defines a combined plane mapped by the Y joint array (see Equation 2.24).
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2.5 Missing data

a) b) c) d)

Figure 2.4: Missing data patterns: a) nonstructured, b) univariate, c) block-wise, and
d) file matching.

2.5 Missing data

Multivariate data sets are usually arranged in matrices having non-registered cells,
i.e. missing values. MD can appear in a wide range of contexts and for a different
number of reasons: respondents not answering to some questions in surveys, values
outside the instrument range or missing owing to malfunctions of the sensor, failure
in the communication between the instrumentation and the digital control system
(DCS), sensor with different sampling rates, errors during data acquisition, and so
on [46, 47].

There are two critical aspects when dealing with missing values in multivariate data
sets: the MD pattern and the MD mechanism [48]. The MD pattern describes the
fashion in which the missing values appear in the data matrices. Let X denote an
N × K data matrix with missing values, being xT

n = [xn1, . . . , xnK ] its nth row
and xj = [x1j , . . . , xNj ]

T its jth column. The MD indicator matrix M is a N ×K
binary matrix with entries mij = 1 when xij is missing and mij = 0 otherwise.

The most common MD patterns can be visualised in Figure 2.4. a) denotes non-
structured MD, which is the usual assumption in many MD algorithms. With
this pattern, the missing values appear at random in the whole data matrix. In
b) the missing values appear just in one variable, which is a common situation
in experiments, when not all variables have been measured yet. c) presents the
blockwise MD pattern, the extention of b) to multiple variables. This pattern
appear in, e.g. chemometric processes and quantitative structure-activity rela-
tionship (QSAR) studies when some variables are costly or difficult to measure
[47]. Finally, d) denotes the file matching pattern, which usually appear when two
or more variables have non-coincident time point measurements. This last case is
critical since for some groups of variables there is no common information on the
joint distribution of the variables. Consequently, the parameters relating to the
association between these variables are not estimable from the data [47, 49].
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The second critical aspect is the MD mechanism, which gives information about
how the missing values are produced in the data matrix. LetXobs andXmis denote
the observed and missing part of X. Bear in mind that Xobs and Xmis are not
square matrices but specific entries in the data matrix (0s and 1s, respectively,
in the corresponding M matrix). To state the MD mechanisms it is necessary to
find out why values are missing. Different values in the data set may be missing
for different reasons, but the important question is whether the variables that
are missing are missing because they are related to the underlying values of the
variables in the data set.

There are three mechanisms generating MD [48], characterized by the conditional
distribution of M given X, say P(M | X,ϕ), where ϕ is a vector of unknown
parameters:

1. Missing completely at random (MCAR) mechanism arise when there is no
relationship between values of the variables (observed and missing) and the
probability that they are missing. The missing elements are produced at
random in all variables and observations. Therefore, P(M | X,ϕ) = P(M |
ϕ) for all possible X,ϕ [47]. In this case the reason why a value is missing
does not depend on the true unobserved value. However, this does not imply
directly that the MD pattern is unstructured.

2. Missing at random (MAR): in this mechanism, missingness depends only
on the observed data Xobs and not on the values that are missing. P(M |
X,ϕ) = P(M | Xobs,ϕ) for all possible Xmis,ϕ [47]. This hypothesis as-
sumes that in the available measurements there is enough information to
estimate the MD. This mechanism can appear, e.g. due to sensor mainte-
nance associated with process operating procedures, or when samples are
not measured when certain process measurements are outside the safe limits
[47].

3. Not missing at random (NMAR) or nonignorable (NI) mechanism is pro-
duced when the probability that an element is missing depends on the unob-
served value of the missing elements, so P(M | X,ϕ) can not be simplified.
Classical examples of this mechanism are censored data (values below/above
the detection limit) and respondants not answering subtle questions in sur-
veys (e.g. drug abuse in teenagers). NMAR means that we need to model the
missing data mechanism to get good estimates of the parameters of interest,
and this requires quite specialized methods [47].

Many methods have been proposed in the literature when dealing with missing
data in MCAR and MAR mechanisms [47]. These methods can be split in three
groups:

28



2.5 Missing data

1. Single imputation methods: they fulfill MD in a single step, giving a unique
estimation for each missing value.

2. Iterative methods: these approaches impute the missing values at different
steps within an algorithm, until the values stabilize or some other criterion
is achieved (e.g. maximum number of iterations).

3. Multiple imputation methods: they give not just one but several values
for each missing value, representing a distribution capable of reflecting the
sampling variability [47, 50].

2.5.1 PCA model building and model exploitation with missing
data

When fitting PCA, two problems related to missing data appear: (1) exploiting
fitted PCA models when some measurements are missing in new observations, i.e.
the model exploitation (ME) problem (PCA-ME); and (2) building PCA models
from data sets with missing measurements, i.e. the model building (MB) problem
(PCA-MB).

In PCA-ME a lot of methods have been reported in the literature. Wise and
Ricker [51] present a method that consists of imputing the values that minimise
the squared prediction error (SPE) for the new incomplete observation, based on
the known PCA model. Nelson et al. [52] study and compare several methods:
the single component projection method (SCP), the projection to the model plane
method (PMP) and the conditional mean replacement method (CMR). Walczak
and Massart [53] study the adaptation of the iterative algorithm (IA) to the pre-
diction of scores for new objects with missing elements. Arteaga and Ferrer [27]
also introduce several methods: the trimmed scores method (TRI), the known
data regression method (KDR) (which is equivalent to CMR, as proven in [27])
and the trimmed scores regression method (TSR). Additionally, they show that
the regression-based methods (KDR and TSR) are statistically more efficient than
the other methods studied. Arteaga and Ferrer [54] propose a framework that
allows writing the regression-based methods by a unique expression, function of a
key matrix.

Regarding PCA-MB there are two methods that are frequently used by the prac-
titioners. The first one consists of adapting the nonlinear iterative partial least
squares algorithm (NIPALS) algorithm [55] to deal with incomplete observations
by performing the iterative regressions using the present data and ignoring the
missing data [30]. The second one is the aforementioned IA [53] that basically
consists of filling in the missing data with the predictions obtained from previ-
ous PCA models iterated recursively until convergence. Other methods rely on
maximum likelihood-based estimations of missing data, like the expectation maxi-
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mization (E-M) algorithm [56–58]. A more complex method is data augmentation
(DA) [56–59]. DA is a multiple imputation method, i.e. for each missing value
several values are imputed randomly, and it requires the computation of prior dis-
tributions of the parameters. Both E-M and DA are not so widely used as the
previous ones (NIPALS or IA). The reason is that the usual chemometrics data
sets have strongly correlated variables with a low number of observations. The use
of either DA or E-M implies the inversion of the covariance submatrix correspond-
ing to the known variables given an observation, which in these data sets often
is not feasible due to submatrices are singular. A recent approach for PCA-MB
with MD is the nonlinear programming approach (NLP). In this method the PCA
model is obtained solving a nonlinear programming problem, in which the errors
between the non-missing values and the model estimations are minimised [60].

Other methods, not so popular, were compared by Liu and Brown in [61]: the
algorithm of Krzanowski based on SVD[62], the general iterative principal compo-
nent imputation (GIP) [63], the multiple imputation by chained equations (MICE)
[64], and two regularized versions of the known E-M algorithm: one based on ridge
regression (r-EM) [65] and the other one based on a truncated total least squares
regression (t-EM) [66].

There are also other imputation methods compared in the literature [67] that are
strongly not recommended, like the listwise deletion or complete case analysis (CC)
(in which any observation with missing values is removed) and the unconditional
mean imputation (MI). The former implies a huge loss of information, leading to
loss of precision and bias. The latter distorts the multivariate empirical distri-
bution of the samples, i.e. tends to deform nonlinear quantities (e.g. variances,
covariances) [47]. The nearest neighbour method has been also suggested to fulfil
the missing values in incomplete datasets [68], however, its applicability with high
percentages of missing values is limited.

2.5.2 PLS model building and model exploitation with missing
data

When fitting PLS models, as in PCA, the problems with missing data appear
both in MB and in ME. In PLS-MB, two methods are the most used among
chemometricians: IA [69] and NIPALS [55]. These methods are the extentioned
of the aforementioned ones (for PCA-MB) to a PLS enviornment. More details
can be found in [47]. In PLS-ME different methods have been proposed in the
literature. When no missing data is considered in Y matrix, the same approaches
presented in PCA-ME can be used, that is, the regression-based methods, SCP,
PMP, CMR, IA, NIPALS and the minimization of the SPE [27, 51–54]. When
considering missing data both in X and Y, an adaptation of TSR from PCA-
ME to PLS-ME has been proposed in [70]. In this algorithm, the weights of the
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Figure 2.5: Three-way data array.

available data in a PLS model are used to impute the missing values. Also, IA
and NIPALS can also impute MD both in X and Y.

2.6 N -way data

N -way data analysis comprises approaches for analysing N -dimensional arrays,
with N > 2. The most common situation is having a three-way data structure
(see Figure 2.5). In this example, the X data set has K variables, measured on N
individuals, along J time points.

Three-way data can be studied decomposing the multidimensional array in two-
way data matrices: the J×K horizontal slice gives the whole data for a particular
object, the N × J vertical slice gives the information for a given variable, and the
N ×K frontal slice represent the data at a specific time point [71].

Two-way projection methods, such as PCA and PLS, can be applied directly to
these data if the 3-way array is unfolded to build a two-dimensional data matrix.
In this way, the data can be unfolded by slices in either of the three possibilities
commented in the previous paragraph. However, the most common approaches
are i) variable-wise unfolding (VWU), where the third mode is unfolded one slice
below another to build aNJ×K data matrix, and ii) batch-wise unfolding (BWU),
where also the third mode is decomposed but one slice after another to build a
N ×KJ data matrix.

When fitting N -way projection methods, such as 3-way PCA or PLS, the extention
of 2-way to 3-way data analysis implies dealing with three data matrices in the
model, that is, the score matrix, retaining information about the observations or
individuals, and two loading matrices describing the relationships among variables
in the second and third mode.
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2.6.1 N-way Partial least squares regression (NPLS)

N -way PLS (NPLS) regression [72] is the natural extension of PLS to N -way
structures, which tries to maximize the covariance between the X and Y data
arrays. NPLS discriminant analysis (NPLS-DA) [44, 73] was proposed for study-
ing N -dimensional data structures with discriminant purposes among groups of
observations, e.g. experiment versus control studies.

In NPLS-DA, theX (N×K×J) data matrix is the datacube represented in Figure
2.5. Considering X (N × JK) the BWU version of the datacube X, NPLS tries
to find latent spaces WJ and WK that maximise the covariance between X and
a dummy vector y, so it can be expressed as:

X = T(WJ ⊗WK)T + F (2.29)

afterwards decomposing X from X using the improved NPLS version expression
[74], in order to obtain residuals with better statistical properties:

X = TG(WJ ⊗WK)T + F′ (2.30)

here, ⊗ is the Kronecker product,WJ andWK refer to the weights of the third and
second mode, respectively; whereas T matrix gathers the scores of the observation
at each component extracted, and G is the core array of a Tucker3 decomposition
when using T, WJ and WK as loadings, in order to obtain a better (or at least
not worse) approximation of the X 3-way array [71, 74]. Finally, F’ incorporates
the residuals.
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3.1 Introduction

3.1.1 Systems biology: a paradigm shift

Systems biology is a multidisciplinary research field that applies established method-
ologies, and develops new ones, to build models of biological systems integrating
information at different levels. This new discipline has become very popular during
the last decade, with the explosion of high-throughput technologies. Systems bi-
ology allows scientists with different backgrounds (biologists, chemists, computer
scientists, mathematicians and statisticians) to work together towards a unified
understanding of biological processes [75].

The data integration proposed in systems biology represents a change of paradigm
in the study of biological entities (see Figure 3.1). During the 20th century, or-
ganisms had been studied using a reductionist approach, that is building theories
and developing tools to analyse data within a single biological level. These levels
constitute the different omic sciences [76–78]:

• Genomics: aims at identifing the whole genome of an organism, including
information about the structure and biological function of genes.

• Transcriptomics: compares gene expression profiles via RNA between bio-
logical samples or experimental conditions to identify differences that could
help to infer the function of the genes or understand the ongoing biological
processes.

• Proteomics: analyses the structure and function of proteins and their asso-
ciations (i.e. interactions).

• Metabolomics: identifies and quantifies intra and extracellular metabolites,
describing the reactions that produce and consume them.

• Fluxomics: deals with the amount of information carried through reactions,
the metabolic fluxes, during experiments under certain conditions.

The change of paradigm proposed by systems biology consists not only of studying
each omic layer as an island but connecting phenomena across biological levels,
thus relating changes in genes, carried to the proteins via transcription and the
effect on the metabolic fluxes they enable (see Figure 3.1). A cell, for example,
is a combination of tight interconnections among deoxyribonucleic acid (DNA),
RNA, proteins and metabolites, and the behaviour of the organism cannot be
reduced to the sum of individual pieces [79–82]. The problem of integrating all
these information in a single model is that the assumptions made at each level are
transferred as a cascade through the subsequent levels, thus the missing, noisy or
faulty data may affect the system understanding of the organism [82, 83].
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3.1.2 Origins

It is considered that systems biology has two historical roots [84], which found a
convergence point at the end of the 20th century [85]. The first root is related to
the study of genetic material. The DNA coding was the initial breakthrough in this
section, followed by the improvement of recombinant technologies during the 60s
and 70s. The final discovery, leading to the obtention of large amounts of biological
data, was the genome sequencing, which happenned in 1995 for the Haemophilus
influenzae [86] (first genome sequenced) and 2001 for the Homo Sapiens [87].

The second root is based on the study of the interactions between multiple mo-
lecules. The non-equilibrium thermodynamics theory, set in 1931, was the first
step of this branch of knowledge, based on the production of entropy and negative
entropy of biochemical processes. Once the concepts of regulation were defined
in the 50s, several mathematical models were formulated in order to describe this
regulatory circuits, studying the cell as a network. Finally, large genome-scale
models, including kinetics, were published in the late 80s and the 90s, treating the
genome as a system.

3.1.3 Aim and goals

Research on systems biology is not only driven by disciplines within Biology: me-
tabolomics, proteomics, genomics, but other fields are needed, like mathematical
modelling and multivariate statistical analysis. These disciplines provide the es-
sential analytical tools for acquiring, storing, analysing, graphically displaying,
integrating, and mathematically modelling biological information [88].

The ultimate goal in systems biology is the understanding of the whole organism
by modelling, predicting and controlling the behaviour of all its components [82].
A system-level understanding can be derived from four key properties [80, 89]:

1. System structure identification. In this initial step the knowledge about the
object of study needs to be translated into a biological model describing
and representing the relations the internal modules of the cell (e.g. genes,
metabolites) through metabolic reactions or other biological transformations.
At this point, big data problems arise, due to the gigantic size of databases.
Thus, it is necessary to develop new computational methods to aid in the
data processing and analysis [82].

2. System behaviour analysis. The observed behaviour of the organism caused
by changing the environment, by introducing external elements, or by chang-
ing parts of the organisms itself (i.e. mutations) [88] is analysed in order to
understand its functioning.

36



3.2 Genomics and transcriptomics

3. System control. Once the structure and the behaviour has been understood,
systems biology aims at controlling the organism, leading the organism to
maintain certain physical properties, or to improve towards a preferrable
physiological state.

4. System design. Ultimately, it is desired to develop technologies that lead to
design biological systems with the aim of providing cures for diseases [89],
or, for example, what amount of which substrate leads a particular cell to
produce certain protein of industrial interest.

The impact of systems biology in biotechnological processes is so great that the
term "industrial systems biology" is today very common within this kind of in-
dustries [90, 91]. Measurement, monitoring, modelling and control (the so-called
M3C methodology) are critical for obtaining high value-added biochemicals [92].
The purpose of industrial systems biology is to use the biological knowlege ac-
quired on microorganisms to engineer efficient cell factories with the ultimate goal
of converting raw substrates into different products. For example, the baker’s
yeast Saccharomyces cerevisiae can be used for transforming corn and wheat to
commercial end-products as antibiotic, enzymes or vitamis [77].

The next sections in this chapter describe each omic science and its relationships
with the subsequent biological levels. These fields are described as deep as needed
for understanding the problems faced in this thesis. Therefore, some biological
layers and methodologies are explained in more detail than others.

3.2 Genomics and transcriptomics

Cells are among the smallest biological entities studied in systems biology in order
to understand the behaviour of the organism to which they belong. The genes,
which are the hereditary units of biological organisms, are localized along the
double-stranded DNA chains [78]. DNA, discovered back in 1953 by Watson and
Crick [93], is formed by chains of four types of monomers: adeninde (A), guanine
(G) cytosine (C) and thymine (T). The complete DNA sequence, the so-called
genome, contains information about the whole set of proteins that the organism
can synthesize [94].

The gene expression in cells is a two-step process. First the DNA is transcribed
into RNA molecules or transcripts [78], which are single-stranded molecules with
the same monomers as DNA but substituting T by uracil (U). During transcrip-
tion, genes are used as a template to synthesize shorter molecules (RNA polymers).
Finally, transcripts are translated into proteins [94], which are the ultimate mole-
cules that control and establish the cellular biochemical status. During translation,
the information in the RNA is read by codons (groups of three monomers), and
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each codon specifies a single amino acid in the resulting protein. There are 20
amino acids in total.

One way of studying the relationships between the genes and transcripts and the
behaviour of the cell consists of performing mutations in the RNA and evaluate the
changes in the organism [88]. However, only a small part of the whole genome (3-
8% in humans) is considered functional, i.e. it encodes proteins or functional RNA
[95]. This means that most of the DNA may have other structural or regulatory
functions [78].

Finally, with the systems biology paradigm, researchers have focussed not only in
identifying, listing and describing genes and transcripts but also in studying the
way they interact among themselves. This way, gene regulatory networks (GRN)
and transcriptomic networks can be built based on these interactions, being the
genes or transcripts the nodes and the interactions the edges [82]. These networks
are usually inferred using reverse engineering procedures, based on experimental
or simulated measurements [5, 82, 96–98].

3.3 Proteomics

The term proteome or proteomics was coined in 1995 [99]. Proteomics comple-
ments gene sequence data with protein knowledge about where, in which quantity
and under what conditions proteins are expressed [100]. The research fields of
genomics and proteomics are remarkably different, but, as commented on the pre-
vious section, they are strongly related. The integration of both omic sources of
information, via protein-DNA interactions data and gene expression data [101–
104], increases the accuracy of techniques dealing with biological networks [82].

Proteomics is a data-rich environment, since proteins participate somehow in al-
most all biological processes and they also have diverse properties, which con-
tribute to our systematic understanding of organisms [105]. The original goal of
proteomics was the identification of the whole set of proteins expressed by organ-
isms. Once this was (almost) achieved, the current goals of proteomic research
became more diverse and directed toward the determination of diverse protein
properties in biological systems, including sequence, quantity, state of modifica-
tion, interaction with other proteins, activity, subcellular distribution and struc-
ture [105].

During the last decade there has been an increasing number of studies of protein-
protein interactions (PPIs) and the effect that these interactions cause on a wide
range of biological processes [106]. PPIs are defined as physical contacts that take
place in cells through molecular docking [107]. Proteins work typically linked to
other molecules including lipids, nucleic acids or other proteins [108]. Biological
activity usually arises from the association of several proteins, which form pro-
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tein complexes [109]. In viruses, interactions between proteins play vital roles in
many processes during infection such as virus trafficking between the nucleus and
the cytoplasm, formation of replication complexes, assembly of virions, or virus
transmission to other cells. Traditionally, PPIs have been studied using methods
such as coimmunoprecipitation or chromatography [110]. However, over the past
decade two experimental strategies have been used to detect these interactions:
yeast two-hybrid (Y2H) [107, 111, 112] and affinity purification coupled with mass
spectrometry (AP-MS) [113]. Additionally, bimolecular fluorescence complemen-
tation (BiFC) [114, 115] has grown in popularity during the last few years because
it allows PPIs visualization in living cells, which is a key aspect to understand
their cellular functions.

PPIs form networks of linked proteins which are called consequently PPINs [107].
PPINs represent a map of physical contacts or functional interactions between
proteins [107]. PPINs can be seen as a visual representation of the complete
map of interactions that a system (pathway, cell, living organism) establishes in a
particular moment and for a certain time window. Detection methods (specially
Y2H) opened the possibility to tackle PPIs on a genome wide scale, producing
complete PPINs, which have been called interactomes [116–119]. Viral PPINs
have also been developed [120, 121], revealing quite useful biological information.

3.4 Metabolomics and fluxomics

The lowest biological level analysed in this chapter is the metabolic layer. As
seen in the previous section, genes are associated to proteins, although it is not
a one-to-one relationship. Genes and proteins are finally associated to metabolic
reactions, forming the gene-protein-reaction (GPR) associates, thus enabling the
production and consumption of metabolites [122].

When concatenating reactions, a metabolic network is built, describing how the
initial metabolites (substrates) in the network are produced and consumed in a
thermodynamically feasible way until reaching the end-metabolites or products. In
this way cellular metabolism is represented by all these reactions, involved in the
conversion of the carbon source into the building blocks needed for macromolecular
biosynthesis [123].

The general aim of modelling metabolic systems consists of studying:

• The steady state behaviour of organisms, that is, the metabolic flux distri-
butions crossing the metabolic network long after stimuli.

• The transient metabolite concentrations, which can be extended to study
the fluxes in non-steady state conditions, since the concentrations of the
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metabolites are themselves function of the fluxes and the properties of the
enzymes that activate them [123].

The first approach employs the stoichiometry and reversibility associated to the
reactions in the metabolic network, and establishes the structure onto which the
behaviour of the organism is studied [75, 124]. This mathematical framework is
explained in detail in the next subsections.

Regarding the second approach, the metabolic structure is the basic requirement
to model the intracellular kinetics of the organism [75, 125]. In this case, the state
of the network at a particular time point of the biological process is defined by the
concentration of each metabolite in the cell, and metabolites may interact via one
or more reactions. Each reaction is represented by an ordinary differential equation
(ODE) relating the quantity of reactants (or inputs) to the quantity of postreaction
(or output) products, according to a reaction rate and other parameters [88]. Since
metabolic networks may have hundreds of reactions, the corresponding system of
differential equations is very difficult to solve. However, when given an initial con-
ditions of the network, the concentration of the metabolites along time can be sim-
ulated to produce a state transition path or trajectory, i.e. the succession of states
adopted by the network over time [88]. Other methodologies proposed for study-
ing non-steady state data are kinetic modeling [126], 13C-metabolic flux analysis
(MFA) [127], dynamic flux balance anlysis (FBA) [128], and a recently proposed
approach combining time-resolved metabolomics and dynamic FBA (MetDFBA)
[129].

Different techniques have been proposed in the literature to measure metabo-
lites concentrations in experimental cultures, e.g. 13C MFA, gas chromatography
- mass spectrometry (GC-MS) and liquid chromatography - mass spectrometry
(LC-MS) [123]. The early stages of the experiment, when the transient concen-
trations change along time, can be used to obtain the non-steady state metabolic
fluxes. When the concentrations become stable, the steady state metabolic flux
distribution is reached.

3.4.1 First principle models

First principles-based models of microbial systems can be developed to describe the
principles that govern cellular behaviour and achieve a predictive understanding
of cellular functions [130–132]. Metabolic networks are modelled assuming that
certain constrains operate under steady-state conditions, such as environmental
constraints [133], regulatory constraints [134, 135], gene expression data [136],
mass balances or reactions irreversibilities [137] (the so-called constraint-based
perspective) [122, 138, 139]. The imposed constraints define a solution space that
encloses all the possible states of the network (i.e. flux distributions through the
reactions).
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Figure 3.2: Small example of a metabolic network.

3.4.2 Stoichiometric modelling

To build a constraint-based model, the stoichiometric information embedded in the
metabolic network (i.e. metabolites or cofactors involved in each reaction) must
be arranged into an N ×K matrix S (the so-called stoichiometric matrix). Rows
of this matrix represent the N metabolites, columns the K metabolic reactions
and each element (n, k) the stoichiometric coefficient Snk of the nth metabolite
in the kth reaction. A value of Snk = −1 indicates that the nth metabolite is
consumed by the kth reaction. In contrast, a Snk = 1 indicates the nth metabolite
is produced by the kth reaction. Finally, a value of Snk = 0 stands for the nth
metabolite is not involved in the kth reaction.

Figure 3.2 shows an example of a small metabolic network with 6 metabolites and
10 reactions, being one of them reversible (v5), i.e. the reaction can be produced
in both directions. The stoichiometric matrix S of this network has 6 rows and 10
reactions (see Table 3.1).

The stoichiometrix matrix is used, in combination with the flux vector v =
[v1, ..., vK ], the metabolites concentration c = [c1, ..., cN ] and the specific growth
rate of the cell µ, to represent the mass balances through the metabolic network.
The ODE describing this process is as follows:
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v1 v2 v3 v4 v5 v6 v7 v8 v9 v10
c1 1 -1 0 0 0 -1 0 0 0 0
c2 0 1 -1 0 0 0 0 0 0 0
c3 0 0 1 -1 -1 0 0 0 0 0
c4 0 0 0 0 1 1 -1 0 -1 0
c5 0 0 0 0 0 0 1 -1 0 0
c6 0 0 0 0 0 0 0 1 1 -1

Table 3.1: Stoichiometric matrix for the network detailed in Figure 3.2.

dc
dt

= Sv− µc (3.1)

This equation is called the dynamic mass balance equation, and describes the evo-
lution of the concentration of each metabolite over time [139]. In stoichiometric
modelling, the dynamic intracellular behaviour is disregarded on the basis assump-
tion of pseudosteady state for the internal metabolites [137]. This assumption is
supported by the observation that intracellular dynamics are much faster than
extracellular dynamics. Therefore, it is sensible to assume that these compounds
reach the steady state instantaneously and, hence, its transient behaviour can be
omitted. In addition, the dilution term µc is also discarded because it is gen-
erally much smaller than the fluxes affecting the same metabolite. Under these
considerations, the general equation can be expressed as:

Sv = 0 (3.2)

This equation constrains the K -dimensional space of feasible solutions. Also, an
extra constraint is added, assuming that some of the fluxes of the metabolic net-
work flow only in one direction:

Dv ≥ 0 (3.3)

where D is a K × K diagonal matrix with binary values: 1 for the irreversible
fluxes and 0 for the reversible ones. In the example shown before, D would be a
diagonal matrix with ones in the diagonal except in position D5,5 = 0. The main
direction in reaction v5 is considered when c3 is consumed to produce c4 (see Table
3.1).

Finally, a maximum value for each of the K flux values is computed:

| vk |≤| vk,max | (3.4)
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Figure 3.3: Example of a feasible space solution with 3 metabolic fluxes.

The combination of the constraints imposed by Equations 3.2-3.4 define a space (a
bounded convex cone) of feasible steady-state flux distributions (see Figure 3.3):
only flux vectors that fulfill Equation 3.2-3.4 are considered valid cellular states.

Metabolic networks can be studied bearing in mind that some reactions are re-
versible and others not. However, reversible fluxes can be split in two different
ones in order to assume that all fluxes are irreversible. Following this approach, v5
has to be split, in Figure 3.2, into two fluxes v51 and v52 , the first one consuming
c3 to produce c4 and the other one consuming c4 to produce c3.

3.4.3 Network-based pathway analysis: elementary modes
(EMs)

A metabolic network can be seen as a graph, where the metabolites are the nodes
and the reactions are the edges (see Figure 3.2). Network-based pathways analysis
is founded on that concept. This methodology is not focused on the flux values
through the reactions, but on the thermodinamically feasible pathways from the
inputs to the outputs [85]. Within this field, the concept of elementary mode (EM)
is key. The set of EMs arises from the stoichiometric matrix S, and each EM is
defined as a minimal set of cellular reactions able to operate at steady-state, with
each reaction weighted by the relative flux they need to carry for the mode to
function [140].

The set of EMs is obtained from convex analysis [141] and it is unique for a
given metabolic network. The EMs are usually organized in a data matrix, EM =
[p1 . . .pZ ] (K×Z), having the Z EMs by columns, theK reactions in the metabolic
network by rows, and the relative fluxes in its entries. Since this set represents a
convex basis, any particular steady-state flux distribution vT = [v1...vK ] can be
obtained as a non-negative linear combination of EMs:
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v =

Z∑
z=1

λzpz (3.5)

where K matches the number of reactions in the network, pT
z = [pz1 . . . pzK ] is

the zth EM and λz is the positive weighting factor multiplying it. In the previous
equation all EMs are used, but most of them are multiplied by a λz = 0. Therefore,
any flux distribution can be represented using a positive linear combination of
some, E, EMs.

Current algorithms for the computation of EMs face a common problem when
dealing with highly interconnected metabolic networks [142]. In such cases, the
combinatorial explosion of the number of EMs renders the analysis of large net-
works difficult. Very recently, two new methods [143, 144] have been proposed to
compute the EMs in large networks in a fast and efficient way.

Some methods have been proposed in the literature to select a set of representative
or active EMs. One such attempt is the concept of the α spectrum [145], which
involves a linear optimization to determine how the extreme pathways (EPs) (a
systemically independent subset of EMs) contribute to a given steady-state flux
distribution. This algorithm allows the determination of maximum and minimum
possible weightings for each extreme pathway. A different approach involves the
quadratic decomposition of a single steady-state flux into a set of EMs [146]. In
this algorithm, a particular set of EMs is chosen, based on the minimization of
the weighting vector length, i.e. λT = [λ1 . . . λE ]. A reinterpretation of this
methodology was also proposed by projecting the flux space into the yield space
[147], thus restricting the search for active EMs in a bounded convex space.

3.4.4 Possibilistic consistency analysis

When combining a stoichiometric model of an organism with experimental mea-
surements it is mandatory to check whether the measurements comply with the
proposed constraint-based model. The simplest consistency analysis could be per-
formed by checking that the flux states shown by cells fulfill the constraints im-
posed by the model (see Equations 3.2-3.4) [132]. However, this simple approach
would be impractical because measurements are imprecise and do not exactly sat-
isfy the constraints. Such difficulty is overcome by taking into account uncertainty
as follows:

w = v + e (3.6)

where e represents the deviation error between an actual flux v and its measured
value w.
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The consistency analysis can be also formulated as a possibilistic constraint satis-
faction problem [148]. The basic idea is that a flux vector fulfilling Equations 3.2
and 3.3, and compatible with the measurements will be considered as “possible”,
otherwise as “impossible”. This can be refined to cope with measurements errors
by introducing the notion of “degree of possibility” [149].

This degree of possibility provides an indication of the consistency between the
model and the measurements. A possibility equal to one must be interpreted as
complete agreement between the model and the original measurements. Lower
values of possibility imply that certain error in the measurements is needed to find
a flux vector fulfilling the model constraints.

Possibilistic consistency analysis consists of four steps:

1. Model and measurements constraints. Firstly, the constraints conform-
ing the model (Equation 3.2-3.4) are considered. Then measures of (some)
extracellular fluxes are incorporated as additional constraints (Equation 3.7):

w = v − ε1 + µ1 − ε2 + µ2

ε1,µ1, ε2,µ2 ≥ 0
ε2 ≤ ε2,max
µ2 ≤ µ2,max

(3.7)

where vectors v and w represent the actual and measured fluxes, respectively.
Note that both vectors differ because of errors and imprecision (uncertainty).
This uncertainty is represented by the vectors of slack variables ε’s and µ’s.

2. Possibility. The basic building block of possibility theory is a user-defined
possibility distribution π(δ) : ∆→ [0, 1], where δ = {v,w, ε,µ} denotes each
candidate solution of Equation 3.7 in ∆. This function defines the possibility
of each solution δ in ∆, ranging between impossible (π = 0) and fully possible
(π = 1). Among different possible choices, a simple way to define possibility
is using a linear cost index such as:

Z(δ) = αTε1 + βTµ1 (3.8)

and define the possibility of each solution δ as follows:

π(δ) = e−Z(δ), δ ∈ ∆ (3.9)

where α and β are row vectors of user-defined, sensor accuracy coefficients.

45



Chapter 3. On systems biology

The interpretation of Equations 3.7-3.9 may be: vm = w is fully possible;
the more v and w differ, the less possible such situation is.

3. Representing uncertainty. Two pairs of vectors of slack variables are
chosen to represent the uncertainty of each measurement: ε2 and µ2 define an
interval of fully possible values, and ε1 and µ1 penalise values out of it (with
weights α and β). This is achieved choosing two vectors of bounds. Hence,
in all computations the uncertainty of each measurement is represented as
follows:

(a) Full possibility (π = 1) is assigned to values with less than ± 5% of
deviation.

(b) Larger deviations are penalised, so values with a deviation equal to 20%
have a possibility of π = 0.1 (and those with a deviation equal to ±
10% have a π ≈ 0.5).

(c) Uncertainty is considered as symmetric, and thus α = β.

This is achieved choosing bounds ε2,max and µ2,max and weights α and β
for each measurement: (i) implies that ε2,max = µ2,max = 0.05w, and (ii)
defines α, noticing that 0.2w = µ1,20% +µ2,max, then α = −log(0.1)/(0.2−
0.05)/w.

4. Possibilisitic consistency evaluation. The most possible solution of the
constraint-satisfaction problem is the maximum possibility (minimum-cost)
solution, which can be obtained solving a linear programming problem (LP):

Zmin = min
ε,µ,v

Z (3.10)

subject to Equations 3.2-3.4 and the experimental measurements. This so-
lution has an associated degree of possibility:

πmp = e−Z
min

(3.11)

This value, πmp in [0,1], grades the consistency between model and measurements.
A possibility equal to one must be interpreted as complete agreement, while lower
values imply that there is some error in the measurements, the model or both,
which severity depends on how the uncertainty has been defined (see above) [132,
150].
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3.5 For every omic science: Network inference

The problem of inferring complex networks is frequently addressed in several re-
search areas within biology such as metabolomics, proteomics and genomics. In
the context of cellular networks the individuals (network nodes) are biochemical
entities such as metabolites, proteins or genes. Many different approaches have
been applied to date in this area, none of which can be singled out as the best
one for all problems. Comparisons often find large discrepancies between the pre-
dictions of different algorithms, making network inference an open problem in
bioinformatics research [151–155].

Network reconstruction usually begins with collecting data from each individual
that participates in the network. Then, based on the relationships detected among
them, links between the individuals are established. When no prior knowledge is
introduced, the reconstruction of complex networks depends solely on the avail-
able data. In many cases, the data collection represents a challenge itself when
experimental measurements are involved.

Once the data is collected, different approaches can be applied to reverse engineer
networks. Among other techniques, e.g. correlation-based procedures, information
theory concepts such as entropy and mutual information [156, 157] can be used to
establish relationships among entities in a network. Information theory methods
have strengths such as good scalability and the ability of detecting nonlinear re-
lationships, and are widely used for the reverse-engineering of biological networks
[97]. Examples of this procedures [98] are: Context Likelihood of Relatedness
(CLR) [158], used for inferring transcriptional interactions, the Algorithm for the
Reconstruction of Accurate Cellular Networks (ARACNE) [159] and time-delayed
ARACNE [160], used for GRN, MRNET [161], a maximum relevance/minimum
redundancy (MRMR)-based method used for inferring genetic networks from mi-
croarray data, or MI3 [162], applied in transcriptional regulatory networks.

3.5.1 Mutual information distance and entropy reduction
(MIDER) method

The theoretical foundation of network inference method MIDER is information
theory, which is based on the concept of entropy as defined by Shannon [156]. The
entropy of a discrete variable X with alphabet χ and probability mass function
p(x) is:

H(X) = −
∑
x∈χ

p(x) log p(x) (3.12)
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where the logarithm to the base 2 is usually chosen. For continuous variables the
∑

is replaced by
∫
. It is possible to calculate the joint entropy of a pair of variables

(X,Y ) as H(X,Y ) = −
∑
x

∑
y p(x, y) log p(x, y). Another important quantity,

conditional entropyH(X|Y ), can be calculated as the entropy of a random variable
Y conditional to the knowledge of a second one, X:

H(Y |X) =
∑
x

p(x)H(Y |X = x) = −
∑
x

p(x)
∑
y

p(y|x) log p(y|x) =

= −
∑
x

∑
y

p(x, y) log p(y|x) (3.13)

The relation between joint and conditional entropy is expressed as H(X,Y ) =
H(X) + H(Y |X). A related concept is the relative entropy, which measures the
distance between two distributions p and q and is defined as:

D(p||q) = −
∑
x

p(x)log
p(x)

q(x)
(3.14)

It has two important properties: it is always non-negative, and it is zero if, and
only if, p = q. The relative entropy between the joint distribution p(x, y) and the
product distribution of two variables, p(x)p(y), is called mutual information [157],
I, that is:

I(X,Y ) =
∑
x

∑
y

p(x, y) log
p(x, y)

p(x)p(y)
= H(X)−H(X|Y ) =

= H(X) +H(Y )−H(X,Y ) (3.15)

The concept of mutual information can be used to detect relationships between
variables of any kind, since it is a measure of the amount of information that
one random variable contains about another. Indeed, it has been used as the
basis of many inference methods, e.g. the aforementioned ones [98, 158, 160–
162], among others. Mutual information is a symmetric measure that does not
assume any property of the dependence between variables, such as linearity or
continuity. Hence it is more general than linear measures such as the correlation
coefficient, and it has been shown that it is capable of inferring more interactions
[158]. Intuitively, if two components of a network interact strongly, their mutual
information will be large; if they are not related, their mutual information will be
(theoretically) zero, or (in practice, when estimated from data) very small.

MIDER [98] uses these information theory concepts to infer relationships between
variables, and to discriminate between direct and indirect interactions. Its core
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feature is entropy reduction, which consists of calculating the reduction of the
entropy of a variable Y caused by other variables in the network. Theoretically,
if a variable Y is completely independent of a set of variables X, then H(Y |X) =
H(Y ); otherwise H(Y |X) < H(Y ). Therefore, if a subset of variables X reduces
the entropy of Y to the minimum (i.e. if adding an additional variable to X does
not produce further reductions in the entropy of Y ), we have found the complete
set of connections between Y and the remaining variables in the network.

The MIDER methodology uses the aforementioned concepts in the following pro-
cedure [98]:

1. Based on the estimation of time-lagged multidimensional entropies and mu-
tual information, MIDER estimates the distance between variables and then
projects the distance matrix onto a 2-D space using multidimensional scaling.

2. Then, the links between variables are established based on the first, second
and third order conditional entropies.

3. The strength of a link between two variables is calculated from the relative
reduction of the entropy of the first variable caused by the addition of the
second variable.

4. Finally, directionality is assigned to the inferred links. The direction of a
link connecting two variables X and Y is the one that gives the maximum
transfer entropy. The transfer entropy from X to Y is calculated as:

TX→Y = H(Y t|Y t−τ )−H(Y t|Y t−τ , Xt−τ ) (3.16)

where t indicates the lag - obtained in the first step - for the X − Y pair.

In [98], the performance of MIDER was benchmarked against several methods
from the literature: CLR, ARACNE, MRNET, MI3, and TD-ARACNE, obtaining
competitive results.
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Chapter 4

Material

4.1 Hardware

All the computations in this document have been carried out with a notebook
Intel Core i7, CPU 2,9 GHz, 8GB of RAM.

4.2 Software

The software packages used here are:

• Mac OS X 10.11.13

• MATLAB 2012b (mainly), 2013a and 2014b (The MathWorks, Inc.).

Most computations of this thesis have been run in MATLAB environment, using
own code, including method implementation and computation routines. Addition-
ally, two software packages are derived from this document:

• Missing Data Imputation Toolbox (MDI Toolbox).

• Principal elementary mode analysis Toolbox (PEMA Toolbox).

The first one for imputing missing values in data matrices (see Chapter 10) and
the second one to fit PEMA models using metabolic flux data (see Chapter 6).

Many other source code files are derived from contributions in this thesis. The
URLs of these freely available files will be given when presented within chapters.
When no URL is available, an appendix with the MATLAB code will be included
at the end of the corresponding chapter.
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Other software packages are used throughout the present work at specific steps
within chapters:

• COnstraints Based Reconstruction and Analysis toolbox (COBRA toolbox)
[163].

• Multivariate Exploratory Data Analysis (MEDA) Toolbox [164].

• MCR-ALS Toolbox [35, 36].

• EFMTOOL [165].

• COmplex PAthway SImulation (COPASI) software [166].

• N -way toolbox [167].

• ProSensus MultiVariate (ProSensus, Inc.) [168].

• Phi toolbox [60].

• MIDER Toolbox [98].

• PLS Toolbox (Eigenvector Research, Inc.) [169].

COBRA is used to generate metabolic flux solutions in Chapter 5. MEDA and
MCR-ALS Toolbox are used in the same chapter to apply MEDA and MCR-ALS
methods, respectively. EFMTOOL is used in Chapters 6 and 7 to enumerate the
complete set of elementary modes in metabolic networks. COPASI is used for
simulating non-steady state metabolic fluxes in Chapters 7. N -way toolbox is
used in Chapters 7 and 9 for building NPLS-DA models. ProSensus MultiVariate
is used in Chapter 8 for fitting the PLS models. MIDER is used in tandem with
missing data imputation and outlier detection and correction own procedures in
Chapter 11. Finally, specific methods within Phi and PLS toolbox are used in
Chapters 10 and 14, respectively, for comparative studies: the NLP approach
from Phi for missing data imputation, and piecewise direct standardisation (PDS)
from PLS Toolbox for calibration transfer between NIR instruments.

4.3 Biological organisms

The novel methods and modelling contributions presented in this thesis have been
applied to different biological organisms. In chapters 5, 6 and 7 different metabolic
models are proposed for:

• Pichia pastoris: a yeast widely used for protein production in biotechnolog-
ical industries.
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• Escherichia coli : a bacterium commonly present in animal intestines.

• Saccharomyces cerevisiae: known as the baker’s yeast, used also in fermen-
tation industries.

For P. pastoris different metabolic models are used, since the methodologies pro-
posed here have been developed at many sites during the PhD (UPV, UNL, UvA).
For S. cerevisiae two metabolic models are proposed in Chapter 7 due to data avail-
ability reasons, i.e. the simulated model have slightly different metabolites than
the actual experimental measurements.

In Chapter 8 the PPIN of Potyvirus, a pathogen of many plant species, is studied,
using experimental data from Tobacco etch virus mutants, grown in Nicotiana
tabacum plant.

Finally, two food products, biological organisms at macro level, are used here:

• Multivariate image analysis (MIA) models are fitted in Chapter 9 to dis-
criminate between sound oranges and fruits infected by another organism,
Penicilium digitatum fungus.

• Novel calibration transfer procedures are tested in Chapter 14 using spectral
data from corn samples.

4.4 Datasets

Different data sets are used in this document to evaluate the performance of novel
methods and to compare them to the established ones. These datasets are very
diverse. Some case studies use data derived from biological organisms, e.g. concen-
trations, metabolic networks, images, and others are benchmarks commonly used
in the literature for method comparisons, such as synthetic networks or spectral
measurements of organisms or end-products.

Due to the large quantity of datasets used in this thesis, being each one used in
one single contribution (with few exceptions), each dataset will be presented at its
corresponding chapter.
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Chapter 5

Metabolic flux understanding

Part of the content of this chapter has been included in:

[1] González-Martínez, J.M., Folch-Fortuny, A., Llaneras, F., Tortajada, M., Picó,
J. & Ferrer. A. Metabolic flux understanding of Pichia pastoris grown on hetero-
geneous culture media. Chemometrics and Intelligent Laboratory Systems 134,
89-99 (2014).

[3] Folch-Fortuny, A., Tortajada, M., Prats-Montalbán, J.M., Llaneras, F., Picó,
J. & Ferrer, A. MCR-ALS on metabolic networks: Obtaining more meaningful
pathways. Chemometrics and Intelligent Laboratory Systems 142, 293-303 (2015).
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5.1 Introduction

Within systems biology, first principles-based models of microbial systems are
employed to discern the principles that govern cellular behaviour and achieve a
predictive understanding of cellular functions. The development of this type of
models based solely on fundamental or knowledge information has the drawback
that the unknown part of the process is not represented as well as some of the
underlaying assumptions (e.g. specific kinetics of the reaction system, unknown
dynamics, values of the model parameters, objective functions) may not be valid
for all the metabolic possible states of the network [170, 171]. To address this prob-
lem, grey models that combine knowledge-based models, which fit the theoretical
behaviour, and empirical models, which fit any remaining systematic variation,
can be used [172].

In the context of grey modelling, there are different approaches to descompose the
data into the three types of variation (known causes, unknown causes and resid-
uals) [173], which be roughly classified into three categories. The first category
are the models based on known constraints. There exist general frameworks that
enable to impose very specific constraints on each type of information, e.g. ob-
served experimental information [174] or transformations on the original variables
[175]. These methods are based on the projection of a data matrix, followed by
multivariate model decomposition. PCA is one of the most applied multivariate
statistical projection methods to reveal the internal structure of the cell. This
analysis is commonly preceded by a MC sampling in order to produce a data set
of possible states or feasible solutions from which the PCA elucidates the mean-
ingful principal components (PCs) [176–178]. PCA has also been compared to
other multivariate techniques, such as Multivariate Linear Regression [178] and
PARAFAC [179, 180] in the field of systems biology. Partial Least Squares regres-
sion (PLS) has been applied directly [181, 182] and combined with hierarchical
clustering PLS (HC-PLSR) [183] to deal with situations where the input-output
relations (e.g. the effect of the substrates consumption of the cell or the environ-
mental conditions in the production of a particular protein) are highly nonlinear
or non-monotone. Recently, grey component analysis (GCA) has been proposed
using a cost function to maximise the interpretability of the solutions by forcing
the decomposition towards the direction of the prior information - a chemically or
biologically meaningful solution - [184].

A second strategy is formed by methods based on introducing a priori knowl-
edge by means of mathematical relations that describe the system behaviour or
dynamics. The starting point is some specific structure based on first principles
mathematical relations, where some functions must be estimated. Different tools
can be used to calculate these functions, such as artificial neural networks (ANNs)
[185] or kalman filters [186, 187].
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Constraint-based 
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Figure 5.1: Flow diagram of the grey modelling.

Finally, a third category are the methods based on incorporating the fundamental
knowledge through constraints on the modelling algorithms. For instance, some
model parameters can be forced to have values within certain regions in the pa-
rameters space [188]. Projection to latent pathways (PLP) [189] has been recently
formulated as a modification of the PLS regression algorithm by using the concept
of EMs (more details in Section 3.4.3). This method is devoted to obtain a more
biologically explanatory set of LVs relating the observed behaviour of the cell and
its initial conditions.

The complexity of data available from microbial systems requires the design of
sophisticated grey models that combine data-driven and knowledge-based infor-
mation at different scales for biochemical process understanding. The main goal in
this chapter is to use this hybrid framework to analyse the behaviour of the methy-
lotrophic yeast P. pastoris [132], as a first step to analysing which conditions and
through which reactions the cell achieves an optimal state for our interests. Several
scenarios corresponding to different chemostat runs are collected from the litera-
ture [190–198] with the aim of starting the analysis with a rich data set of different
culture conditions. A recently developed adaptation [132, 148] of the possibilistic
theory [149] is applied in order to check the consistency between model and data.
For the completion of the unmeasured data, a MC sampling method is applied to
produce feasible flux solutions for the microbial system under study. At this point,
two methodologies are compared here. First, a hard modelling approach, PCA in
combination of MEDA, is applied to obtain a reduced number of orthogonal PCs
explaining most of the variance of the collected and sampled data. Second, a
soft-modelling method, MCR, is applied on the same data in order to i) include
constraints in the model, to make it more biologically meaningful and ii) obtain
non-orthogonal components. The whole process can be visualized in Figure 5.1.

This chapter is organized as follows. Section 5.2 presents the metabolic network
reconstruction of the yeast P. pastoris and the different scenarios used in the study.
Section 5.3 describes the grey modelling approach proposed in detail. Section 5.4
shows the results applying hard and soft methodologies. In section 5.5 the results
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between both approaches are compared. Finally, some conclusions are drawn in
Section 5.6.

5.2 Pichia pastoris metabolic model

5.2.1 Metabolic network reconstruction

The constraint-based model, whose corresponding metabolic network is shown in
Figure 5.2, has been used throughout this work. The model is a simplified repre-
sentation of the whole metabolism of the yeast P. pastoris, meaning that only a
reduced number of biochemical reactions has been included (45), from the larger
amount available from genomic information (more than 1200). The reactions were
selected on the basis of previous models found in literature, as lumped equiva-
lents of more complex pathways. This model has been previously validated in
[132, 150] and is the only one used in the referred experiments throughout this
work. The model represents the most significant features of P. pastoris central
carbon metabolism, including the main catabolic pathways of the yeast, such as
glycolysis, the citric acid cycle, glycerol and methanol oxidation and fermentative
pathways [150]. Anabolism is introduced through the pentose phosphate pathway
and a general lumped biomass equation according to which growth is assumed
to depend exclusively on key biochemical precursors. Branch-point metabolites,
such as NADH, NADPH, AcCoA, oxalacetate and pyruvate, are considered in
compartmentalized cytosolic and mitochondrial pools [190].

5.2.2 Experimental data set

In this chapter, experimental data from several fermentation runs with different
P. pastoris strains have been taken from the available literature, building the dif-
ferent scenarios considered for the subsequent statistical analysis. For the sake
of visualization, the 40 scenarios under study have been grouped attending to
the experimental substrates (i.e. glucose, glycerol, methanol, and glycerol and
methanol mixtures) (see Figure 5.3). Scenario A1 corresponds to a strain express-
ing the Fab fragment of the human anti-HIV antibody 3H6 [190]. Scenarios from
B1 to B7, and C1 and C2, are from a strain expressing a Rhizopus oryzae lipase
(ROL) [191, 192]. Scenarios from D1 to D10 come from a P. pastoris strain ex-
pressing and secreting recombinant avidin [193]. Scenario E1 has been obtained
from a macrokinetic model for P. pastoris expressing recombinant human serum
albumin (HSA) [194]. Scenarios from F1 to F7 come from a P. pastoris strain
genetically modified to produce sea raven antifreeze protein [195]. Scenarios from
G1 to G10 are obtained from a P. pastoris strain producing recombinant human
chymotrypsinogen B [196]. Scenario H1 has been obtained from the continuous
fermentation of a P. pastoris strain for the extracellular production of a recombi-
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Figure 5.2: Metabolic network of P. pastoris.
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nant ovine interferon protein [197]. Finally, scenario I1 comes from the expression
of recombinant chitinase with a genetically modified P. pastoris strain [198]. The
data for all these scenarios are detailed in Figure 5.3.

At this point, there is a paramount comment that is in due. Batch effects, which
are defined as systematic non-biological variation between groups of samples (or
batches) due to experimental artefacts [199–202], can be present in data collected
from different cultures. In case that replicates of the same scenario are collected
(i.e. same strain and same quantities of initial substrates) and the presence of
batch effects is statistically confirmed, this artificial variation must be removed.
Otherwise, the bias introduced by the non-biological nature of this kind of effects
may confound true biological differences [201], affecting the results of statistical
analysis. In this study, the scenarios within a single strain of P. pastoris have dif-
ferent initial substrate quantities (see Figure 5.3). Hence, the variation observed
across scenarios can be due to these different initial conditions, which were ap-
plied with the aim of obtaining different flux values. This fact jointly with the
scarcity of information about the experimentation conditions disable the possibil-
ity to straightforwardly confirm actual batch effects in data.

5.3 Grey modelling

5.3.1 Possibilistic consistency analysis

The first step of the grey modelling consists of validating whether the experimen-
tal scenarios taken from the literature are consistent with the metabolic model
presented in the previous section. From each one of the 40 scenarios, the flux
values through the external reactions, which are different depending on the initial
conditions of each experiment, are validated against the stoichiometric modelling
of the P. pastoris. The most possible solution for each scenario (i.e. experimental
dataset) is computed to perform a possibilistic consistency analysis.

The possibility values (π) for the experimental scenarios are shown in Table 5.1.
The majority of datasets are highly consistent with the model (65% are fully
possible, and 87% have a possibility higher than 0.5). There are, however, 4 out of
40 datasets with a possibility lower than 0.25 (i.e. a possibility that is equivalent to
an error of 14% in one measurement, or to an error of 8% in three measurements).
These scenarios (B3, B4, C2, and E1) are not fully consistent with the model. The
inconsistency can be due to a) limitations of the model, which may be unable to
capture phenomena ocurring in those experiments, b) larger errors than expected
in the data measured in those scenarios, or c) the two previous reasons acting
simultaneously. For this reason, we decided to remove these scenarios (B3, B4,
C2, and E1) so they are not considered in the following analysis.
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Figure 5.3: Set of 40 experimental scenarios corresponding to P. pastoris chemostat cul-
tures grown on glucose, glycerol and methanol mixtures. For each scenario, the values of
measured fluxes belonging to substrate and product specific consumption and production
are shown. The substrates are glucose (QGLU , corresponding to reaction 1 in Figure 5.2),
glycerol (QGLY C , reaction 27), methanol (QMET , reaction 32), citrate (QCIT , reaction
42) and oxygen (OUR, reaction 28). The products are ethanol (QETOH , reaction 40),
carbon dioxide (CPR, reaction 39), biomass (µ, reaction 45) and protein (QP , reaction
46). Note that NaN values stand for missing measured external fluxes.
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Scenario Group π
A1 glucose 1,000
B1 glycerol 1,000
B2 glycerol + methanol 0,739
B3 glycerol + methanol 0,246(*)
B4 glycerol + methanol 0,082(*)
B5 glycerol 1,000
B6 glycerol + methanol 0,819
B7 glycerol + methanol 0,319
C1 glucose 0,658
C2 methanol 0,052(*)
D1 glycerol + methanol 1,000
D2 glycerol + methanol 1,000
D3 glycerol + methanol 1,000
D4 glycerol + methanol 1,000
D5 glycerol + methanol 1,000
D6 glycerol + methanol 0,908
D7 glycerol + methanol 0,709
D8 glycerol + methanol 0,637
D9 glycerol + methanol 0,614
D10 methanol 0,500
E1 glycerol 0,065(*)
F1 glycerol + methanol 1,000
F2 glycerol + methanol 1,000
F3 glycerol + methanol 1,000
F4 glycerol + methanol 1,000
F5 glycerol + methanol 1,000
F6 glycerol + methanol 1,000
F7 glycerol + methanol 1,000
G1 methanol 1,000
G2 methanol 1,000
G3 methanol 1,000
G4 methanol 1,000
G5 methanol 1,000
G6 methanol 1,000
G7 methanol 1,000
G8 methanol 1,000
G9 methanol 1,000
G10 methanol 1,000
H1 methanol 1,000
I1 glucose 1,000

Table 5.1: Possibility values (π) for each scenario. Those scenarios that are not consis-
tent (i.e. π < 0.25) with the constrained-based model are signaled with (*).
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5.3 Grey modelling

5.3.2 MC sampling

The experimental data found in the literature represent partial flux solutions, since
few fluxes (9) of the metabolic network have been experimentally measured (see
Figure 5.3). In this context, MC sampling methods can be used to produce com-
plete feasible flux distributions across the cell, in this case 45 fluxes (see Figure 5.2),
without adding any other assumption nor biasing (i.e. keeping the current uncer-
tainty) [176–178, 203, 204]. This way, the available experimental data (measured
fluxes) and the first principles knowledge captured by the model (stoichiometry)
are coupled together, providing a new richer dataset amenable to further analysis
with a multivariate statistical method.

In order to deal with experimental errors, external fluxes are allowed to vary within
a defined range of values centered on the original mth measured value. The upper
(lower) bound of this range is the sum (subtraction) of the measured value and
the maximum value between ρ and a fraction ζ of the measured value:

UBm = vm + max(ρ, ζvm) (5.1)

LBm = vm −max(ρ, ζvm) (5.2)

where UBm, LBm are the upper and lower bounds for the MC sampling, vm is
a measured flux, and ρ and ζ are heuristic values recommendable to be set to
ρ = 0.001 and ζ = 0.1, respectively.

At this point, it is worth commenting that the feasible solutions for each scenario
are obtained by sampling within the slice of the cone defined by Equations 3.2-3.4
and the experimental data, i.e. the measured fluxes reduce the feasible solution
space from the initial cone, which is bounded only by the constraint-based model,
to the portion of it fulfilling these specific experimental measurements. The com-
plete procedure can be visualized in Figure 5.4.

Notice that there are scenarios lacking measurements of some external fluxes
(see Figure 5.2). In the Monte Carlo sampling, these fluxes are allowed to vary
within the whole slice of the cone defined by the measured external ones and the
constraint-based modelling.

Once the sampling has been performed, using COBRA Toolbox, a feasible flux
solution matrix X is built. X has the complete 3600 sampled flux solutions in its
rows (36 scenarios × 100 samples) and the corresponding 45 flux values and the
protein production for each scenario in its columns.
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Figure 5.4: MC sampling. The convex cone is obtained by Equations 3.1-3.4, the
experimental measurements constrain the cone, and the sampling is performed on the
resulting slice of the cone.

5.4 Multivariate modelling

5.4.1 PCA with MEDA

PCA is applied to the feasible flux solutions matrix X to obtain a small number
of principal components (PCs) explaining a high percentage of variance of the
complete data set. The idea is that the loading matrix, P, retains information
about these flux relationships; and the scores matrix, T, describes to what extent
this combination of fluxes is related to a particular observation or scenario.

After the PCA has been fitted, explaining 94.3% of total variance with five PCs,
an outlier analysis is performed to the scores and the residuals of the different sce-
narios. The results on the statistic SPE show that scenario C1, classified on group
glucose widely exceed the 99% control limits. Thus, the hundred observations
generated for this scenario are knocked-out. Afterwards, a new PCA is fitted.

The results with the second analysis are that the first five PCs capture 95.9% of
total variance in data: 42.4% for the first component, 24.2% for the second one,
19.7% for the third one, 7.0% for the fourth, and 2.5% for the last one. In these
results no outliers are detected.

At this point, MEDA is applied using MEDA toolbox to enhance the interpretabil-
ity of the PCs. In the MEDA method (see Section 2.3.2, the Q2 matrices have
been built in a cumulative way, i.e. they have the variability of the first A PCs.
These matrices can also be constructed by taking the information of a single PC.
For this purpose, the method previously detailed has to be changed in Equations
2.10-2.13. The new equations have to consider only the a-th component for esti-
mation. Finally, this kind of MEDA matrices, which have been used in this work,
are written as Q2

(a), where a = 1, . . . , A.
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Figure 5.5: MEDA plot for the first PC. Solid line rectangles marks reactions related
to this PC.

The MEDA is applied to the first five components obtained by the PCA, and the
Q2

(a), a = 1, . . . , 5 matrices are obtained. Looking at the values in each matrix, the
first three PCs are sufficient to explain the behaviour of the yeast, which capture
86,3% variance in data. Fourth and fifth PCs are classified as noise. The first
three MEDA matrices can be seen in Figure 5.5-5.7.

If analysed from a biological standpoint, the first principal component relates
protein production rate to reactions 5-8 (glycolysis), 14-16 and 18 (tricarboxylic
nucelic acid (TCA) cycle), 19-20, 28, 30, 36 and 37. In Figure 5.5 these reactions
are rounded by the solid line rectangle. It can be seen that these relations are
indeed strongly correlated, having Q2

(1),(k,l) coefficients close to 1. As can be
seen in Section 5.7, each of these groups is directly connected to NADH and
ATP metabolism: ATP is formed in reactions 6, 8, 18 and 28, whereas NADH is
formed in reactions 6, 14, 16 and 18-20. Finally, reactions 28, 30 and 36 represent
the electronic transport chain, oxygen consumption and ATP dissimilation. The
first PC can be then understood as the main pathway for ATP formation and
dissimilation, this is, energy generation. Interestingly, protein productivity and
ATP generation have been previously related in a first-principles based approach
to predict recombinant protein production [150].

The second principal component is related to the biomass growth rate, which
involves reactions 9-13 (fermentative pathways), 17, 21, 29 and 41 (relations shown
by dashed line rectangles in Figure 5.6). Except for reaction 41, corresponding
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Figure 5.6: MEDA plot for the second PC. Dashed line rectangles marks reactions
related to this PC.

Figure 5.7: MEDA plot for the third PC. Solid line rectangles marks reactions related
to this PC.
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to the glycerol consumption rate, reactions 12 (around which reactions 9, 10,
11, 13 and 29 are connected), 17 and 21 share NADPH (either mitochondrial
or cytosolic) production (see Section 5.7), which is, in fact, one of the major
contributing precursors to biomass formation. It is worth noting that reaction
17 (corresponding to NADPH-requiring form) and not 16 (corresponding to the
isoenzyme NADH-requiring) is identified.

Finally, the third principal component relates methanol consumption rate to the
pentose phosphate pathway, strongly connected by reaction 34 (reactions corre-
lated are rounded by dotted rectangles in Figure 5.7). Reactions 3-4, 22-26, 32,
35 and 44 are also related with this component.

The first three principal pathways are depicted in Figure 5.8. In this way, the
reactions involved by the three first principal components seem to pinpoint specific
metabolic indicators (cofactors NADH, NADPH and ATP) and their relation with
protein, biomass and substrate (glycerol and methanol) consumption.

It is worth pointing out that the fit of a PCA model on the available experimental
data is not feasible due to two main reasons: i) only seven out of nine external
fluxes are measured for all scenarios under study, of which three have zero values
mostly (see Figure 5.2), ii) the flux distributions across the metabolic network
cannot be represented since no internal fluxes are considered. Actually, a PCA
does not clearly relate substrates consumption to biomass and protein production,
so this model is not meaningful (results not shown).

5.4.2 MCR-ALS

In this subsection, a soft modelling approach, MCR, is applied for the first time
time to model flux data. Specifically, the ALS version of the algorithm is used.
The reasons are its ability to provide physically more interpretable results by i)
imposing some a priori knowledge through constraints on the modelling algorithm,
and ii) avoiding the orthogonality restriction on the internal relationships between
variables/pathways.

The idea behind MCR, traditionally applied in analytical chemistry, can be easily
expanded to flux analysis by stating that a flux distribution across the metabolic
network for a particular scenario is a linear combination of the different “true”
pathways existing in it. This way, the spectra matrix S becomes the pathway
matrix and C represents the relative contributions of pathways to each scenario.
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Figure 5.8: The first three PCs represent the main metabolic pathways through the
yeast P. pastoris.
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MCR-ALS: Data considerations

In order to exploit the potentiallity of the non-orthgonal components and the
additional constraints in MCR, the reversible fluxes in the original dataset have
been split into two irreversible ones, a usual strategy in stoichiometric modelling.
Also, the positive flux values have been scaled to have values between 0 and 1.
This way, when MCR model is applied in the next subsections, non-negativity and
closure can be imposed on the contribution matrix.

MCR-ALS: Initial estimation

Since the MCR-ALS method is an iterative approach of MCR, it needs an initial
estimation of either pathways or relative contributions matrix to start the ALS
estimation of both matrices. Here, the pathways matrix is (initially) estimated
using the most different scenarios in the dataset, i.e. the SIMPLISMA estimation
implemented in MCR-ALS Toolbox.

MCR-ALS: solution as PCA-MEDA approach

MCR-ALS needs, unlike PCA, the number of components (or pathways) to be
extracted before running the algorithm. Since our main objective is to compare
the results of the PCA+MEDA approach and the results of MCR-ALS, it makes
sense to start the MCR-ALS algorithm with three pathways, which is the number
of PCs in the previous multivariate model. Additionally, the SVD estimation in
MCR-ALS Toolbox of the number of components indicates that 3-4 components
describe well the data set.

As explained above, different constraints can imposed in the MCR-ALS algorithm.
The first constraint used here is that both the pathways and their relative con-
tributions have to be positive. This is attained by the non-negativity constraint.
Secondly, for each scenario, the relative contributions of pathways are forced to
sum one, in order to represent a percentage of usage. This is the closure constraint,
which is applied in the contributions direction.

The variance in data explained by the MCR-ALS model is 78.5%. The pathways
obtained in this first approach are represented graphically in Figure 5.9. Each row
represents the weights of the original variables in each pathway: the clearer is the
corresponding square the higher is the weight. These pathways are represented on
the metabolic network in Figure 5.10.

These results are somehow similar to the ones obtained applying PCA + MEDA:
the first pathway is related to energy generation, in the form of ATP equiva-
lents, mostly provided by glucose consumption through glycolysis and oxidative
phosphorylation. The second pathway identified can be related to anabolism, and
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Figure 5.9: Pathways obtained extracting three components in the MCR-ALS method.
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Figure 5.10: Metabolic network of P. pastoris with the three pathways obtained in the
MCR-ALS method. The solid blue lines represent the first pathway, the dashed green
lines the second one, and the dotted red lines the third one.
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Figure 5.11: Relative contributions of the three pathways. The blue columns (scenarios
1-300) represent the percentage of usage of each pathway in glucose scenarios. The green
columns (scenarios 301-500) represent the percentage of usage in glycerol scenarios. The
brown ones (501-2400) are the scenarios with a glycerol-methanol mixture. The red
columns (2401-3600) represent scenarios with only methanol as a substrate.

particularly to NADPH and AcCoA generation (thus indirectly to biomass growth)
from glycerol. Finally, the third pathway seems to identify methanol consumption.
Note that protein production is directly related to the first pathway as ATP is used
as its single precursor in reaction 46. These pathways do not correspond exactly to
the ones obtained in Section 5.4.1, especially in the case of the green (#2) and red
(#3) pathways on the pentose phosphate route (reactions 21-26 in Figure 5.10),
because the stoichiometric model is slightly different in the MCR approach (i.e.
the reversible reactions are not split into two irreversible ones).

MCR-ALS can be exploited to study the relationship between each scenario and
the pathways obtained. This relationship is depicted in Figure 5.11. This figure
shows three plots, the first one represents the percentage of usage of the first
pathway in each of the 3600 scenarios. As well, the other two plots represent
the percentage of usage of the second and third pathways, respectively. The first
pathway is surprisingly not strongly associated to some scenarios (1-200) in which
glucose is the only carbon source. In an analogous way, the third pathway is used
nearly at 100% in scenarios in which methanol is consumed. The second pathway
is contributing both to scenarios in which only glucose or glycerol are used as a
substrate, despite the fact that (as shown in Figure 5.10) this pathway does not
consume glucose.

Once the relative contributions and the pathways have been visualised (Figures
5.9-5.11 some comments can be drawn. The second pathway depicted in Figure
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5.10 does not flow in a thermodynamically feasible way through the metabolic
network. The dashed green line crosses the pentose phosphate zone (reactions 22-
26) and reaches reactions 3-4, where the glycerol consumption (reaction 27) ends
in the opposite direction. This result, in addition with the poor contribution of the
first pathway (solid blue) to the first two scenarios with glucose (1-200 in Figure
5.11), and the percentage of usage of the second pathway in glucose scenarios,
indicates that the current model does not fully comprehend the behaviour of the
scenarios analysed.

MCR-ALS: solution with four pathways

The results shown previously lead us to think that the actual MCR-ALS model
may be improved by extracting another pathway, in order to discover if some of
the pathways can be refined or if there is another hidden pattern in the data that
is not explained at the moment. So a new model with four pathways is fitted. The
model explains 82.4% of variance in data. The pathways obtained in this model
are directly represented onto the metabolic network in Figure 5.12. The current
first, third and fourth pathways are similar to the ones obtained in the previous
MCR-ALS model (3 pathways). However, the second pathway represents a new
metabolic route across the network.

The relative contribution of each pathway is plotted in Figure 5.13. Again, there
is a plot for each pathway extracted from data. The first and second pathways
seem to be associated mainly to glucose scenarios. The third pathway is widely
used in the glycerol and glycerol+methanol scenarios, being the highest contribu-
tion attained in scenarios where glycerol is used as single carbon source. Finally,
scenarios with only methanol use nearly at 100% the fourth pathway, and so do
mixed scenarios with higher amount of this substrate.

As explained above, the flexibility of MCR-ALS method allows including different
kind of constraints during the optimisation process. One of the most used con-
straints is selectivity. In this context, selectivity allows to constrain each pathway
to not be used or "expressed" in all scenarios. By visual inspection of Figure 5.13
it seems that the first two pathways are related mainly to the glucose scenarios,
the third one to glycerol and glycerol+methanol ones, and the last one to glyc-
erol+methanol and methanol. This hypothesis is supported by the fact that P.
pastoris cannot consume a substrate that is not present initially in the culture, so
it makes sense to avoid this unrealistic metabolic behaviour through the statistical
modelling.

The percentage of variance explained by including the selectivity constraint in
the MCR-ALS model is 81.6%, which is only slightly lower than the percentage
explained without this constraint (an admissible loss of explained variance). The
variances explained by each pathway are: 11.8% (1st pathway), 9.6% (2nd path-
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Figure 5.12: Metabolic network with four pathways. The solid blue lines represent the
first pathway, the dash-dotted black lines the second pathway, the dashed green lines the
third one, and the dotted red lines the fourth one.
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Figure 5.13: Relative contributions of the four pathways. More details in Figure 5.11.

way), 26.8% (3rd one) and 39.3% (4th one). The sum is 87.5%. Since the variance
explained by the MCR model with 4 components using selectivity is 81.6%, the
pathways have a degree of orthogonality of 93.2%.

The relative contributions of the pathways extracted with this model are plotted
in Figure 5.14. The pathways obtained with this extra constraint in the model are
basically the same as the ones represented in Figure 5.12 (results not shown).

Nevertheless, the inclusion of the selectivity constraint on the model produces a
more clear usage of each pathway. In this way, the first two pathways explain
the glucose scenarios, and the third and fourth pathways explain the glycerol and
methanol ones, respectively, including their mixtures.

5.5 Discussion

PCA+MEDA and MCR-ALS models of P. pastoris deserve some discussion here.
The final model of MCR-ALS includes all 36 possible experimental scenarios, while
in the PCA method scenario C1 (sampled scenarios 101-200) were discarded. The
reason is that this scenario, in fact the hundred simulated ones, widely exceeds the
99% control limit for the SPE. However, this scenario is clearly described in MCR-
ALS by the first and second pathways. Moreover, the second pathway, which is
describing scenario C1 up to 90% (Figure 5.14), consumes glucose and produces
biomass. This pathway is not described by the PCA model, since biomass is only
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Figure 5.14: Relative contributions of the four pathways, including selectivity con-
straint. More details in Figure 5.11.

associated to glycerol consumption, while glucose consumption is only associated
to TCA cycle, ATP and protein production. PCA associates a source of variability
to a single PC, so biomass cannot be explained by two orthogonal components.
However, it is obviously possible for the microorganism to grow using glucose as
the only carbon source, as can be seen in Figure 5.3 (µ values of scenarios A1 and
C1). Actually, this is highly desirable as the biomass yield on this substrate is
the highest. This situation illustrates the main advantage of using MCR-ALS: a
source of variability can be associated to more than one pathway – in the present
case, biomass growth, which appears in the second pathway (associated to glucose
consumption) and the third one (associated to glycerol consumption) –. This is
also related to the degree of orthogonality of the MCR-ALS pathways. They are
highly orthogonal (and that is the reason why some of its pathways are similar to
the PCA ones), but without imposing this constraint a new biologically meaningful
metabolic route (pathway 2) can be isolated.

The ability to include constraints during the optimisation is an advantage of MCR-
ALS over PCA. Different types of biological knowledge can be included in a mul-
ticomponent model by using MCR-ALS. In the present case, non-negativity and
closure are very useful in order to clearly identify and associate pathways to sce-
narios, while selectivity permits to avoid inconsistent behaviours related to known
experimental conditions. The closure constraint allows us to explain the percent-
age of usage of each pathway in each scenario, but the total amount of flux flowing
through a pathway cannot be compared between scenarios. This represents a dis-
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advantage of the MCR-ALS model over a classical PCA, in which the more related
is a scenario with a pathway the more flux is flowing through it.

5.6 Conclusions

Investigate the metabolic phenomena occurring within microorganisms is manda-
tory to really understand their observed behaviour. The knowledge derived from
these studies is also relevant for biotechnological industries, which exploit these
microbial cultures to produce top quality biochemicals. In this Chapter, the use
of a grey modelling approach combining a first principles-based model with ex-
perimental information, followed by multivariate statistical techniques, such as
PCA+MEDA or MCR-ALS, provides an insight on the main metabolic relation-
ships underlying on actual P. pastoris cultures. In this way, the new approach
presented here relates experimental substrates, metabolic pathways and biological
functions of the yeast.

Both statistical modellings presented here have advantages and disadvantages.
However, the flexible modelling of MCR-ALS, which permits to include many
sources of biological knowledge in the model, opens a new framework of col-
laboration between statistical and biological modellers. This framework, which
can be considered as a two-step grey modelling (first step: experimental data +
constraint-based model, second step: statistical models + additional biological
knowledge) can lead to a better understanding of these complex systems, and thus
allows us to constrain the models into the desired direction and exploit all the
available knowledge – first-principles, experimental data, etc. – in a suitable way.

5.7 Appendix. Metabolic model.

Metabolite abbreviations

Abbreviation Metabolite
BIOM Biomass (E)
Cit Citric Acid (E)
CO2 Carbon dioxide (E)
EtH Ethanol (E)
GLU Glucose (E)
GOL Glycerol (E)
Met Methanol (E)
Pyr Pyruvic acid (E)
O2 Oxygen (E)
ACCOAcyt Acetyl coenzyme A

78



5.7 Appendix. Metabolic model.

ACCOAmit Acetyl coenzyme A (mitochondrial)
ACDcyt Acetaldehyde
ACEcyt Acetate
AKGcyt 2-Amino-6-ketopimelate
AKGmit 2-Amino-6-ketopimelate (mitochondrial)
DHAcyt Dihydroxyacetone
DHAPcyt Dihydroxyacetone phosphate
E4Pcyt Erythrose–4-phosphate
EtOH cyt Ethanol
F6Pcyt Fructose-6-phosphate
FBPcyt Fructose 1,6-biphosphate
G6Pcyt Glucose-6-phosphate
GAPcyt D-glyceraldehyde 3-phosphate
GLCcyt Glucose
GOLcyt Glycerol
HCHOcyt Formaldehyde
ICITmit Isocitric acid (mitochondrial)
iCO2 Carbon dioxide
iO2 Oxygen
MALmit Malate (mitochondrial)
MeOHcyt Methanol
NADH Nicotinamide adenine dinucleotide phosphate
NADPHcyt Nicotinamide adenine dinucleotide phosphate
NADPHmit NADPH (mitochondria)
OAAcyt Oxaloacetate
OAAmit Oxaloacetate (mitochondrial)
PEPcyt Phosphoenolpyruvate
PG3cyt 3 Phosphoglycerate
PYRcyt Pyruvate
PYRmit Pyruvate (mitochondrial)
R5Pcyt Ribose-5-phosphate
RU5Pcyt Ribulose-5-phosphate
S7Pcyt Sedoheptulose-7-phosphate
SUCmit Succinate (mitochondrial)
XU5Pcyt Xylulose-5-phosphate

79



Chapter 5. Metabolic flux understanding

List of reactions

GLCcyt → G6Pcyt
G6Pcyt ↔ F6Pcyt
F6Pcyt ↔ FBPcyt
FBPcyt ↔ DHAPcyt + GAPcyt
DHAPcyt ↔ GAPcyt
GAPcyt + NADcyt ↔ PG3cyt + NADHcyt
PG3cyt ↔ PEPcyt + H2O
PEPcyt ↔ PYRcyt
PYRcyt + iCO2 → OAAcyt
PYRcyt ↔ ACDcyt + iCO2
ACDcyt + NADHcyt → ETHcyt + NADcyt
ACDcyt + NADPcyt → ACEcyt + NADPHcyt
ACEcyt + HCOAcyt → ACCOAcyt
PYRmit + HCOAmit + NADmit → ACCOAmit + iCO2 + NADHmit
ACCOAmit + OAAmit ↔ ICITmit + HCOAmit
ICITmit + NADmit → AKGmit + iCO2 + NADHmit
ICITmit + NADPmit → AKGmit + iCO2 + NADPHmit
AKGmit + NADmit → SUCmit + iCO2 + NADHmit
SUCmit + NADmit → MALmit + NADHmit
MALmit + NADmit → OAAmit+ NADHmit
G6Pcyt + 2 NADPcyt → RU5Pcyt + iCO2 + 2 NADPHcyt
RU5Pcyt → XU5Pcyt
RU5Pcyt → R5Pcyt
R5Pcyt + XU5Pcyt → S7Pcyt + GAPcyt
S7Pcyt + GAPcyt → E4Pcyt + F6Pcyt
E4Pcyt + XU5Pcyt → F6Pcyt + GAPcyt
DHAPcyt + NADHcyt → GOLcyt + NADcyt
NADH + 0.5 iO2 → NAD
OAAcyt ↔ OAAmit
PYRcyt → PYRmit
AKGmit → AKGcyt
O2(E) → iO2
GLC(E) → GLCcyt
iCO2 → CO2(E)
ETHcyt → ETH(E)
GOL(E) → GOLcyt
CIT(E) ↔ ICITmit
PYR(E) → PYR cyt
MET(E) → METcyt
METcyt + 1/2 O2 → HCHOcyt + H2O
HCHOcyt + 2 NADcyt → 2 NADHcyt + iCO2
HCHOcyt + XU5Pcyt ↔ DHAcyt + GAPcyt
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5.7 Appendix. Metabolic model.

DHAcyt → DHAPcyt
0,0033 ACCOAcyt + 0,008 ACCOAmit + 0,0266 AKGcyt + 0,0146 E4Pcyt +
0,0363 F6Pcyt + 0,0165 PG3cyt + 0,0363 G6Pcyt + 0,0000003 GOLcyt + 0,000002
iO2 + 0,0242 OAAcyt + 0,00079 OAAmit + 0,0252 PEPcyt + 0,0294 PYRmit
+ 0,011 R5Pcyt + 0,199 NADPHcyt + 0,056 NADPHmit + 0,0626 NAD → 1
BIOM + 0,0127 iCO2 + 0,0626 NADH + 0,0033HCCOAcyt + 0,008 HCCOAmit
+ 0,199 NADPcyt + 0,056 NADPmit
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Chapter 6

Projection to elementary
modes

Part of the content of this chapter has been included in:

[7] Folch-Fortuny, A., Marques, R., Isidro, I., Oliveira, R. & Ferrer, A. Principal
elementary mode analysis (PEMA). Molecular BioSystems 12, 737-746 (2016).
2016 Hot Article.
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Chapter 6. Projection to elementary modes

6.1 Introduction

In this thesis, PCA and MCR have been applied to find the main pathways in a
set of experimental cultures obtained from the literature (see Chapter 5) with the
aim of i) identifying which parts of the metabolism retain the main variability in
flux data and ii) relating them to the behaviour of the organism, e.g. substrates
consumption and protein production. Both methods build the pathways based on
the relationships between fluxes and, also, the a priori knowledge introduced in
the model using constrains in MCR. However, no graphical information about the
inner connections in the network is introduced in the model.

Here, a new method is proposed to improve the interpretability of the components
extracted by PCA and MCR-ALS, using the topology of the network to obtain
the biologically relevant pathways in the model. This method is called PEMA. Its
main advantage, over the previous methods, is that instead of building artificial
components based on the correlation structure of the data, the components are
selected from the complete set of EMs of the metabolic network. The EMs are
the simplest representations of pathways across a metabolic network. The PEMA
algorithm is designed to identify the most relevant set of active EMs in flux data,
using a strategy akin to PCA in dimensionality reduction. The PEMA toolbox
is freely available for non-commercial purposes on http://mseg.webs.upv.es,
under GNU license.

The PEMA algorithm is quite different from previously proposed approaches using
EMs. On the one hand, since PEMA is considering the whole set of EMs, instead
of only the EPs, the flux data can be interpreted with fewer pathways than using
the α spectrum [145]. On the other hand, PEMA finds the common set of active
EMs in several flux distributions, instead of the active ones per flux distribution
using optimization procedures [146, 147], thus reducing substantially the number
of pathways needed to explain a complete flux data set.

This chapter is organised as follows. In the next section, the PEMA model is
described in detail. Section 6.3 presents the results using simulated and actual
data from E. coli and P. pastoris. The results are discussed in Section 6.4. Finally,
some conclusions are drawn on Section 6.5.

6.2 Principal elementary modes analysis

PEMA uses the set of EMs as the candidates for the PCs. Let X be a flux data
set with N observations or experiments and K fluxes. The PEMA model equation
is:

X = ΛPT + F (6.1)

84

http://mseg.webs.upv.es


6.2 Principal elementary modes analysis

where P is the K × E principal elementary mode (PEM) matrix, formed by a
subset of E EMs from the entire EM matrix; Λ is the N × E weightings matrix;
and F is the N × K residual matrix. It is worth noting that the values in Λ
are forced to be positive, since from a network-based point of view, each possible
steady-state flux distribution can be expressed as a non-negative combination of
EMs [139].

In PEMA algorithm, the PEMs are chosen from the complete set of EMs in a
step-wise fashion. The weightings associated to the PEMs are obtained by solving
Equation 6.1:

Λ̂ = XP(PTP)−1 (6.2)

Unlike the loadings in PCA, the PEMs are not orthonormal, so Equation 6.2
usually requires the computation of the pseudo-inverse of PTP.

The first step of PEMA consists of calculating the weightings for each EM. So,
initially, P and Λ are column vectors. Then the explained variance by each EM
is obtained as follows [205]:

EV =
‖ X ‖2 − ‖ F ‖2

‖ X ‖2
100% (6.3)

The EMs are sorted by EV , and the EM explaining most variance becomes the first
PEM, with its associated Λ values. Afterwards, the variance explained jointly by
the first PEM and each of the rest of EMs is calculated, and the pairs of EMs are
sorted again by EV . The EM explaining more variance (jointly with the first PEM)
becomes the second PEM, with their corresponding new Λ values. This procedure
is iterated until reaching the maximum number of EMs. Since the weightings
are recalculated for the 1st-ith PEMs when the (i + 1)th PEM is computed, the
amount of variance explained by the current set of PEMs is maximum.

When the PEMs are extracted step-wise, selecting the EMs explaining most vari-
ance at each step, the greedy solution is obtained. This is the usual procedure in
PCA. The loadings are built in such a way that they explain as much variance in
data as possible, and additionally, the resulting loadings are orthonormal. How-
ever, with PEMA, the EMs are not orthonormal (neither orthogonal). Therefore,
the greedy solution may not be the best subset of EMs for explaining the data,
since the choice of the first PEM influences the variance in data that the following
PEMs could explain. Two tuning parameters are introduced in the algorithm to
cope with the previous problem. The greedy selection of the EMs is improved us-
ing a relaxation parameter R. This parameter makes the algorithm considers the
best R EMs for the current PEM, and based on the variance explained extracting

85



Chapter 6. Projection to elementary modes

1st$PEM$

2nd$PEM$

3rd$PEM$

+$PEMs$

EM1$

EM6$

EM7$

…$

EM1$

EM6$

EM7$

…$

EM4$

EM8$

EM6$

…$

EM4$

EM6$

EM7$

…$

EM1$

EM11$

EM9$

…$

EM19$

EM6$

…$

EM8$

EM6$

…$

EM18$

EM12$

…$

EM3$

EM26$

…$

EM18$

EM7$

…$

EM41$

EM7$

…$

EM33$

EM22$

…$

EM49$

R$=$B$=$1$ R$=$2,$B$=$1$ R$=$3,$B$=$2$

Figure 6.1: Relaxation (R) and branch point (B) parameters. When B = R = 1
the EM explaining more variance is chosen and fixed at each step. If these parameters
change, different subsets are considered for each PEM identification.

more PEMs, the best EM from the set of R is selected. This relaxation step can
be done for several consecutive selections of PEMs. The branch point number, B,
marks up to which PEM the relaxed selection is performed.

Figure 6.1 shows an example of how the tuning parameters affect the selection of
EMs. For instance, with R = 3 and B = 2, if one PEM is selected in the PEMA
model it will be EM1, since it is the EM explaining most variance; if two PEMs
are selected it is possible that EM1 and any of its 2nd PEM candidates (EM6,
EM11, or EM19) explain less variance that, for example, EM4 and EM8, so these
last two will be the EMs selected in the PEMA model with two PEMs, and so on.
The greedy approach accumulates the selected PEMs, but with R > 1 the EMs
may change completely from one PEM to the next one, in order to explain more
variance with a fixed number of PEMs.

The number of PEMs evaluations, i.e. the number of times that the algorithm
solves Equation 6.1 for all EMs, can be calculated using R and B. Let A be
the maximum number of PEMs to be extracted by PEMA. Then, the number of
evaluations, O, has the following expression:

O =

B−1∑
i=0

Ri + (A−B) ·RB (6.4)

where O grows exponentially with the number of branch points B. This way, the
computation time required for each possible pair (R, B) can be estimated using
Equation 6.4 and the computation time of the greedy approach (R = B = 1 and
Ogreedy = A).
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6.2 Principal elementary modes analysis

PEMA is an heuristic approach to solve the problem which EMs do reconstruct the
flux data? The mathematical formulation of this problem consists of minimizing
the 2-norm of X−ΛPT subject to P ⊆ EM. The problem with this formulation
is that it represents a mixed integer nonlinear programming (MINLP) problem,
and since the number of fluxes and EMs may be extremely high, it is justified
the application of an heuristic algorithm to find a suboptimal solution to this
problem. The proposed problem could be solved using genetic algorithms, however,
different models have to be fit in order to get solutions with different number of
PEMs. As well, the solution may change drastically depending on the initial points
and the genetic operator chosen. This kind of algorithms improve an objective
function, which can be the explained variance as in PEMA, but at some steps
of the algorithm the search within the feasible space is performed in a random
fashion, while PEMA focuses at each step in selecting the EMs explaining most
variance. In this way, a single run of PEMA presents several solutions with a
different number of PEMs.

6.2.1 Data preprocessing

If the original variables have strongly different means and/or variances when fitting
PCA models, the PCs may focus on explaining only the variables with the highest
values and/or variances, disregarding the small variance associated to the rest
of variables. PEMA has the same problem as PCA, so the flux data has to be
preprocessed. While in PCA it is relatively easy to scale and mean center the
original flux data (see Chapter 5), in PEMA, since the EMs are fixed, this is
a subtle issue. To maintain the biological meaning of the EMs, if X is scaled
column-wise by their standard deviations, the EM matrix has to be modified
scaling row-wise all the EMs by the same values. The scaling of the X and EM
matrices gives, initially, equal importance to all fluxes in the data, since their
variances are equal to 1. This preprocessing is recommended in flux data sets,
since the variance of external fluxes can be exponentially greater than internal
fluxes.

The mean centering of the PEMA model must not be done. When the data ma-
trix X is mean centered, irreversible reactions would take negative fluxes thus the
directionality of the fluxes is lost. In this way, if X is mean centered the PEMs
are no longer able to fit the flux data. One way to overcome the mean centering
problem is fitting additional PEMA models excluding the variables with the high-
est means. Once computed, the global and the local models can be compared in
terms of EMs activation and reaction usage, to assess whether the global model is
accounting for the fluxes with small values.
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6.2.2 Algorithm

The PEMA algorithm consists of the following steps:

1. Scale column-wise the original flux data X by their standard deviations.

2. Scale row-wise the elementary modes matrix, EM, using the standard devi-
ations of the original data set.

3. Choose the number of relaxations (R) and branch points (B).

4. Obtain the different PEMA models with 1 PEM, 2 PEMs, ..., A PEMs,
solving Equation 6.1.

5. Select the number of EMs based on the aim of the study.

6. Recalculate the weightings Λ and the explained variance with the original
flux data (without scaling).

Practitioners should start with the greedy approach (R = B = 1) and then, using
the prediction of the computation time, select different configurations to compare
the models. To span the different solutions that PEMA produces when changing
the parameters, users are encouraged to follow the configurations presented in the
next section (see also Table 6.1). For large datasets, e.g. genome-scale networks
with millions of EMs, the computation of the greedy solution may take several
hours. To avoid this long computation time, users can pre-select a subset of
relevant EMs prior to applying PEMA.

Also, the number of PEMs selected in each model, as in PCA, depends on the aim
of the study [19, 206]. In this way, the cumulative scree plot (see next section)
may help to select the EMs explaining most variance in the flux data.

6.3 Case studies

6.3.1 E. coli simulated study

A simulated study is proposed here to validate the performance of PEMA. The
study consists of simulating different flux data sets, using several subsets of EMs,
in order to assess whether PEMA algorithm is capable of identifying them. The
metabolic model (see Section 6.7 of E. coli, presented in [207], is used for this
purpose (see Figure 6.2). The set of 255 EMs from the metabolic network of E.
coli are obtained using EFMTOOL [165].

The simulated study is as follows: 100 different data sets are generated using from
1 to 10 EMs selected at random from the EM matrix. Ten different configurations
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Figure 6.2: E. coli simulated study. Metabolic network considered in this chapter.
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Table 6.1: Complete identifications of the generating elementary modes.

Configuration Number of generating elementary modes
(R_B) 1 2 3 4 5 6 7-10

1_1 10/10 7/10 2/10 2/10 0/10 0/10 0/10
5_1 10/10 10/10 5/10 3/10 1/10 1/10 0/10
10_1 10/10 10/10 5/10 4/10 1/10 0/10 0/10
20_1 10/10 10/10 5/10 5/10 1/10 0/10 0/10
2_2 10/10 9/10 5/10 4/10 1/10 0/10 0/10
5_2 10/10 10/10 5/10 2/10 1/10 0/10 0/10
10_2 10/10 10/10 7/10 7/10 2/10 1/10 0/10
3_3 10/10 9/10 7/10 6/10 4/10 1/10 0/10
5_3 10/10 10/10 7/10 8/10 5/10 1/10 0/10
4_4 10/10 10/10 7/10 8/10 6/10 3/10 0/10

of PEMA are applied on the present data, varying the values of the relaxations
and branches R−B: 1−1, 5−1, 10−1, 20−1, 2−2, 5−2, 10−2, 3−3, 5−3, 4−4.
The configurations are sorted approximately in increasing computation time.

The identifiability of each PEMA configuration can be assessed computing how
many times the complete set of EMs that generated the simulated flux data is
identified. This information is presented in Table 6.1. As expected, for a fixed
value of B, the higher is R the better tends to be the solution. Also, the more
branch points are considered the more sets of EMs tend to be completely identified.

Even though not all the EMs are identified when the number of generating ones
increases, all PEMA configurations are able to detect a subset of them. The
precision, P , and recall, R, are computed as:

P =
TP

TP + FP
R =

TP

TP + FN
(6.5)

where TP are the true predicted EMs, FP the false positives, and FN the false
negatives. The high precision implies that most of the EMs identified are true ones,
and also the high recall implies that the method identified most of the original EMs.

Figure 6.3 shows the results of P and R of the EMs identifications. With the
exception of the greedy approach, all PEMA configurations are able to identify
80-100% of the original 3-4 EMs. The most complex configurations, i.e. when
B = 3 or B = 4, maintain this level of accuracy with 5-6 generating EMs.

It is also interesting to check the mean number of PEMs identified by the different
configurations and the percentage of explained variance. Since there exists a high
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Figure 6.3: E. coli simulated study. Precision and recall of the different configura-
tions. Precision is calculated by dividing the sum of the true identified EMs by the sum
of the true identified plus the false identified ones. The recall is calculated by dividing
the true identified EMs divided by the true ones plus the true non-identified ones.

degree of redundancy in any EM matrix, different linear combinations of EMs
can represent a given flux distribution. This is clearly seen in Figure 6.4. Up to
5-6 generating EMs, the most complex PEMA configurations identify the same
number of PEMs, matching the original ones (see Figure 6.4a). From 7 generating
EMs onwards, the average number of PEMs grows slower, identifying between 7
and 8 PEMs on average with 10 generating EMs. However, the percentage of
explained variance by these PEMs remains very high, more than 99% having 7-10
generating EMs (see Figure 6.4b). The reduction in the number of EMs might
also be due to some of the randomly selected EMs, with a random weighting on
the model, have a small contribution to the variance in comparison to the EMs
with greater coefficients.

6.3.2 E. coli real data

The flux data of E. coli presented in [207] is used in this section to check the
performance of PEMA with real data. Each observation in this dataset describes
a flux distribution after a specifically targeted gene knock-out. The metabolic
network and EMs set considered here are the same as in the simulated study (see
Figure 6.2). The flux data matrix, X considered here has 21 observations (rows)
and 42 fluxes (columns). In these 21 observations, a subset of the original 32
observations, the same set of reactions is considered.
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Figure 6.4: E. coli simulated study. a) Mean number of identified EMs. b) Mean
percentage of explained variance.

Based on the results of the simulated study, the tuning parameters R and B are
both set to 4, to obtain more accurate results. The computation time of PEMA in
this case is 2 minutes, while the computation time of the greedy approach is less
than a second. Figure 6.5a shows the cumulative scree plot of the PEMs. This
kind of plot is usually employed in PCA to assess the appropriate number of PCs.
Here, 8 PEMs are selected: EM125, EM167, EM254, EM27, EM235, EM16, EM143

and EM145, explaining 97.8% of variance with the scaled data, and 99.4% of the
real variance.

The PEMs selected can be visualized on the metabolic network in Section 6.6. As
opposed to PCA, in PEMA the PEMs are usually explaining common sources of
variability. This can be seen in Figure 6.5b, where the direct sum of all variances
explained by the PEMs is 150%. For instance, EM125 explains more than 80% of
variance in data, but this variance is shared with other PEMs. Nevertheless, the
PEMs explaining most variance can be considered the most relevant in the model.

The degree of orthogonality of the PEMs can be obtained by dividing the variance
explained by the model (99.4%) by the sum of the explained variances of each PEM.
Here, the degree of orthogonality is 66.3%, way lower than MCR’s in Chapter 5,
implying that that the solution obtained by the PEMA is strongly non-orthogonal
and, therefore, quite different from the PCA one.

To assess if some observation is not well modelled the percentage of explained
variance per observation can be computed (see Figure 6.6a). Also the observed
versus predicted plot can be used to visualise the differences at a datum level (see
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Figure 6.5: E. coli real case study. a) PEMA Cumulative scree plot and b) Per-
centage of variance explained by each PEM: 8 PEMs are selected explaining 97.4% of
variance in the scaled data.

Figure 6.6b). In the present case, the percentage of explained variance is 97-99%
for all observations, and the predicted values lay close to the true ones.

The PEMA model can be easily interpreted using an adaptation of the classical
PCA loadings and scores plot. This way, Figures 6.7-6.8 shows the PEMs plot
and the weightings plot, respectively. The PEMs plot shows which reactions are
active for a specific EM, while the weightings plot represents the contribution
weight of each PEM on each observation (i.e. knock-out). A first look at the
selected PEMs shows that the whole set captures the formation of all metabolic
requirements for cell synthesis, that is, reactions 31-41 (see Figure 6.7). EM125

is the PEM explaining most variance in data (see Figure 6.5b). This pathway
depicts the glucose flux into glycolysis and TCA, without any exchange fluxes
for cell synthesis metabolites. This leads to a high rate of NADH production,
which generally is used to synthesize ATP. For this, EM125 can be interpreted as
the cell’s catabolic pathway, while the rest of PEMs capture the fluxes for cell
synthesis metabolites, thus representing anabolic pathways leading to synthesis of
biomass.

Since EM125 is related to the catabolism, it has a strong weight in each knock-out
(see Figure 6.8). Nevertheless, some observations seem to have a greater impact
in this PEM than others, in particular the knock-outs 2, 3, 10, 14, 15 and 16,
representing the genes glk, pgm, gpmB, rpiB, tktB and talB. The pgm gene codi-
fies the phosphoglucomutase that converts G6P into G1P and its deletion would
likely direct the carbon flux to glycolysis or the pentose phosphate pathway. The
rpiB, tktB and talB, also scoring a high weight, are related to pentose phosphate
reactions.
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Figure 6.6: E. coli real case study. a) Explained variance per observation and b)
Observed versus predicted plot.
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Figure 6.8: E. coli real case study. Weightings plot. The weightings of the PEMs
are represented by columns and the observations by rows. The darker the colour, the
more important is the PEM for the corresponding observation.

The EMs related to anabolic metabolism represent all the remaining exchange
fluxes that produce the cell synthesis metabolites. EMs 16, 27, 143, 145 and 167
connect glucose directly to the pentose phosphate pathway, which is fundamental
in the metabolism, since it generates NADPH, a reduced equivalent important
in biosynthetic processes [208]. Moreover, EM16 and EM167 are responsible for
balancing the metabolic fluxes towards E4P and R5P, being the sole PEMs that
predict the fluxes of these metabolites to cell synthesis. With a few exceptions, the
knock-out experiments have similar weight values inside each anabolic PEM. These
exceptions are the observations 1, 5, 8, 12 and 14, representing the knockouts galM,
pfkB, gapC, pykF and rpiB. This group of genes has low weightings in EM254 and
EM235, meaning that these flux modes have a minor impact in the metabolism
of these mutants, that is, a lower flux in the synthesis of Pyr, 3-PG, 2-KG and
OAA for biomass synthesis. Conversely higher weightings from these mutants
are observed for EM27 and EM16, that is, in the production of E4P, PEP and
G6P. Another curious aspect of EM16 and EM27 is the activation of the glyoxylate
bypass. This pathway is known to be active in low glucose concentrations [209],
but repressed when glucose becomes available in higher concentrations [210, 211].
The observations 18 to 21 reflect E. coli wild-type cultured at a dilution rate
of 0.2h−1 used as control experiments. In these observations, positive fluxes for
the gyoxylate pathway were registered, possibly due to a low glucose feed to the
culture.
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Finally, all the PEMs have a zero coefficient for fermentative pathways (reactions
28-30), therefore these fluxes are not being represented by the model. However,
looking at the original data, all the observations have zero values for fluxes 28 and
29. Regarding flux 30, few observations (4 out of 21) have a non-zero value for
it. For the latter case, since PEMA, as PCA, aims at explaining the covariance
between the original variables using the PEMs, if most of the values in a variable
are 0 it is difficult for PEMA to identify the EM generating these slight differences.
The extraction of more PEMs may correct that, however, the risk of overfitting is
higher and the model would become less parsimonious.

6.3.3 Pichia pastoris real data

A second real case study is analysed here: a fluxome for the growth of recombinant
P. pastoris. This data set was based on a statistical design of experiments to test
the effects of culture media factors in the flux data. The media composition was
prepared according to the Invitrogen’s guidelines for P. pastoris fermentation, and
consists mainly on mineral salts. 26 shake flask experiments were performed with
variations on 11 media factors selected for statistical design. Glycerol was used as
carbon source in every experiment.

The metabolic network for the central carbon metabolism of P. pastoris used here
is largely based on the network proposed in [132], with adaptations from other
central carbon [212] and genome-scale networks [190]. The network consists of
43 metabolic reactions (see Section 6.7, 34 internal metabolites and 10 exchange
reactions (see Figure 6.9). The main catabolic reactions are represented in this
network, namely glycolysis and gluconeogenesis pathways, the TCA cycle, the
pentose-phosphate pathway, anaplerotic, fermentative and phosphorylative oxida-
tion pathways. A biomass formation reaction is also included in the model, from
selected internal metabolites based on P. pastoris cells macromolecular compositon
[190]. There exist 158 EMs in the metabolic model.

The results of PEMA with this data set are the same using either the greedy
approach and the most complex approach presented here (R = B = 4), which
takes 35 seconds. This indicates that the results are stable against the different
PEMA configurations. 99.5% of the scaled data is explained using 3 PEMs, with
a degree of orthogonality of 70% (i.e. the variance explained by the 3 PEMs sums
141%). As in the previous real case study, this implies that PCA cannot obtain
these results using orthogonal components. The cumulative scree plot and the
variance explained by each PEM are shown in Figure 6.10.

All scenarios are being represented by the selected EMs, as can be seen in the
explained variance per observation plot (see Figure 6.11a); and the observed versus
predicted plot (see Figure 6.11b) shows an even better fitting than with E. coli,
which could be due to different levels of noise in the flux data sets.
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Figure 6.9: P. pastoris real case study. Metabolic network considered for the real
case study.
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Figure 6.10: P. pastoris real case study. a) PEMA Cumulative scree plot and b)
Percentage of variance explained by each PEM: 3 PEMs are selected explaining 99.5% of
variance in the scaled data.
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Figure 6.12: P. pastoris real case study. PEM and weightings plots. More details
in Figures 6.7 and 6.8.

Figure 6.12 shows the PEMs and weightings plots. The PEMs identified are EM147,
EM10 and EM149. They can be visualized on the metabolic network in Section
6.6.

The first PEM consumes glycerol (reactions 35 and 29) and crosses half of the
glycolytic pathway (reactions 4-7) to activate the TCA cycle (reactions 15, 17-
20), clearly representing the cell’s catabolism. EM10 uses also reactions 35, 29
and 4-7 to activate the TCA cycle, but in this case reaction 16 is used instead
of 17. It also activates the pentose phosphate pathway (reactions 8-13), leading
to the synthesis of redox equivalents (NADPH), but also precursor metabolites
for the synthesis of biomass. For this reason, this PEM groups the reactions for
the cell’s anabolism. At the end, this is the PEM responsible of the biomass
production in all observations. The last PEM assimilates glycerol in the same way
as EM147 and afterwards focuses on the production of ethanol (reactions 25 and
39). The occurrence of ethanol synthesis during aerobic respiration in yeast is a
common feature (Crabtree effect). Nonetheless, unlike most yeasts, P. pastoris
does not typically exhibit a significant ethanol production, favouring the aerobic
metabolism. This fact is well captured by the relative lower explained variance of
EM149 in comparison to EM147 (see Figures 6.10b and 6.12b).
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Finally, as expected, no EM related to methanol assimilation (reactions 30-32
and 26) and final products, such as pyruvate or citrate (reactions 41 and 42,
respectively), is selected, since all fluxes are 0 for these reactions.

6.4 Discussion

The simulated study on E. coli shows the high identifiability of PEMA. The most
complex PEMA configurations are able to detect completely 1-4 generating EMs
and, a high percentage of them, up to 6-7 EMs. Even though not all the EMs
are identified by PEMA, the method provides always a parsimonious solution
explaining more than 99% of variance. The analysis of actual flux data of the
same organism confirms the tendency shown with the simulated fluxes. 8 PEMs
are identified explaining 99.4% of variance in the flux data. This way, most of the
PEMs identified are describing the glucose consumption, the glycolytic pathway
and the TCA cycle, but afterwards, each of them has a different function in the
cell synthesis. The results obtained with P. pastoris are coherent with E. coli ’s. In
this case 3 PEMs are selected describing accurately the metabolic pathways being
activated when glycerol is used as main carbon source in aerobic conditions.

A significant number of graphical tools, all of them integrated in the PEMA tool-
box, are provided in this chapter. The cumulative scree plot, the observed versus
predicted plot, and the variance explained per observation plot can be used to
decide the number of PEMs to extract. The plot showing the variance explained
by each PEM and the PEMs and weightings plots are useful to exploit the PEMA
model in terms of relevance and biological interpretation of the PEMs, and their
activation among the observations.

Additionally, the theoretical estimation of the runs of PEMA algorithm when the
tuning parameters change permits to establish a relatively accurate upper bound
of the computation time, based on the greedy approach solution. This allows
designing wisely a set of trials to compare the results of the different configurations
of PEMA.

6.5 Conclusion

In this Chapter, a novel method, PEMA, is developed to explain the inherent
variability on a fluxomics dataset, while preserving biological meaning. This can
be regarded as an exploratory technique that allows researchers to interpret a data
set by uncovering the most representative pathways operating in a cell.

There is a potential use of this methodology in bioprocess engineering applications,
such as the development of structured metabolic models in cell culture fermenta-
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tions. PEMA can be useful in the identification of a specific set of EMs that ex-
plains variations in cellular metabolic rates under certain operational conditions,
such as temperature and pH. This would allow the improvement of the process
kinetics’ modelling by the incorporation of biological knowledge from the cellular
system.

The PEMA toolbox is freely available for non-commercial purposes on http://
mseg.webs.upv.es, under a GNU license.

6.6 Appendix A. PEMs.

E. coli

In this section, the PEMs identified for E. coli in the real case study are shown
(see Figures 6.13-6.20).

P. pastoris

Here, the PEMs identified for P. pastoris in the real case study are shown (see
Figures 6.21-6.23).

6.7 Appendix B. Metabolic models.

E. coli

Metabolite abbreviations

Abbreviation Metabolite
Glucose
G6P Glucose-6-phosphate
F6P Fructose-6-phosphate
F1,6P Fructose 1,6-biphosphate
DHAP Dihydroxyacetone phosphate
G3P Glyceraldehydes-3-phosphate
3PG 3 Phosphoglycerate
PEP Phosphoenolpyruvate
PYR Pyruvate
AcCoA Acetyl coenzyme A
CO2 Carbon dioxide
6PG 6 Phosphogluconolactonase
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Figure 6.13: E. coli real case study. EM16 represented onto the metabolic network.
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Figure 6.14: E. coli real case study. EM27 represented onto the metabolic network.
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Figure 6.15: E. coli real case study. EM125 represented onto the metabolic network.

104



6.7 Appendix B. Metabolic models.

r1#

r2#

r3#

r4#

r5#
r6#

r10# r11#

r12# r13#

r14#r16#

r15#

r7#

r8#

r9#

r29#

r30#
r28# r17#

r18#
r19#

r20#

r21#

r22#
r23#

r27#

r26#

r25#

r24#

AcCoA#

DHAP#

G3P#

3PG#

F1,6P#

F6P#

G6P#

PEP#

Pyr#

Ru5P#

S7P#

E4P#

X5P# R5P#

Acetate#

OAA#

Mal#
Fum#

Suc#

2KG#

ICit#

Glyox#

Cit#

Lactate#

Ethanol#

6PG#

Glucose#

PEP#

PYR#

R31:#G6P#

R32:#F6P#

R33:#R5P#

R34:#E4P#

R35:#G3P#

R36:#3PG#

R37:#PEP#

R38:#PYR#

R39:#AcCoA#

R40:#OAA#

R41:#2KG#

R42:#CO2#

Cell$Synthesis:#

Figure 6.16: E. coli real case study. EM143 represented onto the metabolic network.
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Figure 6.17: E. coli real case study. EM145 represented onto the metabolic network.
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Figure 6.18: E. coli real case study. EM167 represented onto the metabolic network.
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Figure 6.19: E. coli real case study. EM235 represented onto the metabolic network.
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Figure 6.20: E. coli real case study. EM254 represented onto the metabolic network.
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Figure 6.21: P. pastoris real case study. EM10 represented onto the metabolic
network.
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Figure 6.22: P. pastoris real case study. EM147 represented onto the metabolic
network.
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Figure 6.23: P. pastoris real case study. EM149 represented onto the metabolic
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6.7 Appendix B. Metabolic models.

Ru5P Ribulose-5-phosphate
R5P Ribose-5-phosphate
X5P Xylulose-5-phosphate
S7P Sedoheptulose-7-phosphate
E4P Erythrose–4-phosphate
AcCoA Acetyl coenzyme A
OAA Oxaloacetate
CIT Citric acid
ICT Citrullin (intracellular)
2-KG 2-Amino-6-ketopimelate
SUC Succinate
FUM Fumarate
MAL Malate
OAA Oxalate
Glyox Glyoxylate
Acetate
Lactate
Ethanol

List of reactions

Glucose + PEP → G6P + PYR
G6P ↔ F6P
F6P → F1,6P
F1,6P → DHAP + G3P
DHAP → G3P
G3P → 3PG
3PG ↔ PEP
PEP → PYR
PYR → AcCoA + CO2
G6P → 6PG
6PG → Ru5P + CO2
Ru5P → X5P
Ru5P → R5P
R5P + X5P ↔ S7P + G3P
S7P + G3P ↔ E4P + F6P
X5P + E4P ↔ F6P + G3P
AcCoA + OAA → CIT
CIT → ICT
ICT → 2-KG + CO2
2-KG → SUC + CO2
SUC → FUM
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FUM → MAL
MAL ↔ OAA
PEP + CO2 ↔ OAA
MAL → PYR + CO2
ICT → Glyoxylate + SUC
Glyoxylate + AcCoA → MAL
AcCoA → Acetate
PYR → Lactate
AcCoA → Ethanol
G6P → (Cell synthesis)
F6P → (Cell synthesis)
R5P → (Cell synthesis)
E4P → (Cell synthesis)
G3P → (Cell synthesis)
3PG → (Cell synthesis)
PEP → (Cell synthesis)
PYR → (Cell synthesis)
AcCoA → (Cell synthesis)
OAA → (Cell synthesis)
2KG → (Cell synthesis)
CO2 → (Evolution)

P. pastoris

Metabolite abbreviations

Abbreviation Metabolite
G6P[c] Glucose-6-phosphate (cytosol)
F6P[c] Fructose-6-phosphate (cytosol)
FBP[c] Fructose 1,6-biphosphate (cytosol)
DHAP[c] Dihydroxyacetone phosphate (cytosol)
GAP[c] D-glyceraldehyde 3-phosphate (cytosol)
PG3[c] 3 Phosphoglycerate (cytosol)
PEP[c] Phosphoenolpyruvate (cytosol)
PYR[c] Pyruvate (cytosol)
RU5P[c] Ribulose-5-phosphate (cytosol)
XU5P[c] Xylulose-5-phosphate (cytosol)
R5P[c] Ribose-5-phosphate (cytosol)
S7P[c] Sedoheptulose-7-phosphate (cytosol)
E4P[c] Erythrose–4-phosphate (cytosol)
ACCOA[m] Acetyl coenzyme A (mitochondrial)
OAA[m] Oxaloacetate (mitochondrial)
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CIT[m] Citric Acid (mitochondrial)
AKG[m] 2-Amino-6-ketopimelate (mitochondrial)
SUC[m] Succinate (mitochondrial)
MAL[m] Malate (mitochondrial)
OAA[c] Oxaloacetate (cytosol)
AKG[c] 2-Amino-6-ketopimelate (cytosol)
ACD[c] Acetaldehyde (cytosol)
ETOH[c] Ethanol (cytosol)
AC[c] Acetate (cytosol)
ACCOA[c] Acetyl coenzyme A (cytosol)
GLY[c] Glycerol (cytosol)
MEOH[c] Methanol (cytosol)
HCHO[c] Formaldehyde (cytosol)
DHA[c] Dihydroxyacetone (cytosol)
NADH Nicotinamide adenine dinucleotide
NADPH[c] Nicotinamide adenine dinucleotide phosphate (cytosol)
NADPH[m] Nicotinamide adenine dinucleotide phosphate (mitochondrial)
CO2[i] Carbon dioxide (internal)
O2[i] Oxygen (internal)
GLC Glucose
GLY Glycerol
MEOH Methanol
O2 Oxygen
CO2 Carbon dioxide
ETOH Ethanol
AC Acetate
PYR Pyruvate
CIT Citric acid
BIOM Biomass

List of reactions

G6P[c] ↔ F6P[c]
F6P[c] ↔ FBP[c]
FBP[c] ↔ DHAP[c] + GAP[c]
DHAP[c] ↔ GAP[c]
GAP[c] ↔ PG3[c] + NADH
PG3[c] ↔ PEP[c]
PEP[c] ↔ PYR[c]
G6P[c] → RU5P[c] + 2 NADPH[c] + CO2[i]
RU5P[c] ↔ XU5P[c]
RU5P[c] ↔ R5P[c]
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XU5P[c] + R5P[c] ↔ GAP[c] + S7P[c]
GAP[c] + S7P[c] ↔ F6P[c] + E4P[c]
XU5P[c] + E4P[c] ↔ F6P[c] + GAP[c]
PYR[c] → ACCOA[m] + NADH + CO2[i]
ACCOA[m] + OAA[m] → CIT[m]
CIT[m] → AKG[m] + NADH + CO2[i]
CIT[m] → AKG[m] + NADPH[m] + CO2[i]
AKG[m] → SUC[m] + NADH + CO2[i]
SUC[m] → MAL[m] + NADH
MAL[m] → OAA[m] + NADH
PYR[c] + CO2[i] → OAA[c]
OAA[c] ↔ OAA[m]
AKG[m] → AKG[c]
PYR[c] → ACD[c] + CO2[i]
ACD[c] + NADH → ETOH[c]
ACD[c] → AC[c] + NADPH[c]
AC[c] → ACCOA[c]
NADH + 0,5 O2[i] →
GLY[c] ↔ DHAP[c] + NADH
MEOH[c] + 0,5 O2[i] → HCHO[c] + DHAP[c]
HCHO[c] → 2 NADH + CO2[i]
HCHO[c] + XUP5[c] ↔ DHA[c] + GAP[c]
DHA[c] → DHAP[c]
GLC → G6P[c]
GLY ↔ GLY[c]
MEOH → MEOH[c]
O2 → O2[i]
CO2[i] → CO2
ETOH[c] → ETOH
AC[c] → AC
PYR[c] → PYR
CIT[m] → CIT
- 0,0364 G6P[c] - 0,0364 F6P[c] - 0,0165 PG3[c] - 0,0252 PEP[c] - 0.0294 PYR[c] -
0,0107 R5P[c] - 0.0146 E4P[c] - 0,008 ACCOA[m] - 0,0008OAA[m] - 0,0242 OAA[c]
- 0,0267 AKG[c] - 0,0033 ACCOA[c] - 0,00000003 GLY[c] + 0,0627 NADH - 0,1995
NADPH[c] - 0,0561 NADPH[m] + 0,0177 CO2[i] - 0,000024 O2[i] → BIOM
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Dynamic elementary mode
modelling

Part of the content of this chapter has been included in:

[13] Folch-Fortuny, A., Teusink, B., Kiers, H.A.L., Hoefsloot, H.C.J., Smilde, A.K.
& Ferrer, A. Dynamic elementary mode analysis of non-steady state flux data. In
preparation.
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7.1 Introduction

In this thesis, exploratory models have been used to model non-steady state flux
data. In Chapter 5, PCA is used to find a set of pathways built upon the existing
relationships between fluxes. Also, MCR is proposed to model this kind of data
due to its ability to include biological constraints in the multivariate model.

In chapters 5-6, different multivariate exploratory methods have been applied to
model steady state flux data, including different sources of biological information in
the model, depending on the approach. Regarding predictive models, PLS is widely
used in metabolomics to relate a set of explanatory variables and a set of biological
outputs using the latent structure of data. Especially PLS discriminant analysis
(PLS-DA) is commonly applied to distinguish between biological conditions, such
as a particular illness. For example, in [213] this technique was used to discriminate
between non-steatotic and steatotic human liver profiles, and in [214] PLS-DA was
used for the diagnosis of inherited metabolic disorders (IMDs), analysing plasma
and blood samples of subjects with phenylketonuria and medium chain acyl CoA
dehydrogenase deficiency. In these studies, the PLS-DA model is used for finding
potential biomarkers among the pool of metabolites analised.

Despite PLS-DA is a very powerful approach to compress and interpret large
amounts of data, it lacks the ability to include topological information in the
model, as it happens in PCA for steady state flux data. In this chapter, a novel
framework is proposed to analyse non-steady state metabolite concentrations. The
methdology is based on an extention of the PEMA model presented in Chapter
6. Introducing the concept of dynamic EMs (dynEMs), i.e. EMs activated par-
tially at each time point, the most relevant pathways activated in an experiment,
or a set of experiments, can be identified. This method is called dynamic ele-
mentary mode analysis (dynEMA). Furthermore, the ultimate interest consists of
identifying which metabolic routes have different performances depending on the
initial conditions. Therefore, using dynamic elementary mode regression discrimi-
nant analysis (dynEMR-DA), these most discriminant pathways can be identified
among large flux data sets.

This has been previously investigated [215] using the Goeman’s global test and
the set of pathways retrieved from the KEGG database [216–218]. The aim was
to find what pathways have a different activation pattern depending on the initial
conditions of the experiment. In fact, this chapter analyses the same concentration
data sets. The approach presented here differs from the aforementioned in i) here
the set of EMs is used instead of the KEGG pathways, which sometimes do not
connect directly substrates with end-products, and ii) in dynEM modelling, all
the possible pathways are analysed within a single multivariate model, instead of
individual pathway testing.
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The structure of this chapter is as follows. First, the metabolic models and data
sets of S. cerevisiae used in this work are presented. In Sections 7.3-7.4, the
adaptation of the PEMA model from a steady to a non-steady state environment
is introduced, describing dynEMA, dynEMR-DA and the validation scheme. In
the Section 7.5, the output of dynEMR-DA is analysed using simulated and actual
concentration data. Finally, some conclusions are drawn in the Section 7.6.

7.2 Metabolic models of Saccharomyces cerevisiae

7.2.1 Metabolic networks

Two metabolic models of the well-known baker’s yeast, S. cerevisiae, are used in
this chapter to build the discriminant models (see Section 7.7 for a list of reactions).
The first one was used in [219] to study the dynamics in glycolysis. The metabolic
network (see Figure 7.1a) has 23 metabolites and 18 reactions. The second model
was proposed in [129], and comprises 12 metabolites and 20 reactions. This second
model describes the glycolysis and the TCA cycle (see Figure 7.1b). Two models
are used in this chapter since the metabolites whose measurements were available in
the real case study were not exactly the same as in the available simulated model.
However, since both models are describing glycolysis, the results are somehow
comparable.

7.2.2 Concentration data

The concentration data using the first model (Figure 7.1a) are simulated using
COPASI software. The initial conditions of the metabolites match the meaure-
ments used in the original paper [219] (see Table 7.1). In this case, COPASI is used
to simulate the concentrations from 0 to 1 seconds in 20 intervals of 0.05 seconds.
The fluxes and the set of EMs are also obtained directly from this software.

The interest in the simulated study consists of discriminating between scenarios
using a large versus small amount of glucose. Therefore, 32 experiments are sim-
ulated using the data in Table 7.1 plus a 20% noise, and another set of 32 is
obtained tunning the original glucose concentration from 10 to 2.5 mMol/l (also
with 20% noise in data). These two values are indeed interesting, since they mimic
the glucose pulses used in the real case study (see paragraph below).

In the real case, the concentrations of S. cerevisiae were obtained experimentally
using LC-MS [220, 221] at the Kluyver Centre for Genomics of Industrial Fermen-
tation (Biotechnology Department, TU Delft, The Netherlands), and were used
afterwards in [215]. 12 different cultures are used in the present work. Regarding
experiments 1 to 8, different glucose pulses in aerobic conditions were used in these
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Figure 7.1: S. cerevisiae metabolic models. Model a) [219] (b) [215]) is used for the
simulated (real) case study.

120



7.2 Metabolic models of Saccharomyces cerevisiae

Metabolite Initial concentration (mMol/l)
GLCi 0.087
Prb 5
G6P 3.085
F6P 0.75247
Glyc 0
PHOS 10
Trh 0
F16P 0.836
TRIO 0.5177
NAD 0
BPG 0.111
NADH 0.044
P3G 0.825
P2G 0.13771
PEP 0.1404
PYR 0.884031
ACE 0.0474837
CO2 1
SUCC 0
GLCo 110
ETOH 0
GLY 0.15
X 0

Table 7.1: Initial concentrations in the simulated study. Experimental conditions taken
from [219].
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cultures: 10 mMol of glucose were used in the first 4 experiments and 2.3-2.5 mMol
in experiments 5-8. Also, 4 more cultures, experiments 9 to 12, were performed in
anaerobic conditions.

The aim in the real case study consists of discriminating between i) large and
small glucose pulses (i.e. experiments 1-4 vs 5-8), and ii) aerobic and anaerobic
conditions (experiments 5-8 vs 9-12).

7.3 Dynamic elementary mode modelling

7.3.1 Dynamic elementary mode analysis (dynEMA)

Any steady state flux distribution x = (x1, ..., xK) can be decomposed as a positive
linear combination of a set of E EMs [139]: x =

∑E
e=1 λepe, whereK is the number

of fluxes (matching the number of reactions in the network), pe = (pe1, ..., peK)
is the EM e, λe is the positive weighting factor of EM e, and E is the number of
EMs needed to reconstruct the flux distribution x.

When N flux distributions are considered, coming from different experiments or
cultures, a PEMA model can be built: X = ΛPT +F, where X is the N ×K flux
data matrix, P is the K × E PEMs matrix, formed by a subset of E EMs; Λ is
the N × E weighting matrix; and F is the N ×K residual matrix. A schematic
representation of PEMA model can be visualised in Figure 7.2.

Non-steady state flux distributions cannot be decomposed as linear combinations
of EMs, as in steady state. When the biological system has not reached yet the
steady state, the dynamics are unstable, and there could be flux only in some areas
of the network, e.g. reactions consuming the initial substrates. However, the EMs
are indeed the simplest pathways along which the non-steady state fluxes have to
flow, but not in a stable or constant fashion. Following this rationale, the EMs
can be modified or adapted to fit this unstability. This are the so-called dynamic
elementary modes (dynEM). To adapt an EM, not a single coefficient multiplying
the EM (Λ in PEMA), but a coefficient multiplying each reaction activated by the
EM has to be assigned.

Thus, a single non-steady state flux distribution x can be decomposed as:

x =

E∑
e=1

αe ◦ pe (7.1)

where αe = (αe1, ..., αeK) are the coefficients that adapt reactions 1 to K in the
selected dynamic EM e to reproduce the fluxes in x.
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Figure 7.2: Scheme of PEMA model.

Consider now a set of non-steady state flux distributions, which can be obtained
from a single experiment measuring the concentration of the metabolites at J
consecutive time points. The set of active dynEMs are obtained from the dynEMA
model:

X = (IJ ⊗ 1TE)[A ◦ (1J ⊗PT)] + F (7.2)

where A is the EJ × K coefficients matrix and IJ is the J × J identify matrix.
The other matrices are the same as in the PEMA model. Figure 7.3 shows a
representation of dynEMA model.

The coefficients matrix A in the previous equation is indeed a E ×K × J three-
way VWU matrix, and each entry in the matrix αekj represents the coefficient
multiplying reaction k of EM e to reconstruct the flux xk at time point j. Using
this modeling it is possible to study the time evolution of a dynEM, i.e. how the
dynEM is deformed or dynamically used along all measured time points.

This system of equations is solved similarly to PEMA. The candidates for first
dynEM are selected from the complete K × Z EM matrix in a step-wise fashion.
After selecting an EM, the coefficients multiplying it (thus creating the dynEM) are
obtained solving 7.2 using non-negative least squares. Once all EMs are evaluated,
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Figure 7.3: Scheme of dynEMA.

the dynEM explaining most variance in data (as in PEMA) is classified as the first
dynEM. Afterwards, this first dynEM is fixed, and the search for the second one
starts, recalculating the coefficients in matrix A for both the first and the second
dynEMs at each evaluation. In this way, the dynEMA model is built in a greedy
way.

The dynEMA model is useful to identify the dynEMs active in an experiment and
how each dynEM is used in the culture at different time points of the experiment.

7.3.2 Dynamic elementary mode regression discriminant
analysis (dynEMR-DA)

When the aim is to establish differences between environmental or experimen-
tal conditions, e.g. presence/absence of a compound or case/control studies, a
discriminant model is needed. For this, dynEMR-DA is proposed. This model
focuses on finding which are the dynEMs with a strongly different time evolution
or performance between conditions.

To build a dynEMR-DA model, the set of different experiments are combined in
a single X three-way array (see Figure 7.4). In X we consider N experiments,
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Figure 7.4: dynEMR-DA procedure.

measuring K fluxes along J time points. Therefore, it is mandatory to have the
same measurement rate in all experiments.

The algorithm of dynEMR-DA is:

1. For each EM:

(a) Unfold the X matrix using VWU.

(b) Calculate the coefficients matrix A using dynEMA.

(c) Reconstruct the flux data using A and P.

(d) Fold the reconstructed data to build again a three-way data structure
Xrec

(e) Fit an NPLS-DA model between the reconstructed data and the y data,
where y denotes the class of experiments (1s or 0s).

2. The dynEM whose NPLS-DA model explains most variance in y is classified
as the first dynEM.

3. Check the predictions of NPLS-DA model. If the current model discriminates
perfectly, stop. If not, fix the first dynEM and repeat steps 1-3 to extract
the second dynEM.

The dynEMR-DA algorithm can select many dynEMs until attaining a perfect
discrimination. However, in practice, many dynEMs are able, separatedly, to
discriminate between two experimental conditions. Moreover, some dynEMs are
discriminant, but some of their reactions are not used at any time point of the
experiment (so the flux does not cross the metabolic pathway from the beginning
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to the end). These dynEMs do not represent actual metabolic pathways, so they
should be removed when they are selected as discriminant.

The unfolding of X flux data matrix can also be applied in dynEMA, as a prior
step to the analysis. In this way, the common dynEMs activated in a pool of
experiments can be identified and interpreted using visual tools (see Section 7.5).

7.4 Triple cross-validation procedure (3CV)

Proper validation of discriminant models is a subtle issue in systems biology. When
enough data is available, single cross-validation procedures may lead to too opti-
mistic models, especially when the aim is discrimination between classes. To avoid
this, sometimes, spurious results in classification, double cross validation (2CV)
was proposed [222]. Using this procedure, a subset of the original data is used to
model fitting, another subset to decide the complexity of the model (e.g. number
of components of a multivariate model), and finally, a third subset is used for vali-
dation. This kind of models are especially useful for (N)PLS-DA model validation
[222, 223].

In this work, though, we need an extra round of validation. dynEMR-DA mod-
els involve the projection, as first step, of the flux data into the space defined
by a single dynEM. Afterwards, an NPLS-DA model is fitted with discriminant
purposes, having to determine, at the end, what dynEMs are discriminant. There-
fore, we propose here a triple cross validation (3CV) scheme (see Figure 7.5). This
procedure consists of the following steps:

1. Divide the data set in four groups: calibration, test, selection, and validation.
The latter is left out of the analysis until the final external validation.

2. Fit a dynEMR-DA model using the calibration set, using a maximum of
15 components. In this case study, 15 are selected because this number
approaches the number of reactions in both S. cerevisiae metabolic models.

3. Project the test set, first to the corresponding dynEM, and then to each of
the 15 NPLS-DA calibration models. At this point, the minimum number
of components, A, needed to classify each experiment in its corresponding
class, are selected.

4. Project the selection set first to the dynEM and then to the calibration
NPLS-DA model with A components. Then, the predictive power of each
dynEM using these data is assessed.

5. Steps 2-4 are repeated three times, changing the roles of the subsets. That
is, the models are built using, in steps 2 to 4 respectively: calibration-test-
selection, test-selection-calibration and selection-calibration-test sets.
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6. The dynEMs with perfect classification rates using the selection set in the
three rounds are used finally for validation, so the discrimination power of
each dynEM is evaluated with completely external data. This prediction is
performed substituting the selection group by these validation samples in
the three models previously fitted.

A 2CV strategy is used for the NPLS-DA section of the dynEMR-DA models,
but an extra validation round is needed to assess the discriminant performance of
the selected dynEMs. Therefore, the 3CV procedure is built basically replacing
the validation step, in the original 2CV, by the selection step, and performing the
external validation in the last step.

7.5 Results

7.5.1 Simulated flux data

The metabolic model of S. cerevisiae in Figure 7.1a is used in this section to assess
the performance of dynEMR-DA on simulated data. 64 experiments are simulated
using COPASI, with the initial concentrations described in Section 7.2 (see Table
7.1). Thus, 32 experiments have a high initial concentration of glucose and 32 a
low concentration. The fluxes derived from the concentration data, and also the
set of EMs of the metabolic model, are also obtained using the aforementioned
software.

To validate the discriminant models, the 3CV scheme is used here, using N -way
Toolbox for MATLAB to fit the NPLS-DA models. 8 experiments of each class se-
lected at random (16 in total) are used as the calibration set. 16 more experiments
are used to select the number of NPLS-DA components. And 16 more are used
as selection samples. After repeating these procedure, changing the roles of the
three groups, only one dynEM (from the whole set of 26 EMs) is able to discrimi-
nate perfectly between both experimental conditions: dynEM 8. This means that
it classifies each experiment in its corresponging class in the three groups when
acting with different roles (i.e. calibration, validation and selection sets). Finally,
the remaining 16 cultures are used for the final validation of this dynEM. Again,
all experiments are correctly classified in all dynEMR-DA models.

Figure 7.6a shows dynEM8. This mode covers the whole glycolytic pathway, start-
ing from glucose (GLCo), producing all the intermediate products until reaching
pyruvate (PYR), acetate (ACE) and finally ethanol (ETOH). The coefficients mul-
tiplying the EM can be visualized in Figures 7.6b-7.6e. The system reaches the
steady state at time point 5-6, so the differences between time points are minimum
afterwards.
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Figure 7.6: Simulated study. a) dynEM8 depicted on the metabolic model. b)-e)
dynEM8 coefficients at time points 1-4. Blue (red) lines show the coefficients for the high
(low) glucose experiments.

The differences between both experimental conditions can be seen with the naked
eye in Figure 7.6. The usage of all reactions in the dynEM, i.e. the coefficients in
A matrix, are higher in the high glucose concentration experiments than in the low
glucose. This implies that these scenarios take advantage of the higher amount
of glucose to carry more flux through the glycolysis until reaching the ethanol.
This behaviour has been somehow commented in the literature [224–226], and in
Chapter 6 with steady state flux data, and it is known as the Crabtree effect.

7.5.2 Actual flux data

High vs low glucose pulse

To assess the performance of dynEMR-DA in a real case study, a set of cultures
of S. cerevisiae are used to discriminate between experiments using a large or a
small initial glucose pulse. Unfortunately, the number of available cultures is low
for this case study (4 in each class), so no 3CV, neither 2CV, is possible here.
Therefore, single CV is applied here: 3+3 experiments are used for dynEMR-DA
model building and selection of NPLS-DA components, and the remaining 1+1
experiments are used for validation. This procedure is repeated 4 times, leaving
out a couple of cultures each time.
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Chapter 7. Dynamic elementary mode modelling

The dynEMR-DA model has to be built using fluxes, not concentrations. There-
fore, we have to compute the fluxes based on the changes in the concentrations
between two consectutive time points. To obtain the set of fluxes all at once, the
following optimization problem is solved:

minxjk

∑20
j=1

∑24
k=1(xj+1,k − xj,k)2 +

∑20
j=1

∑24
k=1 x

2
j,k

s.t. SXT = dCT

dj

X ≥ 0
X0 initial solution

(7.3)

where X = {xjk} is the 23× 20 flux data matrix, X0 is the initial solution for the
quadratic programming problem (based on a non-negative least squares solution of
SXT

0 = dCT

dj ), indices k and j denote flux number and time point, respectively, S
denote the 12× 20 stoichiometric matrix, and C denote the 24× 12 concentration
matrix. There are 24 time points in the concentration data, thus 23 time points
are considered for flux data, representing the fluxes between consecutive pairs of
concentrations.

In this case, only dynEM9 (from the set of 20 EMs) is able discriminate the left out
experiments in all cases. This dynEM can be visualised, jointly with the coefficient
matrix A, in Figure 7.7. The differences between high and low glucose are also
pretty clear in this example. The usage of this dynEM is stronger in scenarios with
a huge glucose pulse than with a small pulse. This difference is, though, greater
in the first steps of the glycolysis, which makes sense, since the effect of the higher
amount of glucose is diluted when the flux is crossing the pathway. It can also
be seen that the first reactions of the EM (1, 3 and 4) have higher coefficients
at the first time point and lower ones at time points 3-4. The opposite happens
with the subsequent reactions in the dynEM, which have low coefficients at the
beggining and higher ones at time point 4. This behaviour reinforces the modelling
applied in this work. The flux data cannot be modelled in the same way at the
first time points than when the culture reaches the steady state, therefore it make
sense to use the concept of dynEMs to model non-steady state flux data, instead
of applying a PEMA model.

It is worth noting the similarity between the dynEM identified here and dynEM8

of the simulated case study. Both dynEMs are describing the same phenomena,
the glycolysis until reaching pyruvate. They are not exactly the same because the
metabolic models are different, acetate and ethanol were not measured in experi-
mental conditions. However, it seems that when comparing simulated and actual
data, the dynEM discriminating between experimental conditions is basically the
same one.
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Figure 7.7: Real case study. a) dynEM9 depicted on the metabolic model. b)-e)
dynEM9 coefficients at time points 1-4. Blue (red) lines show the coefficients for the high
(low) glucose experiments.

Aerobic vs anaerobic conditions

For the second real case study, we compare 4 cultures performed in aerobic condi-
tions versus 4 more in anaerobic conditions. As in the previous example, a single
cross validation procedure is applied here.

In this case study, dynEM8 is able to discriminate between both experimental
conditions. The dynEM and the coefficients for the first 4 time points can be
visualized in Figure 7.8. Again, the differences between both classes can be seen
with the naked eye, having the anaerobic experiments higher coefficients. This
behaviour has been outlined also in the literature [224, 227–229]. To satisfy the
redox balances, glucose is deviated from glycolysis to the production of glycerol.
The latter is produced by reduction of the glycolytic intermediate dihydroxyace-
tone phosphate to glycerol 3-phosphate (g3p) followed by a dephosphorylation of
glycerol 3-phosphate to glycerol. Despite glycerol does not appear explicitly in the
network, because this metabolite was not measured in all original experiments, it
is likely that the flux flowing through g3p produce glycerol at the end, as suggested
in the literature.
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Figure 7.8: Real case study. a) dynEM8 depicted on the metabolic model. b)-e)
dynEM8 coefficients at time points 1-4. Blue (red) lines show the coefficients for aerobic
(anaerobic) experiments.

7.6 Discussion

The approach for dynEM modelling proposed here permits decomposing non-
steady state flux distributions into a set of active dynEMs. This way, dynEMA
can be used to study the active dynEMs in an experiment, or a set of experiments,
extending the PEMA model, proposed in Chapter 6, to a dynamic environment.
For discrimination purposes, dynEMR-DA permits to identify which dynEMs have
different patterns of activation depending on the culture initial conditions.

Actual and simulated concentration data of S. cerevisiae have been used here, to
evaluate dynEMR-DA. When changing the amount of glucose present in the exper-
iment in both data sets, dynEMR-DA is able to identify that the dynEM crossing
the glycolytic pathway from glucose to pyruvate is the most discriminant one.
Even considering two different metabolic models, for data availability reasons, the
results of dynEMR-DA seem coherent between case studies. When analysing data
from aerobic versus anaerobic conditions, dynEMR-DA indicates that the dynEM
driving the glucose pulse to the glycerol production is the most discriminant in
terms of usage between both classes. Previously published research confirms the
results obtained using this new methodology.

The framework presented here will serve to create reduced dynamic models of
flux data while preserving biological and thermodynamical meaning, as a tool
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to analyse non-steady state flux distributions across experiments and to identify
the hidden metabolic patterns that drive the organism from one state to another
when changing the environmental conditions. dynEMA and dynEMR-DA have
potential applications in bioprocess engineering to understand the small changes
in cell metabolism at early stages of cultures.

7.7 Appendix. Metabolic models.

Simulated case study

Metabolite abbreviations

Abbreviation Metabolite
GLCo Glucose
GLCi Glucose (intracelullar)
Prb Energy status
G6P Glucose-6-phosphate
F6P Fructose 1,6-phosphate
Glyc Glycogen
PHOS Phosphate
Trh Trehalose
F16P Fructose-6-biphosphate
TRIO Triose-phosphates
NAD Nicotinamide adenine dinucleotide
BPG Bisphosphoglycerate
NADH Nicotinamide adenine dinucleotide phosphate
P3G 3-Phosphoglycerate
P2G 2-Phosphoglycerate
PEP Phosphoenolpyruvate
PYR Pyruvate
ACE Acetate
CO2 Carbon dioxide
SUCC Succinate
ETOH Ethanol
X Polyphosphates
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Chapter 7. Dynamic elementary mode modelling

List of reactions

GLCi + Prb ↔ G6P
G6P ↔ F6P
G6P + Prb ↔ Glyc + 2 PHOS
Prb + 2 G6P ↔ Trh + 3 PHOS
F6P + Prb ↔ F16P
F16P ↔ 2 TRIO
PHOS + TRIO + NAD ↔ BPG + NADH
BPG ↔ P3G + Prb
P3G ↔ P2G
P2G ↔ PEP
PEP ↔ Prb + PYR; F16P
PYR ↔ ACE + CO2
2 ACE + 3 NAD ↔ SUCC + 3 NADH
GLCo ↔ GLCi
ACE + NADH ↔ ETOH + NAD
NADH + TRIO ↔ PHOS + GLY + NAD
Prb ↔ PHOS
X ↔ PHOS

Real case study

Metabolite abbreviations

Abbreviation Metabolite
g6p Glucose-6-phosphate
f6p Fructose-6-phosphate
fbp Fructose 1,6-biphosphate
g3p Glyceraldehydes-3-phosphate
3pg 3-Phosphoglycerate
pep Phosphoenolpyruvate
pyr Pyruvate
cit Citric acid
ogl Oxoaglutarate
succ Succinate
fum Fumarate
mal Malate
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7.7 Appendix. Metabolic models.

List of reactions

g6p →
g6p ↔
g6p ↔ f6p
f6p → fbp
fbp → g3p
g3p →
fbp ↔ 3pg
3pg →
3pg ↔ pep
pep →
pep → pyr
pyr →
pyr → cit
cit → ogl
ogl ↔
ogl → succ
succ →
succ → fum
fum → mal
mal → cit
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Chapter 8

Fusing different omics data
sources

Part of the content of this chapter has been included in:

[2] Bosque, G., Folch-Fortuny, A., Picó, J., Ferrer, A. & Elena, S.F. Topology
analysis and visualization of Potyvirus protein-protein interaction network, BMC
Systems Biology 8:129 (2014). Highly accessed article.

[6] Folch-Fortuny, A., Bosque, G., Picó, J., Ferrer, A. & Elena, S.F. Fusion of ge-
nomic, proteomic and phenotypic data: the case of potyviruses, Molecular BioSys-
tems 12, 253-261 (2016).
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Chapter 8. Fusing different omics data sources

8.1 Introduction

Complex networks are widely used nowadays to model systems in many omic
sciences, e.g. metabolomics, proteomics, transcriptomics or genomics [230, 231].
The case of PPINs is of special interest. Graphs are the most commonly used
tool to visually represent PPINs, the nodes being the proteins of the network, and
the edges their interactions. Graph theory [230, 231] is usually applied to extract
statistical and topological descriptors from the PPINs as a first step. Then, other
graph theory tools, usually applied on social or computer complex networks (e.g.
clustering algorithms [232]), are used to identify functional modules within the
network.

Since biological activity in organisms usually arises from the association or inter-
action of several proteins, it is crucial to relate PPINs to a biological function or a
phenotype. In this study, the data are obtained from a collection of Tobacco etch
virus (TEV) single and doule nucleotide substitution mutants. For each of these
mutant genotypes, absolute fitness was evaluated in its natural host Nicotiana
tabacum var Xanthi nc during a single infection cycle [233]. Complementarily, a
PPIN inferred from empirical protein-protein interaction (PPI) data from several
potyviruses is used to relate the mutations and the organismal fitness.

A mutation in a protein may change (slightly or dramatically) its ability to perform
its biological functions correctly. The mutated TEV proteins establish interactions
with other viral proteins according to the PPIN of potyviruses. Since viral pro-
teins are multifunctional, and they carry out some of their functions as protein
complexes, it is reasonable to assume that a part of the effect of the mutated
protein on the fitness is channelled through its PPIs. In other words, mutations
affect PPIs, which ultimately affect biological fitness. However, some mutations
are much more harmful while others have no fitness effect. The PPIN of Potyvirus
adds biological context to the mutation and allows for a deeper analysis of the
importance of each protein in the virus’ infectious cycle.

Some assumptions are made in the present approach. The main one is that each
mutation affects all the PPIs of a mutated protein in the same way. Probably the
true modifications are subtler, depending also on other factors. Proteins are highly
heterogeneous structures and modifications in different parts of their sequence may
have different biological consequences for different interactions. However, the lack
of available data and their nature constrained the present study. The problem re-
volves around two issues. On the one hand, there are protein residues or domains
that are much more sensitive to mutations than others. Mutations in some loca-
tions, such as the catalytic site of an enzyme, are potentially much more harmful
to its function than mutations affecting other domains. Instead of relating mutants
and fitness directly, the present approach relates mutants to fitness using proteins
and interactions between them as a way to channel those effects and obtain useful
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information. On the other hand, very scarce information is available for particular
interactions. One way to include variability in the influence of a particular muta-
tion on each interaction could be carrying out a docking study. Having structural
information of two proteins it would be possible to estimate the influence that any
change in their sequences has on a possible docking between them. Unfortunately,
none of the TEV proteins have been crystallographically determined so this anal-
ysis is not possible yet. Therefore, until no new proteomic information arises, the
influence of mutations is spread equally to all the interactions that the mutated
protein establishes.

In order to relate mutations, PPIN and fitness, a data integration has to be per-
formed. The problem of relating different sources of data has been widely assessed
in systems biology using data fusion. Data fusion can be defined as a statistical
procedure to analyse simultaneously different sources of complex data sets [234].
This methodology has been applied to identify genes related to specific diseases
[235], to PPINs and gene expression [236], to fuse gene regulatory networks, tran-
scriptional factors and amino acid sequences [237], for metabolic profiling [238]
and for biomarker search in proteomics [239]. One of the most used methods in
data fusion [238–242] is PLS.

The aim in this thesis is thus to fuse the aforementioned genomic, proteomic and
phenotypic data of potyviruses in a single multivariate model to understand the
relationships among the different data sources. This way, the objective is to relate
mutated proteins, their effect on the PPIN, and the resulting organismal fitness
measured under controlled laboratory conditions. Figure 8.1 shows a scheme of
the data fusion. In this case, the mutations and the PPIN are the explanatory
variable data blocks, and the fitness measured for each mutant take the role of the
dependent variable. Finally, a set of functional modules of the PPIN is isolated
using the PLS modelling. The purpose of this approach is to gain insight into the
molecular interactions that occur during the virus infection more than to construct
a robust predictive model.

The rest of the chapter is organised as follows. First, Potyvirus, its PPIN network
and the data sets, are presented in Sections 8.2-8.4, respectively. Sections 8.5
and 8.6 describe the data fusion approach, giving details about how the data is
structured and related. Section 8.7 exploits the biological output of the data
fusion, identifying functional modules. Finally, some conclusions are drawn on
Section 8.8.
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Figure 8.1: Schematic representation of the data fusion.

8.2 Potyvirus and its proteins

Potyvirus is the major genus in the Potyviridae family, accounting for 30% of
all known plant viruses, with more than 180 members. Many potyviruses are
important pathogens of agricultural crops. They are able to infect a wide range
of mono- and dicotyledonous plant species [243], causing symptoms that severely
reduce the yield and quality of crops. The economic impact of these viruses on
agriculture is well-documented [244]. Some examples of potyviruses are Plum pox
virus (PPV), Soybean mosaic virus (SMV), Turnip mosaic virus (TuMV), and
Tobacco etch virus (TEV) [245].

Potyvirus virions are flexuous and rod-shaped, 680 to 900 nm long and 11 to 15
nm wide [246]. Potyviruses have a single-stranded, positive-sense RNA genome
of approximately 10 kilobases (kb). They contain two open reading frameworks
(ORF), which after translation, self-process 11 proteins: P1, HC-Pro, P3, 6K1,
CI, 6K2, VPg, NIaPro, NIb, CP and P3N-PIPO (more details on these proteins
can be found in [247–249]). Much research in the last two decades has focused on
understanding the functions of the different potyvirus proteins during the virus
life cycle. Rapid rise of academic interest in this topic followed the complete
sequencing of the first two potyviruses: TEV [250] and Tobacco vein mottling
virus (TVMV) [251]. Many excellent reviews have been published since then [243,
246, 252–256].
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Table 8.1: Potyvirus interactions initial data set, containing data from 6 different studies
and 8 different viruses.

Reference Virus Interactions Method∗ Tested Detected
[257] PPV 105 54 BiFC

[258] SMV-P 100 39 Y2H
SYSV-O 100 45 Y2H

[259] PVA 80 16 Y2H
PSbMV 56 10 Y2H

[260] PRSV-P 100 16 Y2H
[261] SMV-G7H 100 9 Y2H
[262] CIYW 40 5 Y2H

8.3 Protein-Protein Interaction Network (PPIN)
reconstruction

All currently available Potyvirus PPI datasets are gathered as a first step. These
data are obtained from six different articles published over the last decade [257–
262]. An overview of the data is shown in Table 8.1. 681 PPIs were tested in
these studies and 194 PPIs were detected among the 11 viral proteins from eight
different viruses: PPV, SMV-Pinellia ternate isolate (SMV-P), Shallot yellow strip
virus-onion isolate (SYSV-O), Potato virus A (PVA), Pea seed-borne mosaic virus
(PSbMV), SMV-G7H strain and Clover yellow vein virus (CYVV).

Integrating data from different sources in a common framework requires standard-
ization. First, each interaction tested in the original studies is collected. Some
of these studies were able to test more interactions than others. In some studies
it was not possible to produce enough quantity of a certain protein to test its
interactions with the others. In other cases proteins had not been yet discovered
when the studies took place so they are obviously absent. Additionally, not all
interactions tests resulted in a positive interaction being detected.

The molecular methods used in these works to detect the interactions have an in-
herent directionality. Experimentally, it is common to swap the fused tags among
the pair of proteins to avoid possible structural problems that may interfere with
the detecting methods (e.g., Y2H and BiFC). Original studies tested all interac-
tions in two directions, for instance P1∼HC-Pro and HC-Pro∼P1. This produces
a problem when only one direction was detected. Since the PPI itself has no
directionality (it is a molecular docking phenomenon between two molecules) the
disagreement comes from the molecular methods used. Some combinations of fused
and viral proteins may be less stable or may block the docking of other proteins.
To overcome this, it is assumed here that an interaction is valid if it was detected
in any of the two directions or in both. This produces symmetry in complemen-
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tary interactions (P1∼HC-Pro and HC-Pro∼P1) representing the real process of
interacting in a clearer and more truthful way.

The next step consists of determining what interactions are relevant and which
ones are fair representations of the Potyvirus genus topology. Given the vari-
ability among studies (e.g., virus species and experimental conditions) it is not
surprising that some interactions were detected only in one or few studies, while
other were pervasive across the entire dataset. On the other hand, the relative
scarcity of the data (only 194 interactions detected) make difficult and somewhat
useless a more detailed statistical analysis. Even a confidence interval for each in-
teraction with only eight independent values (corresponding to the eight viruses)
is not reliable enough. Therefore, a relevance coefficient (RC) between the num-
bers of detected and tested interactions for each pair of proteins is defined. It
is reasonable to assume that RC is a measure of biological importance. In other
words, the more times an interaction has been detected, the higher the probability
that this particular interaction is important for the virus to complete its infec-
tious/replication cycle. However, considering the particularities of each method,
percentages for Y2H and BiFC are weighted. The latter is closer and much more
biologically coherent to natural conditions where potyvirus interactions take place.
Therefore, the only study in which this method was used [257] is overweighted.
Thus, RC takes the form:

RC = 100× (2[BiFC] + [Y2H])/(T + 1) (8.1)

where T is the number of times that a particular interaction was tested (from 0
to 8), [BiFC ]is the number of times that a given interaction was detected using
the BiFC method (from 0 to 1 because only one study used BiFC) and [Y2H]
corresponds to the number of times that an interaction was detected using the
Y2H methodology (from 0 to 7). The factor of 2 multiplying the [BiFC] term is a
simple way to overweight this method against the Y2H. Doubling its importance
was a compromise solution between being truthful to the particularities of each
method and still gathering all the relevant information.

RC can range then from 0% (the interaction was not detected in any of the studies)
to 100% (was detected in every single study). A threshold for RC is established
at the minim value where all nodes are part of a single connected network, which
occurrs at RC = 44%. This choice has biological meaning because is based on the
fact that all Potyvirus genomes encode for the eleven proteins and that all these
proteins have been reported to interact at least once with each other. Therefore, it
is only possible to study this particular system assuming only one connected net-
work. This threshold is data-dependent and therefore can change from network
to network. Even with the same dataset it may be changed to satisfy a particular
research objective. For instance, setting a higher RC makes the analysis focus
on the most frequent interactions, which may be interesting in a specific situa-
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Figure 8.2: PPINs of Potyvirus. Eleven proteins (represented as circles) and their 25
detected interactions (represented as double-arrows).

tion. However, lower RC than 44% results in a disconnected network with various
components.

After establishing the aforementioned threshold, only 25 out of the 66 possible
interactions between the 11 proteins are considered as relevant. With those inter-
actions the PPIN interaction matrix can be built (see Figure 8.2).

8.4 Mutations and fitness

A collection [233] of 20 TEV single nucleotide substitution mutants and 53 double
mutants, resulting from the pairwise combination of the single ones [233], form
the dataset analysed here. The fitness of these mutants have been previously
quantified by means of growth assays in the natural host N. tabacum. Fitness is a
measure that captures the ability of a mutant virus to grow and spread through
the plant during an infection cycle relative to the ability of the unmutated wild
type virus [263].

The collection of mutants was generated at random and thus it is somehow irreg-
ular, not affecting all TEV proteins: 6K1, CP and P3N-PIPO were not mutated
(see Table 8.2). Moreover, some proteins like P1 and VPg were mutated more
times than others such as 6K2, CI and NIb. Although a more complete collection
of mutants would be very useful to further increase accuracy, the collection of 73
mutants used in this Chapter is a fair representation of the TEV genome and its
11 proteins.
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Mutation Protein Type # of mutants
PC2 P1 Nonsynonymous 2
PC6 P1 Nonsynonymous 7
PC7 P1 Nonsynonymous 5
PC12 P1 Nonsynonymous 4
PC19 HC-Pro Synonymous 10
PC22 HC-Pro Nonsynonymous 6
PC26 HC-Pro Synonymous 4
PC40 P3 Synonymous 5
PC41 P3 Nonsynonymous 4
PC44 P3 Synonymous 5
PC49 CI Nonsynonymous 8
PC60 CI Synonymous 3
PC63 6K2 Nonsynonymous 10
PC67 VPg Nonsynonymous 4
PC69 VPg Nonsynonymous 13
PC70 VPg Nonsynonymous 5
PC72 VPg Nonsynonymous 3
PC76 NIaPro Synonymous 8
PC83 NIb Nonsynonymous 10
PC95 NIb Nonsynonymous 10

Table 8.2: Mutations experimentally generated on the genome of TEV.
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The mutant collection has some features that make it an interesting and appro-
priate starting point for the data fusion. 6 of the 20 single mutants correspond
to synonymous mutations. In other words, the nucleotide substitution does not
translate in an amino acid replacement in the protein sequence. In spite of being
synonymous, some of these mutations have a significant effect on fitness [263] due
to RNA stability, enhanced RNA silencing responses or improved translational ef-
ficiency, among other possibilities. Although these mutations have no effect on the
protein sequence and thus no predictable effect on the PPIN either, they represent
a natural source of fitness variability that is taken into account. Other particu-
larity of the data is that lethal mutations exist, meaning those that render zero
fitness for the virus bearing them, i.e. these mutations do not allow the virus to
survive and grow. Nine of the double mutations are lethal. These mutations are
excluded from the analysis because, if included, they will mask all the variability
of non-lethal mutations varying fitness in a discrete manner.

The effect of the mutations on the proteins can be quantified using different in-
formation. Since none of the TEV proteins has been crystallized yet, to represent
the biochemical similarity or the distance between the original amino acid in the
sequence and the new one produced by the mutation, an empirical amino acid
substitution matrix is used. These matrices describe the rate at which one amino
acid changes to any other over time. These matrices are commonly used in the
field of protein sequence alignment, calculating the probability that a particular
amino acid changes over time to a new one through mutation. The underlying idea
is that an amino acid substitution is more likely to survive to the filter of selection
if it is similar to the original amino acid than if it is physically very different.
Similar amino acids would then preserve a similar folding structure and activity
for the protein. Thus, the information contained in the entries of these matrices
to quantify the magnitude of each mutation is used.

Since the collection of mutants available is composed of single and double nu-
cleotide mutations it seems appropriate to use the Point Accepted Mutation [264]
(PAM) matrix to compute the distances generated by the mutations. These ma-
trices were developed using observed mutations in closely related proteins. Large
numbers in the PAM matrix denote substitutions very likely to be removed by
purifying natural selection, thus unlikely to persist in the long-term evolutionary
time. Since the mutants used for this study have almost identical sequences it
seems more precise to use a low number PAM matrix. For this, the PAM2 ma-
trix [264] is selected. It is assumed that mutations with high PAM2 values would
induce a strong disruption in the protein structure and, therefore, would have a
high probability to negatively affect its biological function.

Each mutation performed in this study gives a value that represents the difference
between the substitution of a particular amino acid by itself (meaning no muta-
tion at all) and the new amino acid in the sequence. For instance, mutation PC2
produces an amino acid change between F and C. The matrix establishes a score
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Figure 8.3: Small example of the mutation modelling.

of nine for the F to F substitution (no change) and 30 for the F to C substitution.
The difference (39 in this example) between these values represents how similar
(chemically and structurally) both amino acids are. Then, the value for all muta-
tions is normalized dividing by the maximum possible value for a change among
the 20 amino acids (W to E replacement, with a difference value of 47). Since,
in the absence of epistatic interactions, double mutants are potentially twice as
harmful as single mutants, in order to compare all mutants (single and double), a
normalizing value 2× 47 = 94 is chosen.

8.5 Mathematical modelling

Once the distance produced by each mutation is computed from the PAM2 matrix,
the effect of the mutation on the PPIN has to be modelled. However, as commented
previously, some mutations result in a zero distance (synonymous mutations).
Since these mutations have no effect on the network, they may directly affect
fitness without crossing the PPIN.

The distance registered for all nonsynonymous mutations is modelled as follows.
The distance generated by an amino acid replacement, which affects a particular
protein, weakens the existing interactions between the influenced one and its first-
step neighbours in the PPIN. Figure 8.3 shows a small example of this modelling
concept. If a mutation is produced on protein A, with a registered distance j, the
interactions relating A to its neighbours, B and C, are weakened as follows:

A ∼ B = A ∼ C = 1− j

U
(8.2)

where A∼B and A∼C mark the interaction between A and B, and A and C,
respectively, and U is the aforementeioned reference value (94).
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1− j
U

1− j
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Figure 8.4: Data matrices M, I and vector y have the information from the mutations,
interactions and fitness, respectively. Three examples are presented. On Exp1 a nonsyn-
onymous mutation is performed on A, with distance j, and fitness y1. A nonsynonymous
mutation on D is performed in Exp2, producing a distance k and fitness y2. On Exp3
a synonymous mutation is performed in A, producing no distance (and no effect on I),
and a fitness y3. The colours correspond to the data sources described in Figure 8.1.

It is worth noting that the distance produced in the protein is a measure of how
different is the protein after mutation. Then, this distance is translated into a
strength/intensity measure in the network between the protein and its first-step
neighbours.

The different data sources presented in this study must be combined properly to
be analysed using a latent structure method. Since PLS, in its original form, works
with two-way data matrices, the information collected on the previous subsections
must be arranged in such a way that each individual (i.e. experiment) is repre-
sented by rows, and the different types of variables (i.e. mutations, interactions
and fitness) by columns. So three data matrices are built: the mutation matrix
M has the 20 different mutations as variables, the interaction matrix I has the
intensity in each of the 25 interactions by columns, and the vector y has the fit-
ness registered for each individual. All matrices have 64 rows, corresponding to
the non-lethal mutants. Figure 8.4 presents an example of the matrices defined
above, following the small PPIN taken as an example in Figure 8.3.

8.6 Statistical modelling

The data matrices built in the previous section could be analysed using differ-
ent statistical techniques. Considering only mutations and fitness, a design of
experiments (DOE) could be performed, but this approach presents some draw-
backs here. There are 20 different mutations performed individually or two-by-two,
across the original 73 individuals. A model including only mutations and fitness
could be fitted using penalized regression (such as Lasso [265] or Elastic Net [266])
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to prevent rank deficiency problems. However, it is known that the PPIs affect
the fitness, so in the previous approach this effect is not considered.

The other possible approach consists of relating all the interaction strengths/intensities
to the fitness, using classical linear regression. The problem is that the mutations
are performed on different proteins affecting different interactions, which may not
be comparable in this model.

In this work, a PLS regression is applied to fuse the genomic, proteomic and
phenotypic data in a single multivariate model, the first two sources being the
explanatory variable blocks and the phenotypic fitness of the dependent variable.
Using a PLS model, the available data are compressed into a set of LVs that relates
mutations and interactions to the observed fitness. This allows us to clarify which
mutations, and also which sections of the network, increase or decrease the fitness
of TEV.

The different data sources, detailed in previous sections, have to be pre-processed
in order to obtain meaningful components in the PLS model. In the present case
the dataset is directly autoscaled, i.e. the variables are centred and divided by
their standard deviation to have mean 0 and standard deviation 1.

Regarding the statistical modelling, PLS can be strongly (and harmfully) affected
by some of the mutants compiled for the present study. As commented above,
lethal mutations decrease the fitness straight to zero, while for the non-lethal
mutations it oscillates in a small range around the fitness of the wild-type virus.
The inclusion of the lethal ones in the study will force the model to explain only the
variation between the lethal and non-lethal, pointing simply to the mutations that
have been lethal. To avoid this spurious result, and explain equally the positive
and negative effect of the mutations and interactions on the fitness of TEV, these
lethal genotypes have been removed from the datasets. This relates directly to
the way in which mutation severity is quantified. PAM matrices are constructed
assuming non-lethal scenarios. Even the most extreme amino acid substitution
is quantified as a prerequisite of biological success. Therefore it is sensible to
exclude the lethal mutations from the main analysis, since the benchmark chosen
to represent mutation magnitude excludes them originally.

Once the data are prepared for the analysis, a PLS model is fitted using the
software ProSensus ProMV. To decide how many components extract from the
data, the CV criterion using seven groups is selected.

First, a PLS model including all variables is fitted. Later on, a reduced PLS model
is obtained by deleting some mutations and interactions that have a very low in-
fluence on the fitness. These mutations are PC12, PC67, PC69, and PC72. The
PPIs deleted are: HC-Pro∼VPg, VPg∼VPg, VPg∼NIaPro and VPg∼CP. Basi-
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Component R2X cum. (%) R2y cum. (%) Q2 cum. (%)
1 11.8 57.6 39.5
2 23.4 70.0 46.7
3 30.1 78.3 56.7

Table 8.3: PLS regression results (reduced model). Cumulative variances in X = [M I]
and y explained by the model (R2X and R2y, respectively) and predictive power of the
model (Q2)

cally, these variables have a non statistically significant PLS regression coefficient
in the first PLS model (95% of confidence level).

Table 8.3 shows the results of the reduced PLS model. For the analysis, matrices
M and I are merged in a single matrixX, including all the variables collected in the
study. With a 3-component model, 30.1% of the variability in X explains 78.3%
of variance in the fitness, y, with a predictive ability of 56.7%. It is worth noting
that although network topology is definitely a major contributor to the variance
of the fitness, there are some other factors that are not included in this particular
approach, harming the predictive power of the PLS model. RNA structure stability
and codon usage bias are two clear examples of important contributors to fitness,
as commented before, that are not included in the analysis.

Figure 8.5 shows the PLS regression coefficients of the variables in the dataset.
The red bars mark the statistically significant PPIs and mutations. The relevant
ones are chosen based on the 95% jackknife confidence intervals computed for their
corresponding PLS regression coefficient. In this way, when the interval does not
include zero, the variable has a relevant effect on the fitness, either positive or
negative, with a 95% confidence level.

PC22 has a statistically significant negative effect on the resulting fitness of TEV;
i.e. when this mutation is generated in the genome, the fitness lowers its value
(see Figure 8.5). PC6, PC19, PC63, and PC83 also affect fitness, but in a positive
direction. The fitness increases when either of these mutations is present in TEV
genome. It is worth noting that a PLS model using only the mutations and the
fitness identifies basically the same relevant mutations as the combined mutations-
interactions model, but with less explained variance and predictive power in fitness
(70.1% and 47.0%, respectively).

The PPIs P1∼CI, P1∼VPg, 6K2∼NIaPro, NIaPro∼NIb, NIb∼NIb, and NIb∼CP
have a statistically significant negative effect on the fitness (see Figure 8.5). Bear-
ing in mind the mathematical modelling, when a mutation is performed, the cor-
responding interactions lower their values. So, the lower is the value of the inter-
action, the higher is the fitness computed. Alternatively, HC-Pro∼HC-Pro and
HC-Pro∼NIaPro have a statistically significant positive effect on the fitness, i.e.
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Figure 8.5: PLS regression coefficients with 95% jackknife confidence intervals. The
statistically significant variables are plotted as red bars.

Mutation Protein affected Interactions
PC6+ P1 P1∼CI−, P1∼VPg−
PC63+ 6K2 6K2∼NIaPro−
PC83+ NIb NIb∼NIaPro−, NIb∼NIb−, NIb∼CP−
PC22− HC-Pro HC-Pro∼HC-Pro+, HC-Pro∼NIaPro+
PC19+ HC-Pro (Synonymous mutation)

Table 8.4: Statistically significant explanatory variables. +/− mark the posi-
tive/negative effect of the variable on the fitness

the lower is the value of the interaction, the lower is the fitness computed. All the
statistically significant variables, mutations and PPIs, are summarized in Table
8.4.

8.7 Functional modules

On the previous section, the explanatory variables, PPIs and mutations with a
statistically significant effect on the organismal fitness, are identified among the
rest of the variables registered. In order to finally establish the relationships among
the three data sources, following the scheme proposed in Figure 8.1, the genomic-
proteomic-phenotypic effect must be explained using the information in Table 8.4.
If the relevant mutations and PPIs are represented on the original PPIN (see
Figure 8.6) some interesting conclusions can be drawn.

Mutation PC6, affecting protein P1, is positively correlated with TEV fitness. At
the same time, interactions P1∼VPg and P1∼CI are also relevant in the PLS
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PC83

PC6

PC63+ Fitness

- Fitness

Figure 8.6: Functional modules of TEV.

model, being negatively correlated with viral fitness. These mutation-fitness ef-
fects and interaction-fitness effects represent a unified mutation-interaction-fitness
effect. Figure 8.7 shows a scheme of this process: when PC6 is generated on P1,
the interactions with its neighbours VPg and CI lower their values, and the fitness
is increased as a result. A cyan ellipse in Figure 8.6 rounds this functional module.

This behaviour is also observed with the blue and violet modules (see Figure 8.6).
The former one is activated via mutation PC83 on protein NIb, and affects NIb,
NIaPro and CP. The latter starts with mutation PC63 on 6K2, affecting only its
relationship with NIaPro. When these sections are activated, the fitness increases.

PC6 P1  VPg
P1  CI Fitness

3

21 ~
~

mutation protein-protein interaction network fitness

Figure 8.7: Diagram of a mutation-PPIN-fitness positive effect.
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Figure 8.8: Diagram of mutations-PPIN-fitness effects in the case of multifunctional
protein HC-Pro.

In this way, Figure 8.7 can also represent the behaviour observed in these modules,
replacing the mutation and interaction names.

Two mutations affecting HC-Pro have a statistically significant effect. When mu-
tation PC22 is generated, the PPIs HC-Pro∼HC-Pro and HC-Pro∼NIaPro are
affected (brown module in Figure 8.6) and the phenotypic fitness decreases. Al-
ternatively, PC19 is positively correlated with the fitness: when it is introduced in
HC-Pro, the fitness increases significantly. Both mutations are compatible with the
mathematical modelling because PC19 is a synonymous mutation, and therefore
it has no effect on the PPIN network. Figure 8.8 shows the different effects related
to HC-Pro. This modelling would be infeasible if PC19 were a nonsynonymous
mutation. In this hypothetical case, since it would affect HC-Pro∼HC-Pro and
HC-Pro∼NIaPro, it would be incoherent that the mutation increases the fitness
and its associated interactions lower its value at the same time.

Two comments are here in due regarding the functional modules (Figure 8.6).
Firstly, if an interaction between two proteins is included in a module (e.g. P1∼CI)
it implies that the effect of the interaction on the fitness is statistically significant,
considering that it can be activated by nonsynonymous mutations performed on
both proteins (i.e. P1 and CI). However, the effect is stronger when the mutation
defining the module is performed (i.e. PC6 on P1), since the mutation is activating
other relevant interactions (i.e. P1∼VPg). Secondly, if an interaction activated
by a key mutation is not included in the corresponding module (i.e. interaction
6K2∼VPg, activated via mutation PC63) it implies that the effect of the interac-
tion, considering that it can be activated by nonsynonymous mutations performed
on both proteins (i.e. 6K2 and VPg), is not statistically significant.

High-level and mid-level data fusion procedures obtain separate models and ex-
tract relevant features of each data matrix, respectively, to combine them in a
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fused model to predict the biological output [267]. In this Chapter, however, a
low-level data fusion is applied, concatenating row-wise, matrices M and I be-
cause the mathematical modelling applied here establishes a direct relationship
between the mutations and the PPIN, so the joint analysis of both matrices in
a single PLS model leads to identify functional modules exploiting not only the
mathematical modelling but also the topological interactions being affected by the
different mutations.

8.8 Discussion and conclusions

The PLS modelling applied in this chapter to genomic, proteomic and phenotypic
data sets allows integrating the mutations performed on viral proteins, their ef-
fects on the PPIN, and their influences on the organismal fitness experimentally
quantified. In this way, three biological functional modules affecting the PPIN
and influencing the fitness positively have been detected. Two additional modules
are identified affecting a single protein. One influences the protein network, being
negatively correlated with the organismal fitness. The other one has a positive
effect on the fitness without affecting the PPIN. This implies that different muta-
tions affecting the same protein induce different behaviours in the activity of the
PPIN and the resulting fitness.

Classical clustering algorithms usually work with a standalone version of the net-
work, detecting dense sections of the topology based solely on its interaction in-
tensities (or basically on node degrees). In comparison to traditional clustering,
the presented methodology allows working with different sources of information,
combining them to squeeze the data and extract the relevant information. With
this data fusion, i) the mutations are related to topological changes in the network
and their subsequent influence on the fitness, and ii) the mutations not affecting
the network can also be related to the fitness.

Data fusion reveals as a very powerful tool to analyse and relate different types
of biological information. The larger the network and the collection of mutants,
the more precise its findings are. The present study, analysing a relatively small
PPIN (11 nodes and 25 interactions) and a small number of combinations of muta-
tions (64 out of the 210 possible ones), results in a quite high-explained variability.
However, there are intrinsic biological considerations that limit the scope of the
method. These considerations, such as RNA stability, efficiency inducing the an-
tiviral RNAi response of the plant and codon usage bias may be included in the
model as additional sources of variability but much more data would be needed.
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Chapter 9

Multivariate image analysis for
fruit discrimination

Part of the content of this chapter has been included in:

[10] Folch-Fortuny, A., Prats-Montalbán, J.M., Cubero, S., Blasco, J. & Ferrer,
A. VIS/NIR hyperspectral imaging and N-way PLS-DA models for detection of
decay lesions in citrus fruits. Chemometrics and Intelligent Laboratory Systems
156, 241-248 (2016).
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9.1 Introduction

In previous chapters, exploratory and predictive models have been fitted to dif-
ferent organisms, mostly at the micro level, i.e. yeast, bacteria, viruses. Systems
biology aims at understanding the relationships between biological levels within
every kind of organism. An extention of this objective, consists of studying how
the interaction between organisms can affect each other internally. In this chap-
ter, an organism is analysed at a macro level, citrus fruits shortly after harvest,
in order to study the effect that produces a micro level organism, a fungus.

Citrus production exceeded 115 million tons in 2011 [268]. They are cultivated
in over one hundred countries world wide, being Spain one of the most important
producer countries and the world leader in fresh citrus exports [268]. Citrus are,
indeed, the most widely produced fruits for human consumption, especially oranges
(62%) and mandarins (23%). To ensure product quality and reduce production
losses, it is mandatory to enhance postharvest handling in food industries, e.g.
citrus packinghouses. Many issues arise in this process due to pathological diseases
in fruits. This problem can be potentially harmful, since a small set of rotten
and sporulated fruits can contaminate the whole batch, especially during storage
or transport. Penicillium digitatum (the cause of green mould) and Penicillium
italicum (the cause of blue mould) are two examples of the most deleterious fungi
causing fruit decay, and they affect several cultivars over the world [269, 270].

Green mould lesions at early stages cannot be detected with the naked eye be-
cause the appearance of the damage is very similar to the appearance of sound
fruit. The first symptoms of this disease appear as a slightly discolored soft, water
soaked around a point of injury. The spot expands rapidly to a 30-40 mm diam-
eter. As the infection advances, a white fungal growth appears on the surface of
the rot [271]. Before the sporulation, the appearance of the lesions is very similar
to the sound skin being difficult for the workers to detect damaged fruit, especially
when they work on an inspection table, examining fruit traveling at high speed.
Therefore, the application of visual inspection or computer vision systems based
on colour images is limited. Nowadays, novel machine vision technologies are be-
ing incorporated in the citrus postharvest to detect this dangerous disease, mostly
based on ultraviolet (UV) induced fluorescence. Ogawa et al. [272] presented a
system to detect decay lesions in citrus using fluorescence images, and Blanc et al.
[273] patented an automatic machine for in-line decay detection and fruit sorting
using UV illumination. However, Momin et al. [274] demonstrated that differ-
ent cultivars of citrus fruits have different excitation wavelengths to produce UV
induced fluorescence in the infected areas, which makes it difficult to create a sys-
tem valid for all cases based only on this technology. Also, this kind of automatic
detection can be potentially jeopardized by fluorescence measurements from other
non-related defects [275]. Alternatively, this disease can often be observed using
other techniques like image backscattering [276] or hyperspectral imaging (HSI)
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[277]. In this sense, different hyperspectral sensors are being investigated to detect
non-visible fruit damage [278] like decay lesions in citrus fruits [279].

Using spectral devices, a set of images is obtained at different wavelengths, cap-
turing a huge amount of chemical information. Some works have been focused
on reducing the redundant information in this procedure, compressing the high-
dimensional original variable space into a low-dimensional one that preserves the
main properties of the data. Gómez-Sanchis et al. [280] and Lorente et al. [281]
used the features from spectral images of infected fruit as inputs for classifica-
tion algorithms, in order to improve the discrimination between sound and symp-
tomatic skin. In addition, HSI systems have also been developed to detect other
dangerous diseases. Qin et al. [282] used a portable imaging spectrograph to ac-
quire hyperspectral images of red grapefruits affected by canker and other defects.
In that work, the spectral images of the different defects were analysed using PCA
and spectral information divergence as classification method, detecting 97.6% of
infected fruits. In Qin et al. [283], the authors exploited the bands selected using
PCA and correlation analysis to obtain a system capable of detecting the canker
using ratios of two bands. Afterwards, a system to detect canker lesions in-line
was developed by Qin et al. [284]. Also, PCA and band ratios were used by Li et
al. [285, 286] to select relevant bands for the detection of this disease among other
common defects.

MIA uses a wide number of models and approaches to deal with hyperspectral
images [287, 288]. PCA is probably the most used method within MIA (some
examples are shown in the previous paragraph), but other two-way methods are
commonly used, as PLS or MCR. In some cases, it is convenient or interesting to
use three-way models such as NPLS [289] or Tucker [290].

This chapter focuses on developing multivariate models based on hyperspectral
images able of discriminating between infected and sound citrus fruits while at
the same time reducing as much as possible the number of wavelengths used.
For this, NPLS-DA is used to build a LV-based regression model using specific
features extracted from a pool of images of different orange and mandarin cultivars
collected at the IVIA. This kind of models has been succesfully applied in many
research works within fruit industry, e.g. for tomato [291], coffee [292], loquats
[293] and apple [294] discrimination. The present study represents an attempt to
implementing automatic classification procedures in fruit packinghouses to prevent
the storage of infected citrus fruits, which may ultimately rot and sporulate causing
contamination of packinghouse facilities and spread of the disease to healthy stored
fruit.

The structure of this chapter is as follows. Section 9.2 gives specific details on
the data and the image acquisition. In Section 9.3 the data preprocessing, feature
extraction and latent variable modelling are described. Section 9.4 shows the
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a) b)

Figure 9.1: RGB images of a control (a) and an infected (b) mandarin.

results of the multivariate discriminant models. Finally, some conclusions are
drawn on Section 9A.

9.2 Experiment

Eight different orange and mandarin varietes are analysed here: Clementine, Navel
Lane Late, Mioro, Nadorcott, Nova, Salustiana, Blood orange, and Washington
Navel. In each variety, 150 fruits were harvested from the field collection of the
Citrus Germplasm Bank at the IVIA [295]. After two days of storage with con-
trolled temperature and humidity, 100 fruits of each variety were inoculated with
a concentration of 106 spores/ml of P. Digitatum [296]. These citrus fruits repre-
sent the fungus group. The remaining 50 fruits were inoculated with water, and
they represent the control group to know if the innoculation process influences the
results. Both inoculations were produced around 2 days after the fruit collection.

Between 1 and 4 days after inoculation, when the fruit started to show slight ex-
ternal symptons of decay, a camera coupled with a VIS/NIR liquid crystal tunable
filter (LCTF) was used at IVIA to obtain a hyperspectral image from each fruit
of each variety. Figure 9.1 shows the red-green-blue (RGB) images of a control
and an infected mandarin, in order to illustrate how difficult is to discriminate
between both classes with visual inspection. 44 wavelentghs were registered from
650 to 1080 nm with a resolution of 10 nm. Each image has 1040 times 1392
pixels per wavelentgh. Therefore, the hyperspectral images can be represented as
1040× 1392× 44 datacubes.
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Figure 9.2: Hyperspectral image preprocessing.

9.3 Methodology

9.3.1 Data preprocessing

The citrus fruits appear centered in the images (see Figure 9.2, first block of
images). The spherical shape of the fruits causes some undesirable effects in the
fruit images, one of the most important being that the pixels in the borders (pale
blue areas around the fruit in Figure 9.2) appear darker than those in the centre of
the fruit due to the reflexion laws of the light. Therefore, it is convenient to remove
the pixels near the border from the analysis, which is done in this experiment by
applying a mask. After defining an intensity threshold, pixels exceeding this limit
are selected, representing the inner area of the fruit (see Figure 9.2, second block
of images). The pixel selection is performed at each wavelength of the image.
Then, the joint area across all wavelengths is defined as the mask for the whole
image. This way, if a pixel is above the threshold for, at least, one wavelength, it
is guaranteed that it is included in the fruit mask. This procedure is repeated for
all fruits in each variety.

Five different data preprocessings are applied in this study. The first one consists of
analysing the images using the original intensities (no preprocessing), i, measured
with the VIS/NIR-LCTF system. The second one consists of transforming the
intensities into reflectance values, r, using black (b) and white (w) references taken
with the HSI system:

r = 100× i− ib
iw − ib

(9.1)

The third preprocessing consisted of obtaining the absorbance values, a, from the
reflectance. That is:

a = log10(
r

100
) (9.2)
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Figure 9.3: NPLS-DA modelling. The feature matrices extracted from each citrus fruit
are arranged as row slices of the three-way array X. Then, the datacube is used jointly
with the dummy variable y, representing the fungus/control group, in the NPLS-DA
model.

The fourth and fifth preprocessings consists of applying multiplicative scatter
correction (MSC) and standard normal variate (SNV) methods [297] to the ab-
sorbance values, respectively. The complete study presented in Section 9.4 is
reproduced using the five different preprocessings. A table with the main results
is shown in Section 9.6.

9.3.2 Feature extraction

Once the mask is applied, each wavelength image is converted into a one-dimensional
numerical array using an image-based approach [288] (see Figure 9.2). In each
vector, a set of first order statistics are included as features describing the corre-
sponding wavelength image. Specifically, the mean, standard deviation, and third
to fifth order moments are used. After feature extraction, the data are arranged
in a 3-way data cube, containing the whole set of fruits in each variety by rows,
the features by columns, and the 44 wavelengths as third mode (see Figure 9.3).

160



9.3 Methodology

NPLS-DA

model

1

Fungus/Control
1

0

Calibration

Test

Validation

Calibration

Test

Validation

1

0

0

fr
ui
ts

features

Figure 9.4: Data partition for the 2CV procedure using images of a particular variety.

9.3.3 Discriminant models, validation procedure and
wavelength selection

NPLS-DA is applied in this chapter, usingN -way Toolbox, to discriminate between
fungus and control oranges. Specifically, the X (I × J × K) data matrix is the
datacube represented in Figure 9.3. Each row slice of X represents the set of
features of citrus fruit i (therefore K = 44 wavelengths and J = 5 features). The
dummy variable, y contains 1s for the fungus citrus fruits and 0s for the control
ones.

Proper validation of discriminant models is a subtle issue in chemometrics and
systems biology. Here, a 2CV strategy [222] is applied, similarly as in the NPLS-
DA step in Chapter 7 (see Section 7.4). Using this procedure, the data from
each variety and treatment (fungus/control) are split in three groups with the
same number of observations in each group (16 fruits) (see Figure 9.4, using the
compact 3-way array X). The first group is the calibration set, used to build the
NPLS-DA model. The second group is the test set, used for selecting the number
of components. And the third group is the validation set, used to evaluate the
predictive power of the NPLS-DA.

The ultimate goal of the present study is the creation of an affordable automatic
procedure to discriminate between sound and infected fruit in packinghouses. The
main drawback of using the VIS/NIR-LCTF system to obtain the spectral infor-
mation is the relative high price of the equipment. On the other hand, HSI-based
systems in general capture a huge amount of data that is sometimes redundant
and needs large time to be acquired. Hence, there is a need to reduce the dimen-
sionality of the data by selecting only those important wavelengths that still retain
most of the information. Current state of technology allows the development of
multispectral cameras capable of working in production lines with three to five
charge-coupled device (CCD) sensors that can be customized to capture specific
wavelengths. Hence, the goal is to perform a variable selection on the third mode
of the data, the spectral bands, to assess whether a few wavelengths (three to five)
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have enough discriminant power to classify each fruit correctly. Permutation test-
ing is used since it is one of the most used techniques to perform variable selection
in PLS-DA [213, 222, 223, 298].

The 2CV and the variable selection are performed as follows:

1. 500 different calibration, test and validation sets are built, including 32 ran-
dom samples in each group: 16 fungus and 16 control citrus fruits.

2. For each of the 500 group selections:

(a) The 32 calibration fruits are used to build NPLS-DA models, with num-
ber of components ranging from 1 to 25.

(b) The test set was projected onto each of the 25 models to decide the
number of components. The interest was in maximising first the F -
score and then the parsimony of the final model. The F -score was
calculated using precision, P , and recall, R, of the decay prediction of
the NPLS-DA model. Parameters P and R are computed as in Equation
6.5, being now the TP the fungus citrus fruits correctly classified in the
model, FP the control fruits classified as fungus, and FN the fungus
citrus fruits classified as control. Henceforth, F -score is computed as:

F =
2PR

P +R
(9.3)

Therefore the F -score is maximum when all the samples are classified
correctly, both control and fungus (first criterion). If this is achieved
selecting different number of LVs, the lowest number is selected follow-
ing the principle of parsimony (second criterion). See Figure 9.5 for an
example of this selection using Nadorcott variety. The NPLS-DA model
built with the calibration fruits and the components selected using the
test set is called the “real model”.

(c) The VIP values (variable importance in projection) [242, 299] of the
real model were collected. The VIP value of the variable (wavelength)
k was computed as:

V IP 2
k =

K
∑A
a=1[(wKk,a)2(RSSYa−1 −RSSYa)]

RSSY0 −RSSYA
(9.4)

where wKk,a is the loading value of the kth variable at the ath component,
A is the number of LVs in the NPLS-DA model and RSSYa is the
residual Y-sum of squares of the model with a components (a = 0 to
A).
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Figure 9.5: Predicted class for the test samples using different number of components
in the NPLS-DA model fitted with the calibration data. 5 components are selected, since
it is the model with highest F -score and parsimony.

163



Chapter 9. Multivariate image analysis for fruit discrimination

0 5 10 15 20 25 30 35
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8
5 NPLS−DA comps

Y 
pr

ed
ic

te
d

fruit
 

 

Control
Fungus

Figure 9.6: Validation samples projected onto the NPLS-DA model with 5 components
built with calibration samples.

(d) Steps 2a-2c are then repeated destroying the relationships between X
and y, thus creating a random model. This is done by permuting the
rows of y before applying step 2a. Finally, the VIP values using the
random model are collected after i) fitting the NPLS-DA model with
the calibration set and ii) deciding the number of LVs using the test
set.

(e) The remaining validation samples are projected onto the real model
to obtain the correct classification rates. Figure 9.6 exemplifies the
projection of the validation set in the Nadorcott variety using the model
selected in step 2b (see Figure 9.5).

(f) Steps 2a-2e are repeated three times, moving the samples from group to
group, that is: calibration-test-validation (first model, as in Figure 9.4),
test-validation-calibration (second model), and validation-calibration-
test (third model), as performed in Chapter 7 using dynEMR-DA.

(g) The VIP values of both the real and the random models were averaged
among the three models.

(h) The results of the external validation using the three real models were
integrated.

3. Once step 2 is performed for all group selections, the statistical significance
between the real and random models is assessed. The distribution of the
random VIP values represents the null distribution, so the real VIP values,
or the their mean, m, can be compared with the previous distribution to
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Figure 9.7: VIP values of a particular wavelength. The red line denotes the null
distribution from the random models. The green dot represents the mean VIP value of
the real models. The red area is the p-value associated to the green dot in the red null
distribution.

compute the statistical p-value, that is the probability of obtaining at random
a value equal or higher than m. Figure 9.7 shows an example using the VIP
values of a particular wavelength in the Nadorcott variety.

4. The mean p-values of each wavelength across all varietes are averaged to
obtain the mean p-values. Then, after sorting the p-values, the wavelengths
with lower mean p-values are classified as the most discriminant variables in
all fruit varieties.

5. The mean correct classification rates are obtained using the results of the
validation set in the 500 models.

6. Steps 2a, 2b, 2e, 2f, 2h and 5 (2CV procedure) are repeated using the 3, 4, 5,
10, 15, 20, 25, 30, 35, and 40 most discriminant wavelengths determined in
step 4. This way, the degradation of the missclassifications is evaluated in all
varieties in terms of the number of wavelengths considered in the NPLS-DA
model.
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Figure 9.8: P-values computed using the random and the real VIPs. The darker the
square, the lower is the corresponding p-value. Green areas mark the 5 best wavelengths
attending to the highest mean across varieties: 1, 2, 6, 11 and 12.

9.4 Results

Figure 9.8 shows the p-values computed using the random and real VIPs. It
is clear that different distributions of p-values in the wavelengths are observed
among varieties. For example, wavelengths 4-9 have the highest discriminant power
(lowest p-values) in Clementine, while the best ones in Mioro are wavelengths 37-
43. Despite these differences in the best bands per variety, it seems the initial
15 wavelengths, corresponding to 650-790 nm, tend to have low p-values (high
discriminant power).

From a theoretical point of view, the best choice would be to fit different NPLS-
DA models (step 6) in each variety including the wavelengths with the smallest
p-values in that particular variety. From a practical point of view, this would imply
to build different digital cameras incorporating different wavelengths depending on
the variety.

Here, a compromise approach is applied, and the wavelengths according to the list
of sorted mean p-values obtained in step 4 are selected. The results in terms of
fungus and total missclassifications can be visualized in Figure 9.9. The average
number of missclassifications in the fungus class decreases notably from 3 to 5
wavelengths, and then the values decrease slowly from 5 to 44 wavelengths. A
similar behaviour is shown in the average total number of misclassifications.

The best combination of 5 wavelengths is 1, 2, 6, 11 and 12 (see Figure 9.8),
corresponding to 650, 660, 700, 750 and 760 nm. Table 9.1 shows the number
of correct classifications and the corresponding percentages using all wavelenghts
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Figure 9.9: Fungus (a) and total (b) number of missclassifications when varying the
number of wavelengths included in the NPLS-DA model. The black lines show the mean
over the 500 models of Clementine (upper triangles), Lanelate (’+’ symbols), Mioro
(circles), Nadorcott (asterisks), Nova (squares), Salustiana (left triangles), Blood orange
(diamonds), and Washington Navel (lower triangles). Also, the mean values over all
varieties are shown in bold blue lines with crosses.

and only the five most discriminant ones. The variety best discriminated in both
cases is Nadorcott, having 99% and 96.8% of correct classification in control and
96.2% and 95.7% in fungus fruit, respectively. The second-best classified, in terms
of disease detection, are Navel Lane Late and Clementine, with near 92% of cor-
rect classification rate using all wavelengths, and around 93% and 90% using five
wavelengths, respectively. Salustiana attains the lowest classification rate. The
Appendix 9A shows the results of applying different preprocessings on the origi-
nal images using all wavelengths, showing that for this variety it is better to use
the absorbance values or the absorbance with SNV. For the rest of varieties, it
is statistically better to use the intensity values (no preprocessing). The average
correct classifications rates using all wavelengths are 95.6% and 91.2% for control
and fungus oranges, respectively. When using five wavelenghts the percentages
decrease to 93.1% and 90.0%, respetively.

To assess the statistical differences between using 5 or 44 wavelengths, a paired
t-test is applied on each variety. The results are presented also in Table 9.1. In
general, the results using the selected 5 wavelengths are statistically worse than
using all wavelengths. Due to the high sample size (500) used in the paired t-
test, small differences in the number of correct classifications become statistically
significant. However, comparing the results of both models, the mean loss in
correct classification using five wavelengths instead of 44 is 0.8 and 1.1 fruits out of
48 fruits in fungus and control cases, respectively. Anyway, the dramatic reduction
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Variety All wavelengths Five best wavelengths
Control Fungus Control Fungus

Corr. class. / % Corr. class. / % Corr. class. / % Corr. class. / %
Clementina Fino 46.0* / 95.9% 44.1* / 91.8% 45.6 / 95.0% 43.3 / 90.3%
Navel Lane Late 44.5* / 92.8% 44.1 / 91.8% 43.9 / 91.4% 44.8* / 93.4%

Mioro 45.0* / 93.7 43.0* / 89.6% 43.9 / 91.5% 42.0 / 87.6%
Nadorcott 47.5* / 99.0% 46.2* / 96.2% 46.5 / 96.8% 46.0 / 95.7%

Nova 45.9 / 95.6% 43.3* / 90.2% 45.8 / 95.4% 43.0 / 89.5%
Salustiana 46.8* / 97.5% 42.3* / 88.0% 45.3 / 94.3% 40.8 / 85.1%

Blood orange 46.2* / 96.2% 44.1* / 91.8% 43.5 / 90.7% 42.9 / 89.4%
Washington Navel 44.2* / 92.1% 43.2* / 90.0% 43.2 / 89.9% 42.3 / 88.2%

AVERAGE 45.8 / 95.6% 43.8 / 91.2% 44.7 / 93.1% 43.1 / 90.0%
MINIMUM 44.2 / 92.1% 42.3 / 90.2% 43.2 / 89.9% 40.8 / 85.1%
MAXIMUM 47.5 / 99.0% 46.2 / 96.2% 46.5 / 96.8% 46.0 / 95.7%

Table 9.1: Correct classification results in all orange and mandarin varieties using all
wavelengths and only the five most discriminant ones. * denotes a statistically better
dicrimination power in the corresponding class (control or fungus) between using all
wavelengths or only the five most discriminant ones.

in the price of a 5-channel camera clearly compensates for the small reduction of
correct classification.

9.5 Conclusions

NPLS-DA applied on features extracted from a set of hyperspectral images reveals
as a powerful tool for discrimination between infected and sound citrus fruits. This
way, the methodology applied here captures the effect that the micro organism,
fungus, produces in the macro organism, oranges and mandarins, and how can we
detect this effect at early stages of infection. The methodology applied on several
orange and mandarin varieties shows that, on average, 91% of fruit with decay
lesions caused by P. digitatum can be detected at early stages when the damage is
barely visible or even invisible and therefore cannot be detected in postharvest by
manual inspection. The predictive models were properly validated using a 2CV
procedure, computing up to 500 models with different fruit groupings.

Permutation testing on VIP values was used here to select a few spectral channels
with the most discriminant power in all citrus fruit varieties. Despite the number of
correct classifications becomes stable from five selected wavelengths onwards, there
exist statistically significant differences between using five and all wavelengths
captured by the VIS/NIR-LCTF system, being the latter significantly better.

Nevertheless, there is a strong cost reduction by selecting a few wavelengths, since
a digital camera can be customised to capture up to five filters to reproduce the
VIS/NIR-LCTF hyperspectral system. Therefore, from a practical point of view,
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Fungus oranges

Variety Intensity Reflectance Absorbance Abs. + MSC Abs. + SNV
Corr. class. / % Corr. class. / % Corr. class. / % Corr. class. / % Corr. class. / %

Clementina Fino 44.3 / 92.3% 43.1− / 89.7% 41.7− / 86.9% 41.4− / 86.2% 42.2− / 88.0%
Lanelate 43.8 / 91.3% 42.5− / 88.4% 40.9− / 85.1% 34.1− / 71.0% 34.5− / 71.8%

Mioro Capola 43.0 / 89.7% 43.0 / 89.6% 40.1− / 83.6% 38.0 / 79.1% 42.7− / 88.9%
Nadorcott 46.1 / 96.0% 46.0 / 95.8% 45.1− / 94.0% 41.5− / 86.5% 41.7− / 86.8%

Nova 43.5 / 90.7% 42.0− / 87.5% 40.3− / 84.0% 39.0− / 81.3% 41.3− / 86.1%
Salustiana 42.3 / 88.2% 43.0 / 89.6% 43.4+ / 90.4% 43.8+ / 91.2% 42.1 / 87.6%
Sanguina 44.2 / 92.0% 42.8− / 89.2% 42.0− / 87.5% 38.2− / 79.5% 36.9− / 76.8%

Washington Navel 43.2 / 90.0% 43.0 / 89.6% 41.8− / 87.1% 35.0− / 72.9% 38.2− / 79.5%

Table 9.2: Correct classification rates using different preprocessing (all wavelengths).
The +/- superindices mark the statistical superiority/inferiority of the results in the
preprocessing compared to the raw intensity values.

the NPLS-DA models including information from the best five wavelengths are
sufficient to reduce the losses in fruit warehouses due to storage of infected fruits.

The knowledge obtained in this work is a key step towards the achievement of a
potential automatic fruit sorting system using these modified cameras in which
fruits are photographed and instantly classified using the predictions from the
NPLS-DA model. This way, suspicious fruits can be expelled from the commercial
chain prior to affecting sound fruits.

9.6 Appendix. Preprocessings.

The results of the five different preprocessings (intensity, reflectance, absorbance,
absorbance + MSC, absorbance + SNV) obtained using 100 models from the 500
used in Section 4, are depicted in Table 9.2. Based on the results of a paired t-test
applied between the intensity values and the rest of preprocessings, it is sensible
to use the intensity values to fit the models. Only in the case of Salustiana, the
results of absorbance and absorbance + SNV were statistically better than the
intensity values.
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Chapter 10

PCA model building with
missing data

Part of the content of this chapter has been included in:

[4] Folch-Fortuny, A., Arteaga, F. & Ferrer, A. PCA model building with missing
data: New proposals and a comparative study. Chemometrics and Intelligent
Laboratory Systems 146, 77-88 (2015). #8 in TOP25 from July-September 2015.
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10.1 Introduction

Incomplete data sets usually arise when dealing with experimental and process
data in chemometrics and systems biology. In experimental environments, practi-
tioners usually deal with 5-20% of missing values. In complex industrial biopro-
cesses, where hundreds of variables are collected per batch, 30-60% of missing data
can appear in their historical data sets. Finally, with the paradigm of big data,
thousands of variables are collected for huge sets of individuals, having sometimes
more than 70% of missing values in their data sets.

As stated in Section 2.5.1, there are two problems associated to PCA when dealing
with missing values: model explotation (ME) and model building (MB). Many
methods have been proposed in both ME [27, 51–54] and MB [30, 53, 55–63, 65,
66] environments. The second problem is addressed in this chapter.

The problem of PCA-MB is studied in this chapter. Based on the good perfor-
mance of the regression-based methods [27, 54] in the ME context, the main goal
here is to verify if this is also true in a MB environment. In this work we propose
new methods for building PCA models with MD by adapting PCA-ME methods to
deal with the more general problem of PCA-MB, when the training set has miss-
ing values. The new adapted methods proposed here are PMP, KDR, KDR with
PCR, KDR with PLS and TSR. They are compared against established methods
(NIPALS, IA, DA and NLP) using four data sets, two simulated and two real ones,
with several percentages of missing data. Also, some equivalences are established
between the novel approaches and other methods proposed in the literature [62,
63, 65, 66].

This chapter is organized as follows. The new MD algorithms are introduced in
Section 10.2. The data sets used as case studies and the comparative study are
described in Sections 10.3-10.4. The results of the comparative study are presented
in Section 10.5. Finally, Section 10.6 presents the conclusions of the study.

10.2 Methodology

We define the missing data indicator matrix M, associated to a data matrix X
(N ×K), as the binary matrix such that mnk = 1 if xnk is missing, and mnk = 0
if xnk is known. The matrix M̄ is the complement of M, that is, m̄nk = 1−mnk.
And finally, let Z denote the resulting X matrix after filling in the unknown values
with zeroes, that is, Z = M̄ ◦ X. More details on the notation can be found in
Section 2.2.

A common procedure for building a PCA model from X is the known IA [53], that
consists of filling in the missing data with initial values (usually zeros, although
other imputations such as the mean of the known values of the corresponding col-
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Figure 10.1: IA method in PCA-MB with missing data

umn or the mean of the corresponding rows and columns are also used), yielding
a reconstructed data set from which a PCA model is fitted. By replacing the orig-
inal missing data by their predictions from this PCA model, a new reconstructed
data set is obtained, and a new PCA model is fitted. This process is iterated until
convergence of the predicted values for the missing data, as shown in Figure 10.1.

Walczak and Massart [53] introduce an adaptation of the IA for estimating the
scores of new incomplete observation from a pre-built PCA model, fixed and known
(i.e. ME). This method has the following structure: i) fill in the missing positions
of the new observation with an initial estimate; ii) predict the scores for the filled-
in observation, using the loadings matrix P from the fitted PCA model; iii) re-
estimate the missing values by employing the predicted scores and the loadings of
the known PCA model; and iv) iterate until convergence.

Consider that the new observation xT has some unmeasured variables and these
can be taken to be the first R elements of the row vector, without loss of general-
ity. Thus, the vector can be partitioned as xT = [x#T x∗T], where x#T denotes
the missing measurements and x∗T the observed variables. This induces the fol-
lowing partition in X: X = [X# X∗] where X# is the submatrix containing the
first R columns of X (corresponding to the variables that are missing in xT), and
X∗ accommodates the remaining K − R columns (corresponding to the observed
variables in xT). Note that X# and X∗ are different from Xmis and Xobs, respec-
tively (see Section 2.5). The first ones are square submatrices of X, according to a
reference row. The last ones denote all missing values and available measurements
in all rows of X, which may not correspond to a proper square submatrices.

Likewise, the loadings matrix P can be partitioned as PT = [P#T P∗T], where
P# is the submatrix made up of the first R rows of P, and matrix P∗ contains the
remaining K −R rows. These induced partitions are illustrated in Figure 10.2.
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Arteaga and Ferrer [27] show that, under general conditions, the IA adaptation
from Walczack and Massart [53] is equivalent to the projection to the model plane
(PMP) estimator, studied by Nelson et al. [52], that is, the least square estimator
based on the observed variables: τ̂ = (P∗TP∗)−1P∗Tx∗, where τ̂ is the estimated
vector of scores for observation xT. Figure 10.3 shows a flow diagram of this IA
adaptation. Note that the known part of the new individual, x∗T, is assumed to
be centred with the mean of the corresponding columns of the X matrix, X∗. Note
also that in this adaptation of the IA the PCA model does not change, and thus
loadings in matrix P are fixed. From this equivalence we can state that, in model
exploitation, the PMP estimator summarises the iterations of the IA method in
one step.

Based on these results, in this chapter we propose to adapt the IA method in
PCA-MB from Figure 10.1, by replacing the prediction of missing values from the
PCA model to that resulting when we treat each incomplete row in the data set
as a new observation with missing values, and apply the PMP method for PCA-
ME. This is illustrated in Figure 10.4. The PMP adaptation to PCA-MB uses, in
fact, the same regression coefficients for each incomplete observation as the t-EM
algorithm [66]. Note that in this case the scores and loadings matrices T and P,
respectively, change at each iteration.
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The aforementioned equivalence between PMP and t-EM and other equivalences
and similarities between other approaches and methods presented in this chapter
are made in Section 10.7.

Arteaga and Ferrer [27] also present two new regression-based methods for esti-
mating the scores of a new incomplete observation: KDR and TSR. The KDR
method in PCA-ME, when a new incomplete observation x is registered, consists
of the following steps:

1. Fit the regression model

X# = X∗B + U (10.1)

yielding:

B̂ = (X∗TX∗)−1X∗TX# (10.2)

2. Estimate the missing part x#T as :

x̂# = X#TX∗(X∗TX∗)−1x∗ = S#∗(S∗∗)−1x∗ (10.3)

where S∗∗ is the estimated covariance matrix of X∗, S∗∗ = (X∗TX∗)/N − 1,
and S#∗ is a R by K−R matrix containing the estimated covariances of the
combinations of columns of X# and columns of X∗, S#∗ = (X#TX∗)/N−1.

In the same conditions, the TSR method can be summarized as:

1. Fit the regression model:

X# = (X∗P∗)B + U (10.4)

where X∗P∗ is the trimmed scores matrix, i.e. the score matrix that corre-
sponds only to the known variables and their associated loadings (note that
T = XP = X∗P∗ + X#P#), yielding:

B̂ = (P∗TX∗TX∗P∗)−1P∗TX∗TX# (10.5)

2. Estimate the missing part x#T as :

x̂# = X#TX∗P∗(P∗TX∗TX∗P∗)−1P∗Tx∗ = S#∗P∗(P∗TS∗∗P∗)−1P∗Tx∗

(10.6)
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Figure 10.5: Regression-based framework adapted for PCA-MB with missing data.

Arteaga and Ferrer [54] show that TSR and KDR methods are particular cases
of a general framework of methods derived from the generalized regression model
X# = (X∗L)B + U, where the key matrix L takes different expressions depend-
ing on which method is applied. The key matrix for the KDR method is the
identity matrix, L = IK−R; in KDR with PCR, L = V1:ρ, where V is the eigen-
vector matrix of S∗∗ and ρ ≤ rank(S∗∗); in KDR with PLS, L = R, where
R is the normalized weights matrix that allows writing the PLS scores TPLS as
TPLS = X∗R = X∗W(PTW)−1 in the PLS model for estimating X# from X∗.
Note that the PLS normalized weights matrix, usually denoted as W with a star
superindex (see Chapter 2) is replaced here by R, to avoid misunderstandings with
the available part of the weights. Finally, for the TSR method, L = P∗.

To adapt the PCA-ME framework methods for PCA-MB we only need to substi-
tute, in the IA adaptation (Figure 10.4), the estimation of the missing part of each
incomplete observation:

y#
n,t = P#

t (P∗Tt P∗t )
−1P∗Tt y∗n (10.7)

by the expression:

y#
n,t = S#∗

t Lt(LT
t S
∗∗
t Lt)−1LT

t y
∗
n (10.8)

at step t. This is illustrated in Figure 10.5.

Assuming data follows a multivariate normal distribution, the adaptation of the
KDR method results in the known E-M algorithm [56–58]. The other adapted
framework members (i.e. KDR with PCR, KDR with PLS and TSR) are ap-
proximations to KDR method that are useful when the covariance matrix S∗∗

is ill-conditioned or singular, because the matrix L makes LTS∗∗L to have best
conditioning properties than S∗∗.
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Note that in all the cited approximations, the key matrix Lt depends on the
missing data combination. This implies that, at each iteration t, two incomplete
observations with different missing data combinations require two different Lt
matrices. In KDR and TSR methods this is not a problem because in KDR Lt is
the identity matrix, and in TSR Lt is P∗, that is, a submatrix of P. Nevertheless,
in KDR with PCR an SVD for each missing data combination at each iteration is
needed, and in KDR with PLS, a PLS regression for each missing data combination
at each iteration has to be fitted. This causes PCR and PLS adaptations to be
more computing time demanding than KDR and TSR adaptations. Nevertheless,
as commented before, KDR may not be useful in practice due to ill-conditioning
or singular problems of the covariance matrix S∗∗.

The previously studied imputation methods impute a unique number for each
missing value. These single imputation methods permit to estimate the parame-
ter’s values, but ignore the variability of the estimates, leading to underestimation
of standard errors and confidence intervals for the estimated parameters. That is,
the single value being imputed cannot reflect the sampling variability around the
actual value. Multiple imputation [50, 58] overcomes this disadvantage. Multiple
imputation, basically, creates several (M) values for each missing value represent-
ing a distribution capable of reflecting the sampling variability. Then, we have M
complete data sets that we can analyse with the standard statistical techniques to
estimate their parameters of interest. This allows calculation of variances of the
parameters by combining the variability of estimates from within each imputed
data set with the variability of the estimates across M imputed data sets. Rubin
[50] shows how to combine both sources of variability in order to obtain confidence
intervals for the estimated parameters.

Multiple imputation is based on three main assumptions: a probability model on
complete data (observed and missing values), a prior distribution reflecting the
uncertainty of the parameters for the imputation model, and that the missing
data mechanism is ignorable (i.e. MAR or MCAR).

Multiple imputation can be made in several manners, but the most popular is
the data augmentation (DA) algorithm [59]. This is an iterative process that
alternatively fills in the missing data and makes inferences about the unknown
parameters, but unlike the E-M algorithm, this is made in a stochastic or random
fashion.

DA first performs a random imputation of missing data under assumed values
of the parameters, and then draws new parameters from a Bayesian posterior
distribution based on the observed and imputed data. DA starts with some value
of the set of parameters Θ, usually these initial estimates are obtained with the
E-M algorithm, and in iteration t alternates between two steps:
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• I step (Imputation), draws X#
t from their conditional distribution given X∗

and Θt−1.

• P step (Posterior), draws Θt from their posterior distribution given X∗ and
X#
t .

The procedure of alternatively simulating missing data and parameters creates
a Markov chain that eventually stabilizes or converges in distribution [57]. In
practice, the length of the Markov chain should be long enough to assure stability
(convergence) and thus no dependency on initial values. The E-M algorithm is
recommended in practice to provide initial estimates of model parameters Θ and
number of iterations that DA algorithm needs to converge.

The convergence in the E-M algorithm to a single set of values can be easily
assessed by checking the change in the parameter estimations from one iteration
to the next. For DA, the algorithm converges to a probability distribution, not a
single set of values. This makes it rather difficult to determine whether convergence
has, in fact, been achieved [58]. The rate of convergence of the E-M algorithm is
a useful indication of the rate of convergence for DA. A good rule of thumb is
that the number of iterations for DA should be at least as large as the number of
iterations required for E-M and then it is useful to run the E-M algorithm before
DA.

Finally, López-Negrete de la Fuente et al. [60] present a new approach for PCA-
MB with incomplete data sets. This methodology solves a nonlinear programming
problem (NLP) (see Equation 10.9) using the IPOPT solver [300].

Min‖M̄ ◦ (X−TPT)‖2F s.t.


pT
apb = δa,b a, b = 1, . . . , A

tTa tb = 0 a 6= b a, b = 1, . . . , A
1Tta = 0 a = 1, . . . , A

(10.9)

where δa,b is the Kronecker delta and A is the number of PCs extracted by the
PCA model. The objective function minimises the squared error between the
known values and their estimations from the PCA model, subject to the constraints
defined by the PCA assumptions: the loadings have to be orthonormal, and the
scores have to be orthogonal with zero mean.
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10.3 Data sets

The first data set analysed here consists of the percentage composition of eight
fatty acids: palmitic, palmitoleic, stearic, oleic, linoleic, linolenic, arachidic and
eicosenoic, found in the lipid fraction of 572 Italian olive oils. In the original
data set [301] there are nine collection areas from three different regions of Italy.
In order to reduce the computation time, 75 randomly chosen wines from South
Apulia are included in the dataset analysed here. One PC is extracted from these
data, explaining 59% of variance.

The second data set is obtained from the Eigenvector Research Inc. data library
(http://www.eigenvector.com/data/index.html). The data set contains the
NIR spectra of several diesel fuels (N = 40) obtained at the Southwest Research
Institute (SWRI) on a project sponsored by the U.S. Army [302]. The fuels were
originally scanned from the wavelength 750 nm to 1550 nm in 2 nm increments
(K = 401 variables). Two PCs are extracted explaining 60% and 25% of variance
in data, respectively.

The third case study is a three-component multivariate data set is generated [303,
304] to compare the performance of the different methods. This data set has ten
variables (K = 10) and a hundred samples (N = 100), and follows a multivariate
normal distribution with zero means and unit variances. The highest eigenvalue
of the correlation matrix is 4.0, the second one 3.0 and the last one 2.0, explaining
40%, 30% and 20% of the variance from the ten variables, respectively.

Finally, an additional data set, from the big data perspective [305], is analysed
in this chapter. Using again [303, 304] a simulated data set is generated with
10 million data entries (100000 observations × 100 variables). 4 PCs are used to
generate the data, explaining 35%, 25%, 15% and 15% of the variance, respectively.
In this dataset, the methods are forced to deal with even more missing values than
in the previous datasets. Here, 80% and 90% of missing values are also simulated.

10.4 Comparative study

In this section, the performance of different methods for PCA-MB with MD are
compared. The methods under study are the standard methods for PCA-MB:
NIPALS and IA, and the proposed PCA-ME adapted methods: PMP and the
regression-based framework adapted methods (KDR, PCR, PLS and TSR). KDR
with PCR and KDR with PLS are referred in this section simply as PCR and PLS,
to ease the reading.

In order to improve the convergence properties, in the implementation of the
above methods, the pseudoinverse is used to calculate (P∗Tt P∗t )−1 in PMP, and
(LT

t S
∗∗
t Lt)−1 in the framework methods.
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The MATLAB implementations for PMP, KDR, PCR, PLS and TSR have been
developed for this thesis. The codes for IA and DA have been reproduced from
the original papers (see [53] for IA and [57, 59] for DA). For the NLP method, the
implementation in the Phi toolbox (version 1.7) [60] is used.

On the following subsections four data sets with missing values are analysed. Two
of them are simulated and the other two are taken from the literature. The strategy
to generate the MD is the same in all of them. Nine incremental levels of MD are
considered in each data matrix (5%, 10%, 15%, 20%, 30%, 40%, 50%, 60% and
70%). 80% and 90% of missing values are also included in the last example. And
for each data set and percentage, 50 possible data sets are simulated, following
missing completely at random (MCAR) mechanism [47].

The principal performance criterion for each method is the mean squared predic-
tion error MSPE (Equation 10.10).

MSPE(Method) =

N∑
n=1

K∑
k=1

(x̂nk − x̂Method
nk )2

NK
(10.10)

where x̂nk is the predicted value for the kth variable of the nth observation in the
prediction matrix X̂ = TPT obtained from the complete data set; and x̂Method

nk

the analogous prediction obtained after applying the corresponding method on the
incomplete data set.

In order to assess whether the differences among methods, in terms of MSPE, are
statistically significant, a mixed-effect ANOVA model is fitted per each case study.
The factors considered are method, percentage of missing values, and simulated
data set, being the latter nested to the percentage factor. Method and percentage
are fixed-effect factors; the data set is a random-effect factor. Given the positive
skewness of MSPE, a logarithmic transformation is used. This transformation also
expands the differences for low percentages of MD, easing the visualization of the
plots. In case any effect or interaction is statistically significant, the 95% LSD
(least significance difference) intervals are calculated to assess which groups are
different from others.

In order to understand the degradation in the PCA model due to missing values
the cosine between each loading vector obtained using the full data matrix and its
corresponding from the incomplete data set is calculated. The closer to one it is,
the more similar are both loadings for a particular component. However, if more
than one PC is extracted from data, the cosines of further PCs are being strongly
influenced by the previous ones, since they have to be orthogonal to the estimated
first PC.
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Figure 10.6: Olive Oil data set. log(MSPE) (left) and cosines associated to the
first PC (right) for the reconstructed data from a PCA model with different methods:
NIPALS, IA, PMP, TSR, KDR, PCR, PLS, DA and NLP. The missing values in the
figure correspond to NaNs (which implies convergence problems for the method). Some
other higher values are not shown (especially for the highest %) in order to appreciate
the differences among the most accurate methods. Dashed ellipses mark the statistically
significant differences between groups of methods, i.e. the differences exist between-
groups, not within-groups.

10.5 Results

10.5.1 Olive Oil data set

As shown in Figure 10.6, DA and KDR are statistically superior to all other
methods from 5-20% of missing data. There exist no significant differences between
DA, KDR, PCR, PLS and TSR for further percentages. From 30% of MD onwards,
NLP, PMP, IA and NIPALS perform statistically worse than the other methods.
From 40% upwards, NLP is unstable for some combinations of missing values, i.e.
some missing values are poorly imputed, and therefore the MSPE value and the
cosine are strongly affected by them. NIPALS and PMP are unable to converge
for high percentages of missing values (60-70%). Some MSPEs are not shown
on Figure 10.6 up to some percentage, e.g. NLP’s, in order to appreciate the
differences among the most accurate methods. Figure 10.6 also shows that the
degradation in cosine associated to the first PC matches the increment in MSPE.
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Figure 10.7: Diesel data set. log(MSPE) (left) and cosines associated to the first PC
(right) for each method. DA is not applicable in this data set. See Figure 10.6 caption
for more details.

10.5.2 Diesel data set

DA is the only method that is unable to analyse the present data set, regardless
the percentage of missing values. The main reason is the singularity of the S∗∗

matrix for the different combinations of missing values. This also affects the KDR
method, which is statistically the worst in terms of MSPE (see Figure 10.7).

NLP and NIPALS offer better results than KDR, but they are statistically worse
than the other methods for all percentages of missing values. NIPALS does not
converge with 70% of MD, and neither does NLP. TSR, PCR, PLS, PMP and IA
show the best performances for 10-60% of missing data. For 70% of MD, IA and
PMP are statistically worse than the previous regression-based methods. These
results are coherent with the degradation of the cosine of the first and second
loadings (see Figure 10.7).

10.5.3 Simulated data set

In the simulated data set, PMP, NLP and NIPALS have again problems with the
convergence (see Figure 10.8), the first one does not converge with 40% of MD,
the second one with 50%, and the last one with 60%. Now, at early stages, there
exist statistically significant differences between methods. KDR, jointly with DA,
is statistically superior to all other methods with 5%-15% of missing values, being
NIPALS the worst method. For medium and high percentages of MD, DA and
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Figure 10.8: Simulated data set. log(MSPE) (left) and cosines associated to the
first PC (right) for each method. See Figure 10.6 caption for more details.

KDR are not significantly superior to PCR, PLS and TSR. The performance of IA
in this data set is coherent with the previous data sets, i.e. with low percentages
of missing data its performance is similar to the regression-based methods, for
higher percentages IA performs significantly worse. Again, the cosine degradations
(Figure 10.8) agree with the results observed in MSPE.

A comment regarding the cosine values is here in due. A value of 0.9 implies a
deviation of 25 degrees between the imputed and the actual PC, which is, in fact,
a huge rotation of the basis of the PCs. However, even when the cosines are below
0.9, the imputations of the best methods are still useful, based on their MSPE
values.

10.5.4 Big data set

Based on the results of the previous subsections, methods having problems with
convergence and/or instability, such as NIPALS, PMP and NLP, are not used for
the big data set. IA is applied here, since it is a fast imputation method and
showed no problems with convergence in the previous data sets. DA was initially
applied but since this method, jointly with KDR, PCR and PLS, are more time
consuming than the rest of methods the imputation is not obtained in a reasonable
time period. Therefore, only IA and TSR are applied to this data set.

The MSPE results and the 1st PC cosines are depicted in Figure 10.9. TSR offers
a statistically significant lower MSPE than IA for all simulations; however, this
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Figure 10.9: Big simulated data set. log(MSPE) (left) and cosines associated to
the first PC (right) for each method. See Figure 10.6 caption for more details.

cannot be appreciated in Figure 10.9. It is interesting that the results with this
huge data set are better than in the previous simulated one. This is due to the
more individuals has the dataset, the more accurate are the estimations of the
covariance matrices that TSR and IA perform internally, which implies that the
estimation is more coherent that with less observations. It is worth noting that
the imputation in the most extreme case, 90% of missing data, is indeed difficult,
taking around an hour.

10.6 Discussion and conclusions

TSR method performed extraordinarily well in all the data structures and missing
data percentages analysed throughout this chapter. This MD imputation method,
adapted here from the PCA-ME context to MB, represents the best compromise
solution among prediction quality, robustness against data structure and compu-
tation time. From the other regression-based methods adapted here, the KDR
methods with PCR and PLS offer also good solutions, however, they are more
time-consuming, since they fit additional PCR and PLS models.

From the rest of the methods analysed here, DA and KDR have excellent perfor-
mances with thin data sets (i.e. more observations than variables). Nevertheless,
they have two important drawbacks. The first one is that both methods, especially
DA, since it is a multiple imputation method, are strongly more time consuming
than, e.g. TSR. The second drawback is that with fat data sets (i.e. more vari-
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ables than observations, typical in batch processes or with spectral data) DA is
unfeasible, and KDR has the worst performance among the rest of the methods.

The NIPALS method for MD imputation, a procedure implemented in many com-
mercial statistical packages such as ProMV, SIMCA-P [306] and PLS Toolbox,
is unable to deal with most of the missing data scenarios analysed in this study.
Regarding the rest of the methods, PMP and NLP have also convergence problems
when high percentages of missing data are generated in all datasets. IA is the only
method, jointly with TSR, applied to the big data set, due to its fast performance
in the previous data sets and its robustness against high percentages of missing
data. However, its performance level in all four data sets is statistically worse than
TSR’s.

10.7 Appendix. Methods equivalences.

In this section, the equivalence between some methods described in [61] and the
ones presented here are proven. The GIP method [61, 63] is equivalent to IA [53]
extracting one principal component. The GIP steps are the following:

1. An initial guess for the missing data is imputed.

2. The correlation matrix R is obtained using the available data, and then the
largest eigenvalue λ, and its associated eigenvector v, is obtained. In this
way, the first principal component score for sample n is τn =

∑K
k=1 vkxnk.

3. The missing elements are replaced by their projection using the score, i.e. if
m̄nk = 0, then xnk = τnvk.

4. Steps 3-4 are repeated until the consecutive imputed values are within the
specified tolerance.

The PC scores are calculated in the same way as the estimation of the PCA
model in IA (box 4 in Figure 10.1). And the projection for the missing values is
basically the PCA approximation to Xt matrix (box 5 in Figure 10.1). Finally,
the process is iterated using the same condition as in IA. Therefore, GIP method
is mathematically equivalent to IA when one principal component is extracted.

The main difference between the so-called MICE method defined in [61, 64] and
KDR is that the former works variable-wise and the latter observation-wise. The
steps of MICE algorithm are detailed here:

1. Initial guesses for all missing elements are provided.

2. For each variable with missing elements, xk, the data are split into two sub-
vectors: x∗k a sub-vector that contains all available data, and x#

k a sub-vector
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that contains all missing data. The available sub-vector x∗k is regressed
on all other variables, which are restricted to the samples in x∗k; that is
x∗k = f(x1, . . . ,xk−1,xk+1, . . . ,xK).

3. The missing sub-vector x#
k is then predicted from the regression and its

missing entries are replaced with the predictions from the regression. The
regression procedure is repeated for all variables with missing elements.

4. After all missing elements are imputed, the regressions and predictions are
repeated until consecutive iterates are within the specified tolerance for each
of the imputed values.

In MICE the regression model is performed within each column, predicting the
observations with the missing values from the observations with available data.
KDR follows the same algorithm as MICE, but the data is split based on the
missing and available values of an observation (see Figure 10.5, taking L as the
identity matrix). Then, the calibration is performed between the submatrix of
X corresponding to the missing elements in row n, X#, and the submatrix of
available measurements, X∗, following the expression X# = X∗B + U, where B
is the regression coefficients matrix and U is the residual matrix. The prediction
step is also performed observation-wise: using the model between the missing and
the available submatrices, the missing elements in row n are predicted based on
its available measurements (see Figure 10.5). The same notation, including X∗

and X# partitions could be used in the case of MICE, bearing in mind that this
partition is performed taking a variable as reference.

Finally, the equivalence between the regularised t-EM method [61, 66] and PMP
[52] is drawn. t-EM algorithm is defined as follows:

1. Estimate the covariance matrix, Ŝ.

2. Calculate the singular value decomposition of the covariance matrix Ŝ =
VDVT.

3. Build the regression model:

x̂#T = m̂#T + (x̂∗T − m̂∗T)B (10.11)

being B = V∗q(V
∗T
q V∗q)−1V

#T
q , where the row vectors x̂#T, m̂#T, x̂∗T and

m̂∗T are the estimated missing part of row xT, the estimated mean of the
missing part, the available measurements of xT and its estimated mean vec-
tor, respectively.

4. Iterate the process until convergence.
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Since in Figure 10.4, the rows of matrix X are represented by columns, the row-
wise representation of the box 6 is y#T

n = y∗Tn P∗(P∗TP∗)−1P#T. This equation,
bearing in mind that the data in Figure 10.4 is previously mean-centred, is exactly
the same as Step 3 in t-EM, being P∗ the first q loadings (significant ones) of the
available values of the covariance matrix (which are the same as in X matrix) and
P# the first q loadings corresponding to the variables of the missing part.
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Chapter 11

Network inference with
missing data and outliers

Part of the content of this chapter has been included in:

[5] Folch-Fortuny, A., Villaverde, A.F., Banga, J.R. & Ferrer, A. Enabling net-
work inference methods to handle missing data and outliers. BMC Bioinformatics
16:283 (2015).
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Figure 11.1: Missing data and outlier detection and correction modules.

11.1 Introduction

Network inference methods rely on estimating quantities such as correlation or mu-
tual information, whose calculation requires simultaneous measurements of several
variables. When the data collection in a time point fails for a particular variable,
resulting in an unmeasured value, the scientist has to decide whether to discard
the information regarding the entire experiment at this time point or to impute
an appropriate value. Sometimes the data is not missing but is faulty. This case
is possibly more dangerous, since the data point is taken as a true measurement
and it can i) distort the relationships among entities, ii) generate false links in the
network, and iii) hide true connections.

To avoid this problems, in this chapter, two new functional modules for curating
the data are provided, which will be used as input to network inference procedures.
The first module is devoted to handle MD using TSR in its PCA-MB version
(proposed in Chapter 10). The second module detects extreme outliers in the
raw dataset, and if there exist, they are first replaced by missing values and then
recalculated using TSR.

The way both preprocessing modules act can be visualized in Figure 11.1. To
evaluate the performance of TSR a comparison with other missing data meth-
ods commonly used by practitioners is carried out using several network inference
benchmark problems. Likewise, several univariate and multivariate outliers are in-
cluded in the datasets in order to check the ability of the outlier detection module.

Additionally, to illustrate how a network inference method can be augmented with
these functionalities, they are used in combination with a state of the art technique
called MIDER. MIDER is used here for demonstration purposes, but any other
network inference method - such as those mentioned in Section 3.5.1 - could be
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used as well. The data curation modules presented here are of general purpose,
and work on the data independently of the reverse engineering procedure.

To facilitate the joint use of MIDER and the new functional modules, a MAT-
LAB/Octave implementation of the two data curation modules is included in
a new version of the MIDER toolbox, MIDERv2 (http://www.iim.csic.es/
~gingproc/mider.html)

Network inference studies that take into account the missing data imputation prob-
lem have been more common in the social sciences than in the biological sciences;
however, some examples of the latter type can also be found. Thus, the works
[307–311] report network inference results obtained with datasets with missing
values. Wu et al. [307] presented a network inference method with an interpo-
lation controller, providing three selections of data interpolation approaches. In
[308, 309] MD is handled with a weighted k-nearest neighbor method. Hurley et
al [311] illustrated the use of a suite of gene GRN analysis tools imputing MD
using the LSImpute missing value estimation method. It should be noted that
the aforementioned methods [307–309, 311] are specific for GRN inference with
gene expression data, and the approaches chosen to handle MD are not justified
nor compared to other alternatives. In [310] a network inference tool designed for
GRNs, NetGenerator, is extended in several ways in order to predict pathogen-host
interactions. Remarkably, NetGenerator is applicable to datasets with missing val-
ues, although it requires complete data for the last time point, which means that
MD imputation procedures may still be needed in some cases. There are also
studies that have addressed the issue of missing data in biological applications,
but outside the context of network inference, e.g. [312].

The present contribution differs from the aforementioned works in that it i) presents
a general method for handling MD and outliers, ii) compares its performance with
that of other common approaches, iii) provides an implementation of the method-
ology, and iv) combines it with a freely available general-purpose network inference
method. In this respect, there may be more resemblances with a recently pub-
lished paper [313], which presents a framework for network inference in Cytoscape
and includes the possibility of using three built-in MD “apps”: row average, zero
imputation, and Bayesian principal component analysis. The contribution of this
Chapter is complementary to [313] since i) the missing data imputation meth-
ods are different, and ii) here, outlier detection and correction is also taken into
account.

The chapter is structured as follows. Section 11.2 describes how the functional
modules work. Section 11.3 shows the results of the MD methods comparative
study and the outliers study. Finally, some conclusions are drawn in Section 11.4.
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11.2 Methods

11.2.1 Missing data methods

Two projection to latent structure methods are used in this chapter for imput-
ing missing data: IA and TSR, both described in Chapter 10. There are other
approaches to impute missing data that are commonly used by practitioners, com-
mented in Section 2.5, such as CC and MI. Despite these methods are discouraged
[47], since these methods are commonly used as a first (and fast) attempt to “solve”
the problem of MD, their results are included in the comparative study. Addition-
ally, two other methods are tested. The first one consists of imputing the average
value of a linear interpolation (LI) between the previous and the posterior values
of the missing datum. The second fills the missing values of an observation with
the ones of its nearest neighbor (NN) using the k-nearest neighbors algorithm.

11.2.2 Outlier detection and correction

Projection to latent structure methods are commonly used within (bio)industries
to monitor huge amounts of variables during (bio)processes. The concept of abnor-
mal situation (or fault) in this context can be extrapolated here to errors during
the data acquisition or mistakes during the data compilation. With this objec-
tive, PCA can be applied to find the latent structure of the original data, before
reconstructing the network, and then identify these uncommon measurements.

When a PCA model is fitted, two different types of outliers can appear [20]:
Hotelling-T 2 and SPE (more details in Section 2.3.1). While the first type of out-
lier usually represents a change in the process, but still coherent with the actual
correlation structure of the data, the second one breaks the correlation structure,
which is usually associated to failures in the process. The latter type of outliers
should be removed in order to better understand the true structure of data. This
idea can be extrapolated to network inference, being the SPE outliers the possi-
ble failures when the dataset is built. According to the previous rationale, these
outliers have to be removed in order to study the relationships between species;
otherwise these anomalous values could mask the true structure of data. Once an
observation is classified as an outlier, contribution plots can be used to isolate the
original variable responsible of this abnormal behavior [314]. Outliers in the T 2

statistic are not evaluated in the present approach, since they are not as harmful
as SPE’s for inferring links between species in a network.

The present chapter proposes a methodology for automatically detecting and cor-
recting outliers. Some related approaches have been published in the past focusing
on fitting PCA models with missing data and/or outliers [315]. Here, since the
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goal is to cure the dataset, we use TSR to correct for the outliers, thus allowing
the exploitation of all the data available for the network inference task.

The outlier detection and correction procedure works as follows. The first step
consists of calculating the PCA model of data. As in TSR, the number of PCs is
here determined automatically, extracting all the PCs whose associated eigenvalue,
in the SVD, is higher than one [316]. It is worth noting that the number of PCs
determined here may be different than the number of PCs extracted by TSR,
since in the outlier scheme we want to detect deviations from the main directions
of variability, i.e. deviations from the PCs with the highest eigenvalues.

Once the PCA model is fitted, the next step consists of calculating 95% upper
control limit of SPE in order to detect possible faults. Different ways of computing
control limits have been proposed in the literature [314]. However, when dealing
with real data, which do not fulfill the theoretical constraints, the outliers may
not be correctly detected in this way. Hence, in this study, the control limits are
computed using a CV scheme [317] as follows: a thousand data subsets, using 95%
of the observations, are randomly selected to compute “real” 95% control limits,
i.e. leaving 5% of the observations above the limit. Then, the median of all the
limits is computed to take it as the reference limit. Values above this limit are
considered outliers.

From the set of outliers, another classification has to be done. Any control limit
based on a confidence interval has intrinsically a false alarm rate, corresponding
to the confidence level. In the present case, 5% of the observations are likely to
fall above the control limit without necessarily being outliers. If more observations
appear, they can be considered as faults. To distinguish between both types of
“outliers”, an outlier classification recently proposed in [318] is followed. Firstly,
the outliers are ordered in decreasing order. Secondly, the admissible false alarm
rate, corresponding to 5% of the observations, are no longer considered as outliers.
Finally, each value above two times the control limit is considered an outlier.
Additionally, a data point is considered an outlier if its distance to the control
limit exceeds 10 times the distance between the lowest false alarm and the control
limit.

Once the extreme outliers have been identified it is needed to determine the vari-
able responsible for the fault. For this purpose, contribution plots can be used to
determine which variable k of the nth observation has the highest SPE [21]:

Cont(SPE, xnk) = e2nk (11.1)

Once the responsible variable is identified, a missing value is generated for that
value. And finally, TSR is again used to reconstruct the faulty observation follow-
ing the latent structure of data.
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Figure 11.2: Case studies. MIDER reconstructed networks with the original data for
benchmark problems BM1 (small chain of 4 reactions), BM2 (In vivo Reverse-engineering
and Modeling Assessment), BM3 (first steps of a glycolytic pathway) and BM4 (DREAM4
in silico network challenge)

11.2.3 Case studies

In order to validate the usefulness of the proposed methodology five well-known
benchmark problems are selected, four from [98] and one new test case from the
DREAM5 Network Inference challenge1. Additionally, to test the performance
of the TSR method against the other approaches, a comparative study is also
performed. The first benchmark problem (BM1) is a small chain of three reactions
between four species (W , Y , X and Z) proposed in [319, 320] (see BM1 in Figure
11.2). In this network the reaction between W and Y is much weaker than the
other reactions Y −X and X − Z.

The second benchmark problem (BM2) is the so-called IRMA (In vivo Reverse-
engineering and Modeling Assessment) [321]. It corresponds to a yeast synthetic
network for benchmarking reverse-engineering approaches. IRMA consists of five
genes that regulate each other through several interactions. It is particularly

1http://wiki.c2b2.columbia.edu/dream/index.php/D5c4
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interesting as a benchmark because it is an engineered system, which means that
the true network is known, and at the same time the system outputs can be
measured in vivo, instead of just simulated in silico. A dataset consisting of time
series and steady-state expression data after multiple perturbations is available;
for network inference purposes the time-series data was used. Figure 11.2 shows
the reconstruction of the network by MIDER.

BM3 models the first steps of a glycolytic pathway. The reconstruction of this net-
work is shown in Figure 11.2. The problem of reverse-engineering this system was
chosen in [322] as a way of demonstrating the feasibility of the Correlation Metric
Method (CMC) . With that aim, an experiment was carried out in a continuous-
flow, stirred-tank reactor. Experimental time-series data were obtained for the
concentrations of ten chemical species: Pi, G6P, F6P, F16BP, F26BP, and DHAP,
as well as the input and reactor concentrations of citrate and AMP. The sampling
period was 13 minutes, and the overall number of sampling instants was 57. The
data is publicly available online2 as part of the Deduce software package.

The fourth benchmark problem (BM4) was generated for the DREAM4 in silico
network challenge3. This challenge aimed at reverse engineering genetic networks.
The artificial network presented here was generated as reported in [323, 324]. It
consists of a 10 nodes and 13 links. The MIDER reconstruction of this network is
shown in Figure 11.2.

Finally, the last benchmark problem (BM5) is an in-silico network produced for the
DREAM5 network inference challenge. Specifically, we used the problem referred
to as Network 1, which is an in silico network with 1643 nodes (genes), of which
195 are transcription factors. The challenge consisted in reporting an ordered list
of 100000 predicted interactions. The reconstruction of the network is not shown
here.

11.3 Results

11.3.1 Missing data: comparative study

In this section, the results of the tests of the missing data module are shown. The
performance of the TSR method for the imputation of MD is compared against
another multivariate projection method, IA, and other fast approaches used by
practitioners, like the CC, MI, LI and NN. The study is performed as follows.
The five benchmark problems (BM1–BM5) described in the previous section are
chosen as case studies. In BM1–BM4, 7 different percentages of missing data are
generated, from 5% to 35%, and for each percentage, 100 datasets are simulated.

2http://genomics.lbl.gov/?page id=44
3http:// wiki.c2b2.columbia.edu/dream/index.php/D4c2
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For BM5 the same percentages of MD are generated; however, only one dataset
was simulated for each of them, due to the much higher computational cost of
reverse engineering such a large-scale network compared to BM1–BM4.

In Chapter 10, the MSPE was used to assess the performance of each imputation
method. However, in the present study the application is different: the aim is to
use the imputed data for network inference. Hence, since different imputations
may lead to the same inferred network, we use here instead the precision (P )
and recall (R) of each method as the performance criteria to evaluate the results.
These statistics have been introduced in Chapter 6, 7 and 9. Here, TP are the true
predicted links with respect to the reconstruction of the network without missing
values, FP the false positives, and FN the false negatives.

The mean results of P and R, for each BM problem, are shown in color scale
maps in Figure 11.3. An absolute zero value, on either P or R, in Figure 11.3
implies that the method is unable to impute the missing values for that particular
percentage. To determine whether the differences in P and R obtained among TSR
and the other methods, for each percentage, are significant or not, a mixed-effects
three-way ANOVA, using LSD intervals for the statistically significant differences,
is applied on the results, in the same way as presented in Chapter 10.

Figure 11.3 shows that CC, LI and NN are not able to impute the missing data for
medium-high percentages. CC is the worst method: for small networks (BM1 and
BM2) CC can deal with up to 10%-15% of missing data, but for more complex
networks (BM3 and BM4) it can only perform an imputation with 5% of missing
values. LI and NN are slightly better, but they fail to reach 30% of missing data
for all BMs. The TSR performance in all BMs is statistically better than CC,
LI and NN. TSR results are superior to MI in most of the percentages of all
BMs. Regarding IA, TSR attains statistically better results for most percentages
in BMs 2-4. In the large network (BM5) no statistical differences can be computed,
however, none of the aforementioned methods seems to outperform TSR in this
case study. CC and NN are not applicable in BM5 since, even considering only
5% of missing values, all rows in the data set have missing data. Furthermore,
the results in this DREAM5 network are similar to the mean values obtained in
DREAM4 network (BM4). Since no single method is statistically better than TSR
for any percentage of any dataset, it is sensible to choose this method to implement
the missing data module of network inference procedures.

The MD imputation is achieved in around 1-2 seconds in BM1-BM4, for all meth-
ods; however, most of them are unable to impute with medium-high percentages
of missing data. In BM5, LI maintains the computation time of BM1-BM4, the
mean imputation (MI) is achieved in 48 seconds, and the most accurate methods
in terms of P and R (IA and TSR) perform the imputation in 1 hour by truncating
the number of PCs to 50 (to accelerate convergence).
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Figure 11.3: Results of the MD comparative study. The first (second) column shows
P (R). Rows correspond to BM1 (a-b), BM2 (c-d), BM3 (e-f), BM4 (g-h) and BM5
(i-j). The asterisks on the color maps in Figure 11.3 mark the statistically significant
differences (p-values < 0.05) with respect to TSR.
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Chapter 11. Network inference with missing data and outliers

Regarding the reconstruction of the network, TSR, when used in combination
with MIDER, is able to recover more than 90% of the links inferred with the
complete dataset in small networks with low percentages of missing data. For
higher percentages, 30-35% of MD, it can infer 80% of the links. Furthermore,
for more complex networks with low percentages of MD, it is able to reconstruct
nearly 70% of the links inferred with complete data. When the % of MD increases
in these networks, it can recover 40-50% of the links.

11.3.2 Outlier detection and correction: a simulated study

A simulated study is described here to assess the performance of the outlier detec-
tion and correction scheme. Two types of outliers are simulated on the benchmark
problems: univariate and multivariate outliers. The first group involves outliers in
the usual sense, i.e. values 3 times the interquartile range above (below) the 3rd
(1st) quartile. The second group involves outliers that do not satisfy the aforemen-
tioned condition, i.e. they are not outliers in a univariate sense, but nonetheless
alter the data correlation structure. This means that values above (below) the
mean plus (minus) 1.5 times the standard deviation are moved to the other side
of the mean value, e.g. if a variable has mean 0 and standard deviation 1, a value
of 2 is moved to -2. This latter group of outliers requires a multivariate approach
to be detected since they are not univariate outliers, i.e. they can not usually be
detected using, for example, a box-whiskers plot.

Three percentages of outliers are simulated in each dataset: 1% (with a minimum
of 2 outliers), 5% and 10%. 100 rounds of univariate and multivariate outliers are
simulated for each benchmark problem. A paired t-test with α Type-I risk = 0.05
is used to determine if the solution provided by MIDER is significantly improved
by the inclusion of the detection and correction module.

Table 11.1 shows the results of the simulated study using univariate outliers. P
and R results of the network reconstruction of MIDER and MIDER + outlier
scheme are shown by rows. It is worth noting that the MIDER reconstruction
of BM1 with univariate outliers has exactly the same links as MIDER with the
original data set. However, the inclusion of the outlier detection and correction
scheme presents no significant differences among the results. In BM2-BM3, the
performance of MIDER + the outlier scheme is statistically superior to the results
of MIDER on the faulty data. In this way, the network reconstructed correcting
the detected outliers is more similar to the one inferred by MIDER using the
original data. The results for BM4 are not statistically significant. Regarding
BM5, no statistical differences can be computed among methods, since only one
simulation per case is performed. However, the P and R results are coherent with
the mean values obtained for BM4. The outlier detection and posterior imputation
in BM1-BM4 is performed in 2-3 seconds. This procedure takes 2 minutes in the
large network (BM5).
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Table 11.2 shows the results of the simulated study using multivariate outliers.
In this case, MIDER + the outlier scheme performed statistically better than
MIDER in BM1-BM4 for all percentages of outliers. The differences are bigger
when the network is simpler, e.g. BM1-BM2, however there is also a significant
improvement in the quality of the solution in BM3-BM4 when MIDER is used with
this module. Finally, as in the univariate outliers study, no statistical differences
can be computed in BM5.

11.3.3 Remark on computation times

The computational cost associated to these procedures is relatively modest, com-
pared to that of performing network inference. For the benchmark problems used
in this work, the cost of the TSR-based approach is of only a few seconds for net-
works of moderate size (BM1-BM4), while for the very large one (BM5, including
thousands of genes) it is of two minutes for outlier detection and correction and
one hour for missing data imputation. These values do not represent a signifi-
cant increase in the computation times of the network inference procedure, which
means that the proposed methodology is appropriate for problems of realistic size.

11.4 Discussion

This chapter presents an enhancement of network inference methods consisting
of two preprocessing modules for handling incomplete and faulty datasets. The
first one is capable of imputing values for lost measurements coherently with the
latent structure of data. The second module detects univariate and multivariate
outliers and replaces the faulty measurements with new values coherently with the
available data.

A comparison of different methodologies for handling MD has led to two main
conclusions. First, traditional approaches used by practitioners, like CC, LI and
NN, have problems when the datasets have high percentages of missing values
and when the complexity of the network increases. Second, since TSR performs
significantly better than the previous methods in BM1-BM4, including the MI
and IA, it represents the best approach to deal with missing values in network
inference.

Likewise, the module for detecting and correcting outliers proposed here also ap-
plies TSR for replacing faulty observations. The good performance of this approach
has been shown by means of simulations with five benchmark problems. The re-
sults of the network inference in four benchmarks with simulated multivariate
outliers are statistically better when the new module is used as a preprocessing
step; results obtained with univariate outliers in the fourth benchmark are not
statistically significant.
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Chapter 11. Network inference with missing data and outliers

Due to the long computation time required to analyse the fifth benchmark, a
single simulation is performed in this large-scale network. Therefore, no statistical
differences are computed in this case study. However, the results of TSR in the
comparative study and the outlier detection and correction are coherent with the
results of BM4.

By extending MIDER with these new functionalities, two different approaches for
data analysis: information-theoretic and variance-based, are combined. The joint
use of both methodologies increases significantly the number of datasets that can
be used for network inference.

Crucially, both MIDER and the new preprocessing modules are general-purpose
methods, which may be applied to networks of any kind – not only biological, but
also from other areas of science – without requiring prior knowledge from the user.
Furthermore, the missing data and outlier detection and correction modules can
be used as a preprocessing step for other network inference methods.
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Chapter 12

Missing data imputation
toolbox

Part of the content of this chapter has been included in:

[8] Folch-Fortuny, A., Arteaga, F. & Ferrer, A. Missing Data Imputation Tool-
box for MATLAB, Chemometrics and Intelligent Laboratory Systems 154, 93-100
(2016).
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Chapter 12. Missing data imputation toolbox

12.1 Introduction

The problem of missing data arises in several research areas, such as chemometrics
(see Chapter 10), genomics [325], network inference (see Chapter 11), meteorology
[326], engineering [327], informatics [328], and chemical [47], biochemical [318] and
pharmaceutical [329] industries. To help scientists across these research areas, we
present here a GUI in MATLAB, called MDI Toolbox, devoted to fulfil incom-
plete data sets following MCAR. The MDI toolbox is freely available for academic
purposes at http://mseg.webs.upv.es, under a GNU license.

The missing values are imputed applying PCA-MB methods with missing data.
The different methods implemented in MDI Toolbox are: TSR, KDR, KDR with
PCR, KDR with PLS, PMP, IA, NIPALS and DA. The main outputs of MDI
Toolbox are the PCA model of the incomplete data set, the estimated covariance
matrix and the original missing data set with the imputed missing values.

This chapter is organised as follows. Some comments on the software requirements
for the toolbox are made in Section 12.2. The data sets included as examples in
the toolbox are presented in Section 12.3. An example of analysis using MDI
Toolbox is proposed in Section 12.4, explaining in detail the steps via the GUI to
obtain the missing data imputation. Finally, some concluding remarks are made
on Section 12.5.

12.2 Software specifications and requirements

MDI Toolbox has been built in MATLAB R2013a, and it has been tested in many
different previous and posterior MATLAB versions (2010-2015). The toolbox con-
sists of a set of .m files, with the source code of the menus and the imputation
methods; a set of .fig files, with the GUI; and a .mat file (MDI_Examples.mat)
with few examples to run the toolbox. The toolbox is launched introducing MDIgui
in the MATLAB command window. Afterwards, the main function calls other aux-
iliary routines (SelectData, SelectExample, DataOverview, NumberComponents
and ShowResults) until performing the imputation. The output of the toolbox is
a data structure, whose fields are described in Table 12.1.

The methods implemented in the MDI Toolbox are described in detail in Chapter
10.
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12.3 Data sets

Field Type Content
Dataset string Name of the data set
X_MD array Data set with missing values
Percentage_MD double Percentage of missing values
X_imputed array Data set with the imputed values
PCs integer Number of principal components selected
Mean arary Estimation of the mean vector
Covariances array Estimated covariance matrix
Iterations integer Iterations required (not available when DA is applied)
Tolerance integer Threshold for convergence (not available when DA is applied)
X_reconstructed array Predictions of the PCA model
Method string Method applied
Computationtime double Computation time measured in seconds
Ini_est_cum_R2 array Initial estimation of the cumulative explained variance

in data (R2)
Ini_est_eig array Initial estimation of the eigenvalues of the covariance

data matrix
Loadings array Loadings matrix of the PCA model of X_imputed
Scores array Scores matrix of the PCA model of X_imputed
Num_Markov_chains integer Number of Markov chains computed when DA is applied
Chain_Length integer Length of each Markov chain computed when DA is applied

Table 12.1: Data fields within the MDI Toolbox results structure.

12.3 Data sets

Three data sets are included in the MDI Toolbox. These datasets correspond to
the case studies used in Chapter 10: the Olive Oil data set [301], the Diesel NIR
data set [302] and the Simulated data set with 3 PCs [303, 304]. For each data set
the toolbox includes the complete data, and data sets with 10%, 30% and 60% of
missing data following MCAR patterns.

12.4 Operating procedure

MDI Toolbox is launched introducing MDIgui in the MATLAB command window.
Figure 12.1 shows the initial window of the graphical interface. The first step con-
sists of selecting the data set. The button Data from workspace permits loading
a data set with missing values from the MATLAB workspace. A data set pre-
viously stored in Excel can be loaded clicking at Read Excel File (more details
on the Excel data can be found in Section 12.6). The button Use example opens
a new window with example data (see Figure 12.2). This way 3 different data
sets can be selected with three percentages of missing values: 10%, 30% and 60%.
For this tutorial the Simulated data set with 30% of missing values is selected.
The MD imputation method is also selected in the MDIgui window. Among the
available methods, the recommended one is TSR, since it represents a good com-
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Figure 12.1: MDI Toolbox GUI for data, method and settings selection.

promise solution between prediction quality, robustness against data structure and
computation time, as seen in Chapter 10.

The MDI interface allows also changing the settings of the different methods. In
this way, the number of maximum iterations performed by the method and the
tolerance for the convergence can be modified from their default values: 5000 iter-
ations and a tolerance of 10−10. These parameters are active when the regression-
based methods, IA and NIPALS are active. If DA is selected as the imputation
method, these settings are disabled and the Number of Markov chains and Chain
Length are enabled. So the user can modify the default 100-iteration 10 Markov
chains.

Once the data, method and settings have been introduced, the DataOverview

window appears. The pattern of missing values and its percentage can be visualised
here (see Figure 12.3). The red squares represent the missing entries in the data
set, and the white ones the available values. After clicking Continue two progress
bars appear one after the other. The first one shows the calculation progress of
the variances and the second one the calculation progress of the covariances.

The next window, NumberComponents, allows the user to select the appropriate
number of PCs for the PCA model. Three plots are presented here to assess this
number (see Figure 12.4). On the left side the classical scree plot, with the eigenval-
ues of the estimated covariance matrix of X. On the center, the cumulative percent-
age of explained variance. It is worth noting that both plots are obtained based on
a pairwise estimation of the covariance matrix of the data set with missing values,
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Figure 12.2: Example data selection window.

Figure 12.3: GUI for data overview.
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Figure 12.4: Selection of the number of principal components, based on the scree
plot (left) and the cumulative explained variance bar plot (center), and the PCA cross
validation using the ckf algorithm.

i.e. the covariance between each pair of variables is computed using only rows with
non-missing values in both variables. Using this procedure, pseudo-covariance ma-
trices are obtained, i.e. they may be non-positive semidefinite. Since this matrix is
used only to determine the number of PCs, corresponding to the highest eigenval-
ues, it is not important whether some negative eigenvalues are obtained by its SVD.
A third plot is included at the right side. This plot corresponds to the results of
the column-wise k-fold (ckf ) algorithm to estimate the number of PCs in PCA, re-
cently proposed in [330]. This algorithm is an efficient adaptation of the previously
proposed element-wise k-fold (ekf ) algorithm, which is based on the capability of
PCA to recover missing data [19]. Here, since our data set has, originally, missing
values, the ckf algorithm can be used to select the number of components with the
lowest sum of squares of the prediction error (PRESS). More details on the ckf al-
gorithm can be found in [330]. The code for ckf algorithm has been taken from the
MEDA Toolbox for MATLAB, and it can be downloaded separatedly from https:
//github.com/josecamachop/MEDA-Toolbox/releases/tag/v1.0. These three
plots are included in the MDI Toolbox to give the practitioner different criteria to
select the number of PCs, which is a critical issue even with complete data [19].

In this case study the information provided by the three plots in Figure 12.4
is coherent, so three PCs are selected, since i) there is a huge difference in the
eigenvalues between 3 and 4 components in the scree plot, and the differences are
small between 4 and more components; ii) the cumulative explained variance with
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12.4 Operating procedure

Figure 12.5: Progress bars reflecting the missing data imputation procedure. In this
example 15 out of the 5000 iterations have been computed (top), and the mean squared
difference between the imputed values in iterations 14 and 15 is 4.7089× 10−9 (bottom).

three components is around 90%, and the variance explained with 4 components
is similar; and iii) the PRESS is minimum using three components.

Once the number of PCs is selected, MDI Toolbox runs the selected MD method
to impute the missing values. The computation time depends on the method
selected. Usually TSR and IA are the fastest methods, and DA and KDR are the
slowest ones.

Two progress bars appear simultaneously (see Figure 12.5) while the toolbox is
performing the iterative imputations. The top bar shows the current iteration
number, and runs until reaches the maximum number of iterations specified in the
MDIgui initial window (see Figure 12.1). The bottom bar gives an idea of how
far is the difference between consecutive iterations from the tolerance defined for
convergence. This is calculated as 1− d−l

d where d is the mean squared difference
between the imputed values in consecutive iterations and l is the specified toler-
ance. The first progress bar that is fulfilled stops the calculations, therefore, if the
iterations bar reaches the maximum, it implies that the established convergence
criterion is not achieved.

The last window of MDI Toolbox is ShowResults (see Figure 12.6). Here, the
details of the data imputation are summarised: imputation method, iterations,
tolerance and computation time (in seconds). Also, two figures with the loadings
and scores plots are shown to ease the graphical interpretation of the model. The
axis of both plots can be changed via the pop-up menus.

Finally, MDI Toolbox returns automatically a data structure to the MATLAB
workspace with all the information of the data imputation (see Table 12.1). Among
other parameters related to the number of iterations, computation time, etc.
the original data set with imputed values are stored in the field X_imputed of
the MATLAB structure MDIToolbox_results. Additionally, the resulting PCA
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Figure 12.6: Scores and loadings plots from the PCA model fitted on the imputed data
set.

model fitted on this data is stored in the fields Loadings and Scores, as well as
the mean and the covariances of the variables. In this way, the data is reproduced
as: X_reconstructed = Mean + Scores× LoadingsT.

12.5 Concluding remarks

In this chapter a new MATLAB toolbox is presented devoted to impute MD.
MDI Toolbox includes PCA model building methods with missing data that are
able to reconstruct the missing values coherently with the latent structure of the
available data. Several methods from the literature are included in this toolbox:
TSR, KDR, KDR-PCR, KDR-PLS, PMP, IA, modified NIPALS and DA. TSR is
presented as the default method for its good performance with all data structures,
as commented in Chapter 10.

A GUI is provided with the toolbox to ease its use. In this way, several windows
guide the user step by step: from the data loading and settings to the results
exploitation via interactive loadings and scores plots.

The purpose of MDI Toolbox is two-fold. On one hand, this toolbox permits to fit
PCA models when there exist missing values in the original data set, obtaining as
a result the loadings and the scores matrices. On the other hand, this toolbox can

212



12.6 Appendix A. Excel files.

be used as a preprocessing step of other methodologies, since one of the outputs
is simply the original data matrix with the imputed missing data.

The MDI toolbox is freely available for academic purposes at http://mseg.webs.
upv.es, under a GNU license.

12.6 Appendix A. Excel files.

To read Excel files with MDI Toolbox there have to be no headers nor observations
names in the sheet. Also, there has to be only one sheet in the Excel file, containing
the data set to analyse. The missing values have to appear as blank cells.

12.7 Appendix B. Using MATLAB command window.

The missing data imputation can be obtained typing the specific functions directly
on the MATLAB command window, without using the GUI windows. This way:

[X, m, S, It, diff, Xrec] = pcambtsr(X_MD, A, M, f) (12.1)

imputes, using TSR, the missing values in matrix X_MD using A components, a
maximum of M iterations, and a tolerance f. The outputs are the original data
matrix with the imputed values (X), the mean and covariance estimations (m and S,
respectively), the number of iterations (It) and the tolerance value (diff). Also,
the reconstructed matrix X using the final PCA model is obtained (Xrec).

To impute using the other regression-based methods, IA and modified NIPALS,
the user only has to change the name of the function in Command 12.1 pcambkdr

for KDR, pcambpcr for KDR-PCR, pcambpls for KDR-PLS, pcambpmp for PMP,
pcambia for IA, pcambnipals for modified NIPALS algorithm.

For DA, the user has to type: [X, m, S, Xrec] = pcambda(X_MD, M, CL, A), where X_MD
and A are the matrix with missing values and the number of components of the
final PCA model, and M and CL are the number of Markov chains and the chain
length, respectively.
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Chapter 13

Framework for MLPCA
missing data imputation

Part of the content of this chapter has been included in:

[9] Folch-Fortuny, A., Arteaga, F. & Ferrer, A. Assessment of maximum likelihood
PCA missing data imputation. Journal of Chemometrics 30, 386-393 (2016).
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13.1 Introduction

MLPCA was originally proposed to incorporate measurement error variance in-
formation in principal component analysis (PCA) models [29]. MLPCA has been
widely applied in several works within chemometrics and systems biology, e.g. to
analyse reflectance FTIR microspectroscopic data [331] and ion mass spectroscopic
data [332], to fault detection in process industry [333], to the characterization of
measurement errors in nuclear magnetic resonance (NMR) data [334] and gene
expression data [335], to determine the appropriate number of reactions in sto-
ichiometric modelling [336], and as a useful preprocessing tool for metabolomic,
proteomic, transcriptomic [337] and environmental [338] data analysis.

Shortly after the publication of the original MLPCA algorithm, an application of
this method was proposed addressing the MD problem in PCA-MB [339]. MLPCA
deals with the missing values by assigning them large variances prior to imple-
menting the method, which guides the algorithm to fit a PCA model disregarding
these data points. The MLPCA approach for MD has been applied successfully in
the literature to fluorescent, chromatographic, near-infrared spectroscopic [339],
spectrophotometric [340], and environmental [341] data.

Nelson [30] showed the equivalence between the scores calculation by columns in
MLPCA and the PMP algorithm for PCA-ME. Also, the PMP algorithm has been
adapted in Chapter 10) to a MB environment. Here, the equivalence between the
imputation step observation-wise in MLPCA algorithm and the adapted PMP
method for PCA-MB. is proven.

The aim of this chapter is, thus, to answer three questions that arise from the
aforementioned equivalence:

1. Once the MD algorithms converge, are the imputed values of MLPCA and
PMP for PCA-MB equal?

2. Since TSR outperforms PMP, if the imputation step in MLPCA is sub-
stituted by a TSR-based imputation, does the imputation outperform the
original MLPCA?

3. In any case, does MLPCA, or its adapted version with TSR, outperform the
original TSR algorithm?

To answer these research questions, the regression-based methods presented in
Chapter 10 (KDR, KDR with PCR, KDR with PLS and TSR) are here adapted
to work as different imputation steps within the MLPCA algorithm, providing a
framework for maximum likelihood MD imputation. The performance of these
methods is compared to PMP and TSR methods using six data sets from different
environments, actual and simulated ones, taken from systems biology, chemomet-
rics and food industry.
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X
xnT

xn#T    
 xn*T

xnT X#        X*

P#T     P*T

rearrange

columns

SVD

model

N

K K

K

N

K

A
R

R R

Figure 13.1: Partition induced in X matrix by the missing data in its nth row. Grey
squares denote missing positions in the data set.

The rest of the chapter is organised as follows. Section 13.2 proves the equivalence
between the imputation step observation-wise of MLPCA and the PMP method
for PCA-MB, and describes how the regression-based methods are adapted to its
ML version. Sections 13.3-13.4 describe the data sets used in this study, as well
as how the comparative study is performed. Section 13.5 shows the results of the
ML regression-based methods, jointly with the original PMP and TSR algorithms.
Finally, the conclusions are highlighted in Section 13.6.

13.2 Maximum likelihood regression-based methods

The original MLPCA algorithm has been described in Section 2.3.3. The adap-
tation of MLPCA to MB with MD assumes uncorrelated errors for both objects
(rows) xT

n and variables (columns) xk of the (N×K) data matrixX. Therefore ma-
trices Σn and Ψk in Equation 2.14, the measurement errors associated to objects
and variables, respectively, are diagonal [24, 30]. In this algorithm, large variances
(1010) are assigned to the missing measurements, and ones to the available ones.
Therefore, the inversion of matrices Σn and Ψk produces diagonal matrices with
1s and 0s. The ones serve to fit these specific measurements in the PCA and the
0s to disregard the missing measurements in the multivariate model.

Assuming that row xT
n has MD. The values in this vector can be rearranged to

have the missing entries in its first Rn positions without loss of generality, and
the remaining K −Rn available values at the end. This partition in xT

n , induces
a partition in the X data set, being X# (N × Rn) the missing part and X∗

(N× (K−Rn)) the available part, according to row n. Additionally, this partition
can be transferred into a SVD (or PCA) model, X = UDPT, being P# (Rn ×A)
the missing part of the loadings matrix, and P∗ ((K−Rn)×A) the available part.
Figure 13.1 shows a scheme of this notation.

Using this partition, the inverse of matrix Σn can be written as:

217



Chapter 13. Framework for MLPCA missing data imputation

Σ−1n =

[
0 0
0 IK−Rn

]
(13.1)

where IK−Rn is the identity matrix with K −Rn rows/columns, according to the
missing data pattern in xT

n .

Substituting this expression in Equation 2.15, observation xT
n can be computed

as:

x̂n =

[
x̂#
n

x̂∗n

]
=

=

[
P̂

#

P̂
∗

]
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]
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∗T
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P̂
∗
(P̂
∗T
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∗
)−1P̂

∗T
x∗n

]
(13.2)

Alternatively, the inverse of matrix Ψk can be written as:

Ψ−1k =

[
0 0
0 IN−Rk

]
(13.3)

where IN−Rk
is the identity matrix with N − Rk rows/columns, according to

column xk. Following Equation 2.16, x̂k is therefore computed as:

x̂k =

[
x̂#
k

x̂∗k

]
=

=

[
Û

#

Û
∗

]
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#
(Û
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Û
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)−1Û

∗T
x∗k

Û
∗
(Û
∗T
Û
∗
)−1Û

∗T
x∗k

]
(13.4)

where Û
#

(Rk × A) and Û
∗
((N − Rk) × A) are the missing and available parts

of Û.

The MLPCA imputation step of the missing values x#T
n is the same as the PMP

method for PCA-MB presented in Chapter 10. The main difference between
MLPCA algorithm and PMP is that the former performs the imputation itera-
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tively first by observations and then by variables, instead of only by observations,
as PMP does. And additionally, the convergence in PMP is achieved based only
on the imputed missing values, instead of the imputation of the available measure-
ments, as it is in MLPCA.

As shown in Chapter 10, the imputation step in the adapted PMP algorithm
for PCA-MB can be substituted by the regression-based methods presented in
[27] (KDR and its variants, and TSR). Most of these methods showed a superior
performance than PMP across several case studies. So, the idea here consists
of adapting the alternating imputation of MLPCA algorithm to include the im-
putation step of the regression-based methods, thus proposing a ML framework:
ML-KDR, ML-KDR with PCR, ML-KDR with PLS and ML-TSR.

The imputation step of the regression-based missing data methods is:

x̂n =

[
x̂#
n

x̂∗n

]
=

[
Ŝ
#∗
L̂n(L̂

T

n Ŝ
∗∗
L̂n)−1L̂

T

nx∗n
Ŝ
∗∗
L̂n(L̂

T

n Ŝ
∗∗
L̂n)−1L̂

T

nx∗n

]
(13.5)

where Ŝ is the covariance matrix of X̂, and:

Ŝ = [X̂
#
X̂
∗
]T[X̂

#
X̂
∗
]/(N − 1) =

[
X̂

#T
X̂

#
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#T
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∗
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#
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∗T
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∗

]
/(N − 1) =

[
Ŝ
##

Ŝ
#∗

Ŝ
∗#
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∗∗

]
(13.6)

The key matrix L in Equation 13.5 particularises which method of the ML frame-
work is being used for the imputation: L = I for KDR; L = V̂1:ρ for KDR with
PCR, where V̂1:ρ is the eigenvector matrix of Ŝ

∗∗
and ρ ≤ rank(Ŝ

∗∗
); L = Ŵ

∗

for KDR with PLS, where R̂ is the normalized weights matrix of the PLS model
T̂PLS = X̂

∗T
R̂ = X̂

∗T
Ŵ(P̂

T
Ŵ)−1; and L = P̂

∗
for TSR.

Therefore, to adapt the MLPCA original algorithm for MD [339] to use the
regression-based methods, the imputation step (Equations 2.15-2.16) has to be
substituted by:

x̂n = ŜΛnL̂n(L̂
T

nΛT
n ŜΛnL̂n)−1L̂

T

nΛT
nxn (13.7)

x̂k = ŜΦkL̂k(L̂
T

kΦT
k ŜΦkL̂k)−1L̂

T

kΦT
k xk (13.8)

where L matrix is the same as in the regression-based framework, particularising
for the missing data pattern in row n or column k. And:
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Λn =

[
0

IK−Rn

]
(13.9)

Φk =

[
0

IN−Rk

]
(13.10)

The equivalence between Equations 13.7 and 13.5 is shown in Section 13.7.

13.3 Data sets

Six data sets are used in the present chapter to compare the results of the different
imputation methods included in the framework. The first data set contains FTIR
miscroscopy spectra of a polymer laminate consisting of three layers: polyethylene,
isophtalic polyester, and polyethylene terephthalate. The polymer was scanned in
a seventeen point transect across the different layers, obtaining measurements
from 81 wavelengths [342–344]. The second case study is a systems biology data
set consisting of a set of measured and inferred fluxes from P. pastoris cultures on
heterogeneous culture media, used in previous chapters. From the original data
set with 3600 scenarios and 45 fluxes, a representative sample of 105 individuals is
selected for the present comparative study. This data set has 3 biologically relevant
PCs. Finally, a simulated data set, with 100 observations and 10 variables, is used
to compare the performance of the different maximum likelihood methods [303,
304]. This data set has 4 eigenvalues (3, 2.5, 2 and 1.5) explaining 90% of the
variance in data.

Three additional data sets are analysed here, taken from Chapter 10, where the
adaptation of the regression based methods to PCA-MB was proposed: the Olive
Oil data set [301], the Diesel NIR data set [302] and the simulated data set with
3 PCs [303, 304].

13.4 Comparative study

The same performance criteria applied in Chapter 10 are used here, i.e. the MSPE
and the cosine between the first loading vector obtained using the full data matrix
and its corresponding one from the incomplete data set. The original regression-
based framework methods use, as convergence criterion, the difference between
consecutive imputations of missing values. Instead, MLPCA use the difference
between the available measurements and their predictions from the current PCA
model. For this, the MSPEs for the available measurements and the missing ones
separately, using Equation 10.10, are shown.
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Six different levels of missing values are generated for all data sets, ranging from
10 to 60% of MD. Also, 50 different MD patterns are generated for each percentage
of missing data, in order to build CI for the MSPEs.

Finally, to compare the different approaches the same ANOVA applied in Chap-
ter 10 is used here, using the LSD intervals to assess the statistically significant
differences.

13.5 Results

In this section the results of the comparative study are presented. However, we
decided to exclude the results of ML-KDR, ML-KDR with PCR and ML-KDR
with PLS due to large computation times, something already observed in Chapter
10, and due to the instability of some of them, especially ML-KDR (also observed
before with KDR) and ML-KDR with PLS. Therefore, the results of MLPCA, ML-
TSR, TSR and PMP are shown, in order to answer the three research questions
posed in the Section 13.1.

13.5.1 FTIR microspectroscopy

Regarding Figure 13.2A, there exist no statistical differences between MLPCA and
ML-TSR in all percentages of MD. TSR and PMP statistically outperform both
ML approaches for low percentages of MD (10-20%). From 50% onwards, TSR is
superior to PMP, MLPCA and ML-TSR. The cosines shown in Figure 13.2B are
coherent with the results of the MSPEs, having TSR the highest cosines from 30%
to 60%.

The results in Figure 13.2C show that TSR and PMP are superior to the ML
approaches in terms of the measured values, which implies that the PCA model
fitted once the data is imputed with these methods is closer to the original one
than using ML estimations. Figure 13.2D is indeed very similar to Figure 13.2A,
due to the fact that the errors in the imputed values between the true PCA model
and the imputed one are way larger than in the measured values, as expected.

13.5.2 P. pastoris cultures on heterogeneous culture media

The results with the P. pastoris data set are similar to the previous ones, both
in MSPEs and cosines (see Figure 13.3A-13.3B). TSR and PMP achieve the sta-
tistically best performance from 20%-40% of MD; and again, from 50% onwards,
TSR becomes the best approach, being PMP superior to MLPCA and ML-TSR.
The performances of TSR and PMP are indeed coherent with the results observed
in Chapter 10. The cosines shown in Figure 13.3B are coherent with the MSPE
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Figure 13.2: FTIR data set results. A) Logarithm of the MSPE for all measure-
ments. B) Cosines associated to the first PC. C) Logarithm of the MSPE for the available
measurements. D) Logarithm of the MSPE for the missing data. The dashed ellipses in
a) mark the statistically significant differences between groups of methods. In A) TSR is
statistically superior to MLPCA with 30-40% of MD. However, since there is no method
statistically significant from all the rest, a single dashed ellipse encloses all of them.
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Figure 13.3: P. pastoris data set results. More details in Figure 13.2.

values. The lower is the logarithm of the MSPE, the closer are the loading vectors
of the reconstructed matrix to the actual ones.

Regarding Figures 13.3C-13.3D, the performance of all methods is also similar to
the first example. For low percentages of MD, the differences among methods are
smaller in the measured values, but from 30% of MD onwards, the PCA model
obtained with TSR imputation resembles more to the real one.

13.5.3 Simulated data set

In the Simulated data set with 4 PCs, the differences among TSR, ML-TSR,
PMP and MLPCA are not statistically significant for low percentages of missing
values (10-20%) (see Figure 13.4A). With 30% of MD, TSR becomes statistically
the best method and PMP the worst one. This is something that was observed
in Chapter 10, also using a simulated data set [303, 304]. The higher is the
percentage of missing data, the more difficult is to impute properly for PMP. For
higher percentages (30-60%), there are statistical differences among all methods:
TSR maintains the best performance, followed by ML-TSR, MLPCA and PMP.
There exist differences between MLPCA and ML-TSR, being the latter statistically
superior. These differences in the MSPEs can also be seen in Figure 13.4B, where
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Figure 13.4: Simulated data set results. More details in Figure 13.2.

all methods but TSR show huge deviations from the true principal coordinate of
the data with low-medium percentages of MD (10-40%).

In this third example the differences among methods regarding the measured values
are narrower (see Figure 13.4C), but still showing the superiority of TSR.

13.5.4 Additional data sets

Three more data sets are used to compare the performance of the ML-based meth-
ods against PMP and TSR in its original form: the olive oil data set, the diesel
NIR data set, and a 3-component simulated data set. The figures containing the
logarithm of the MSPEs and the cosines associated to the first component are
available in Section 13.8.

Summarizing the results, in these data sets the performance of TSR is statisti-
cally superior to PMP (as proven in Chapter 10), and to MLPCA and ML-TSR
for medium-high percentages (30-60%) and also for low percentages (10-20%) in
the olive oil and diesel NIR data set. Also, the reconstruction of the available
measurements with TSR is more similar to the PCA on complete data than the
ML-based approaches in both data sets. These results are coherent with sections
13.5.1-13.5.2. Comparing ML-TSR and MLPCA, the former yields better results
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than MLPCA for high percentages of missing data (50-60%) in the 3-component
simulated data set, as happened in section 13.5.3 with the 4-component simulated
data set.

13.6 Conclusions

To conclude, it is worth to remember the research questions posed at the beginning
of the chapter:

• Are the imputed values of MLPCA and PMP for MB equal? The answer is
no. The PMP imputation step performed alternatively by rows and columns
in MLPCA drives the imputation in a different direction than performing it
only observation-wise, as PMP does. Based on the six data sets analysed
here, PMP, if converges, has better results than MLPCA. However, PMP
suffered from convergence problems in some case studies, while MLPCA
converge in all data sets and all MD percentages.

• Does ML-TSR outperform the imputation of MLPCA? The answer, based
on the case studies analysed here, is that when the latent structure is com-
plex, and the percentage of missing data is high, ML-TSR may outperform
MLPCA. In other cases, the overall results have no statistically significant
differences. However, MLPCA tends to be between 2-5 times faster than
ML-TSR.

• Does MLPCA or ML-TSR outperform the original TSR algorithm? The
answer is no. TSR outperforms the ML approaches for medium-high per-
centages of missing data. For low percentages, depending on the case study
analysed, it is statistically superior or there exist no statistical difference
compared to the other methods.

Finally, the use of TSR over MLPCA for PCA-MB with MD is recommended,
since both the reconstruction of the available and imputed values is statistically
more accurate than using MLPCA or ML-TSR.

13.7 Appendix A. Regression-based imputation step in
MLPCA.

The equivalence between Equations 13.7 and 13.5 is proven here. Assuming that
the values in row xT

n are rearranged to have the Rn missing values, x#T
n , at the

first positions, and the remaining K−Rn available ones, x#T
n , at the end.Equation

13.1 can be used in Equation 13.7 to introduce the extension of the missing data
partition, X̂ = [X̂

#
X̂
∗
]. Bearing in mind that the decomposition of the covariance
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matrix of X̂ (see Equation 13.6), and matrix Λn (Equation 13.9), Equation 13.7
can be written as:

x̂n = ŜΛnL̂n(L̂
T

nΛT
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Ŝ
∗∗

] [
0 0
0 IK−Rn

] [
0

IK−Rn

]
Ln

(LT
n

[
0 IK−Rn

] [Ŝ##
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Ŝ
∗∗

] [
0
Ln

]
)−1

[
0 LT

n

] [ 0
x∗n

]
=

=

[
Ŝ
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]
(13.11)

The proof using Equation 13.8 is analogous; substituting x̂n by x̂k, changing the
subindices n by k and the matrix Λn by Φk, and bearing in mind that the Lk
matrix is obtained using the MD pattern of x̂k.

13.8 Appendix B. Additional figures.

Figures 13.5-13.7 show the results of the comparative study proposed in this chap-
ter with the Olive Oil, the Diesel NIR and the 3-component Simulated data set.
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Figure 13.5: Olive Oil data set results. More details in Figure 13.2.
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Figure 13.6: Diesel NIR data set results. More details in Figure 13.2.
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Figure 13.7: 3-component simulated data set results. More details in Figure 13.2.
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Chapter 14

Calibration transfer between
near infrared instruments

Part of the content of this chapter has been included in:

[11] Folch-Fortuny, A., Vitale, R., de Noord, O.E. & Ferrer, A. Calibration transfer
between NIR spectrometers: new proposals and a comparative study. Journal of
Chemometrics, accepted.
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Chapter 14. Calibration transfer between near infrared instruments

14.1 Introduction

Multivariate calibration is of crucial importance when interpretable information
needs to be extracted from complex spectroscopic signals in chemometrics and sys-
tems biology. Numerous applications of e.g. PCR or PLS aimed at this end have
been reported over the past decades [345, 346]. Nevertheless, a practical limitation
to the employment of such techniques shows up when existing calibration models
are applied to measurements recorded by a new instrument and/or in different en-
vironmental conditions. In fact, even very similar spectrometers generally exhibit
strong variations in their responses, which may jeopardise this so-called calibration
transfer.

Several methods have been proposed to overcome this subtle issue and avoid at
the same time an expensive and time-consuming full recalibration, using the newly
acquired spectral profiles. One of these approaches consists in updating the cali-
bration model by merging measurements collected by both the first or master and
the second or slave spectrometer. However, that is commonly effective only when
the two sets of spectral profiles are rather similar [347]. Among all the other strate-
gies proposed in the scientific literature, piecewise direct standardisation (PDS)
[348] is considered as the reference for novel techniques due to its local and mul-
tivariate nature [347, 349–351]. PDS basically transforms the spectra recorded by
the slave instrument so that its spectral response matches the one of the master
instrument. This allows any calibration model, built on the data resulting from
the master spectrometer, to be used for the analysis of those acquired by the slave
apparatus.

From a slightly different perspective, the transfer of a calibration model from a NIR
spectrometer to another can be looked at as a missing data imputation problem. In
this circumstance, all the information contained in the available master and slave
spectra can be exploited to entirely reconstruct the profiles associated to those
samples that were not analysed by the slave instrument. These profiles can be
then utilised for fitting an improved predictive model, suitable for the assessment
of future incoming recordings. MLPCA [339] has been the first computational
methodology to be applied for solving the calibration transfer issue in this peculiar
fashion.

In this chapter, two innovative strategies to perform calibration transfer based on
TSR algorithm for PCA-MB with MD and JYPLS are proposed. Specifically, their
performance is be assessed and compared here to MLPCA and PDS in two real
case-studies, in which the same set of samples were characterised by two different
NIR spectrometers.

The chapter is structured as follows. Section 14.2 presents the spectral measure-
ments used in this chapter. Sections 14.3-14.4 describe PDS, the adaptation of
MLPCA, TSR and JYPLS to solve the calibration transfer problem and the com-
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14.2 Materials

parative study. The results shown in Section 14.5 are then discussed in Section
14.6. Finally, some conclusions are drawn on Section 14.7.

14.2 Materials

The first dataset analysed here contains 60 spectra measured on 30 pseudo-gasoline
samples within 800 and 1600 nm (401 scanned wavelengths, 30 spectra per instru-
ment). Heptane, iso-octane, toluene, xylene and decane concentration are the
properties of interest to be predicted. The second relates to 80 corn samples,
whose spectral profiles were registered within 1100 and 2498 nm (700 scanned
wavelengths for a total number of 160 spectra, 80 per each spectrometer). The re-
sponse variables are moisture, oil, protein and starch content. Both datasets have
been widely used to compare calibration transfer methods [352–354]. The gasoline
dataset is included in the PLS Toolbox for MATLAB [169], the corn dataset can
be downloaded from http://www.eigenvector.com/data.

14.3 Methods

14.3.1 Piecewise direct standardisation (PDS)

PDS executes a series of local linear transformation of the spectra collected by the
slave instrument to subsequently allow the calibration model built for the master
spectrometer to be exploited for prediction purposes. Specifically, at each kth
wavelength, the whole set of absorbance values registered by the master instrument
(xa,k) are related by PCR to a specific spectral window of the profiles of the same
samples collected by the slave spectrometer Xb,k (N ×K):

xa,k = 1Nbk + Xb,kfk (14.1)

Incoming slave instrument data are then adjusted through the estimated stan-
dardisation parameters, fk and bk. In this chapter, PDS is applied as coded in
the PLS Toolbox [169]: all the PCs, whose eigenvalue (divided by the first one)
are larger than 0.0001, are included in each local regression model. On the other
hand, the spectral window width is automatically optimised within the modelling
procedure.
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14.3.2 MLPCA and TSR

To transfer a calibration model using MLPCA, the complete set of Na master
spectra, Xa (Na×Ka), has to be concatenated with the Nb measurements collected
by the slave instrument, Xb (Nb ×Kb). An augmented data matrix Xab (Na ×
(Ka + Kb)) is then constructed, where the unrecorded slave profiles are missing
(see Figure 14.1, Imputation box). In other words, if the sample associated to the
nth row of Xab has not been analysed by the slave spectrometer, the available part
of the row, x∗Tn , denotes the available master spectrum, while the missing part,
x#T
n , denotes the missing slave spectrum. Xab is finally subjected to MLPCA.

Calibration transfer by TSR is achieved in the same way as for MLPCA, that is
building the augmented array Xab and inputing it to the computational procedure
described before. The TSR version for PCA-MB with MD described in Chapter
10 is used here.

14.3.3 JYPLS

Until now, JYPLS has been mainly resorted to for product transfer between dif-
ferent production sites, but here its application is extended to cases in which the
common sources of variation underlying measurements resulting from multiple in-
struments and mostly related to specific properties of interest need to be modelled
(i.e. calibration transfer). To this end, two possible JYPLS-based computing
strategies are implemented, namely JYPLS-noinv and JYPLS-inv.

• JYPLS-noinv - Let Xa contain the spectra collected by the master spec-
trometer and Xb those registered by the slave one. Let Ya and Yb be the
matrices including the measured dependent variables, noticing that the rows
of Yb are also contained in Ya, as they relate to samples analysed by both
the slave and the master instrument. Once built a JYPLS model as in Equa-
tions 2.24-2.28 (see Figure 14.1, Model transfer box), the responses for new
samples characterised by the second apparatus, Yb,new, can be predicted
from their spectral profiles, Xb,new, as (see Figure 14.1, External validation
II box):

Yb,new = Xb,newW∗
bQ

T (14.2)

where Q and W∗ are obtained from JYPLS algorithm.

• JYPLS-inv - On the other hand, as for TSR, spectra unrecorded by the
slave instrument can be reconstructed, provided they are associated to sam-
ples analysed by the master one and whose response values (Yb,unrecorded)
are then present in Ya, by the following inversion (see Figure 14.1, Model
inversion box):
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14.4 Modelling procedure

Xb,unrecorded = Yb,unrecorded(QQT)†QPT
b (14.3)

where † denotes the pseudoinverse [355]. Such imputed spectra, fused to
Xb, are then appealed to for fitting an improved PLS predictive model (see
Figure 14.1, Model calibration box), suitable for the assessment of future
incoming data (see Figure 14.1, External validation I box).

14.4 Modelling procedure

The comparative study among PDS, MLPCA, TSR and JYPLS is carried out
according to a 5-step procedure (see Figure 14.1):

1. Both the master and slave instrument data blocks are randomly split into
calibration (2 thirds of the original spectra) and validation (1 third of the
original spectra) sets (see Figure 14.1, Data split box). 20 split rounds are
conducted to prevent spurious results from being yielded.

2. Slave instrument calibration subsets of increasing size are generated to deter-
mine the minimum number of measurements needed to be collected for ac-
complishing an accurate calibration transfer. The samples belonging to each
one of these subsets are selected by the Kennard-Stone (KS) algorithm [356],
probably the most popular computational procedure for data-representative
object identification [357, 358] (see Figure 14.1, Sample selection box). Here,
KS is run on the scores of a PLS model resulting from the master spectrom-
eter calibration data.

3. The four methods under study are then applied in the following fashion:

• When TSR, MLPCA and JYPLS-inv are handled, the slave instru-
ment calibration spectra left out of each subset are consecutively re-
constructed as described before (see Figure 14.1, Imputation, Model
transfer and Model inversion boxes). They are then merged with those
belonging to the calibration subset to fit a new PLS regression model
(see Figure 14.1, Model calibration box).

• By JYPLS-noinv, predictive JYPLS models are constructed fusing both
the master spectrometer calibration set and the different slave spec-
trometer calibration subsets (see Figure 14.1, Model transfer box).

• The PDS standardisation is performed relating the slave instrument
calibration subsets of spectra to their corresponding profiles registered
by the master spectrometer (see Figure 14.1, Parameter fitting and
Standardisation boxes). Notice that the properties of interest of the
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Figure 14.1: Flow-chart of the comparative study. Std stands for standardised. ^
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corrected spectra are thereafter predicted by a PLS regression model
built on the whole master instrument calibration set (see Figure 14.1,
External validation III box).

In the various cases, the parameters to be optimised (number of components
of the imputation model, number of components of the regression model,
PDS spectral window width) are adjusted in order to minimise the average
root mean square error in CV (RMSECV), defined as:

RMSECV =

∑M
m=1

√∑N
n=1(yn,m−ŷn,m)2

N

M
(14.4)

where yn,m represents the actual value of the mth response variable associ-
ated to the nth calibration sample and ŷn,m is its final prediction.

4. The performance of PDS, MLPCA, TSR and JYPLS were finally assessed
according to the average root mean square error in prediction (RMSEP):

RMSEP =

∑M
m=1

√∑N′
n′=1

(yn′,m−ŷn′,m)2

N ′

M
(14.5)

where yn′,m represents the actual value of the k-th response variable asso-
ciated to the n′th validation sample and ŷn′,m is its final prediction, while
N ′ equals the total number of spectra included in the validation (see Figure
14.1, External validation I, External validation II and External validation
III boxes). The reported RMSECV and RMSEP values concern autoscaled
response variables owing to the differences in their original units of measure-
ments.

5. Statistically significant differences among the considered approaches were fi-
nally evaluated via a mixed-effect ANOVA, as used in previous chapters of
this thesis: calibration transfer technique, size of the slave instrument cali-
bration subset and their interaction are fixed-effect factors, and split round
is a random-effect factor, nested to the size of the slave instrument calibra-
tion subset). In case any effect or interaction was statistically significant,
the 95% LSD (least significance difference) intervals are used.
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14.5 Results

14.5.1 Gasoline dataset

For each spectrometer, 20 pseudo-gasoline samples are assigned to the calibration
set and the remaining 10 to the validation set. 15 slave instrument calibration
subsets, containing from 5 to 19 spectral profiles, are generated.

MD imputation

As TSR, JYPLS-inv and MLPCA rely on a preliminary MD imputation step, it
is worth assessing the accuracy of the reconstruction of the unmeasured spectra,
since they will be then resorted to for building the final predictive PLS model.

Figure 14.2 permits to compare original and imputed profiles for one of the split
rounds. Their correlation and χ2 distance are represented in Figures 14.2A, 14.2D,
14.2G and 14.2B, 14.2E, 14.2H, respectively. Each line refers to the best model
selected for one specific slave instrument calibration subset. The correlation was
always higher than 0.9999 and the χ2 distance smaller than 0.001 for TSR and
JYPLS-inv, while several issues appear when dealing with MLPCA. First, it often
suffers from convergence problems (as already pointed out by Feudale et al. [347]),
which dramatically slows the computational procedure down. Consequently, the
reconstructed spectra are found to be considerably different from their actual pro-
files (see Figure 14.2F). For these reasons, MLPCA is not taken into account in
the final study.

Comparative study

Figure 14.3A allows the performance of the different calibration transfer techniques
under study to be examined. Each point in the plot represents the average RMSEP
value, estimated from the 10-sample external validation set, across the 20 split
rounds (for 5- to 19-sample slave instrument calibration subsets). As expected,
for all the approaches, the higher the size of the slave instrument calibration subset,
the lower the RMSEP.

As the effect of all the factors included in the ANOVA model was found to be
statistically significant (p−value < 0.05), the 95% LSD intervals were calculated
to point out existing differences among methods. For the sake of an easy visualisa-
tion, dashed-line ellipses are used in Figure 14.3A to highlight them. Specifically,
methods embraced by the same ellipse show no statistical difference. On the other
hand, methods embraced by different ellipses are statistically different.
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Figure 14.2: Gasoline dataset. A), D) and G) show the correlation coe cients between
the original spectra and those imputed by TSR, JYPLS-inv and MLPCA, respectively.
B), E) and H) represent their corresponding χ2 distance values. The dotted-dashed blue
lines refer to the case in which the slave instrument calibration subset was constituted
by 5 samples and 15 spectra were imputed. The solid red lines refer to the case in which
the slave instrument calibration subset was constituted by 10 samples and 10 spectra
were imputed. The dashed green lines refer to the case in which the slave instrument
calibration subset was constituted by 15 samples and 5 spectra were imputed. C), F)
and I) display the original and reconstructed profiles in the second of these three cases.
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Figure 14.3: Gasoline dataset. RMSEP values obtained with A) the same spectral
resolution for both instruments, B) 1

2
, C) 1

4
and D) 1

8
of the master instrument spectral

resolution for the slave spectrometer. Dashed ellipses mark the statistically significant
differences among groups of methods (p−value < 0.05)
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Clearly, PDS guarantees the lowest RMSEP when the slave instrument calibration
subset consisted of 5 or 6 samples. No statistically significant differences are
detected between PDS and TSR for the slave instrument calibration subset of
7 samples and between PDS and JYPLS-inv when a 10-sample slave instrument
calibration subset is considered. From 10 samples onwards, the RMSEP stabilizes
around 0.09 for PDS, but it continuously decreases for TSR and JYPLS-inv, until
reaching values around 0.05-0.06 (12-13 to 19 samples). The straight line in Figure
14.3 indicates the RMSEP value obtained when a full recalibration is performed,
i.e. when the whole set of 20 slave instrument calibration samples is used to build
a new predictive model. Although it cannot be directly compared to the outcomes
resulting from PDS, TSR, JYPLS-inv and JYPLS-noinv, it eases the determination
of the number of spectra needed to be collected by the slave spectrometer for
generating no statistically significant differences with respect to full recalibration.
TSR requires 12 spectra out of 20, while JYPLS-inv 13. On the other hand, PDS
and JYPLS-noinv always show a statistically worse performance.

Instruments with different resolutions

A common situation faced by practitioners in industrial environments is transfer-
ring calibration models between instruments with diverse spectral resolution. This
problem has already been addressed in [359], where the authors propose a novel
PLS-based approach resulting in similar results as PDS.

Figures 14.3B-14.3D show the results of the whole analysis, conducted gradually
reducing the spectral resolution of the slave instrument. The performance of the
methods is basically the same as in the full resolution case described in the previous
section. However, for PDS, a gradual decrease in the quality of the calibration
transfer can be noticed. This effect will be much more evident in the corn example.

Sample selection effect

The effect of the slave spectrometer calibration subset sample selection is here
assessed. 10 random selections are performed for one particular split round and the
final RMSEP values are then compared to those obtained by preliminarily running
KS. It is clear from Figure 14.4 that KS generally returned a lower RMSEP, very
close to that achievable through a full recalibration. It then enabled a better
calibration transfer plausibly due to the fact that it permits to choose a subset of
samples, which is statistically representative of the experimental domain related
to the spectral data collected by the master instrument. This is not necessarily
the case when such a selection is carried out at random.
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Figure 14.4: Gasoline dataset. Effect of the KS algorithm-based sample selection on
the performance of the calibration transfer methods under study

14.5.2 Corn dataset

For each spectrometer, 54 corn samples are assigned to the calibration set and
the remaining 26 to the validation set. 10 slave instrument calibration subsets,
containing from 5 to 50 spectral profiles (5-spectra intervals), are generated.

Missing data imputation

Figure 14.5 permits to compare original and imputed corn sample spectral profiles
for one split round. TSR preserves its reconstruction ability and MLPCA suffers
from the same problems observed for the gasoline dataset. Regarding JYPLS-inv,
the correlation coefficients/χ2 distance values were rather high/low, but the im-
puted spectra showed less variability than the real ones (see e.g. Figure 14.5F).
This happens because the large difference in their offset is scarcely related to the
properties to be predicted. As the imputation here involves the joint-Y load-
ings matrix Q, such difference is not transferred to the reconstructed spectra (see

240



14.6 Discussion

Equation 2.24). Thus, one can think of JYPLS-inv as filtering spectral variations,
which is uninteresting from a predictive point of view.

Comparative study

Existing differences among methods were investigated as in the previous case-
study (also here the effect of all the ANOVA factors was found to be statistically
significant). Figure 14.6A displays the results of the comparative study conducted
on the corn dataset. Again, PDS shows a better performance for small slave
calibration subsets (5-10 samples). For 20-25 samples, there are no statistical
differences between PDS, TSR and the two JYPLS algorithms. Finally, from
30 samples onwards, the novel approaches outperform PDS, as happened in the
gasoline data set. From 40 samples onwards, TSR, JYPLS-inv and JYPLS-noinv
guarantee no significant differences with respect to full recalibration.

Instruments with different resolutions

In this case, the reduction of the spectral resolution of the slave instrument strongly
affects the quality of the PDS-based calibration transfer. In fact, when the reso-
lution of the slave spectrometer is decreased to 1

8 , even for small slave calibration
subsets, the performance of PDS is statistically worse than the other compared
approaches. On the other hand, TSR, JYPLS-inv and JYPLS-noinv are quite
robust towards such change (see Figures 14.6B-14.6D).

Sample selection effect

The effect of the slave spectrometer calibration subset sample selection can be
evaluated by looking at Figure 14.7. Here, especially when the size of such calibra-
tion subset is not particularly large, some random selection runs permit to obtain
better results in terms of RMSEP. This might be related to the aforementioned
weak relationship between spectral variations and properties of interest. However,
when the number of calibration spectra recorded by the slave instrument increases,
KS-based selection enabled better prediction than random ordering.

14.6 Discussion

When carrying out a calibration transfer with a very small slave instrument cal-
ibration subset (around 5-10 samples), PDS shows better or equal results, but
its performance is far from being comparable to that guaranteed by a full recal-
ibration. Nevertheless, when the size of the slave instrument calibration subset
is enlarged, TSR and JYPLS-inv clearly outperform PDS. No evident conclusions
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Figure 14.5: Corn dataset. A), D) and G) show the correlation coe cients between
the original spectra and those imputed by TSR, JYPLS-inv and MLPCA, respectively.
B), E) and H) represent their corresponding χ2 distance values. The dotted-dashed blue
lines refer to the case in which the slave instrument calibration subset was constituted by
10 samples and 44 spectra were imputed. The solid red lines refer to the case in which
the slave instrument calibration subset was constituted by 25 samples and 29 spectra
were imputed. The dashed green lines refer to the case in which the slave instrument
calibration subset was constituted by 40 samples and 14 spectra were imputed. C), F)
and I) display the original and reconstructed profiles in the second of these three cases.
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Figure 14.6: Corn dataset. RMSEP values obtained with A) the same spectral
resolution for both instruments, B) 1

2
, C) 1

4
and D) 1

8
of the master instrument spectral

resolution for the slave spectrometer. Dashed ellipses mark the statistically significant
differences among groups of methods (p−value < 0.05)

can be drawn regarding the differences between PDS and JYPLS-noinv, as the
quality of their outcomes changes depending on the analysed dataset.

The number of spectra to be collected by the slave spectrometer for a precise
calibration transfer is also assessed. TSR and JYPLS-inv yield very similar results
to full recalibration even if a part of the total number of the available spectra
(around 10-40 samples) are included in the corresponding calibration subset. On
the other hand, PDS never reaches such degree of accuracy. Concerning JYPLS-
noinv, it is found to be, in general, as reliable as TSR and JYPLS-inv when the
corn dataset is dealt with, but statistically worse in the gasoline case study.

PDS is strongly affected by the reduction of the spectral resolution of the slave
instrument in the corn dataset, while TSR, JYPLS-inv and JYPLS-noinv seem
not to suffer from the same issue.
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Figure 14.7: Corn dataset. Effect of the Kennard-Stone algorithm-based sample
selection on the performance of the calibration transfer methods under study

In terms of unmeasured spectra reconstruction, TSR results in the best perfor-
mance. In contrast, JYPLS-inv acts as a sort of filter removing the variations in
the spectra not related to the properties to be predicted, consequently producing
deviations from their original shape.

Finally, it is shown that selecting the samples using KS generally permits to achieve
better results, regardless the calibration transfer technique.

14.7 Conclusions

Two novel methods to perform calibration transfer between NIR spectrometers,
based on TSR and JYPLS, respectively, are proposed in this chapter. They out-
perform PDS and guarantee a very similar performance to that resulting from
a full recalibration, when enough spectra collected by the slave instrument are
available. Both approaches also show a sufficient robustness towards the reduc-
tion of its spectral resolution. In addition, TSR allows unmeasured spectra to be
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accurately imputed, while the inversion of the JYPLS models yields reconstructed
spectral profiles filtered of all the variation not of interest from a predictive point
of view.
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Chapter 15

PLS model building with
missing data

Part of the content of this chapter has been included in:

[12] Folch-Fortuny, A., Arteaga, F. & Ferrer, A. PLS model building with miss-
ing data: New algorithms and a comparative study. Journal of Chemometrics,
submitted.
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Chapter 15. PLS model building with missing data

15.1 Introduction

To conclude Part III: Missing data, this chapter investigates how to build PLS
models with MD. This problem is pervasive both in bioindustries, when missing
values appear in historical batch or continuous data, and in research, when MD
appear in predictors (independent variables) and responses (dependent variables)
when collecting data, via e.g. experiments, for fitting regression models. This
problem has been addressed in the literature using different approaches.

Probably the most used methods for PLS-MB with MD are the aforementioned
IA and NIPALS, in their PLS versions. Being the default imputation procedures
in many commercial software packages, such as ProMV, SIMCA-P, The Unscram-
bler [360] and PLS Toolbox. Another method has been recently proposed in the
literature to address missing values in PLS-MB [361]. This method is based on an
optimization procedure using an undeflated PLS algorithm (OUPLS). Regarding
ME, the original TSR algorithm for PCA-ME was adapted to a PLS-ME environ-
ment in [70], with the aim of predicting the uncoming measurements and the future
quality variables while the batch is still being processed. Also, as commented in
[47], IA and NIPALS can be also used for PLS-ME.

After the good performance of TSR in PCA-MB, PCA-ME and PLS-ME, two
novel versions of TSR are proposed in this chapter for PLS-MB with MD . Thus,
TSR can be applied, from now on, to solve both MD problems (MB and ME) in
exploratory and predictive models, as IA and NIPALS. For these methods, as with
methods proposed in chapters 10 and 13, MCAR or MAR mechanisms are assumed
for the MD. The first version of TSR presented here, TSR-1, is a direct adaptation
of the algorithm for PCA-MB to PLS-MB, changing the data preprocessing within
the algorithm. The second one, TSR-2, is an adaptation of the TSR algorithm for
PLS-ME to PLS-MB, using the same rationale developed in Chapter 10 to adapt
the regression-based framework methods from PCA-ME to PCA-MB. The other
regression-based methods, KDR and its variants, are not adapted to a PLS-MB
environment, since TSR has been proved a more efficient approach in chapters 10
and 13.

To test the novel TSR algorithms, a comparative study is presented here against
other state-of-the-art methods commonly used by practitioners: NIPALS and IA.
OUPLS is not used in the comparative for software availability problems. Other
missing data imputation methods used in the literature for predictive modelling
[61], such as the algorithm of Krzanowski based on SVD[62], GIP [63], MICE [64],
and the regularized versions of the E-M algorithm: r-EM [65] and t-EM [66], are
also not included here, since they consider only MD in the predictor variables,
and thus, its comparison would be more appropriate with PCA-MB methods, as
commented in Chapter 10.
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Figure 15.1: MD partition in PLS data matrices.

The aim of this chapter consists of providing researchers and practitioners with a
ready-to-use MATLAB code to impute missing values in a regression environment,
that is, using not only information of predictor and response matrices separatedly
but exploiting the relationships among them. This way, the algorithms provided
here can be used for fitting PLS models with MD or for imputing MD as a previous
step of any other methodology (predictive or not). The TSR algorithms proposed
here are freely available at http://mseg.webs.upv.es, under a GNU license.

The structure of this chapter is as follows. Section 15.2 explains how the two TSR
algorithms for PLS-MB are built. Sections 15.3-15.4 describe the data sets and
the performance criteria used in the comparative study. After showing the resuts
in Section 15.5, Section 15.6 discusses on the methods performances.

15.2 Adaptations of TSR for PLS-MB

This chapter considers the same notation proposed in Chapter 10, that is, the
missing data indicator matrix M and its complementary M̄. Missing and avail-
able values in data matrices are denoted with superindices ∗ and #, respectively.
Finally, the PLS normalized weights matrix is denoted as R = W(PTW)−1.

Figure 15.1 presents the data matrices involved in PLS-MB with missing values.
MD is assumed to appear in the first positions of row n of X andY. The partitions
of xT

n and yT
n are then transferred to matrices P, W and Q.
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15.2.1 From PCA model building (TSR-1)

PLS aims at finding the latent space of X that better explains Y by maximising
the covariance between both data matrices. Thus, one could argue that one way
of meeting this objective consists of augmenting the X data set with the Y matrix
and fit a PCA model, which in this case would maximise the covariance of matrix
[X Y]:

[X Y]T[X Y] =

[
XT

YT

]
[X Y] =

[
XTX XTY
YTX YTY

]
(15.1)

Following this idea, the TSR algorithm for PCA-MB with MD can be used directly
for PLS-MB purposes simply by using the aforementioned augmented matrix as
input.

Figure 15.2 shows a scheme of the adapted TSR algorithm. The modifications with
respect to Figure 10.5 in Chapter 10 are: i) the input data is now the augmented
matrix [X Y], ii) the data is now autoscaled at each step t, and iii) the last step of
the algorithm consists of fitting a PLS model to obtain matrices T, P, Q and R.
This TSR version for PLS-MB is from now on denoted as TSR-1. This iterative
imputation procedure stops when the imputed values stabilize. At this step, the
data is decomposed again in X and Y matrices in order to compute the PLS
model.

15.2.2 From PLS model exploitation (TSR-2)

Two issues arise in the straightforward adaptation of TSR-1. Firstly, even pursuing
a similar objective, a PCA on [X Y] gives a different solution than a PLS, so a
PCA-based model for MD may offer a different imputation than using a method
fitting inner PLS models in the algorithm, as NIPALS and IA do. Secondly, the
number of components may be different in PCA than in PLS. Therefore, if the
number of PLS components are used to fit a PCA model using the augmented
matrix, overfitting or underfitting problems may appear.

A TSR version for PLS-ME, using PLS as the core model, can be derived from
the original idea of the algorithm for PCA-ME. This was done in [70] to propose
a model to estimate the missing values in real-time batch monitoring. TSR for
PLS-ME aims at estimating the complete scores of new observations using the
information contained in the scores of the submatrix of X corresponding to the
available data in the reference observation. Using matrix T from the complete
model, this can be expressed as:

T = T∗B + E (15.2)
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Figure 15.2: TSR-1 procedure for PLS-MB. M denotes here the MD indicator matrix
of the augmented data [X Y]. M̄ is the complementary of the indicator matrix.
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where T = XR, and:

T∗ = X∗R∗ = X∗W∗(PTW)−1 (15.3)

Matrices P and W are used to obtain R∗ in order to improve prediction of the
missing values using information from the complete PLS model, and to avoid
problems of invertibility [70].

From Equations 15.2-15.3, the regression matrix B can be estimated as:

B̂ = (T∗TT∗)−1T∗TT = (R∗TXT∗X∗R∗)−1R∗TX∗TT (15.4)

And since X∗ = TP∗T:

B̂ = (R∗TXT∗X∗R∗)−1R∗TP∗TTT = (R∗TS∗∗R∗)−1R∗TP∗Θ (15.5)

where Θ = TTT
N−1 is the covariance matrix of the scores. Finally, using the previous

estimation, the scores of the PLS can be estimated in the last step of TSR for
PLS-ME [70], that is, combining Equations 15.2-15.3:

T = X∗R∗B + E (15.6)

we get:

τ̂ = B̂
T
R∗Tx∗ (15.7)

being x∗ the available part of the measurements of the new observation x.

To adapt TSR from PLS-ME to PLS-MB, the same rationale presented in Chapter
10 is followed here. That is, the TSR version for ME is applied in each of the n rows
with missing values of the data matrices at each step t of the iterative procedure,
using the PLS model of the previous imputation step as the complete model.

Additionally, as a final step in TSR for PLS-MB, not only the PLS scores are
needed, but the values for the MD imputation. These are obtained, from Equation
15.7, as:
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x#
n = P#τ̂n = P#B̂

T
R∗Tx∗n = P#ΘP∗TR∗(R∗TS∗∗R∗)−1R∗Tx∗n =

= P# TTT
N − 1

P∗TR∗(R∗TS∗∗R∗)−1R∗Tx∗n =

=
X#TX∗

N − 1
R∗(R∗TS∗∗R∗)−1R∗Tx∗n = S#∗R∗(R∗TS∗∗R∗)−1R∗Tx∗n (15.8)

It is worth noting that Equation 15.8 gives, in fact, a similar estimation for the
missing measurements in X as presented in Chapter 10 for PCA-MB, that is,
substituting P∗ by R∗ in Equation 10.6.

Finally, the estimation for the Y missing values is obtained as:

y#
n = Q#τ̂n = Q#ΘP∗TR∗(R∗TS∗∗R∗)−1R∗Tx∗n (15.9)

Unfortunately, Equation 15.9 cannot be expressed in a more simplified way, since
the matrix establishing the relationship between X and Y, R, has the dimensions
of the loading matrix in X, not in Y.

The previous methodology can be transferred to a similar diagram as presented in
Figure 15.2. Thus, Figure 15.3 shows the adapted TSR version from PLS-ME [70]
to PLS-MB, from now on denoted as TSR-2. This algorithm is indeed similar to
TSR-1 (see Figure 15.2) with some differences: i) since data matrices are processed
separatedly, each step is applied on both matrices, ii) MD indicator matrices are
defined, each one associated to the data partition in one of the matrices, and iii)
a PLS model is fitted on both autoscaled data matrices, instead of PCA. The
iterative procedure stops again when the imputation values stabilize in both data
matrices, so the PLS matrices are estimated using the last round of imputation.

15.3 Data sets

Four data sets are used in this chapter to compare the results of the new TSR
algorithms against state-of-the-art approaches. The data sets have been selected
exploring data matrices of different sizes and several latent structures.

The first case study is the Hald data set, widely used as an example for regression
purposes [362, 363]. This data set has 13 observations of 4 ingredients of Portland
cement and a single response variable equal to the number of calories of heat
generated in the hardening process. One single LV is extracted, explaining 55% of
X and 96% of Y.
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Figure 15.3: TSR-2 procedure for PLS-MB.
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The second data set is taken from systems biology, and corresponds to 36 cultures
from the flux data set used in chapters 5 and 13. The 44 fluxes measured in
each experiment, excluding biomass, are considered as predictors, and the protein
produced as the response. 3 LVs are selected in the PLS, explaining 76.5% of
variance in X and 71.5% in Y.

The third data set comes from chemometrics, and has been used in Chapter 14.
It corresponds to a set of measurements of pseudo-gasoline samples using an spec-
trometer capturing wavelengths from 800 nm to 1600 nm in 2 nm intervals. The
first (master) spectrometer is used here. 6 LV are used in the PLS model, explain-
ing 99.9% and 99.8% of variance in X and Y, respectively.

Finally, a simulated data set including 10 variables and 100 observations is simu-
lated [303, 304] as in Chapter 13, using 4 PCs with eigenvalues equal to 3.5, 2.5,
2 and 1.5. The original data matrix is split afterwards: the first 6 variables are
assigned to the X data set, the remaining 4 to Y. When fitting a PLS model, 3
LVs are chosen, explaining 87.9% of variance in X and 75.2% in Y.

15.4 Comparative study

In the next section, the performances of TSR-1, TSR-2, IA and NIPALS are com-
pared. The previous data sets are used here as case studies. The strategy to
generate the MD is the same as proposed in Chapters 10, 11 and 13: 6 incremen-
tal levels of MD are considered in each data set, ranging from 10% to 60%, and
for each data set and percentage, 50 possible data sets are simulated, following the
MCAR mechanism.

The principal performance criterion for each method is the MSPE (see Equation
10.10). Since the missing values are being imputed both in X and Y, MSPE-X
and MSPE-Y denote the MSPE values in each data matrix, respectively. The
second performance criterion is the cosine between the normalized weight vector
of the first PLS, r1 obtained using the full data matrix and its corresponding from
the imputed data set.

In order to assess whether the differences among methods, in terms of MSPE,
are statistically significant, a mixed-effect ANOVA model is fitted per each case
study. Now instead of a three-factor, as described in Chapter 10, a four-factor
mixed-effect ANOVA model is applied: method (4 levels), X-MD percentage (6
levels), Y-MD percentage (6 levels), and their interactions are fixed-effect factors,
and the data set, nested to the combination of X-MD and Y-MD percentages, is a
random-effect factor. Also, a logarithmic transformation is used for MSPE-X and
MSPE-Y. This transformation also expands the differences for low percentages
of MD, easing the visualization of the plots. In case any effect or interaction is
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statistically significant (p-value<0.05), the 95% LSD intervals are computed to
establish differences among methods.

15.5 Results

15.5.1 Hald data

As expected, the more missing values are considered in both X and Y the more
difficult is for all methods to reconstruct accurately the MD. This can be seen in
the first and second column of plots in Figure 15.4, corresponding to MSPE-X and
MSPE-Y values. Each plot in these two columns show the evolution of the MSPEs
when increasing the X-MD percentage for a fixed Y-MD percentage. In the third
column of plots, representing the cosines of the normalized weigths of the first LV,
this effect can also be appreciated in the degradation of the cosine values.

NIPALS has problems in imputing MD in this first data set from 40% of X-MD
onwards, and when converges, it has, in general, a statistically worse peformance
than the other methods in imputing MD in X (see first column of plots in Figure
15.4). Regarding the MSPE-Y, its performance is clearly the worst (see second
column of plots in Figure 15.4).

The performance of TSR-2 and IA is similar in MSPE-X, having TSR-2 a better
performance for some percentages of MD (see first column of plots in Figure 15.4).
Regarding MD in Y, IA attains a statistically better results for low X-MD (10-
30%), otherwise their results are similar (see second column of plots in Figure
15.4).

The performance of TSR-1 is, in general, statistically superior to all the other
methods up to 40% of Y-MD, and there tend to be no statistically significant
differences for someX-MD percentages among the other methods (except NIPALS)
for 50-60% of Y-MD.

15.5.2 P. pastoris data

NIPALS has also problems in the P. pastoris data set (see Figure 15.5). Even
having results on MSPE-Y statistically as good as TSR-1 for low percentages of
X-MD and Y-MD, and statistically better than IA and TSR-2 (see Figure 15.5e,
h and k), it fails to converge when more than 40% of missing data is considered
in Y.

TSR-1 obtains here the best performance both in MSPE-X and MSPE-Y, with
very few exceptions, in which its results are statistically equal to other approaches
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Figure 15.4: Hald data set results. The first (second) column of plots show the
MSPE-X (MSPE-Y) results and the last column shows the cosines of the normalized
weights of the first LV. The x-axis of each plot denotes the X-MD percentage. The
differences regarding Y-MD percentages can be seen comparing rows of plots. The shaded
bands represent the LSD 95% confidence intervals for the MSPE results of each method.
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(see first and second column of plots in Figure 15.5). Mainly, the second-best
method in this data set is TSR-2, followed by IA.

The MSPE-Y for high percentages of Y-MD show an oscillatory performance of
all methods, e.g. Figure 15.5k, n and q. This effect is probably due to the fact
that the PLS does not explain approximately 29% of the variability in Y, and this
lack of explained variance is causing artifacts depending on the combination of
percentages of MD in X and Y considered for the imputation.

15.5.3 NIR data

The performance of NIPALS in this third case study is even poorer than in previous
examples. Here, it is only able to impute up to 40% of X and 20% of Y-MD.
And, when available, its results are statistically worse than the other iterative
approaches.

Regarding MSPE-X, TSR-1 and TSR-2 have a similar performance, being both
statistically superior to IA for 40%-60% of X-MD percentages (see first column
of plots in 15.6). However, TSR-1 is indisputably the best method when checking
the MSPE-Y results, followed by TSR-2, which gets statistically better or equal
results than IA (second column of plots in Figure 15.6).

The performance in MSPE-Y of IA for high Y-MD percentages (see Figures 15.6k,
n and q) improves when changing from 10 to 30% of MD in X. This is probably
due to IA is being affected by overfitting in the imputation, since the percentage
of variance explained of both X and Y in the PLS model is very high (see Section
15.3) when using 6 LV in the model. TSR-1 and TSR-2 seem to be not influenced
by this problem.

The difference in the performances of TSR-based algorithms and IA can also be
appreciated in the third column of plots in Figure 15.6, where, even getting very
high cosines, the values of IA appear below TSRs’ when the percentages of MD in
X and Y increase.

15.5.4 Simulated data

In the last case study analysed here, NIPALS is unable to analyse any combination
of X and Y-MD percentages, even including only 10%-X and 10%-Y MD. TSR-1
shows again a clear statistically better performance in both MSPE-X and MSPE-Y
for all MD percentages than its competitors, with few exceptions where its results
are as accurate as TSR-2’s. Between TSR-2 and IA there are again some cases in
which they get statistically equal results, but in general the performance of TSR-2
outperforms IA. These significant differences match the results obtained in the
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Figure 15.5: P. pastoris data set results. More details in caption of Figure 15.4.
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Figure 15.6: NIR data set results. More details in caption of Figure 15.4.
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third column of plots, corresponding to the cosines of the weight vector of the first
LV.

In this dataset, IA shows an erratic performance, especially in MSPE-Y (see Fig-
ures 15.7n and q). This happened also in the P. pastoris case study, and reinforces
the hypothesis that it is due to the lack of variance explained in Y, in this case
similar to the aforementioned example (25%). However, TSR-1 seems to be not
affected by this problem in any case study.

15.6 Discussion and conclusion

Two TSR algorithms have been proposed in this chapter: TSR-1 consists of an
adaptation of the TSR algorithm from PCA-MB to PLS-MB, and TSR-2 is an
adaptation of TSR from PLS-ME to PLS-MB. The case studies analysed here
show that TSR-1 is an excellent approach regardless the latent structure of the
data. Its performance is, in general, statistically superior to TSR-2, with few
exceptions for some combinations of MD percentages in X and Y.

The TSR approaches proposed have been compared to other state-of-the-art meth-
ods: IA and NIPALS. IA shows generally a statistically worse performance than
the TSR-based approaches, being its results in few cases closer to TSR-2’s. NI-
PALS, a method implemented in many commercial statistical packages (such as
ProSensus MultiVariate, The Unscrambler, SIMCA-P and PLS Toolbox), is clearly
the statistically worst method compared here, since for most MD combinations is
not able to converge and when it converges, its results are significantly worse than
IA and TSR-based methods.

TSR-1 performed extraordinarily well for PLS-MB with MD. As commented in the
Introduction, the ability of TSR to reconstruct the covariance matrix of incomplete
data sets, which ultimately determines the relationships among variables in most
multivariate models, makes the final PLS fitted on imputed data resemble more
the actual model than specific methodologies developed for PLS-MB with MD.
This way, if practitioners find MD when fitting other covariance matrix-dependent
methodologies, such as principal component regression or multiple regression mod-
els, they can use directly TSR-1 to impute the MD and then use the complete
matrices for obtaining the desired model.

On the other hand, TSR-1 uses the number of components specified for the PLS
model at hand to build the PCA-based model for the MD imputation. This may
generate a problem if the covariance structure of the augmented data matrix [X Y]
is strongly different to the latent structure of a PLS model between X and Y, thus
provoking over or underfitting. However, one way to overcome this hypothetic
situation consists of using an algorithm to select the appropriate number of PCs
using the augmented matrix. In Chapter 12, the ckf algorithm [330] was used to
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Figure 15.7: Simulated data set results. More details in caption of Figure 15.4.
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15.6 Discussion and conclusion

decide the number of components in the MDI toolbox for PCA-MB. This procedure
could solve the aforementioned problem.

Both TSR algorithms proposed here are freely available at http://mseg.webs.
upv.es, under a GNU license.
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Chapter 16

Conclusions

In this thesis several procedures commonly applied within the chemometrics com-
munity were used to model and solve problems in systems biology. Furthermore,
new methodologies were developed to cope with specific problems within the dif-
ferent omic areas. After an initial introduction of both the existing chemomet-
ric techniques and the basics of omic sciences and systems biology, the different
contributions were presented within two parts. In Part II: Modelling biological
organisms, metabolic, fluxomic, proteomic and phenotypic data were analysed us-
ing exploratory and predictive models. In Part III: Missing data, the problem of
missing data and outliers in systems biology and bioprocesses was studied, solv-
ing problems as model building with missing data, data cleaning, and calibration
transfer. In this last part, the conclusions, relevance and future lines of the thesis
are outlined.

16.1 Meeting the objectives

In this section, the main conclusions in this document are summarized, in order
to demonstrate that the objectives have been met.

Objective 1: Build models integrating information from different bio-
logical levels

Grey models revealed as a powerful approaches to combine first principle knowl-
edge of an organism, i.e. the metabolic model and stoichiometry, and a set of
experimental results. This way, when steady state flux measurements were co-
herent with the theoretical model, a MC sampling could be performed on the
convex cone of feasible flux solutions to capture the variability associated to the
enviornmental conditions. To understand the flux distributions two methodolo-
gies were tested in this thesis: an enhanced PCA using MEDA, and MCR. The
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output of the first approach was a set of orthogonal pathways or modules in the
network relating enviornmental conditions, such as substrate consumption, with
end-products of interest, such as biomass and protein production. However, no
biological information could be included in the results, since it is a hard model.
In comparison, MCR allowed to include constraints in the algorithm, driving the
pathways to a biologically more meanginful solution. This ability, jointly with
the non-orthogonality of pathways, permitted to describe all experimental condi-
tions tested in Chapter 5, including a scenario not described using PCA+MEDA.
Both approaches permit to understand what was happening from the substrates
to the end-products, however, MCR offered the possibility to model the flux data
including constraints capturing the available information from the experiment.

Chapters 6 and 7 presented a novel framework to model steady state flux data, in
order to include topological information of the metabolic network in the multivari-
ate models evaluated in the previous paragraph. This way, PEMA built a PCA-like
model using the EMs of the network as the candidates for the components. Using
this approach, the principal pathways describing the flux data were directly a com-
bination of fluxes flowing in the metabolic network in thermodynamically feasible
way from substrates to end-products. The simulated study presented in Chapter
6 confirmed that the algorithm identified most of the EMs used to simulate the
data, up to the point where a particular flux distribution could be represented by
different combinations of EMs. The results in the real case studies show the EMs
identified in P. pastoris and E. coli and how the PEMA model could be exploited
using a set of visual plots, all of them included in a freely available in MATLAB
code within the so-called PEMA toolbox. This EM-based model could be extended
to non-steady state data, as presented in Chapter 7: dynEMA was proposed as
a direct extention of PEMA, i.e., to fit an exploratory model, and dynEMR-DA
was proposed to discrimante between experimental conditions. A simulated and a
real case study proved the ability of this modelling to find which dynEMs were the
most variable pathways when changing the glucose amount present as a substrate
or when switching from aerobic to anaerobic conditions. The results between sim-
ulated and actual data were coherent, strenghthening the validity of the modelling
and justifying the need of model non-steady state data using dynamic models
rather than applyting a PEMA-based model directly.

From this thesis, it is concluded that when dealing with steady state flux data
sets, PEMA should be applied in order to extract the relevant actual metabolic
pathways active in a metabolic network. When the network size increases, and it is
desired to combine this pathways creating pseudo-pathways (not necessarily from
inputs to outputs) or functional modules, MCR should be applied, being also able
of including more biological constraints in the multivariate model. When dealing
with non-steady state flux data, dynamic methods have to be used, as dynEMA or
dynEMR-DA, since the coefficients multiplying the pathways can change strongly
depending on the phase of the experiment.
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To complete this first objective, three additional biological layers of organisms were
investigated: the genome, the proteome and the phenotype. After a bibliography
review on PPIs detected in potyviruses, a PPIN was built as a meta-analysis of
these references. This network was the starting point to relating the effect that
mutations in the RNA of the viruses provoke in the PPIN and how this effect
was transferred to the physical state of the organism. To model this different
sources of information, a data fusion was applied, specifically using PLS. This
methodology allowed to identify functional modules in the PPIN, activated by
particular mutations and contributing positively or negatively to the performance
of the organism. This way, the mutations-protein-fitness and the mutations-fitness
effects were modelled, giving clues to researchers about what regions and mutations
are the most influencing ones on potyviruses.

Objective 2: Develop missing data methods and outlier detection and
correction procedures in systems biology and bioprocesses

The first contribution devoted to accomplish objective 2 was the adaptation of the
regression-based framework methods from PCA-ME with MD to the MB context.
This way TSR, PMP and KDR methods are now able to impute missing values
in multivariate data sets. These methods were compared to other state-of-the-art
methods (NIPALS, IA, NLP and DA) in several data sets. When comparing the
performances, TSR attained excellent results when imputing MD with different
data structures and LVs, even with big data sets. Most of these methods shown
problems when dealing with datasets with complex latent structures.

The regresion-based methods, presented in Chapter 10 were afterwards adapted
to impute within the MLPCA algorithm (Chapter 13), in order to check whether
a ML-based imputation using the regression-based methods improve the accuracy
of the reconstruction of missing values. This adaptation arose from a similarity
between the imputation step of MLPCA and PMP, therefore it made sense to test
the other regression-based methods in this step. The conclusions were: i) even
though PMP and MLPCA have similarities, the imputation is completely different,
ii) MLPCA using TSR as imputation step may outperform the original MLPCA,
and iii) the original TSR outperform any other ML-based algorithm. All methods
in these two chapter were tested using datasets coming from different areas within
chemometrics and systems biology, such as NIR and FTIR measurements and flux
data sets.

After evaluating the good performance of TSR it was decided to make the al-
gorithm ready-to-use for the scientific community. This was done through two
contributions. In the first one, the algorithm was implemented within a module
of data cleaning for network inference purposes in systems biology. This way,
the data cleaning module have two steps: i) an initial MD imputation, as per-
formed in Chapter 10, and afterwards an outlier detection and correction. The
final step of the methodology consisted of inferring the biological network, based
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on the cleaned data, using MIDER method. When compared to other imputa-
tion methods commonly used within omic sciences (such as the k-nearest neighbor
algorithm), TSR showed again a statistically superior performance, and the out-
lier detection scheme, based on contribution plots to the squared prediction error
(SPE) of a PCA, permit to correct errors in datasets prior to inferring the desired
network. At the same time, this chapter studied the effect that the MD imputation
has when further analysis are applied on the imputed data sets, something that
was not evaluated in Chapter 10.

The second contribution presented a MATLAB GUI for MD imputation, the MDI
toolbox, able to guide the practitioner from the missing pattern visualisation in
the data set to the imputation of missing values and the visual exploitation of the
resulting PCA model. Several external validators outlined the benefits of having
this freely distributed GUI able for the scientific community.

The main conclusions of this thesis about MD imputation methods is that TSR
is a great methodology to solve MD problems regardless the data structure and
the aim of the imputation, i.e. fitting PCA models or use the imputed values
as an input for further analysis. When exploring other state-of-the-art proposals,
including ML-based algorithms and methods implemented in commercial software
packages, it is concluded that TSR is an outstanding approach.

Finally, two versions of TSR were proposed for PLS-MB: one based on an adap-
tation from the PCA-MB to PLS-MB (TSR-1), and another one from PLS-ME to
PLS-MB (TSR-2). The first version, using first a PCA model to impute the data
in the augmented matrix, including both the predictors and the responses, yielded
better results than the second version, imputing using the PLS algorithm. When
both methods were compared to other state-of-the-art methods, such as IA and
NIPALS, they obtained better results in general.

Objective 3: Address near infrared (NIR) and image analysis problems
in bioprocesses.

Two projects were launched to fulfill the third objective, involving two entities not
included in the MultiScaleS/SynBioFactory projects, as commented in Chapter 1.
The first project consisted in addressing the so-called calibration transfer problem
between NIR instruments. In Chapter 14 three new methods were presented for
performing calibration transfer: TSR and two JYPLS-based methods. Applying
TSR and JYPLS with model inversion, the unmeasured spectra collected in the
slave instrument were imputed using the relationships between samples measured
in both instruments and the available measurements of the master instrument.
JYPLS without inversion used the original algorithm to transfer a model developed
in the master instrument to the slave one. A comparative study was performed
using NIR samples from chemometrics and systems biology. The conclusion of the
study was that TSR and JYPLS with inversion offer better results than PDS, the
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reference method, when enough samples were included in the model, that is, when
results as good as a full recalibration are desired. Also, the performance of these
methods was not affected when the resolution of the slave instrument was reduced,
something very common in (bio)industries, when a high-resolution spectrometer
is used for specific measurements and a low-resolution one is used on-line.

The second project aimed at detecting rottenness in oranges using image anal-
ysis. Specifically, the idea was to study the effect of the virus P. digitatum on
oranges some days after the harvest, trying to catch this differences in the in-
ner part of the fruit using hyperspectral images. After feature extraction of the
three-dimensional datacubes, Nway PLS discriminant analysis (NPLS-DA) was
applied to discriminate between infected and sound oranges. Discriminant mod-
els are prone to overfitting, so a double cross validation procedure was applied
in this study, in order to avoid spurious results. The interest in this project was
not only to be able to discriminate but also to find what wavelengths were the
most discriminant ones, since CCD cameras can include filters reproducing these
wavelengths. Permutation testing on VIP revealed as a powerful tool to select this
discriminant wavelengths from the complete set, loosing only around 2% of correct
classification.

16.2 Relevance

The relevance of the present PhD Thesis is highlighted in the following points:

• This thesis has been developed within the framework of two research projects
from the Spanish Ministry of Economy, coordinated among different Span-
ish sites. Two projects have been completed with CSIC and IVIA. Two
international research stays have been carried out (Lisbon and Amsterdam.
And two companies, Biopolis S.L. and Shell Global Solutions B.V. have been
interested in the results provided here. Therefore, the methodologies devel-
oped and applied here have been disseminated across many research groups
to analyse data coming from projects and companies in different countries.

• The exploratory methods applied here for metabolic flux understanding
(PCA, MCR, PEMA and dynEMR-DA) can be used to indentify desirable
metabolic states in organisms. This knowledge can be used in bioindustries
to drive biofermentations to the desired state, as for example, the production
of a protein of interest.

• Two free (open use) toolboxes were presented in this thesis: PEMA and
MDI, which can be used by the scientific and the industrial community to
identify active pathways in fluxomics and to impute missing values in the
most proper way, respectively.
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• The expected output of the wavelength selection using NPLS-DA is the de-
velopment of an automatic procedure to discriminate between sound and
infected oranges in fruit warehouses, which will potentially save money due
to i) the relatively cheap filters that can be incorporated to CCD cameras to
mimic the results of expensive hyperspectral cameras, and ii) the reduction
of the losses for fruit contamination after their storage.

• The knowledge obtained about Potyvirus will help the scientific community
in i) the creation of more resistant strains of the virus, for research purposes,
and ii) understanding the way in which they have to attack the virus.

• With the methods proposed in this document, the transfer of calibration
models between near infrared spectrometers will be performed both in re-
search and bio-based industries in a more proper way, avoiding time-consuming
recalibrations and fostering advances in other research areas.

• Other research areas, such as social sciences, will benefit from the advances
in this thesis, due to MD and outlier problems are an intrinsic issues to data-
driven network inference not only in systems biology and chemometrics.

16.3 Future lines

This PhD dissertation opens some future lines:

• Test the results obtained with P. pastoris, E. coli and S. cerevisiae using
data from fermentations online. Also, new multivariate models, taking into
account the properties of raw materials, could be applied in this data, to
tune the bioproduction systems, depending on the suppliers.

• Investigate whether PEMA models can be used for intracellular fluxes pre-
diction. The set of active EMs can be obtained applying PEMA on a subset
of the fluxes, say the extracelullar ones. In this case, however, the redun-
dancy in the EMs is even higher, since they represent only a subset of the
network. But if only extracellular measurements are available, it would be
very useful to fit a PEMA model, obtain the active EMs, and then, based on
the coefficients multiplying the EM to fit the extracellular fluxes, infer the
intracellular ones.

• Develop a new version of the PEMA toolbox including i) the dynamic mod-
elling of non-steady state flux data (dynEM models) and ii) a GUI, as pre-
sented in Chapter 12 with MDI toolbox.

• Test the data fusion approach with a larger dataset containing more mutants,
and extend the analysis to larger PPINs.
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• Design and test the CCD camera able to discriminate between infected and
sound oranges based on the wavelengths selected in Chapter 9, and solve the
problems of its online implementation.

• Test the NPLS-DA models for hyperspectral imaging in other fruits of the
valencian region, as lemons and khakis.

• Combine the knowledge acquired about fermentations, near infrared spec-
troscopy and image analysis, in order to monitor big fermentations using
these different information sources.

• Extend TSR from PLS model building with missing values to PLS model
exploitation, as performed in Chapter 10 with PCA. This way, missing values
in the quality variables could be imputed within industrial (bio)processes.

• Build a new version of the MDI toolbox addressing not only PCA-MB with
missing values, but incorporating i) PLS-MB and ii) PCA/PLS-ME with
missing data.

• Incorporate the outliers detection and possible correction within the TSR
algorithm. In Chapter 11, this was done at two different steps: first impu-
tation, then outlier analysis. It could be interesting to integrate the outlier
detection at each iteration of the TSR algorithm, since outliers corresponding
to dirty data may influence the solution when used as true values.

• Create a toolbox in MATLAB for calibration transfer between near infrared
spectrometers.

• Investigate whether the calibration transfer procedures proposed in this the-
sis, based on TSR and JYPLS with inverse, can be applied in other spec-
trometers, such as mid-infrared or NMR. As well, it would be interesting to
check whether the imputation of measurements in a device can be performed
using measurements from a different one, once proven that the relationships
between both measurements are strong enough.

• Compare the results of TSR-1 and TSR-2 algorithm for PLS-MB when the
covariance structure of the augmented matrix is strongly different than the
latent structure of a PLS between predictors and responses. Also, investigate
how to chose the appropriate number of components in these cases, e.g. using
the ckf algorithm. As well, a procedure to select the appropriate number of
components in TSR-2 must be investigated.

• Finally, as commented for PCA-MB purposes, it would be nice to address
not only MD within TSR algorithms for PLS-MB but also outlier detection
and correction.
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