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Measure-based Inconsistency-tolerant
Maintenance of Database Integrity

Hendrik Decker ?

Instituto Tecnológico de Informática, Valencia, Spain

Abstract. To maintain integrity, constraint violations should be pre-
vented or repaired. However, it may not be feasible to avoid inconsistency,
or to repair all violations at once. Based on an abstract concept of viola-
tion measures, updates and repairs can be checked for keeping inconsis-
tency bounded, such that integrity violations are guaranteed to never get
out of control. This measure-based approach goes beyond conventional
methods that are not meant to be applied in the presence of inconsis-
tency. It also generalizes recently introduced concepts of inconsistency-
tolerant integrity maintenance.

1 Introduction

To some extent, the intended semantics of a database can be modeled by in-
tegrity constraints (in short, constraints). Such constraints are declared by for-
mal sentences that express what should or should not hold in each state of the
database. Semantic consistency, a.k.a. integrity, then corresponds to constraint
satisfaction and inconsistency to constraint violation. Satisfaction means that
each constraint is satisfied, i.e., evaluates to true in the given database state,
and violation means that some constraint is violated, i.e., evaluates to false.

The problem studied in this paper is the maintenance of integrity. In particu-
lar, we focus on checking the preservation of integrity satisfaction across updates,
and on repairing integrity violations. Checking means to prevent integrity viola-
tions that could be induced by updates, repairing means to update the database
such that integrity violations are eliminated.

Solutions for integrity maintenance have been discussed in many research pa-
pers and state-of-the-art inventories (see [53] for a fairly recent survey). Rather
than proposing new methods for integrity maintenance, we present generic for-
malizations of approaches to integrity checking and repairing that subsume most
existing solutions. In particular, we generalize the formalization in [27], which
has rebutted the theoretical point of view that inconsistency in databases is in-
tolerable. In order to achieve conceptual genericity and inconsistency tolerance,
we quantify the lack of integrity satisfaction by violation measures. They enable
to monitor and reason about integrity in the presence of inconsistency.
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In Section 2, we outline the foundations of the paper. In Section 3, we de-
fine a concept of violation measures for quantifying the amount of inconsistency
in databases. In Section 4, we formalize a measure-based inconsistency-tolerant
approach to integrity checking. In Section 5, we describe the use of violation
measures and inconsistency-tolerant integrity checking for obtaining partial re-
pairs that curtail constraint violations while tolerating extant inconsistencies.
The ease with which the theorems in Sections 3 – 5 are obtained mainly is due
to the strength of the abstractions in the definitions from which they follow. In
Section 6, we address related work, including our own. In Section 7, we conclude.

2 Background and Framework

In 2.1, we outline a broad background of issues related to integrity maintenance,
in order to facilitate the placement of this paper into the wide spectrum of work
on database integrity. In 2.2, we formalize the framework of the remainder.

2.1 Background

Integrity constraints and their maintenance are of crucial importance, not only
for the preservation of the semantic correctness of the data across state changes,
but already for the design and the implementation of database schemas. It is in-
deed of utmost importance that, first of all, requirements engineering (RE) and
conceptual modeling (CM) are done well; otherwise, a systematic maintenance of
integrity may be a lost cause from the start. Similarly, a careful database schema
design (SD) is indispensable for having a chance of effective integrity mainte-
nance at all. Also schema evolution (SE) should be conscious of constraints to
be maintained or changed, since they are meant to evolve consistently with the
schema. Moreover, an integrity-aware design of database transactions (transac-
tion design, TD) can help to prevent constraint violations.

A lot of work on RE and CM that is related to integrity constraints can be
found in the literature by authors such as Borgida, Chen, Jarke, Mylopoulos,
Olivé, Thalheim and many others. Plenty of material on SD can be found in all
textbooks on the foundations of databases. In SD, constraints are often called
‘dependencies’. Dependency theory is a subfield of SD that deals with the pre-
vention of constraint violations, called ‘update anomalies’, by various normal
forms of schemas. These normal forms are obtained by enforcing various kinds
of dependencies. Authors such as Beeri, Fagin, Schewe, Vardi and many others
have designated and pushed the limits of dependency theory. By comparison, SE

and TD have received less attention, but interesting proposals have been made
in [15] [6] and others, for SE, and [2] [57] and others, for TD.

In this paper, we shall not be concerned with RE, CM, SD, SE and TD. We
assume that each database is an instance of a syntactically well-defined schema,
to which an integrity theory, i.e., a finite set of declarative integrity constraints,
is associated. Beyond the syntactic confinements given by the schema description
language, we do not insist that schemas conform to any prescribed or desirable



normal form. Properties that serve to obtain a schema that complies with any
semantic requirement are supposed to be expressed declaratively by suitable
integrity constraints. A careful integrity-aware design of schema alterations and
transactions is welcome, but not compulsory for the purpose of this paper.

In a setting as sketched in the preceding paragraph, integrity can be main-
tained in two complementary ways: by checking the preservation of constraint
satisfaction upon updates (i.e., updates that would violate integrity are filtered
out), or by repairing constraint violations.

We further assume that integrity checking is done by a software module that
is independent of applications, transactions, triggers and stored procedures de-
fined by the schema designer or the user. (This assumption does not exclude
the implementation of integrity checking by triggers or stored procedures by
the manufacturer of the DBMS or the provider of some application-independent
middleware, rather than by the schema designer or the user.) The particular
approach to integrity checking by such a module often is called a method (for
integrity checking). A module that embodies a method can either be built into
the core of the DBMS (as it is the case for checking standard constructs such as
primary and foreign key constraints), or be situated on top of the DBMS, as part
of some middleware that interfaces users and applications with the database.
Similarly, repairing is supposed to be done methodically: a module that is inde-
pendent of applications, transactions, schemas and users is supposed to generate
update candidates that, when executed, would eliminate integrity violations.

2.2 The Formal Framework

In 2.2.1, we outline some basic preliminaries. In 2.2.2 and 2.2.3, we recapitulate
the notions of ‘cases’ from [27], and ‘causes’ from [20], respectively. Cases are
instances of constraints that are useful for three objectives: simplified integrity
checking, quantifying constraint violations and tolerating inconsistency. Causes
are stored data that are responsible for the violation of constraints, and are of
similar use as cases. Unless specified otherwise, we use notations and terminology
that are common for datalog [1, 30] and first-order predicate logic [32].

2.2.1 Databases, Completions, Updates, Constraints

Let us assume a universal language L for expressing the domain of discourse of
each database. Let HL denote the Herbrand base of L, and Lc the set of constant
terms in L, which we may represent, w.l.o.g, by natural numbers.

An atom is an expression of the form p(t1, ..., tn), where p is a predicate of
arity n (n ≥ 0); the ti are either constant terms or variables. A literal is either
of the form A or ∼A, where A is an atom; ∼ represents negation.

A database clause is a universally closed formula of the form A←B, where
the head A is an atom and the body B is a possibly empty conjunction of literals.
If B is empty, A is called a fact. If B is not empty, A←B is called a rule. As is
well-known, rules are useful for defining view predicates, as well as for enabling
deductive and abductive reasoning in databases.



A database is a finite set of database clauses. As usual, we assume that, for
each database D, the set of predicates of facts in D and the set of predicates of
the head of rules in D are disjoint.

The well-known completion of D be denoted by comp(D), which essentially
consists of the if-and-only-if completions (in short, completions) of all predicates
in L. [14]. For a predicate p in L, let pD denote the completion of p in D.

Definition 1. Let D be a database, p a predicate in L, n the arity of p,
x1, . . . , xn the ∀-quantified variables in pD and θ a substitution of x1, . . . , xn.
For A = p(x1, . . . , xn)θ, the completion of A in D is obtained by applying θ to
pD and is denoted by AD. Further, let comp(D) = {AD | A∈HL}, and if(D)
and only-if(D) be obtained by replacing ↔ in each AD ∈ comp(D) by ← and,
resp., →. Finally, let iff(D) = if(D)∪ only-if(D). The usual equality axioms of
comp(D) that interpret = as identity be associated by default also to iff(D).

Clearly, if(D) is equivalent to the set of all ground instances of clauses in D.
Moreover, comp(D), comp(D) and iff(D) clearly have the same logical conse-
quences. However, the characterization of causes in 2.2.3 by subsets of iff(D) is
more precise than it could be if subsets of comp(D) were used instead.

We may use ‘;’ instead of ‘,’ to delimit elements of sets since ‘,’ also denotes
conjunction in the body of rules and denials. Otherwise, conjunction is denoted
by ∧. Symbols |=, ⇒ and ⇔ denote logical consequence (i.e., truth in all
Herbrand models), meta-implication and, resp., meta-equivalence. By overload-
ing, we use = as identity predicate, assignment in substitutions, or meta-level
equality; 6= is the negation of =.

An update is a finite set of database clauses to be inserted or deleted. For
an update U of a database D, we denote the database in which all inserts in
U are added to D and all deletes in U are removed from D, by DU . An update
request in D is a sentence R that is requested to become true by updating D. An
update U satisfies an update request R in D if R is true in DU . View updating
is a well-known special kind of satisfying update requests. In Section 5, repairs
are treated as updates, and repairing as satisfying specific update requests.

An integrity constraint (in short, constraint) is a sentence which can always
be represented by a denial, i.e., a universally closed formula of the form ←B,
where the body B is a conjunction of literals that asserts what should not hold
in any state of the database. If the original specification of a constraint by a
sentence I expresses what should hold, then a denial form of I can be obtained
by an equivalence-preserving re-writing of ←∼I as proposed, e.g., in [17], that
results in a denial the predicates of which are defined by clauses to be added to
the database. An integrity theory is a finite set of constraints.

From now on, the symbols D, IC , I, U and adornments thereof always stand
for a database, an integrity theory, a constraint and, resp., an update, each of
which is assumed, as usual, to be range-restricted [17].

For each sentence F , and in particular for each integrity constraint, we write
D(F ) = true (resp., D(F ) = false) if F evaluates to true (resp., false) in D.
Similarly, we write D(IC ) = true (resp., D(IC ) = false) if each constraint in IC
is satisfied in D (resp., at least one constraint in IC is violated in D).



2.2.2 Cases

For each constraint I, a case of I is an instance of I obtained by substituting the
variables in I with terms in L. This definition of cases is simpler than a more
encompassing one in [27], where cases have been defined for constraints in a more
general syntax. A ground case of I is a case of I obtained by a substitution of
all variables in I with ground terms.

Reasoning with cases of I instead of I itself lowers the cost of integrity main-
tenance, since, the more variables in I are instantiated with ground values, the
easier the evaluation of the so-obtained case tends to be. Also, to know which
particular cases of a constraint are violated may be useful for repairing, since it
turns out to be easier, in general, to identify and eliminate the causes of integrity
violation if the violated cases are made explicit.

Let Cas(IC ) denote the set of all ground cases of each I∈IC . Further, let
vioCon(D, IC ) = {I | I ∈ IC , D(I) = false}, i.e., the set of all constraints in IC
that are violated in D, and vioCas(D, IC ) = {C | C ∈Cas(IC ), D(C) = false},
i.e., the set of all violated ground cases of IC in D.

The use of cases for simplified integrity checking is illustrated in Example 1.

Example 1. A constraint in a database D which requires that each person’s ID

be unique, by asserting that no two persons with the same identifier x may have
different attributes y1, y2, is represented by I = ← p(x, y1), p(x, y2), y1 6= y2.
For the insertion of a record about a person, e.g., p(1111, jill), typical methods
for simplified integrity checking do not evaluate I in its full generality, but just
the relevant case ← p(1111, jill), p(1111, y2), jill 6= y2. Actually, also the case
← p(1111, y1), p(1111, jill), y1 6= jill is relevant, but it is logically equivalent to
the previous one and thus can be ignored.

The use of vioCon(D, IC ) and vioCas(D, IC ) for measuring the inconsistency
of (D, IC ) is addressed in Section 3, their use for inconsistency-tolerant integrity
maintenance in Sections 4 and 5.

2.2.3 Causes

As in [20], we are going to define a ‘cause’ of the violation of a constraint I =←B
in a database D as a minimal explanation of why I is violated in D, i.e., why the
existential closure ∃B of B is true in D. Causes generalize the notion of ‘resource
set’ in [52]. In Section 3, causes are used for measuring inconsistency, and in
Sections 4 and 5 for measure-based inconsistency-tolerant integrity maintenance.

Definition 2. Let D be a database and I =←B an integrity constraint such
that D(∃B) = true. A subset E of iff(D) is called a cause of the violation of I
in D if E |=∃B, and for each proper subset E′ of E, E′ 2 ∃B.
We also say that E is a cause of ∃B in D if E is a cause of the violation of
←B in D. Moreover, we say that, for an integrity theory IC , E is a cause of
the violation of IC in D if E is a cause of the violation of a denial form of the
conjunction of all constraints in IC .



For easy reading, we represent elements of only-if(D) in a simplified form, if
possible, in the subsequent examples of causes. Simplifications are obtained by
replacing ground equations with their truth values and by common equivalence-
preserving rewritings for the composition of subformulas with true or false.

Example 2.
a) Let D = {p← q,∼r; q}. The only cause of the violation of ← p in D is
D∪{∼r}.

b) Let D = {p(x)← q(x), r(x); q(1); q(2); r(2); s(1); s(2)}. The only cause
of the violation of ← s(x), ∼p(x) in D is {s(1); p(1)→ q(1)∧ r(1); ∼r(1)}.

c) Let D = {p(x)← q(1, x); q(2, y)← r(y); r(1)}. The only cause of ∼p(2)
in D is {p(2)→ q(1, 2); ∼q(1, 2)}.

d) Let D = {p← q(1, x); q(2, y)← r(y); r(1)}. The only cause of ∼p in D is
{p→∃x q(1, x)}∪ {∼q(1, i) | i∈Lc}.

e) Let D = {p← q(x, x); q(x, y)← r(x), s(y); r(1); s(2)}. Each cause of ∼p in
D contains {p→∃x q(x, x)} ∪ {q(i, i)→ r(i)∧ s(i)) | i∈Lc} ∪ {∼r(2); ∼s(1)}
and, for each j > 2 in Lc, either ∼r(j) or ∼s(j), and nothing else.

f) Let D = {p←∼q; q←∼r; q←∼s}. The two causes of ∼p in D are
{q←∼r; p→∼q; ∼r} and {q←∼s; p→∼q; ∼s}.

g) Let D = {p← q; p←∼q}, D′ = {p← q; p←∼q; q} and I = ← p. Clearly,
D is a cause of the violation of I in D and in D′. Another cause of p in D is
{p←∼q; ∼q}. Another cause of p in D′ is {p← q; q}.

h) Let D= {p(x)← r(x); r(1)} and I =∃x(r(x)∧∼p(x)). A denial form of I is
← vio, where vio is defined by {vio←∼q; q← r(x),∼p(x)}, where q is a fresh
0-ary predicate. Thus, the causes of the violation of I in D are the causes of vio in
D′=D∪{vio←∼q; q← r(x),∼p(x)}. Thus, for each K⊆Lc such that 1∈K,
{vio←∼q} ∪ {p(i)← r(i) | i∈K} ∪ {q→∃x(r(x)∧∼p(x))} ∪ {∼r(i) | i/∈K} is
a cause of vio in D′.

i) Let D = {r(1, 1); s(1)}, I1 = ← r(x, x), I2 = ← r(x, y), s(y) and IC =
{I1; I2}. The only cause of the violation of IC in D is {r(1, 1)}, which is a
proper subset of the single cause D of the violation of I2 in D.

Note that causes are not compositional, as shown by Example 2i, i.e., the
causes of the violation of an integrity theory IC are not necessarily the union of
the causes of the violation of the constraints in IC . However, it can be shown
that E is a cause of the violation of the conjunction of all I ∈ IC if and only
if E is a cause of the violation of some I ∈ IC and there is no cause E′ of any
constraint in IC such that E′(E.

The following definition of vioCau is analogous to the definition of vioCas
in 2.2.2. While vioCas pinpoints inconsistency by focusing on violated cases,
vioCau as defined below localizes inconsistency by focusing on the data that
cause integrity violation.

Let vioCau(D, IC ) be the set of all causes of the violation of IC in D.



3 Violation Measures

Violation measures are a special kind of inconsistency measures [41]. Violation
measures are geared to gauge the amount of integrity violation in databases,
e.g., by sizing cases or causes of constraint violations. In 3.1, we conceptualize
our approach to violation measures. In 3.2, we define this concept formally and
give several examples. In 3.4, we discuss the desirability of some properties that
are commonly associated to measures. In Sections 4 and 5, violation measures
are used for characterizing inconsistency-tolerant integrity maintenance.

3.1 Conceptualizing Violation Measures

In 3.2, we are going to define an abstract concept of violation measures as a
mapping from pairs (D, IC ) to a set M that is structured by a partial order 4
with smallest element o, a distance δ and an addition ⊕ with neutral element o.

The partial order 4 allows to compare the amount of inconsistency in two
pairs of databases and integrity theories, and in particular in consecutive states
(D, IC ) and (DU , IC ). With the distance δ, the difference, i.e., the increase or
decrease of inconsistency between D and DU , can be sized. The addition ⊕
allows to state a standard metric property for δ.

Thus, it can be checked if an update U does not increase the amount of in-
consistency, or at least if U does not trespass a certain threshold of inconsistency
or if the increase of inconsistency brought about by U is negligible. In any case,
extant inconsistency is tolerated.

In classical measure theory [7], a measure µ maps elements of a measure
space S (typically, a set of sets) to a metric space (M,4, δ) (typically, M = R+

0 ,
i.e., the non-negative real numbers, often with an additional greatest element∞,
4 =≤, and δ= | – |, i.e., the absolute difference). For S ∈ S, µ(S) usually tells
how ‘big’ S is. Standard properties are that µ is definite, i.e., µ(S) = 0 ⇔ S= ∅,
µ is additive, i.e., µ(S ∪S′) = µ(S) + µ(S′), for disjoint sets S, S′ ∈ S, and
µ is monotone, i.e., if S⊆S′, then µ(S)≤µ(S′). The distance δ maps M×M
to M, for determining the difference between measured entities.

Similarly, for assessing inconsistency in databases, a violation measure ν as
defined in 3.2 maps pairs (D, IC ) to a metric space that has a partial order
4 that is reflexive, antisymmetric and transitive, and an addition with neutral
element o that is, at a time, the smallest element of 4. The purpose of ν(D, IC )
is to size the amount of inconsistency in (D, IC ).

3.2 Formalizing Violation Measures

Definitions 3 and 4 below specialize the classical concepts of metric spaces and
measures [7], for databases and integrity violations. Yet, in a sense, these defini-
tions also generalize the traditional concepts, since they allow both numerical and
non-numerical quantifications and comparisons of measured items. For example,
with M = 2Cas(IC) (powerset of Cas(IC ) as defined in 2.2.2), 4 =⊆ (subset),



δ=	 (symmetric set difference), ⊕=∪ (set union) and o= ∅ (empty set), it is
possible to measure the inconsistency of (D, IC ) by sizing vioCas(D, IC ).

Definition 3. A structure (M,4, δ,⊕, o) is called a metric space for integrity
violation (in short, a metric space) if (M,⊕) is a commutative semi-group with
neutral element o, 4 is a partial order on M with infimum o, and δ is a distance
on M. More precisely, for each m,m′,m′′ ∈M, the following properties (1)–(4)
hold for 4, (5)–(8) for ⊕, and (9)–(11) for δ.

m 4 m (reflexivity) (1)

m 4 m′, m′ 4 m ⇒ m = m′ (antisymmetry) (2)

m 4 m′, m′ 4 m′′ ⇒ m 4 m′′ (transitivity) (3)

o 4 m (infimum) (4)

m⊕ (m′ ⊕m′′) = (m⊕m′)⊕m′′ (associativity) (5)

m⊕m′ = m′ ⊕m (commutativity) (6)

m⊕ o = m (neutrality) (7)

m 4 m⊕m′ (⊕-monotonicity) (8)

δ(m,m′) = δ(m′,m) (symmetry) (9)

δ(m,m) = o (identity) (10)

δ(m,m′) 4 δ(m,m′′)⊕ δ(m′′,m′) (triangle inequality) (11)

Let m≺m′ denote that m4m′ and m 6=m′.

Example 3. (N0,≤, | – |, +, 0) is a metric space for integrity violation, where N0

is the set of non-negative integers. In this space, vioCon(D, IC ), vioCas(D, IC )
or vioCau(D, IC ) can be counted and compared. As already indicated, these
three sets may also be sized and compared in the metric spaces (2X ,⊆,	,∪, ∅),
where X stands for IC , Cas(IC ) or iff(D), respectively.

Now, we define measures with metric spaces such as those in Example 3.

Definition 4. We say that ν is a violation measure (in short, a measure) if ν
maps pairs (D, IC ) to a metric space (M, 4, δ, ⊕, o) for integrity violation.

In the following subsection, we are going to give examples of violation mea-
sures with metric spaces such as those in Example 3.



3.3 Examples of Violation Measures

Example 4. A coarse violation measure β is defined by β(D, IC ) = D(IC ).
Its range is the binary metric space ({true, false}, 4, τ ,∧, true), where 4 and
τ are defined by stipulating true ≺ false (i.e., satisfaction means lower incon-
sistency than violation), and, resp., τ(v, v′) = true if v= v′, else τ(v, v′) = false,
for v, v′ ∈{true, false}. Clearly, β and its metric space reflect the classical logic
distinction that a set of formulas is either consistent or inconsistent, without
any further differentiation of different degrees of inconsistency. The meaning of
τ is that each consistent pair (D, IC ) is equally good, and each inconsistent pair
(D, IC ) is equally bad. We are going to meet β again in 4.1.

Example 5. The measures ι and |ι| are characterized by comparing and, resp.,
counting the set of violated constraints in the database. They are defined by
the equations ι(D, IC ) = vioCon(IC ,D) and |ι|(D, IC ) = |ι(D, IC )|, where | . |
is the cardinality operator, with metric spaces (2IC , ⊆, 	, ∪, ∅) and, resp.,
(N+

0 , ≤, | – |, +, 0).

Example 6. Two measures that are more fine-grained than those in Exam-
ple 5 are given by ζ(D,IC ) = vioCas(IC ,D) and |ζ|(D,IC ) = |ζ(D, IC )|, with
metric spaces (2Cas(IC), ⊆, 	, ∪, ∅) and, resp., (N+

0 , ≤, | – |, +, 0).

Example 7. Similar to the case-based measures in Example 5, also cause-
based measures can be defined, by the equations κ(D, IC ) = vioCau(IC ,D)
and |κ|(D, IC ) = |κ(D, IC )|, with the metric spaces (2iff(D), ⊆, 	, ∪, ∅) and,
resp., again (N+

0 , ≤, | – |, +, 0). Specific differences between case- and cause-
based measures are addressed in [21].

Other measures are discussed in [26], among them two variants of an incon-
sistency measure in [40], based on quasi-classical models [8]. Essentially, both
size the set of conflicting atoms in (D, IC ), i.e., atoms A such that both A and
∼A are true in the minimal quasi-classical model of D∪ IC . Hence, their metric
spaces are (2H

∗
L , ⊆, 	, ∪, ∅) where H∗L = HL ∪ {∼A |A ∈ HL}, and, resp.,

(N+
0 , ≤, | – |, +, 0).
Some more violation measures are going to be identified in 3.4.1 and 4.2.

3.4 Properties of Violation Measures

Note that, as opposed to classical measure theory and previous work on inconsis-
tency measures (to be addressed in Section 6), Definition 4 does not require any
axiomatic property of measures, such as definiteness, additivity or monotonicity.
These usually are required for each classical measure µ, as already mentioned in
3.1. We are going to look at such properties, and argue that definiteness is not
cogent, and both additivity and monotonicity do not hold in many databases.

In 3.4.1, we discuss the standard axiom of definiteness of measures, including
some weakenings thereof. In 3.4.2, we show that the standard axiom of additivity
of measures is invalid for violation measures. In 3.4.3, we dismiss the standard
axiom of monotonicity of measures for violation measures in databases with
non-monotonic negation, and propose some valuable variants.



3.4.1 Definiteness

For classical measures µ, definiteness means that µ(S) = 0 if and only if S= ∅,
for each S ∈ S. For violation measures ν, that takes the form

ν(D, IC ) = o ⇔ D(IC ) = true (definiteness) (12)

for each pair (D, IC ).
A property corresponding to (12) is postulated for inconsistency measures in

[43] [35] (in [43], (12) is called ‘consistency’). However, we are going to argue that
(12) is not cogent for violation measures, and that even two possible weakenings
of (12) are not persuasive enough as sine-qua-non requirements.

At first, (12) may seem to be most plausible as an axiom for any reasonable
inconsistency measure, since it assigns the lowest possible inconsistency value o
precisely to those databases that totally satisfy all of their constraints. In fact,
it is easy to show the following result.

Theorem 1. Each of the measures β, ι, |ι|, ζ, |ζ|, κ, |κ| in 3.3 fulfills (12).

So, in particular |ζ|, which counts the number of violated ground cases, com-
plies with (12). Now, let the measure ζ ′ be defined by the following modification
of |ζ|: ζ ′(D, IC ) = 0 if |ζ|(D, IC )∈{0,1} else ζ ′(D, IC ) = |ζ|(D, IC ). Thus, ζ ′

considers each inconsistency that consists of just a single violated ground case
as insignificant. Hence, ζ ′ does not obey (12) but can be, depending on the ap-
plication, a very reasonable violation measure that tolerates negligible amounts
of inconsistency.

Even the weakening

D(IC ) = true ⇒ ν(D, IC ) = o (13)

of (12) is not a cogent requirement for all reasonable violation measures, as wit-
nessed by the measure σ, defined below. It takes a differentiated stance with
regard to integrity satisfaction and violation, by distinguishing between satisfac-
tion, satisfiability and violation of constraints, similar to [61] [59].

The measure σ be defined by incrementing a count of ‘problematic’ ground
cases of constraints by 1 for each ground case that is satisfiable but not a theorem
of the completion of the given database, and by 2 for each ground case that is
violated. Hence, by the definitions of integrity satisfaction and violation in [59],
there are pairs (D, IC ) such that IC is satisfied in D but σ(D, IC )> 0.

Another measure ε that does not respect (13) can be imagined as follows,
for databases with constraints of the form I =← p(x),x> th, where p(x) is a
relation defined by some aggregation of values in the database, meaning that I
is violated if p(x) holds for some x that trespasses a certain threshold th. Now,
suppose that ε assigns a minimal non-zero value to (D, IC ) whenever I is still
satisfied in D but D(p(th)) = true, so as to indicate that I is at risk of becoming
violated. Hence, there are pairs (D, IC ) such that ν= ε contradicts (13).

Also the requirement
ν(D, ∅) = o (14)



which weakens (13) even further, is not indispensable, although analogons of (14)
are standard in the literature on classical measures and inconsistency measures.
In fact, it is easy to imagine a measure that assigns a minimal non-zero value
of inconsistency to some databases without integrity constraints. That value
can then be interpreted as a warning that there is a non-negligible likelihood of
inconsistency, although no constraints have been imposed, be it out of neglect,
or for trading off consistency for performance, or for any other reason.

So, in the end, only the rather bland property ν(∅, ∅) = o remains as a weak-
ening of (12) that should be ‘de rigueur’ for violation measures.

3.4.2 Additivity

For classical measures µ, additivity means µ(S ∪S′) =µ(S) +µ(S′), for each
pair of disjoint sets S,S′ ∈S. For violation measures ν, additivity takes the form

ν(D ∪D′, IC ∪ IC ′) = ν(D, IC )⊕ ν(D′, IC ′) (additivity) (15)

for each (D, IC ), (D′, IC ′) such that D and D′ as well as IC and IC ′ are disjoint.
Additivity is standard for classical measures. However, (15) is invalid for

violation measures, as shown by the following example.

Example 8. LetD= {p}, IC = ∅,D′= ∅, IC ′= {← p}. Clearly,D(IC ) = true and
D′(IC ′) = true, thus |ζ|(D, IC ) + |ζ|(D′, IC ′) = 0, but |ζ|(D∪D′, IC ∪IC ′) = 1.

Yet, it can be shown that (15) holds for each of the measures β, ι, |ι|, ζ,
|ζ|, κ, |κ| in 3.3 if (D, IC ) and (D′, IC ′) do not share any predicate.

3.4.3 Monotonicity

For classical measures µ, monotonicity means S⊆S′ ⇒ µ(S) 4µ(S′), for each
pair of sets S,S′ ∈S. For violation measures ν, monotonicity takes the form

D ⊆ D′, IC ⊆ IC ′ ⇒ ν(D, IC ) 4 ν(D′, IC ′) (ν-monotonicity) (16)

for each pair of pairs (D, IC ), (D′, IC ′).
A property corresponding to (16) is postulated for inconsistency measures in

[43] [35]. For definite databases and integrity theories (i.e., the bodies of clauses
do not contain any negative literal), it is easy to show the following result.

Theorem 2. For definite databasesD,D′ and definite integrity theories IC ,IC ′,
each of the measures β, ι, |ι|, ζ, |ζ|, κ, |κ| in 3.3 fulfills (16).

However, due to the non-monotonicity of negation in the body of clauses, (16)
is not valid for non-definite databases or non-definite integrity theories, as shown
by Example 9, in which the foreign key constraint ∀x(q(x, y)→∃z s(x, z)) on the
x-column of q referencing the x-column of s is rewritten into denial form (we
ignore the primary key constraint on the x-column of s since it is not relevant).



Example 9. Let D= {p(x)← q(x, y),∼r(x); r(x)← s(x, z); q(1, 2); s(2, 1)} and
IC = {← p(x)}. Clearly, D(IC ) = false and |ζ|(D, IC ) = 1. For D′=D∪{s(1, 1)}
and IC ′= IC , we have D′(IC ′) = true, hence |ζ|(D′, IC ′) = 0.

A variant of (16), with same conclusion but different premise, that holds also
for non-definite databases and integrity theories, requires that the measured
amount of inconsistency in databases that violate integrity is never lower than
the measured inconsistency in databases that satisfy integrity. Formally, for each
pair of pairs (D, IC ), (D′, IC ′),

D(IC ) = true, D′(IC ′) = false ⇒ µ(D, IC ) 4 µ(D′, IC ′) (17)

is asked to hold. It is easy to show the following result.

Theorem 3. Each of the measures β, ι, |ι|, ζ, |ζ|, κ, |κ| in 3.3 fulfills (17).

A property that is slightly stronger than (17) has been postulated in [26]. It
is obtained by replacing 4 in (17) by ≺. It also holds for all measures in 3.3.
Yet, similar to (12), it does not hold for measures ζ ′ and σ, as defined in 3.4.1,
while (17) does hold for those measures.

The following weakening of (16) has been postulated in [22]. It requires that,
for each D, the values of ν grow monotonically with growing integrity theories.

IC ⊆ IC ′ ⇒ ν(D, IC ) 4 ν(D, IC ′) (18)

It is easy to show the following result.

Theorem 4. Each of the measures β, ι, |ι|, ζ, |ζ|, κ, |κ|, ζ ′, σ fulfills (18).

Interestingly, (18) may not hold for measures that calculate the ratio of con-
flicting and conflict-free atoms in (D, IC ), such as the measure in [40], as men-
tioned in 3.3, since an increase of (D, IC ) by non-conflicting atoms, i.e., by
consistent knowledge, decreases the ratio of inconsistency.

4 Integrity Checking

Due to a possibly complex quantification of constraints, integrity checking tends
to be unbearably expensive, unless some simplification method is used [13]. Sim-
plification theory traditionally requires total integrity, i.e., that, for each update
U , the state D to be updated by U must satisfy all constraints. Then, integrity
checking can focus on those cases of constraints that are relevant, i.e., possibly
affected by the update, and ignore all others, since they are going to remain
satisfied in the state DU , reached by the update.

Example 10. Suppose that, in Example 1, there is no other constraint with
an occurrence of p as the predicate of some non-negated literal, nor with an
occurrence of a predicate the definition of which recurs on p. Then, it suffices
to evaluate the simplification ← p(1111, y2, z2), jill 6= y2 of the relevant case
← p(1111, jill), p(1111, y2), jill 6= y2, obtained from I by dropping the conjunct
p(1111, jill), which is known to be true in DU . Each other case of I and each
other constraint without the mentioned occurrences can be ignored.



Thus, if integrity is totally satisfied in D, and all relevant constraints remain
satisfied when U is committed, then DU also satisfies integrity totally.

Often, however, total integrity is nothing but wishful thinking: the accumu-
lation of integrity violations in databases is commonplace, since consistency is
not always taken care of sufficiently. That may be due to many different possible
reasons. Some typical ones are: plain neglect (e.g., integrity checking had been
switched off for bulk updates or reloading a backup, but not switched on again
afterwards), or efficiency considerations (e.g., integrity maintenance is skipped in
favour of performance), or the heterogenity of data or schemas to be integrated
(e.g., during the ETL process of data warehousing, or for federating hitherto
disparate databases), or architectural impediments (e.g., poor integrity support
in distributed databases), or other circumstances (e.g., altered constraints are
not checked against legacy data, or locally consistent data fail to comply with
global constraints in distributed databases, etc).

Since a total avoidance of inconsistency often is impractical or unfeasible, an
inconsistency-tolerant approach to integrity maintenance is needed. As we are
going to see, that can be achieved by using violation measures. In fact, even in
the presence of persisting inconsistency, the use of such measures can prevent the
increase of inconsistency across updates. Moreover, violations measures allow to
control that the amount of inconsistency never exceeds given thresholds.

In 4.1, we define and illustrate measure-based inconsistency-tolerant integrity
checking. In 4.2, we show how inconsistency can be confined by assigning weights
to violated cases of constraints, which goes beyond the measures seen so far.
In 4.2, we also show how to generalize measure-based inconsistency-tolerant
integrity checking by allowing for certain increases of inconsistency that are
bounded by some thresholds.

4.1 Measure-based Inconsistency-tolerant Integrity Checking

To motivate measure-based ITIC, let us look again at Example 10. As we have
seen there, only a single case is evaluated for checking U , no matter if other cases
of the same or of other constraints are violated in D or not. Hence, that check
tolerates any extant integrity violation. It also guarantees that all consistent
parts of the database remain consistent, i.e., that U does not increase the set
of violated cases of I, nor induces any other violation in DU . It also guarantees
that U does not introduce any new cause of integrity violation. Thus, that check
behaves as if it used any of the measures ι, |ι|, ζ, |ζ|, κ or |κ|.

Definition 5, below, subsumes each method with such a behaviour, i.e., meth-
ods that may accept updates if there is no increase of inconsistency, no matter if
there is any extant constraint violation or not. It abstractly captures measure-
based ITIC methods as black boxes, of which nothing but their i/o interface
is observable. More precisely, each method M is described as a mapping from
triples (D, IC , U) to {ok , ko}. Intuitively, ok means that U does not increase the
amount of measured inconsistency, and ko that it may.



Definition 5. (Inconsistency-tolerant Integrity Checking, abbr. ITIC)
An integrity checking method maps triples (D, IC ,U) to {ok , ko}. For a measure
ν, the range of which is structured by a partial order 4, a method M is called
sound (complete) for ν-based ITIC if, for each (D, IC ,U), (19) (resp., (20)) holds.

M(D, IC, U) = ok ⇒ ν(DU , IC) 4 ν(D, IC) (19)

ν(DU , IC) 4 ν(D, IC) ⇒ M(D, IC, U) = ok (20)

Each M that is sound for ν-based ITIC is also called a ν-based method.

Intuitively, (19) says: M is sound if, whenever it outputs ok , the amount of
violation of IC in D as measured by ν is not increased by U . Conversely, (20)
says: M is complete if it outputs ok whenever the update U that is checked by
M does not increase the amount of integrity violation.

As opposed to ITIC, traditional integrity checking (abbr. TIC) imposes the
total integrity requirement. That is, TIC additionally requires D(IC ) = true in
the premises of (19) and (20). The measure used in TIC is β (cf. Example 4).
Since ITIC is defined not just for β but for any violation measure ν, and since TIC
is not applicable if D(IC ) = false, while ITIC is, Definition 5 generalizes TIC.
Definition 5 also generalizes ITIC as defined in [27], since the latter is equivalent
to Definition 5 for ν= ζ.

In [27], we have shown that the total integrity requirement is dispensable
for most TIC approaches. Similar to corresponding proofs in [25, 27], it can be
shown that not all, but most TIC methods, including built-in integrity checks
in common DBMSs, are ν-based, for each ν ∈{ι, |ι|, ζ, |ζ|, κ, |κ|}. Moreover, the
following results are easily shown by applying the definitions.

Theorem 5. Let M be a method. If M is ν-based, then M is |ν|-based, for
each ν ∈{ι, ζ,κ}. IfM is κ-based, thenM is ζ-based. IfM is ζ-based, thenM
is ι-based. The converse of none of these implications holds.

4.2 Weighted ITIC and Thresholds

Example 11, below, illustrates how the measures |ι| and |ζ| that count violated
constraints or cases thereof can be generalized by assigning weight factors to the
counted entities. Such weights are useful for modeling application-specific degrees
of violated integrity. A simple variant of such an assignment is known from
deontic logic, where ‘soft’ constraints that ought to be satisfied are distinguished
from ‘hard’ constraints that must be satisfied [55].

Example 11. Let mr, lr and hr be predicates that model a minor, a low and,
resp., a high risk. Further, I1 = ←mr(x), I2 = ← lr(x), I3 = ← hr(x) be two
soft and one hard constraint, for protecting against minor, low and, resp., high
risks, where mr, lr and hr are defined by the clauses mr(x)← p(x,y), x = 3,
lr(x)← p(y,z), x = y+ z, x>th, z≥y and hr(x)← p(y,z), x = y+ z, x>th, y>z,
resp., where th is a threshold value that should not be exceeded, and p(8, 3) be the



only cause of integrity violation in D. For each ν ∈{ι, |ι|, ζ, |ζ|, κ, |κ|}, no ν-based
method would accept the update U = {delete p(8, 3), insert p(3, 8)}, although
the high risk provoked by p(8, 3) is diminished to a minor and a low risk produced
by p(3, 8). However, measures that assign suitable weights to the cases of I1, I2
and I3 can avoid that problem. For instance, consider the measure ω that counts
the numbers ni of violated cases of Ii (i= 1, 2, 3), and assigns n1 +n2 + fn3

to (D, {I1, I2, I3}), where f is a weighting factor such that f ≥ 3. Clearly,
ω(DU , {I1, I2, I3}) < ω(D, {I1, I2, I3}, hence each ω-based method accepts U .

Instead of modeling thresholds in constraints, as in Example 11, it is also
possible to include thresholds in measures. For instance, let ν be a measure the
range of which is structured by a distance δ, and methods M be defined by
replacing the consequent of (19) and the antecedent of (20) in Definition 5 by

ν(DU , IC ) 4 ν(D, IC ) or (δ((D, IC ), (DU , IC )) 4 th and ν(DU , IC ) 4 th ′)

where th, th ′ are thresholds (that, in general, may be parametrizable terms).
Clearly, th limits the increment of inconsistency that may be induced by any
update, while th ′ is an absolute upper bound of permissible inconsistency. Note
that, ifM would not check that th ′ is not trespassed, then inconsistency may ac-
cumulate over time beyond tolerability, by repeated increments of inconsistency,
each of which does not exceed th but which may eventually surpass th ′.

5 Repairs

Roughly, repairing a database means to compute and execute an update in or-
der to eliminate integrity violation. The latter either is already manifest in the
database, or it would come into existence if some update would be committed.

For instance, if a constraint I (or some case C of I) is already violated in
a database D, then a repair, i.e., an update U is called for such that I (or C)
is no longer violated in DU . Else, if I would become violated by committing
some update UR, the purpose of which is to satisfy an update request R, then
an update U of D is called for such that U satisfies R and neither induces any
violation of I that would be caused by UR, nor any other violation in DU that
did not exist in D. Thus, U can be seen as a repair of DUR .

Hence, each repair can be identified with some update that either eliminates
an extant integrity violation or satisfies an update request while preserving in-
tegrity. In the literature, the updated database itself is often also called a ‘repair’.

In 5.1, we distinguish between partial and total repairs, as well as between
repairs that do or do not preserve integrity. In 5.2, we recapitulate the concept
of integrity-preserving update methods. In 5.3, we outline how such methods use
ITIC for computing total and partial integrity-preserving repairs.

5.1 Partial Repairs that Preserve Integrity

In general, repairing is complex [12], and can be too costly or even unfeasible,
e.g., if inconsistencies are hidden or unknown. Yet, it may still be possible to
curtail inconsistency by not repairing all, but only some violations.



The definition below distinguishes between total repairs, which eliminate all
inconsistencies, and partial repairs, which repair only a fragment of the database.
Obviously, partial repairs tolerate inconsistency, since some constraints may re-
main violated.

Definition 6. (Repair) [27]
Let D be a database, IC an integrity theory and S a subset of Cas(IC ) such
that D(S) = false. An update U is called a repair of (D,S) if DU (S) = true.
If DU (IC ) = false, U is also called a partial repair of (D, IC ). Otherwise, if
DU (IC ) = true, U is called a total repair of (D, IC ). For a measure ν, we say
that U preserves integrity w.r.t. ν if ν(DU , IC ) 4 ν(D, IC ) .

In the literature, repairs usually are required to be total and, in some sense,
minimal. Mostly, subset-minimality is opted for, but several other notions of
minimality exist [12] or can be imagined (see also related remarks in Section 6).
Note that Definition 6 does not involve any notion of minimality. However, Ex-
ample 12 features subset-minimal repairs.

Example 12. Let D = {p(a, b, c); p(b, b, c); p(c, b, c); q(a, c); q(c, b); q(c, c)} and
IC = {← p(x, y, z),∼q(x, z); ← q(x, x)}. Clearly, the violated cases of IC in D
are ← p(b, b, c),∼q(b, c) and ← q(c, c). There are exactly two minimal total
repairs of IC in D, viz. {delete q(c, c); delete p(b, b, c); delete p(c, b, c)} and
{delete q(c, c); insert q(b, c); delete p(c, b, c)}. Each of U1 = {delete p(b, b, c)} and
U2 = {insert q(b, c)} is a minimal repair of {← p(b, b, c),∼q(b, c)} in D and a par-
tial repair of IC in D. Both tolerate the persistence of the violation of ← q(c, c).
Similarly, U3 = {delete q(c, c)} is a minimal repair of {← q(c, c)} in D and a
partial repair of IC , which tolerates the violation of ← p(b, b, c),∼q(b, c).

W.r.t. each ν ∈{ι, |ι|, ζ, |ζ|,κ, |κ|}, each total repair trivially preserves in-
tegrity, (e.g., those in Example 12), since no violations remain after total re-
pairs. Unfortunately, however, partial repairs may not preserve integrity w.r.t.
any ν ∈{ι, |ι|, ζ, |ζ|,κ, |κ|}, i.e., they may induce the violation of some constraint
that is not in the repaired set, as illustrated by the following example.

Example 13. Consider again D and IC in Example 12. As opposed to U1 and U2,
U3 induces the violation of a case in the updated state that is satisfied before
the update. That case is ← p(c, b, c),∼q(c, c). It is satisfied in D but not in
DU3 . Thus, the non-minimal partial repair U4 = {delete q(c, c); delete p(c, b, c)}
is needed to eliminate the violation of← q(c, c) in D without causing a violation
that did not exist before the partial repair. For each ν ∈{ι, |ι|, ζ, |ζ|, κ, |κ|} and
each i∈{1, 2,4}, Ui clearly preserves integrity, since all cases in SatCas(D, IC )
remain satisfied in DUi and no new cause of the violation of IC in D is induced
by Ui. Note that U4 is a minimal integrity-preserving repair of {← q(x, x)},
but not a mere minimal repair of {← q(x, x)}, since the minimal repair U3 of
{← q(x, x)} is a proper subset of U4. However, U4 is preferable to U3 since U4

preserves integrity, while U3 does not, as seen above.



The enlargement of U3 to U4, i.e., deleting also p(c, b, c), fortunately does not
induce any similar side effect as produced by deleting q(c, c) alone. In general,
stepwise repairs such as the one from U3 to U4 may possibly continue indefinitely,
since each iteration may cause some other violation(s). The termination of such
iterations is unpredictable, in general, as known from repairing by triggers [10].
However, side effects of updates can be avoided by checking if a given repair
preserves integrity, with any convenient measure-based method, as expressed in
the following result, which is an immediate consequence of Definitions 5 and 6.

Theorem 6. For each triple (D, IC , U), each measure ν and each ν-based
method M, U preserves integrity w.r.t. ν if M(D, IC , U) = ok .

In general, the only-if version of Theorem 6 does not hold. A counter-example
is provided by each method that is incomplete for measure-based integrity check-
ing, in the sense of Definition 5 (e.g., the methods in [49, 59] have been shown to
be incomplete for ζ-based integrity checking in [27]). However, it is easy to see
that the only-if version of Theorem 6 does hold for methods that are complete
for measure-based integrity checking. For instance, the well-known method in
[56] is complete for ζ-based integrity checking, as shown in [27]).

Thus, Theorem 6 guarantees that, for each partial repair U , each measure-
based method can be used to check if U preserves integrity, and each complete
ν-based method is a procedure for deciding if U preserves integrity or not.

5.2 Integrity-preserving Update Methods

Update methods are algorithms that take as input an update request and com-
pute candidate updates for satisfying the request as their output. Such a method
is said to be integrity-preserving if each of its computed updates preserves in-
tegrity. Integrity-preserving update methods can be used to compute partial
repairs that are integrity-preserving w.r.t. any measure ν, as shown in [27] for
the special case of ν= ζ. Theorem 7 below generalizes that result.

Definition 7. An update method is an algorithm that, for each database D and
each update request R, computes candidate updates U1, . . .,Un (n ≥ 0) such
that DUi(R) = true (1 ≤ i ≤ n).

Note that an update method as defined above is impartial with regard to
possible integrity violation that may be induced by any of the Ui. As opposed
to that, Definition 8, below, takes such undesirable side effects into account.

To avoid that updates induce new integrity violations, many update meth-
ods in the literature (e.g., [18, 37, 44]) postulate the total satisfaction of all con-
straints in the state before the update, in analogy to the total integrity premise
of traditional integrity checking, as mentioned in 4. However, for the class of
update methods defined below, that postulate is as superfluous for satisfying
update requests as it has been for integrity checking.



Definition 8. (Integrity-preserving Update Method)
Let ν be a measure. An update method UM is integrity-preserving w.r.t. ν if
each update computed by UM preserves integrity w.r.t. ν.

For an update request R and a database D, several integrity-preserving up-
date methods in the literature work in two phases. First, a candidate update U
such that DU (R) = true is computed. Then, U is checked for integrity preser-
vation by some integrity checking method. If that check is positive, U is ac-
cepted. Else, U is rejected and another candidate update, if any, is computed
and checked. Hence, Theorem 7, below, follows from Definition 8 and Theorem 6.

Theorem 7. For each measure ν, each update method that uses ν-based ITIC

to check its computed candidate updates is integrity-preserving w.r.t. ν.

Theorem 7 serves to identify several known update methods as integrity-
preserving, since they use inconsistency-tolerant integrity checking. Among them
are the update methods described in [18] and [37, 38]. Several other known up-
date methods are abductive e.g., [44, 45, 29]. They interleave the two phases as
addressed above. Most of them are also integrity-preserving, as has been shown
in [27] for the update method in [44].

The triviality of Theorem 7 should not be depreciated. Example 14 shows
what can go wrong if an update method that is not integrity-preserving is used.

Example 14.
Let D = {q(x)← r(x), s(x); p(a, a)}, IC = {← p(x, x); ← p(a, y), q(y)} and
R the view update request to insert q(a). To satisfy R, most update methods
compute the candidate update U = {insert r(a); insert s(a)}. To check if U pre-
serves integrity, most methods compute the simplification ← p(a, a) of the sec-
ond constraint in IC . For avoiding a possibly expensive disk access for evaluating
the simplified case ← p(a, a) of ← p(a, y), q(y), integrity checking methods that
are not inconsistency-tolerant (e.g., those in [39, 46]) may be mislead to use the
invalid premise that D(IC ) = true, by reasoning as follows.

The constraint ← p(x, x) in IC is not affected by U and subsumes ← p(a, a);
hence, IC remains satisfied in DU . Thus, such methods wrongly conclude that U
preserves integrity, since the case ← p(a, y), q(y) is satisfied in D but violated in
DU . By contrast, each inconsistency-tolerant method rejects U and computes the
update U ′ = U ∪{delete p(a, a)} for satisfying R. Clearly, U ′ preserves integrity.
Note that, incidentally, U ′ even removes the violated case ← p(a, a).

The reduction of inconsistency as observed in Example 14 is not accidental.
In fact, as long as ITIC is applied for each update, the number of violated cases
is not only prevented from increasing, but also is likely to decrease over time,
since each update, be it accidentally or on purpose, may repair part or all of the
extant inconsistencies. An extended study of this feature is reported in [27].

5.3 Computing Integrity-preserving Repairs

The following example illustrates a general approach of how partial and total
repairs can be computed by update methods off the shelve.



Example 15. Let S= {←B1, . . ., ←Bn} (n ≥ 0) be a set of cases of constraints
in an integrity theory IC of a database D. A repair of (D,S) (which is total if
S= IC ) can be computed by each update method, simply by running the update
request ∼vioS , where vioS be defined by the clauses vioS←Bi (1≤ i≤n).

Now, we recall from Section 5 that partial repairs may not preserve integrity.
That problem is solved by the following corollary of Theorems 6 and 7. It says
that the integrity preservation of partial repairs can be checked by measure-
based ITIC (part a), and that integrity-preserving repairs can be computed by
integrity-preserving update methods (part b).

Corollary
a) For each tuple (D, IC ), each partial repair U of IC in D, each measure ν
and each ν-based methodM such thatM(D, IC , U) = ok , U preserves integrity
w.r.t. ν.

b) For each measure ν and each partial repair U computed by an integrity-
preserving update method that uses a ν-based integrity checking method, U
preserves integrity w.r.t. ν.

So far, we have said nothing about computing any measure. In fact, comput-
ing measures ι, |ι|, ζ, |ζ| corresponds to the cost of searching SLDNF trees rooted
at constraint denials, which can be exceedingly costly. The same correspondence
holds for computing κ and |κ| in databases and integrity theories without nega-
tion in the body of clauses. If negation may occur, the cost can even be higher,
as evidenced by a study of computing causes in [20].

However, violation measures may not need to be computed explicitly. For
instance, instead of computing ν(D, IC ) and ν(DU , IC ) entirely, it may suf-
fice to compute an approximation of the difference δ(ν(D, IC ), ν(DU , IC )), as
many TIC methods do, for ν= ζ. As attested by such methods, checking an
approximation of the increment of inconsistency in consecutive states is signifi-
cantly less costly than checking the inconsistency of entire databases. Moreover,
for two integrity-preserving partial repair candidates U , U ′ of IC in D, U is
preferable to U ′ if δ(ν(D, IC ), ν(DU ′ , IC )) ≺ δ(ν(D, IC ), ν(DU , IC )), since
U eliminates more inconsistency from D than U ′.

6 Related Work

To a large extent, this paper is a synopsis of previous work in [27, 22, 23, 26].
In [27], the emphasis is on ITIC, but without generalizing it to measure-based
integrity maintenance. That generalization is done, to some extent, in [26], and
further abstracted in [22], but only for ITIC, not for repairing. Measure-based
repairing is the theme of [23]. Causes, as recapitulated in 2.2.3, are the basis of
several measures addressed in that paper. Originally, they had been developed
in [20], for computing answers that have integrity. That topic is different from
integrity maintenance, but related. We shall come back on the relationship of
query answering and integrity maintenance toward the end of this section.



Some of the related work of other authors has already been addressed in pre-
vious sections. There is plenty more work on inconsistency measures (sometimes
also called ‘measures of contradiction’, ‘quality metrics’, ‘coherence metrics’,
etc), integrity checking and repairing in the literature.

A non-comprehensive survey of measuring inconsistency is presented in [41].
Interesting work not yet cited nor addressed in [41] includes [54] [42] [60] [51] [48].
The main differences between this paper and previous work on inconsistency
measures are, firstly, that the latter use non-standard logics such as paracon-
sistent, multivalued, annotated, probabilistic or possibilistic calculi, while our
work exclusively relies on standard datalog and a theory of measures based on
standard mathematics. Secondly, violation measures are applicable also in non-
monotonic databases, where consistency is not compact [16], whereas, to the
best of this author’s knowledge, other inconsistency measures in the literature
do not deal with that.

For instance, a frequently adopted approach to deal with inconsistent sets
of data, including their measurement, is to distinguish maximally consistent or
minimally inconsistent subsets, as done, e.g., in [47] [50] [42]. Unfortunately,
this approach is bound to fail in non-monotonic databases, since, for instance,
subsets (D′, IC ) of consistent pairs (D, IC ) can be inconsistent (e.g., D′= {p},
D=D∪{q}, IC = {← p,∼q}). A conservative way out of that could be to con-
sider subsets of iff(D) that are maximally consistent or minimally inconsistent
with IC , which remains to be investigated further.

Previous work on ITIC has culminated in [27]. Apart from our own previous
work on measure-based ITIC [25, 26, 22], this author could not find anything
quite similar in the literature.

No survey seems to exist yet for repairing. However, [10] may be consulted for
repairs that satisfy update requests, and [62] for repairing manifest constraint vi-
olations. Repair-like cleaning of inconsistencies for data warehousing and schema
matching is surveyed in [58].

As already mentioned in 5.1, repairs commonly are required to be minimal,
i.e., the existence of some sort of measure used for deciding minimality is as-
sumed. For instance, a cost model that, in essence, measures the affordability of
repairs is proposed in [9]. A distance-based repairing is studied in [5]. However,
inconsistency measures are usually not considered for repairing.

Conventionally, concepts of repair in the literature (e.g., [4], [36], [33]) only
deal with total repairs. To the best of the author’s knowledge, partial repairs
have never been addressed elsewhere, except in [27, 23]. In [34], null values and
a 3-valued database semantics are used to “summarize” total repairs. However,
there is no notion of integrity-preserving updates for partial repairs by other
authors, since integrity preservation is a trivial issue for total repairs.

In [31], several shortcomings of integrity maintenance are identified, and in
particular the need of inconsistency tolerance. As a solution, facilities for explain-
ing violations to the user who may intervene in the repair process are proposed,
however without a systematic treatment of inconsistency tolerance. A concept
of explanations based on causes is proposed in [24].



The application of our definitions and results is not compromised by limita-
tions imposed by the syntax of integrity constraints, while various syntactical
restrictions of constraints are typical in the literature on integrity maintenance.

There are two fields related to integrity maintenance that have not been
mentioned in 2.1. One is the use of integrity constraints for query answering, in
particular for semantic query optimization (abbr. SQO) [11] and consistent query
answering (abbr. CQA) [4]. ITIC for SQO has been studied in [19].

CQA defines an answer to be consistent in (D, IC ) if it is true in each minimal
repair of IC in D. CQA depends on the chosen notion of minimality, of which
Definition 5 is steered clear. In an experimental study [27], CQA and standard
query answering in databases maintained by ζ-based ITIC have been compared,
with favourable results for ITIC. CQA usually is not implemented by computing
each repair, but by techniques of SQO or disjunctive logic programming. It should
be interesting to revise CQA in terms of partial instead of total repairs, since, in
general, not all violated constraints are relevant with regard to the given query.

The other remaining field related to integrity maintenance is repair checking,
i.e., algorithms for deciding if a given update is a repair or not. Analogous to
similar definitions in [12, 3], the problem of inconsistency-tolerant repair checking
can be defined as the check if a given update is an integrity-preserving repair.
Thus, part a of the Corollay in 5.3 entails that each measure-based integrity
checking method implements inconsistency-tolerant repair checking.

7 Conclusion

In theory, an automated maintenance of declaratively stated integrity constraints
can be achieved by either preventing their violation, i.e., by checking updates,
or eliminating their violation, i.e., by repairing the database. In practice, how-
ever, integrity violation cannot always be prevented, and a total elimination
of all violations often is not achievable. Thus, integrity maintenance must be
inconsistency-tolerant. For the prevention of constraint violations, inconsistency
tolerance means that integrity checking needs to wave the total integrity require-
ment, which insists that each committed database state satisfies all constraints
without exception. Similarly, for the elimination of constraint violations, incon-
sistency tolerance means that repairs may be partial instead of total.

In this paper, we have generalized the concept of inconsistency-tolerant in-
tegrity checking and repairing in [27]. We have axiomatized measures that de-
termine the amount of violation in given databases with associated integrity
theories. Using such measures, each update can be checked and accepted if it
does not increase the measured violation. Similarly, each repair is acceptable if
it decreases the measured violation.

Ongoing work includes an application of the concept of measure-based incon-
sistency tolerance for computing answers that have integrity in databases with
violated constraints, i.e., a generalization of [20], and the use of measure-based
ITIC for concurrent transactions in distributed and replicated databases, i.e., an
amplification of [28].
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