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Abstract 

Purpose The purpose of this paper is to analyze the impact of the torque, power, jerk and energy consumed 

constraints on the generation of minimum time collision-free trajectories for industrial robots in a complex 

environment. 

Design/methodology/approach An algorithm is presented in which the trajectory is generated under real 

working constraints (specifically torque, power, jerk and energy consumed). It also takes into account the presence 

of obstacles (to avoid collisions) and the dynamics of the robotic system. The method solves an optimization 

problem to find the minimum time trajectory to perform the tasks the robot should do. 

Findings Important conclusions have been reached when solving the trajectory planning problem related to the 

value of the torque, power, jerk and energy consumed and the relationship between them, therefore enabling the 

user to choose the most efficient way of working depending on which parameter he is most interested in 

optimizing. From the examples solved we have found the relationship between the maximum and minimum values 

of the parameters studied. 

Research limitations/implications  This new approach tries to model the real behaviour of the actuators in 

order to be able to upgrade the trajectory quality. So a lot of work has to be done in this field. 

Practical implications  The algorithm solve the trajectory planning problem for any industrial robot and the 

real characteristics of the actuators are taken into account which is essential to improve the performance of it. 

Originality/value  This new tool enables us to improve the performance of the robot by combining adequately 

the values of the mentioned parameters (torque, power, jerk and consumed energy). 
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Introduction 

The main use of robots in industrial processes aims is to improve the quality of the products, increase productivity 

and reduce cycle times. To achieve these objectives, the way in which the motion of robot arms is generated is 

essential and this depends on the characteristics of the actuators that are responsible for generating those motions. 

Important working parameters and variables are the time needed to perform the trajectory, the energy consumed, 

the torque and power to be transmitted and the working velocities, which are conditioned by the accelerations and 

jerks produced. 

Each of these working parameters has an impact on the work of the robot. Most of the algorithms that address 

the problem of collision-free trajectory planning for industrial robots try to optimize some of the working 

parameters or some of the objective functions. The optimization criteria most widely used can be classified as 

follows:  

(1) Minimum execution time (related to productivity) 

(2) Minimum jerk (related to the quality of work, accuracy and equipment maintenance) 

(3) Minimum energy consumed (or minimum actuator effort) (related to savings) 

(4) Hybrid criteria, e.g. minimum time and energy. 

In the past, the early algorithms that solved the trajectory planning problem tried to minimize the time needed 

for performing the task (see Bobrow et al., 1985, Shin et al., 1985, Chen et al., 1989). One disadvantage of those 



minimum-time algorithms was that the trajectories had discontinuous values of acceleration and torques which led 

to dynamic problems during the trajectory performance. Those problems were avoided by imposing smooth 

trajectories to be followed, such as spline functions which have been used in both path and trajectory planning.  

Another way of tackling the trajectory planning problem was based on searching for jerk-optimal trajectories. 

It should be noticed that the effect of the jerk is vital for working with precision, without vibrations, and it also 

affects the control system and the wearing of joints and bars. These methods enable the errors, the stresses (in the 

actuators and also in the mechanical structure of the robot) and the resonance frequencies to shrink during 

trajectory tracking. 

Jerk constraints were introduced by Kyriakopoulos (see Kyriakopoulos et al.,1988). Later, Constantinescou 

introduced (Kyriakopoulos and Saridis, 1988) a method for determining smooth and time-optimal path-constrained 

trajectories for robotic manipulators by imposing limits on the actuator jerks. The third derivative of the path 

parameter with respect to time, the pseudo-jerk, is the controlled input. The limits on the actuator torques turn into 

state-dependent limits on the pseudo-jerk. The time-optimal control objective gives way to an optimization 

problem by using cubic splines to parameterize the state space trajectory. 

Piazzi also follows a jerk-optimal trajectory method. In Piazzi and Visioli, 1997 and Piazzi and Visioli, 2000, 

the interpolation of the robot joint trajectory is created by using cubic splines that ensure the overall continuity of 

velocities and accelerations in the robot motion. The resulting minimum jerk trajectory planning is shown to be a 

globally constrained mini-max optimization problem. This is solved by a newly devised algorithm based on 

interval analysis, and proof of convergence with certainty to an arbitrarily good global solution is provided, and 

the paper includes simulation examples. He describes the algorithm employed and the computational results are 

also presented. In Piazzi and Visioli, 1998, they addressed the global minimum-time trajectory planning of an m-

joint mechanical manipulator. Using a joint space scheme with given intermediate points to be interpolated by 

piecewise cubic polynomials, they proposed the scheduling of the times between adjacent joints under velocity, 

acceleration and jerk constraints. This algorithm, which is proved to be globally convergent with certainty within 

an arbitrary precision, uses an interval procedure (a subroutine adapting the tools and ideas of interval analysis) in 

proving that a local minimum is actually a global one. 

Huang also proposed an optimal jerk algorithm. In Huang et al., 2006 he introduced a global minimum-jerk 

trajectory planning algorithm of a space manipulator. In later papers, Huang analyzes the influence of the torque 

on the path generated using genetic algorithms. He concludes that a genetic algorithm (minimum-torque path- 

planning method) has satisfactory performance and real values. 

Another different approach to solving the trajectory planning problem is based on minimizing the torque and 

the energy consumed instead of the execution time or the jerk. This approach leads to smoother trajectories. An 

early example is seen in Garg et al., 1992. In this paper Garg proposed a strategy for force balance and energy 

optimization for cooperating manipulators. The algorithm was applied to two SCARA robots forming a closed 

kinematic chain that were controlled using their individual controllers. A position control strategy was used for 

each robot and the corresponding end-effector forces were calculated. These forces were equalized and the 

corresponding power used was computed. They employed the linear programming technique to calculate external 

forces and the power used in the direction of motion was minimized. 

Similarly, Hirakawa and Kawamura searched for the minimum energy consumed. In Hirakawa et al., 1996 

they proposed a method for solving the trajectory generation problem in redundant degree of freedom 

manipulators. They used a variational approach and the B-Spline curve was introduced to minimize the electrical 

energy consumed in a robot manipulator system. 

In Field and Stepanenko, 1996, the authors proposed a technique of iterative dynamic programming to plan 

minimum energy consumption trajectories for robotic manipulators. The dynamic programming method was 

modified to perform a series of dynamic programming passes over a small reconfigurable grid covering only a 

portion of the solution space at any one pass. Although strictly no longer a global optimization process, this 

iterative approach retained the ability to avoid certain poor local minima while avoiding the dimensional issue 

associated with a pure dynamic programming approach. The modified dynamic programming approach was 

verified experimentally by planning and executing a minimum energy consumed path for a Reis V15 industrial 

manipulator.  

Saramago also tried to optimize trajectory planning. In Saramago and Steffen, 1998, the authors introduced an 

approach to the solution of moving a robot manipulator at minimum cost along a specified geometric path in the 

presence of obstacles. The main idea was to express obstacle avoidance in terms of the distances between 
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potentially colliding parts. The optimal travelling time and the minimum mechanical energy of the actuators were 

considered together to build a multi-objective function. A simple numerical example involving a Cartesian 

manipulator arm with two-degrees-of-freedom was described. In Saramago and Steffen, 2000, they considered not 

only the minimum time but also the minimum mechanical energy of the actuators. They built a multi-objective 

function and the results obtained depended on the associated weighting factor.  

The subject of energy minimization continues to be of interest in the field of robotics and automated 

manufacturing processes. For example, in Cho et al., 2006, they introduced the torque supplied by the actuators as 

constraints on the trajectory planning problem. In that study, the maximum range for velocity and acceleration was 

specified. The force exerted on the object to be manipulated was also considered so that the robot moved by both 

discrete and continuous paths. 

Later, new approaches appear for solving the trajectory planning problem. The idea of using a weighted 

objective function to optimize the operating parameters of the robot arises. Among the authors who put it into 

practice is Chettibi, who addresses the problem by minimizing a cost function that is a combination of several 

important operating parameters. In Chettibi et al., 2006, he introduced constraints on position, speed, jerks and 

torques. 

The basic idea is to directly parameterize the evolution of joint vector q(t). The optimal control problem 

becomes a parametric constrained optimization problem which is solved for the unknown transfer time T and the 

unknown parameters of the chosen model for q(t). The cost function is a weighted balance of transfer time, mean 

average of actuators and power. 

Gasparetto and Zanotto also use a weighted objective function (see Gasparetto and Zanotto, 2010). In order to 

get the optimal trajectory, an objective function composed of two terms is minimized: a first term proportional to 

the total execution time and another one proportional to the integral of the squared jerk (defined as the derivative 

of the acceleration) along the trajectory. This latter term ensures that the resulting trajectory is smooth enough. The 

proposed technique enables the kinematic constraints on the robot motion to be taken into account, expressed as 

upper bounds on the absolute values of velocity, acceleration and jerk. The method described is then applied to a 

6-d.o.f. robot (a Cartesian gantry manipulator with a spherical wrist). This work continues the research of 

Gasparetto and Zanotto, 2007 and Gasparetto and Zanotto, 2008 where they work with acceleration constraints to 

determine the minimum time trajectory. 

In this paper we will solve the collision-free trajectory planning problem for industrial robots under torque, 

power, jerk and energy consumed constraints. Note that this last constraint is very popular nowadays because of 

current sensitivity with regard to energy resources and respect for the environment. 

We start from the previous work done by the authors (see Valero et al., 2006, and Rubio et al., 2009). 

Specifically, the two-stages trajectory planner is used: in the first one, a sequence of configurations that guarantees 

a collision-free path is generated, while in the second stage a trajectory is adjusted to the previous sequence. 

The aim of this study is to focus on improving performance in this second stage. 

 

Problem statement. 

The proposed trajectory planner is arranged in two successive stages and has been applied to a PUMA 560 robot 

(the robot and its wire model is shown in Figure 1, for more details see Rubio et al., 2009).  
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Figure 1 Robot Puma 560 

In the first stage a discrete configuration space is generated from two feasible and distant robot configurations. 

The problem is set out in the Cartesian space, which leads to a much easier problem formulation. The 

configuration space generation is based on the concept of adjacent configuration (Valero et al., 2006 and Rubio et 

al., 2009 ).  

The algorithm generates the configuration space, taking into account the geometrical characteristics of the 

problem. In the second stage, a weighted graph is related to the configuration space previously obtained, which 

allows a minimum weighted free-collision path to be obtained between the initial and final configurations. Once 

the path is available, the dynamic characteristics of the robot are included, setting an optimal trajectory planning 

problem between couples of adjacent configurations, which attempts to obtain the minimum time trajectory 

between them that is compatible with the robot features and the actuator capabilities. From the complete sequence 

of configurations, a trajectory in the joint space is generated that minimizes the total time required and is 

dynamically compatible with the robot features and subjected to torque, jerk and consumed energy constraints. 

To adjust the trajectory, given a sequence of m robot configurations, S = {S1(qi1), S2(qi2)… Sm(qim)}, we look 

for minimum time trajectory (tmin), that contain them. The path is considered to be decomposed into m-1 intervals, 

so the time needed to reach the Sj+1 configuration from the initial S1 is tj, and the time spent in the segment j 

(between Sj and  Sj+1 configurations) will be tj-tj-1. In each interval, cubic interpolation functions have been used for 

joint trajectories. They are defined by means of joint variables between successive configurations, so that for the 

segment j is: 

  32

1, tdtctbaqttt ijijijijijjj  
 for i=1,…,dof  (dof being the degrees of freedoom of the 

robot) and j=1,…,m-1. (m is the number of the robot configuration)  

To ensure motion continuity between configurations, the following conditions associated to the given 

configurations are considered. 

 • Position: At each interval j the initial and final position should be coincident between Sj and Sj+1, giving 

a total of (2dof (m-1)) equations: 

  3

1

2

111   jijjijjijijjij tdtctbatq
 (1)

 

  32

jijjijjijijjij tdtctbatq 
 (2)
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 Velocity: velocities of the initial and final configurations must be zero, giving place to (2dof) equations: 

  001 tqi


 (3)
 

  0mim tq
 (4)

 

When passing through each configuration, the final velocity of the previous configuration should be equal 

to the initial velocity of the next configuration, leading to (dof (m-2)) equations 

   
jijjij tqtq 1 

 (5)
 

 Acceleration: For each intermediate configuration, the final acceleration of the previous configuration 

should be equal to the initial acceleration of the next configuration. For each intermediate configuration, 

the final acceleration of the previous interval must be equal to the first of the following one, giving rise to 

(dof(m-2)) equations: 

   
jijjij tqtq 1 

 (6)
 

Knowing the time required to execute the trajectory between the different configurations, the cubic polynomial 

coefficients can be obtained by using the above equations efficiently (by solving the inverse problem dynamic) 

and the normal time calculation procedure (see Suñer, J.L. et al [2]).  

In addition, the minimum time trajectory must meet the following three types of constraints: 

 Maximum torque on the actuators, 

  maxmin

iii t     min,0 tt , i = 1…dof
 (7)

 

 Maximum power on the actuators, 

  maxmin

iii PtP    min,0 tt , i = 1…dof
 (8)

 

 Maximum jerk on the actuators, 

  maxmin

iii qtqq     min,0 tt , i = 1…dof 
 (9)

 

 Consumed Energy, 

 


 








1

1 1

m

j

dof

i

ij  , ij  being the energy consumed by the i actuator between configurations j and j+1 

Given the large number of iterations required by the process, the technique used for obtaining the coefficients 

is crucial. The first task is to normalize the polynomials that define the stages (see Suñer et al., 2007).In short, the 

optimization problem is set by using incremental time variables in each interval, so that in the interval between Sj 

and Sj+1, the time variable should be tj=tj-tj-1, and the objective function, 

min

1

1

tt
m

j

j 




.
 (10)

 

The solution is obtained by means of SQP procedures, so that at each iterative step it is necessary to obtain the 

above mentioned polynomials coefficients from the estimation of the variables of the problem. 

Results 

Five different examples have been solved, with sequences between 32 and 57 configurations, for a PUMA 560 

robot. The constraints accounted for can be seen in Table I, where the values of maximum and minimum torque 

and the power for each actuator are shown.  

Table I: Limits of power and torque for each actuator 

i 1 2 3 4 5 6 

τi
max

(N m) 140 180 140 80 80 40 

τi
min

(N m) -140 -180 -140 -80 -80 -40 

Pi
max

(W) 275 350 275 150 150 75 

Pi
min

(W) -275 -350 -275 -150 -150 -75 



The examples have been solved with sequences of different configurations, considering a series of cases based 

on using different jerk and energy consumed constraints. Example of Case 1 is shown in Figure 2, where we can 

see the initial and final configuration and the trajectory generated: 

  

 

Figure 2 Initial and final configuration and trajectory generated for case 1. 

Table II shows the detail of each case. 

Table II: Cases solved with energy and jerk constraints. 

Case* 
Max. Jerk 

Constraint (rad/s
3
) 

Consumed Energy 

Constraint 

(Joules) 

Execution 

Time (s.) 

Consumed 

Energy 

(Joules) 

Jerk in 3
rd

 

Actuator. 

(rad/s
3
) 

Máx. Min. 

1_s_s Unconstrained** Unconstrained** 3,79 140,1 1615 -841 

1_s_75 Unconstrained** 75 22,55 75 107 -28 

1_5_s 5 Unconstrained** 19,27 80,1 5 -5 

1_5_75 5 75 25,76 75 5 -4 

2_s_s Unconstrained** Unconstrained** 5,14 203,49 1098 -984 

2_s_200 Unconstrained** 200 5,15 200 1096 -980 

2_s_175 Unconstrained** 175 5,3 175 954 -872 

2_s_150 Unconstrained** 150 5,62 150 704 -627 

2_s_125 Unconstrained** 125 6,42 125 425 -418 

2_s_100 Unconstrained** 100 12,25 100 167 -145 

2_s_95 Unconstrained** 95 21,08 95 176 -37 

2_5_s 5 Unconstrained** 23,05 103,3 5 -5 

2_5_95 5 95 26,35 95 5 -5 

3_s_s Unconstrained** Unconstrained** 2,27 87,5 897 -944 

3_s_50 Unconstrained** 50 7,34 50 125 -147 

3_5_s 5 Unconstrained** 14,82 51,5 5 -5 

3_5_50 5 50 17,94 50 2,8 -3,6 

4_5_s 5 Unconstrained** 18,28 42,14 5 -3,9 

4_10_s 10 Unconstrained** 14,51 42,39 10 -7,7 

4_25_s 25 Unconstrained** 10,69 43,1 25 -19,3 

4_5_s 5 Unconstrained 18,28 42,14 5 -3,9 

4_10_s 10 Unconstrained 14,51 42,39 10 -7,7 

4_25_s 25 Unconstrained 10,69 43,1 25 -19,3 

4_50_s 50 Unconstrained 8,49 43,92 50 -38,7 

4_100_s 100 Unconstrained 6,74 45,36 100 -77,4 

4_1000_s 1000 Unconstrained 3,21 63,37 856,8 -776,2 

4_s_s Unconstrained Unconstrained 2,41 88,46 1361,5 -1802,9 

4_5_40 5 40 18,65 40 5 -4 

4_s_40 Unconstrained 40 9,94 40 337 -13,2 

5_s_s Unconstrained Unconstrained 3,08 106,2 972 -1009 

5_s_40 Unconstrained 40 9,18 40 42,2 -37,8 

5_5_s 5 Unconstrained 15,91 40,3 5 -5 

5_5_40 5 40 15,93 40 5 -5 

*(Nomenclature used. Case: numberexample_const-ddd_const-ener). **(Nomenclature used. Unconstrained: s) 
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Table II presents the results, execution time required to perform the robot trajectory, energy consumed and the jerk 

reached on the third actuator. We only represent the values of the third actuator because it has significant 

behaviour and we also try to avoid generating too much information in the tables. 

Effect of the energy consumed constraint in Example 2 

Figure 3 shows the evolution of acceleration for the first three actuators in the case 2_s_s without constraints on 

the consumed energy and jerk. It can be seen that the greatest accelerations are obtained for the third actuator. 

 
Figure 3 Acceleration in the first three actuators for the case 2_s_s 

If the same example number 2 restricts the value of energy to the values indicated in each case (s_95 = 95 J ....,  

s_150 = 150 J), we obtain the graphs of Figure 4. It can be seen that as the energy is gradually constrained, the 

trajectory times become longer, especially for more severe values of the constraint. It can also be seen that in cases 

with more severe constraints on the energy consumed (100 J and 95 J), the variation in the time required to 

perform the trajectory is very important, while the maximum acceleration values retain the same order of 

magnitude. 

 

Figure 4 Acceleration of the actuator number 3 with different constraints on the consumed energy for example 2 

In Figure 5 the behaviour of the acceleration of the third operator is shown, but with less severe energy 

constraints. The values of maximum and minimum acceleration do not suffer significant variations, resulting in 

greater module acceleration for the greatest energy consumed constraint case. 



 

Figure 5 Acceleration of the actuator 3 for example 2, compared with the case without energy constraint (s_s) and 

with less severe constraints 

If we analyze the power consumed in the previous cases, we obtain the graph in Figure 6. It can be seen that 

the power peaks decrease as the energy is constrained and that in turn the trajectory time increases. 

 
Figure 6 Consumed power for example 2 by the robot with different constraints of consumed energy 

If power constraints are lenient, the results are shown in Figure 7, where it can be seen that the power 

variations are less pronounced. 

 
Figure 7 Consumed power for example 2 without consumed energy constraints and with less severe constraints 

Effect of the jerk constraint for example number 4 

Next we can see the graphs obtained for example number 4 in cases where the energy is constrained but not the 

jerk. Figure 8 shows that the peak accelerations are reduced while the trajectory time is increased when the jerk 

constraint become more severe. 
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Figure 8 Acceleration of the actuator number 3 with different jerk constraints for example 4 

The same behaviour is observed when the jerk constraint is less severe. See Figure 9. 

 
Figure 9 Acceleration of the actuator number 3 with different jerk constraints for example 4 

This fact means that the graphs of velocity are smoother. See Figure 10. 

 

 
Figure 10 Velocity in the actuator number 3 for different jerk constraints for example 4 

 



Effect of the energy consumed constraint when reduced by up to 75%. 

The following diagrams show the evolution of the power consumed for a 25% reduction in the energy consumed 

in each example when compared with the same case without constraints on acceleration and energy. The result is 

an increase in the time required of between 8% and 14% when the energy consumed is reduced by 25%. See 

Figure 11. 
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Figure 11 Consumed power in examples 1, 2, 3, 4 and 5, respectively 

Table III shows the numerical results for the examples in this section. 

Table III: Results obtained when imposing constraints on 75% of the energy consumed 

over its maximum value 

Case 

Max. Jerk 

Constraint 

(rad/s
3
) 

Consumed 

Energy 

Constraint 

(Joules) 

Execution 

Time (s.) 

Consumed 

Energy 

(Joules) 

Jerk in the 3
rd

 

actuator. 

(rad/s
3
) 

ΔT  

s_s % 

ΔEn 

s_s  

% 
Máx. Min. 

1_s_105 unconstraint 105,08 4,32 105,08 945,6 -559,6 14,0 -25,0 

1_s_s unconstraint sin 3,79 140,1 1615,1 -841,3 0,0 0,0 

2_s_153 unconstraint 152,62 5,58 152,62 728,2 -659,1 8,6 -25,0 

2_s_s unconstraint sin 5,14 203,49 1097,5 -983,7 0,0 0,0 

3_s_66 unconstraint 65,63 2,59 65,63 472,2 -529,4 14,1 -25,0 

3_s_s unconstraint sin 2,27 87,5 896,9 -944,0 0,0 0,0 

4_s_66 unconstraint 66,35 2,68 66,35 732,1 -740,3 11,2 -25,0 

4_s_s unconstraint sin 2,41 88,46 1361,5 
-

1802,9 
0,0 0,0 

5_s_80 unconstraint 79,65 3,38 79,65 604,6 -574,4 9,7 -25,0 

5_s_s unconstraint sin 3,08 106,2 971,5 
-

1008,5 
0,0 0,0 

 

Effect of the combination of severe constraints 

The following graph in Figure 12 shows the effect of the jerk constraints acting with acute energy consumed 

constraints (40 W.). First, it should be noted that a severe energy constraint does not prevent high and significant 

jerk values from appearing, see Table II. Notice in examples 4 and 5 how severe jerk constraints (5 rad/s
3
) have a 

major effect on the time required to perform the trajectory. The following graph shows the effect of the jerk 

constraints acting with acute consumed energy constraints (40 W.).  



 

 

 

Figure 12 Consumed power in examples 4 and 5, respectively 

Conclusions 

A trajectory planner has been introduced in which the trajectories calculated meet constraints on torque, power, 

jerk and energy consumed. This paper analyzes the impact of the torque, power, jerks and energy consumed 

constraints on the generation of minimum time collision-free trajectories for industrial robots. The algorithm 

works on a discrete configuration space and the inverse dynamic problem has been solved using cubic 

interpolation functions between two adjacent configurations. The algorithm has been applied on a large number of 

examples. The results obtained have been analysed on the basis of the minimum time required to perform the 

trajectory and the main conclusions are: 

a) Constraints on the energy consumed must enable the manipulator to exceed the requirements associated 

with potential energy, as the algorithm works on the assumption that the energy can be dissipated but not 

recovered. 

b) Increase in the severity of energy constraints results in longer time trajectories with more soft power 

requirements (Figure 11). When constraints are not very severe, efficient trajectories can be obtained 

without high penalties on the working time cycle. 

c) An increase in the severity of the jerk constraints involves longer time trajectories with more soft power 

requirements (Figure 8, 9 and 12) and lower energy consumed (Table II). When constraints are very 

severe, times are also severely penalized (Figure 8 and 12). 

d) When dealing with power, torque and energy consumed constraints simultaneously, even with severe 

values of them, significant problems associated with the jerk might appear (Figure 5). 

e) To obtain competitive results in the balance between time cycle and energy consumed, the actuators 

should work with the maximum admissible value of the jerk so that the robot can work with the desired 

accuracy. 
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