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Abstract In this paper we characterize the dual (%’;(,) (Q)), of the variable exponent Hor-
mander space %;()(Q) when the exponent p(-) satisfies the conditions 0 < p~ < pt <1,

the Hardy-Littlewood maximal operator M is bounded on L,,(.),,,, for some 0 < po < p~ and

/Po
Q is an open set in R”. It is shown that the dual (‘%;(-) (Q)), is isomorphic to the Hormander
space Z1°¢(Q) (this is the p* < 1 counterpart of the isomorphism (Q%’;(') (2)) ~ z@;‘%) (L),
1 < p~ < p" < oo, recently proved by the authors) and hence the representation theorem
(%;(‘) (.Q))’ ~ [Y is obtained. Our proof relies heavily on the properties of the Banach en-
velopes of the steps of ‘%169(0 (£2) and on the extrapolation theorems in the variable Lebesgue
spaces of entire analytic functions obtained in a precedent paper. Other results for p(-) = p,
0 < p <1, are also given (e.g. #,(£2) does not contain any infinite-dimensional g-Banach
subspace with p < g < 1 or the quasi-Banach space %, N &”"(Q) contains a copy of /, when
Q is a cube in R"). Finally, a question on complex interpolation (in the sense of Kalton) of
variable exponent Hormander spaces is proposed.
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1 Introduction

Interest has increased recently in the variable exponent Lebesgue, Sobolev, Bessel Potential,
Besov and Triebel-Lizorkin spaces (and in the harmonic analysis on the variable Lebesgue
spaces) because of their applications to PDE of non-standard growth, modelling electrorheo-
logical fluids and quasi-Newtonian fluids, magnetostatics and image restoration (see e.g. [1,
2] and the books of Diening et al. [8] and Cruz-Uribe and Fiorenza [6]). In [17] we studied
the properties of the (non-weighted) variable exponent Hormander spaces (., ,%’1"(.) (Q)

and %lp"(c_) (£2) (recall that the classical Hérmander spaces %, x, %, (£2) and 93})"2 (Q) play
a crucial role in the theory of linear partial differential operators (see e.g. [9])). In particular,
extending a Hormander’s result [9, Chapter XV] to our context, we showed that if p~ > 1

and the Hardy-Littlewood maximal operator M is bounded on L, then (L%";(‘)(Q))’ is
isomorphic to %"%(!)) In the present paper we extend this duality to exponents p(-)
o

satisfying the conditions 0 < p~ < p* <1 and such that the Hardy-Littlewood maximal
operator M is bounded on L,.)/,, for some 0 < pp < p~. The techniques used are differ-
ent from those used in [17] since if p* < 1 then the dual of L) is trivial and the steps
BpyNE "(K) are quasi-Banach spaces instead of Banach spaces. A number of applications
of this duality are also given. Firstly we prove that the steps of e@;;(,)(ﬂ) are quasi-Banach
spaces whose duals separate points. Then we introduce and study an important locally con-
vex topology on @;(,)(Q) (considering the Banach envelopes of those steps) and we show

that the space %'%°(Q) is isomorphic to (‘@;(‘) (Q))/ (this is the main result of the paper).
The estimates obtained in [16, Theorem 3.5] play an essential role in the proof of this iso-
morphism. As a consequence of this result, we obtain a sequence space representation of
the dual (93;(_>(Q))/ improving a result of [17] (the corresponding results for p(-) = p,
0 < p < 1, are also new). Other results for p(-) = p, 0 < p < 1, are also obtained (for in-
stance, %;(Q) does not contain any infinite-dimensional g-Banach subspace with p < g <1
and the quasi-Banach space %, N &”(Q) contains a copy of /, when Q is a cube in R"). Fi-
nally, two related questions on complex interpolation (in the sense of Kalton [13, Section
3]) of variable exponent Hormander spaces are proposed.

1.1 Notation

1. Let E and F be topological linear spaces over C. If E and F are (topologically) iso-
morphic we put E ~ F. The (topological) dual of E is denoted by E’ and is given the
topology of uniform convergence on all the bounded subsets of E. We put E — F if
E is a linear subspace of F and the canonical injection is continuous. If E is a Banach
space, EN (resp. E Ny js the topological product (resp. the locally convex direct sum) of
a countable number of copies of E. If {E;}7 , is a sequence of topological linear spaces
such that E; — E; for each i, then their inductive limit is denoted by ind; E; (see [15]).

2. If f € Ly (R") the Fourier transform of £, f or % f, is defined by f(&) = fpu f(x)e ¥ dx.
If f is a function on R”, then f(x) = f(—x) for x € R". B, is the closed Euclidean ball
{x:]x] < r}inR" C5(R"), C5(£2) and S(R") are the usual Schwartz spaces (in the last
space the norms max|g|<,, Sup,cn (1 + [x/2)"[0%@(x)|, m = 0,1,2, ..., are denoted by
lo]m). 2'(R™), 2'(2) and §'(R") are their corresponding duals. &'(K) (K compact in
R™) is the set of distributions on R” with support contained in K. The Fourier transform
in §'(R") is also denoted by " (or ). If u € §'(R"), i is defined by (@, @) = (P, u) for
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all ¢ € S(R™); thus ~ coincides with the operator (27)™".%2. When we consider func-
tion spaces (or distribution spaces) defined on the whole Euclidean space R", we shall
omit the “R"™” of their notation. The letter C will always denote a positive constant, not
necessarily the same at each ocurrence.

. Throughout this paper all vector spaces are assumed complex. By definition, a quasi-
normed space is a vector space X with a quasi-norm x — ||x|| satisfying: (i) ||x|| > 0, x #
0, (i) ||ax|| = |e| ||x|I, GiD) [lx+y]| < C(||x]| +I¥I), x,¥ € X, for some C independent of
x, y. If X is complete, we say it is a quasi-Banach space. The quasi-norm is p-subadditive
for some p > 0if [[x+y||” < ||x||” + [|¥]|?, x,y € X; in this case, if X is complete, we say
it is a p-Banach space. Recall that if a quasi-normed space (X, || - ||) is locally convex
then it becomes a normed space: Let By = {x: ||x|| < 1} be and let U be a balanced
convex open neighborhood of 0 such that U C By. If € > 0 is such that éBx C U then
the Minkowski functional of U, ||- ||y (|| ||y =inf{A > 0:x € AU}), is a norm equivalent
to || - || since

€ [lxlly < [l < [Ixlv

holds for all x € X. (See [11, Chapter 1] and [14, Chapter 25].)
. PV is the set of all measurable functions p(-) on R" with range in (0, ) such that p~ =
ess infyern p(x) > 0and p™ = ess sup,cga p(x) < oo. L.y denotes the set of all complex-

(gy

valued measurable functions on R” such that for some A > 0, fR,, dx < oo,

With the norm (quasi-norm if p~ < 1) defined by || f|[ () := inf{l >0: [pn (@)pwdx <

1 } L, becomes a Banach (quasi-Banach if p~ < 1) space. If p~ < 1 we can also define

P

and g(x) = %. In this case we have || f|| ., = H\f|p0”;{§0. (See [7], [8] and [6].)

. If K is a compact subset of R"” and 0 < p < oo, then Lg ={fes: suppf CK, fe
Ly}. (LK, [|-]l,) is a quasi-Banach (Banach if p > 1) space (see [19, Chapters 1, 2]). If
p(-) € 20 then

L,y as the set of all measurable functions f such that [f|0 € Ly .), where 0 < pg < p~

Lf(,) ={feS: suppfCK, ||f\|p(,) < oo}

(ng | Il ()) is a quasinormed space (normed if p~ > 1) linear space. From the Paley-

Wiener-Schwartz theorem it follows that the elements of L‘f(.) are entire analytic func-

tions of exponential type. When p(-) = p, a constant, then L§<_) = L§ with equality of

quasi-norms (resp. norms). We shall denote by SX the collection of all f € S such that
supp f C K; obviously SX ¢ Lp(_). The spaces Lg(_) have been introduced and studied in
[16].

. Let p(-) € 2" be and let Q be an open set in R". Then ), :={u €S8 : A€ Ly }.Ifue

%y

to (Lp(.) ns, |- Hp(,)) (a Banach space isomorphic to L,y if p~ > 1). Now consider the
space

() We put ||u\|,@p(_) = (@] - (@p(,), II- H,@p(_)) is a quasi-normed space isomorphic

By (2) = J{#Bp)NE'(K) : K compactin Q}.

If every %,,.) N &' (K) is equipped with the topology induced by %,,.), then 93;(.) (Q)
(endowed with the corresponding inductive linear topology) becomes a strict inductive
limit

%;()(Q) :=indg [‘%p() ﬂg,(K)} .
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Finally,
%;O(C,) (Q):={uec2'(Q): pue B, forall g € C5(2)}.

The topology of this space is generated by the seminorms (semiquasi-norms when p~ <
D lullyip = lula, . ¢ € G ().

The spaces %,.), %;(»(.Q) and @lp"(?)(ﬂ) are called variable exponent Hérmander
spaces and have been introduced in [17]. If p(-) = p and p > 1, these spaces coincide
with the Hormander spaces %), 1, %})"“1 () and %},OCI(Q) respectively (see [9, Chapter

X]). Throughout this paper, Z!%°(2) will denote the Hérmander space ,@lfcl (Q) (see
again [9, Chapter X]).

2 The dual of %’;(A)(Q) (0 < p~ < p* <1) and some applications

In [9], the isomorphism %5 , (2)" ~ 93;"? /f((.Q) is shown (being £ an open convex set in R”

and k a weight satisfying the estimate k(x+y) < (1+ C|x|)¥k(y), x,y € R", C and N pos-

itive constants). In Theorem 4.3 of [17] this isomorphism is extended to variable exponent

Hormander spaces with 1 < p~ < pt < oo (53;(,)(9))/ ~ %1%> (£2). The technique used
'z

in [17] depends crucially on the condition p~ > 1. In this section we show that (L%’;(A) (Q))/

is isomorphic to Z89°(Q) when the exponent p(-) satisfies 0 < p~ < pT < 1. Our proof is
based on the results of [16, 17], in particular on the extrapolation theorem [17, Theorem 3.5],
and on the properties of the Banach envelopes of the steps (931,@ N&'(K),| - H(@P(») of
99;(‘) (£2). Furthermore, we obtain a sequence space representation of the dual #,, ) (Q)' for

0 < p~ < p*™ < 1. We also show that if £ is an open cube with side length 1 and 0 < p < 1,
then %’;() (£2) does not contain any infinite-dimensional g-Banach subspace with p < g < 1.

As a consequence of this result we prove that (%, N &”"(K), |- ||z,) (K = [-R,R]" with
R < 1/2) contains a copy of [, and that if 0 < py,py < 1 then &y, (Q) ~ £ (Q) if and
only if p; = ps.

Throughout this section, p(-) is a variable exponent in P such that 0 < p~ < pt < 1
and the Hardy-Littlewood maximal operator M is bounded on L)/, for some 0 < po <p~,
Q denotes an open setin R”, {6;}7_; denotes a Ci’(£2)-partition of unity on £ and {K;}%_,

is a fundamental sequence of compact subsets of £2 such that K; = IO{ s IO( ; has the segment
property and supp 8; C K for each j.

We start recalling some basic facts about the Banach envelope of a quasi-normed space.
Let (X, ||-||x) be a quasi-normed space whose dual X’ separates the points of X and let By be
the unit ball of X. Then X’ is a Banach space under the norm ||x’|| = sup{|{x,x’)| : x € Bx }.
The Banach envelope X, of (X, || - ||x) is the completion of X in the norm || - || defined by

[Ixlle == sup{|(x.x)| : [lx'[| < 1}

Il - |l coincides with the Minkowski functional of the convex hull of By, ||| < |- |Ix
and the inclusion X < X, is continuous with dense range. X, has the property that any
bounded linear operator L : X — Y into a Banach space extends with preservation of norm to
a bounded linear operator L : X, — Y, thus (X;)’ (and (X, || - ||)") becomes linearly isometric
to X’ (see [11, pp. 27, 28], [12, Introduction]).

Next we prove two results on the space %) N&" (K).
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Proposition 2.1 Let K be a compact subset of R". If K = O and O is an open set with the
segment property, then %,y N &' (K) (equipped with the quasi-norm || - L)) IS a quasi-
Banach space whose dual separates points.

Proof Since %,y N &”"(K) is isomorphic (via the Fourier transform) to L;(IS, it suffices to
apply Theorem 3.5 of [16]. O

Proposition 2.2 Let 0 < p < 1 and let K = [—R,R]" with 0 < R < 1/2. Then #,N &' (K)
(equipped with || - 2,) is non-locally convex.

Proof Since %, N &’ (K) and L,If are isomorphic it suffices to see that L[’f is non-locally
convex. It is a well-known fact that the mapping

D: LK 5 1,(Z"): f— (f(m))

meZ"

is an isomorphic embedding (see [4, pp. 101, 197] for n = 1 and [5, Lema 1.8, p. 17] for
n>1).1If Lf were locally convex (i.e. a Banach space, see Notation 3) then the operator
D would be a compact operator by virtue of a result of Stiles [18, Theorem 4] and thus
L,’f would be finite-dimensional. The proof is complete since that L§ is infinite-dimensional
(e.g. SK C L) ]

Let %}c)(.) (2)[.7] the topological inductive limit of the sequence of quasi-Banach spaces
{(B,)n&(K)), |- ||gp()) j>1}. Let 25, (Q)[7] be the topological inductive limit

of the sequence of normed spaces { (%, ﬂé"’ Kj),|l-1l;) - j =1} where | -|; is the
Minkowski functional of the convex hull of the unit ball of the quasi-Banach space (‘%p(-) N

g/(Kj)v
Proposition 2.3

1. 7€ 7 and (#,)(Q)[7)) = (% (@) Z])"

2. . is generated by the system of norms {q(c,)(-) == L G [|6;- [li : (Ci)i2, € (RN}

#,.,)- Then we have

Proof Firstly let us recall that for any compact subset K of 2, Ou € %, N &' (KNsuppB)
for all @ € Cy'(L2) and for all u € %,y N &’ (K) and that, for every u € B, (2), 6u=0
for all i large enough (see [17, Theorem 3.5/4, Remark 3.6/2]).

1. For all j we have ||-[|; < |- ||5,(.)- This proves that the identity id : 2, | (2)[.7] —
93;0(9)[{%} is continuous, i.e. that J. C 7. On the other hand, the duals of the spaces
%;(_>(Q)[9 | and %}C](_)(Q)[%} coincide since the corresponding steps have linearly iso-
metric duals (see Proposition 2.1 and previous remarks to this proposition).

2. Taking into account that for every u € 93;(_> () there exists a positive integer m such
that u = }" | Qu and that every | - [|; is a norm, it is immediate to verify that the g(c,) are
norms. Let .77 be the topology generated by this system of norms. Let us see that the identity

id : B\ ()T = B (Q)[Z]

is continuous. Let || - || be a seminorm on %’;(_)(.Q) such that its restriction to each step

(% o NE (K-, ) is continuous (these seminorms generate the topology 7). Then
there exist constants C; > 0 such that [|u]| < Cj||ul|; for all u € B,.)NE'(K;), j=1,2,.
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Letu e %;()(.Q). We know that there is a positive integer m such that 6;u = 0 for all i > m
and that u = Y/ | O;u. Then, since each 6;u is in @P(,) N&'(K;), we get

m
Jul = |3
i=1

and this proves the required continuity. Thus .7, is coarser than .7’. Next we shall show that
J' C . Tt will be sufficient to see that every canonical injection

m o

m
‘ <Y 6l <Y Cil|6ulli = Y. Cill6iue]li = q(c,) (u)
i=1 i=1 i=1

(B NE" (K |- [19,,) = 25, (@)1

is continuous. Given q.c;)» the Theorem 3.5/2 of [16] and the continuity of the Fourier trans-
form show that there are a positive integer k and a positive constant C such that

m m m
acy() =Y. Cill6ull < Y Cill6ullz,., = ) Cill6iull )
i=1 i=1 i=1

m m m

= (27) " Y Gil|0rall) < C Y. Cil6ellall) = C (X, 161l )
i=1 i=1 i=1

Bp(.)

holds for all u € #,y N &’ (K;) (m is independent of u). Thus .7" C 7. Then, taking into
account 1. and the inclusions 7, C I’ C 7, we get (93;(.)(!2)[9’])/ = (%{‘)()(Q)[ﬂc])/
But | (L2)[.7] is an inductive limit of normed spaces which implies that .7 is the finest
locally convex topology on %;(A)(Q) which has (,%’;(A)(Q)[TCD/ as dual space (see [15,
§ 21, p. 260 & § 28, p. 379)), therefore necessarily .7’ is coarser than 7. Thus, J. = .7’
and the proof of proposition is complete. ad

Remark

1. In general, the topology .7 is strictly coarser than the topology .7: Let us assume Q =
]~ 1, }["and 0 < p < 1. Then, since (%,N&"([~R.R]"),||-|l5,) with 0 <R < 1/2is a
topological linear subspace of %},(£2)[.7] (see [17, Theorem 3.5/3]), the Proposition 2.2
shows that #;(Q)[.7] is non-locally convex. Since .7 is locally convex, we obtain the
required conclusion.

2. Itis easy to prove that the inductive limit topology .7 is also generated by the system of
po-norms

d 1/po
1@: . ||Po (O N
{(;c, o1 ) (@i € (RN}
Proposition 2.4 (%ZO (2)[71) is a Fréchet space.

Proof Since the topology of (93;() Q)7 ])/ (i.e. the topology of the uniform convergence
on bounded subsets of %’;(.)(Q) [7]) is metrizable by [17, Theorem 3.5/3], the proof of the
proposition follows by standard arguments. O

Now we can show the p™ < 1 counterpart of Theorem 4.3 of [17] ((%’;(A)(Q))/ ~

931%/)(!2) for 1 < p~ < pt < o). We will need the spaces [1(C;,X;) and l.(C;,X;): If
7

(C;) € (R.)N and (X;) is a sequence of normed spaces then I1(C;,X;) (resp. L.(C;,X;)) is
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the set of all sequences (x;) € [T~ X; such that || (x;) |1 = X2 Ci ||xil|x; <oo(resp [[(xi) oo =
sup; C; ||xi]|x;, < o). It is well known that the Banach spaces (w(l X!),|l - ||-) and

(/(Ci,X;), || -||1)" are linearly isometric via the mapping A defined by (x}) — ((x;),A((x})))
=Y <xi7x;>'

Theorem 2.1 (,%’;(_)(Q)[ﬁ])/ is isomorphic to %'%°(Q) when 0 < p* < 1. In particular,
(#5(2) 7)) ~ B(Q) for 0 < p < 1.

Proof Let L be a continuous linear functional on %’;O(Q)[ﬂ ]. By Proposition 2.3/1, L
is also a continuous linear functional on %;(_)(Q)[ﬁ} and so, by Proposition 2.3/2, there

exists an element (C;) in (R, )N such that

[(u,L)| < Y Cill6ulli, ue By ().
i=1
Then the mapping Z : ,%’;(‘)(Q)[ﬂc] = 1 (Ci, (B N E'(Ki), || -117) = u — (Bu), is well
defined and is linear, injective and continuous (see the proof of Proposition 2.3). Since the
linear functional LoZ~! satisfies |{(8;u),LoZ~ )| < ||(6u)]|1, u € #,,(£2), the Hahn-

Banach theorem shows the existence of a linear functional (LoZ*I)’ IS (ll (C,'7 (@p(.) N

!
"(Ki), || - H,))) of norm at most 1 which extends Lo Z~!. Then, by the isometric isomor-
phism
1
A: lw(g (B 16 K1) = (1 (Con (B 16" (K- 1) )
l
deﬁned by 7 ) Zl l<ulvcl> Wwe can ﬁnd (51) € lw(clld (f@ mg/( H || ) )
such thatA( ) = LoZ ,ie.suchthat Y7 (u;, &) = <(u,<),(LoZ =) for all (u;) €
(G, (ByyNE"(Ki ) -1l )) In particular, we get the following representation of L
(L) = (Z(0), (LoZ ™)) = Y (0u. &), ue ().

—

i=

Next, we shall prove that the mapping
@ (%)(Q)7) ~ BT(Q)

defined by @(L) =Y ,[6:&], where (&) is the sequence which represents to L and [6;;] is
the distribution on Q defined by (@, [6;5;]) = (6;9,&;) for ¢ € C5(£2), is an isomorphism.
Firstly let us see that @ is well defined:

(i) We claim that each [6;&;] € (). For every ¢ € C5(Q), 6,0 € B,y N &’ (K;) and
so (6;¢,&;) makes sense. Furthermore, if ¢, — 0 in Ci’(K) then also 6;¢, — 0 in Ci'(K)

and this implies that 6;¢p, — 0in S, i.e. Gj\q)v — 01in S. This shows that 8;¢, — 0 in (%p(') N
&'(K;), |- Hg ) and thus in (%,,(.) N&'(Ki), || ||;). Therefore, (@y,[6,&]) = (6;¢y, &) — 0
and [6;&;] becomes a distribution on Q. To establish the claim, it remains to prove that
0[6,&] € B, ie. (9[6:&])" € Lo, for each ¢ € C(2). Given such a @, it is easily seen that
©[6;&;] is a distribution on R" whose support is contained in K;. Thus (q)[e,g,»})A coincides
with the Fourier-Laplace transform of (p[@iéi] (see [10, Theorem 7.1.14]) defined by

(Q[O:&])" (x) = (e "y, 0[0:&]), xeR",
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where x € Ci’(£2) and = 1 in a neighborhood of K;. Since 6;x = 6;, we obtain

(Q[B:EN)" (x) = (Brpe 0 &)

and so

[(@[B:&)" ()| < 1I& ] || 6:e™ ]|, < |1 H9i<P€7i<‘)xH,%p(_)
= &1 | (Brpe™ )|, = Il 80 () +2)]] .

where || &;|| is the norm of the functional &;. Now we show that ”5,6( (-)+x) H < C with
C independent of x € R". Indeed, if ¢(-) = p(-)/po we have, by using [8, Lemma 3.2.5],

180 (()+2) ], == l1B@(() + )1 7

< max{(/R” |@(Y+X)\p<y>dy) /1’77 (/ |@(y+x)|”(y)dy>]/’”}

-1 —_— — = /pt
<27 U max{ [6:0ll, + 16017 60l + 60l "}

and this bound is independent of x € R”. Therefore ¢[6;] € %.. and [6;§;] € B°(Q).

(ii) The series Y2 ,[6:&;] converges in Z8'9°(Q) since this space is a Fréchet space and
forall ¢ € G5 (22) we have Y72, || [6:&/] wa =Y, || @[6:&]]| 5. < o (take into account that
6;¢ = 0, and thus ¢[6;&;] = 0, for all i large enough since supp @ is a compact subset of Q).

(iii) If (LoZ™")~ € (11 (Ci, (BN E (K, - Nli ))) is another extension of Lo Z™!
and () € lw(cii, (Bo) N E (K- 1) ) is such that (u,L) = ¥° | (8, ;) for all u €
%;O(.Q), then Y2 ,[6:&] = Y2, [6:m;] (using the embedding Z9°(Q) — Z'(Q) [9, The-
orem 10.1.26] we have (¢, Y2, [6:Gi]) = X2 (@, [0:8]) = LiZ,(6i9, &) = (@, L) = -+~ =
(@, XiZ1[6m]) for any ¢ € CF(Q)).

(iv) Let (C}) € (R4+)N be another sequence such that |(u,L)| < Y5, C} ||6u|; for all
ue 33;(,)(9). Let Z' be the corresponding operator, let (Lo (Z')™")™ be an extension of
Lo(Z)™" 10 (€], (B N6 (K0 | - 1) and let (1) € e (2, (2 6" (KD, - 1))
be the sequence which represents this extension. Then (u,L) = ¥ | (6, &) in %C ( )
and, reasoning as in (iii), we see that Y, [6;&)] = ¥, [6:E}].

All this shows that @ is well defined. The simple proof of the linearity of & will be
omitted. If @(L) = 0 then 0 = (@, P(L)) = Y72 ,(6:9,&) = (,L) for any ¢ € C5 (L),
and since Cy’(L2) is dense in %’;(,)(.Q) [17, Theorem 3.5] we obtain L = 0. Therefore, &
is injective. Let us see that @ is surjective: Let (y;) be a sequence in Ci(£2) such that
xi = 1in K; and suppy; C IO(,-H. Let v be an element of %°(Q). For each ¢ € Cy (),
Y2 16iV|wp = X2 [1(6i0) V|2, < oo (6;¢ =0 for all i large enough) and so the se-
ries Y52, 6;v converges in %'%°(Q). Then we have the decomposition (recall that (6;) is
a Cy (L )-partition of unity on )

=)

V—ZGV—Zi Gx,v—zie (V) = i{e[vi Q.1
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where v; = x;v. We now define the functional

o

(L) = (2m) ™"}

Ouu(x) Vi(x)dx, ue By (),
= Jrn

and we show that is .77 -continuous. Fix %,,.) N&"(K;). Take u € %,y N &' (K;). Every Gu
is in By Na &'(K;) and every V; € P, thus 6'u cL ()f and V; € L... Furthermore, since

L ( ) ey L K (see [16, Theorem 3.5/5]), there is a constant C > 0 such that

[6iully < Cl|Giual| o) = C | Giual| 5,

holds for all i. We also know that there is a positive integer m such that 6;u =0 for alli > m
(C and m only depend on j). Then we have

[(u,L)| < (2m)~" Z/Rn |6iu(x)| [Vi(x)|dx < CY || Qiual|1 ]| ¥i]]-o
i=1 i=1

m
<C Y (6], Vil ..

i=1

Reasoning now as in Proposition 2.3/2 we can find a positive integer k and a constant C such
that ||6iu||,@p(_) < C|6,~|k|\u||y,zp<_) for 1 <i <m and so we obtain

()| < ¢ (L 10lvla. ) lla, (22)

Thus L is continuous on %, N &'(K;) (actually for all j) and we conclude that L €
(%57(_)(9)[9 ])/ We shall show that (L) = v. By Proposition 2.3/1, the former dual co-
incides with (33;(.)(9)[9 D Then, by Proposition 2.3/2, there exists (C;) € (R;)N such
that
[, L)] < Y G |6l
i=1
holds for all u € %5 (). Let (&) € L. (6 (By) N E K, |- | )) such that (u,L) =
Y2 (B, &) for all u € #,,(2). Then D(L) = Y2, [6:&i] and, for any @ € C7(R2), we
have

Mx

(9, B(L)) = (9, L) = <2n>-"§ [ awtiar = n) " Y 00,9

i

= <9(p7vl>:Z (PQV, = (Pzevz =
1 i=1

Mg

I

and so @(L) = v and P is surjective. Summarizing, P is an algebraic isomorphism.

Finally, we prove that @ is a (topological) isomorphism. We first show the continuity
of @~ !: Let A a bounded subset of %’;O(Q)[ﬂ]. By [17, Theorem 3.5/3], there is a j such
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that A is a bounded subset of (%’p(,) né&'(K;),| - H,a/;p(_)). Then, taking into account the de-
composition (2.1), the estimate (2.2) and the inequalities ||V|wy, < (270) 7| Zill 1|V [|o0z1 »
we get

pa(@'(v) = sup{|(u, @ (V))| :u € A}

m
—sup{|(u,L)] :uc A} < sup{C(Z |6,»\k\|v,-|\%) lull ., < eA}
=1

m m
< (L 16dlvilla ) =C (X 181clVilesz ) < CVlins
i=1 i=1

for all v € #%°(Q) and thus &~ ! is continuous. Then @ becomes a (topological) iso-
morphism by the open mapping theorem (by Proposition 2.4 (‘%167(-) (7 })/ is also a Fréchet
space).

Lastly, if p(-) = p and 0 < p < 1 then the Hardy-Littlewood maximal operator M is
bounded on L,,/,,, for each py €]0, p[ and so we also have the isomorphism (%5 (£2) [9})/ o~
B (Q). o

Remark If p(-) is a variable exponent such that 1 < p~ < p* < o, it is possible to prove
the isomorphism (,@’;(.)(Q))/ ~ %IF%(Q) (obtained in [17, Theorem 4.3]) following step
2

by step the proof of the preceding theorem and using Remark 3.6/2 of [17] instead of the

Proposition 2.3 (the topologies .7 and .7; coincide in this case): In fact, using the notations

of Theorem 2.1 and sustituing in the proof %%°(Q) by (%’1%?) (), it suffices to notice that
e

0[6:&] € ﬂpr('), ie. (q)[e[&,-])A €Ly for each ¢ € C;(£2) (use Lemma 4.1 of [17]), and
that in the proof of the surjectivity of @, when one needs to show that the functional

(u,L) = (Zn)*";'/ﬂv Ou(x)Vilx)dx, ueF ) (Q),

is 7 continuous, one must use the generalized inequality of Holder.

In [17, Remark 4.4] it is shown that if £2 is an open interval of R and 0 < p < 1 then
(#;,(2)[7])" ~ proj, E; where the Banach spaces E; are isomorphic to .. The next corol-
lary is a sequence space representation of the dual (%;(.)(Q)[ﬂ 1)’ which improves that
result.

Corollary 2.1 (%;(.)(Q)[ﬂ])/ is isomorphic to (1..)N if 0 < p* < 1.

Proof By a result of Vogt [20] we know that % (2)[7] =~ (1;)™V). By using this isomor-
phism and Theorem 2.1, we have

(25, (Q)[7]) = Q) = (#(Q)[7]) =~ ((1)™)

/

~ (L)Y

(for the last isomorphism see, e.g. [15, p. 287]). a

We finish with a result which extends Proposition 2.2.

Theorem 2.2 Let Q be a cube of R" with side length 1.
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1. If0 < p <1, then #,,(Q)[T] does not contain any infinite-dimensional q-Banach sub-
space with p < g < 1.
2. If0<p1,p2 <1, then B}, (2)[T| = %, (Q)|.T] if and only if p1 = p».

Proof 1. Without loss of generality we can suppose Q = | f%, % [" Then we have %},(2) [ﬁ}l
=ind;[#,N&"(Qi)] where Q; = [—R;,Ri]" and R; /' 1/2. Assume that 25 (£2)[.7 ] contains
an infinite-dimensional g-Banach subspace X. By [17, Theorem 3.5/3], X becomes a sub-
space of a step %, N &”(Q}). Then we have the following diagram

x L #,n6'(0) L LY 21,z

where j is the canonical injection, .% is the Fourier transform operator and D is the sampling
operator (see the proof of Proposition 2.2). Since p < ¢, a result of Stiles ([18, p. 118], [11,
p- 25]) proves that the bounded operator A = Do % o j is compact. But .% is a topological
isomorphism and D is an isomorphic embedding, thus ImA and, consequently, X are finite-
dimensional. This contradiction finishes the proof of 1.

2. Since the steps B, N&'(Q;) (resp. B, &' (Q;)) are infinite-dimensional p;-Banach
(resp. p2-Banach) subspaces of %, (2)[.7] (resp. #;, (2)[7]) the result is a consequence
of 1. O

Remark Observe that, applying a result of Bastero [3, Corollary 5], it is easily seen that
each step %, N &' (Q;) contains a subspace isomorphic to [,. In fact, since Lg" (~ BpN
&'(Qy)) is a closed subspace of L, Lg" contains a subspace isomorphic to /, for some p <
r <2 (use [3, Corollary 5]). Then, applying Theorem 2.2/1, we conclude that r = p.

Questions

1. In [17] we have posed a question on complex interpolation between the Banach spaces
B, )N &'(Q) when 1 < p;” < pf < oo, i=0,1.1In [13, Section 3] Kalton elaborated a
method of complex interpolation for compatible pairs (Xp, X)) of quasi-Banach spaces
such that Xo N X is dense in X;, i = 0, 1, and the quasi-Banach space Xy + X is analyt-
ically convex (i.e. there is a constant C such that for every polynomial P: C — Xo + X
we have [|P(0)]|x,+x; <C max|;—; [|P(z)||x,+x,)- In that context we pose the following
related questions:

(a) fO<p, < pi+ <1,i=0,1,and Q = [-R,R]", is the quasi-Banach space

Bpy()NE"(Q) + By, () NE'(Q)

(equivalently, the quasi-Banach space Lgo R Lgl (‘>) analytically convex?
(b) If the answer to 1. is affirmative, is the complex interpolation formula

[Bpy() N E'(Q), By () N E(Q)] g = BN E(Q)

. 0 0 40 - 10 . .
(equivalently, [Lpo 5L Lp] (')] 6= Lp(')) valid?. The former fonula :S ;mdersetood in
the sense of equivalence of quasi-norms and 0 < 8 < 1, = Pl =+ e
[-,-]e is the interpolation functor in the sense of Kalton [13, Section 3].

2. Calculate the dual of the space %’;(,) (22) when the variable exponent p(-) € 2°, p~ <

and

1 < p*, and the Hardy-Littlewood maximal operator M is bounded in Lyy/p, for some

O<po<p .

/po
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