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Abstract

In this dissertation, we deal with the cross-view tasks related to information retrieval

using embedding methods. We study existing methodologies and propose new meth-

ods to overcome their limitations. We formally introduce the concept of mixed-script

IR, which deals with the challenges faced by an IR system when a language is written

in different scripts because of various technological and sociological factors. Mixed-

script terms are represented by a small and finite feature space comprised of character

n-grams. We propose the cross-view autoencoder (CAE) to model such terms in an

abstract space and CAE provides the state-of-the-art performance.

We study a wide variety of models for cross-language information retrieval (CLIR)

and propose a model based on compositional neural networks (XCNN) which over-

comes the limitations of the existing methods and achieves the best results for many

CLIR tasks such as ad-hoc retrieval, parallel sentence retrieval and cross-language

plagiarism detection. We empirically test the proposed models for these tasks on

publicly available datasets and present the results with analyses.

In this dissertation, we also explore an effective method to incorporate contextual

similarity for lexical selection in machine translation. Concretely, we investigate a

feature based on context available in source sentence calculated using deep autoen-

coders. The proposed feature exhibits statistically significant improvements over the

strong baselines for English-to-Spanish and English-to-Hindi translation tasks.
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ii Abstract

Finally, we explore the the methods to evaluate the quality of autoencoder gen-

erated representations of text data and analyse its architectural properties. For this,

we propose two metrics based on reconstruction capabilities of the autoencoders:

structure preservation index (SPI) and similarity accumulation index (SAI). We also

introduce a concept of critical bottleneck dimensionality (CBD) below which the

structural information is lost and present analyses linking CBD and language per-

plexity.



Resumen

En esta disertación estudiamos problemas de vistas-múltiples relacionados con la re-

cuperación de información utilizando técnicas de representación en espacios de baja

dimensionalidad. Estudiamos las técnicas existentes y proponemos nuevas técnicas

para solventar algunas de las limitaciones existentes. Presentamos formalmente el

concepto de recuperación de información con escritura mixta, el cual trata las difi-

cultades de los sistemas de recuperación de información cuando los textos contienen

escrituras en distintos alfabetos debido a razones tecnológicas y socioculturales. Las

palabras en escritura mixta son representadas en un espacio de caracteŕısticas finito y

reducido, compuesto por n-gramas de caracteres. Proponemos los auto-codificadores

de vistas-múltiples (CAE, por sus siglas en inglés) para modelar dichas palabras en

un espacio abstracto, y esta técnica produce resultados de vanguardia.

En este sentido, estudiamos varios modelos para la recuperación de información

entre lenguas diferentes (CLIR, por sus siglas en inglés) y proponemos un modelo

basado en redes neuronales composicionales (XCNN, por sus siglas en inglés), el cual

supera las limitaciones de los métodos existentes. El método de XCNN propuesto

produce mejores resultados en diferentes tareas de CLIR tales como la recuperación

de información ad-hoc, la identificación de oraciones equivalentes en lenguas distintas

y la detección de plagio entre lenguas diferentes. Para tal efecto, realizamos pruebas

experimentales para dichas tareas sobre conjuntos de datos disponibles públicamente,
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iv Resumen

presentando los resultados y análisis correspondientes.

En esta disertación, también exploramos un método eficiente para utilizar simil-

itud semántica de contextos en el proceso de selección léxica en traducción automática.

Espećıficamente, proponemos caracteŕısticas extráıdas de los contextos disponibles

en las oraciones fuentes mediante el uso de auto-codificadores. El uso de las ca-

racteŕısticas propuestas demuestra mejoras estad́ısticamente significativas sobre sis-

temas de traducción robustos para las tareas de traducción entre inglés y español, e

inglés e hindú.

Finalmente, exploramos métodos para evaluar la calidad de las representaciones

de datos de texto generadas por los auto-codificadores, a la vez que analizamos

las propiedades de sus arquitecturas. Como resultado, proponemos dos nuevas

métricas para cuantificar la calidad de las reconstrucciones generadas por los auto-

codificadores: el ı́ndice de preservación de estructura (SPI, por sus siglas en inglés)

y el ı́ndice de acumulación de similitud (SAI, por sus siglas en inglés). También

presentamos el concepto de dimensión cŕıtica de cuello de botella (CBD, por sus siglas

en inglés), por debajo de la cual la información estructural se deteriora. Mostramos

que, interesantemente, la CBD está relacionada con la perplejidad de la lengua.



Resum

En aquesta dissertació estudiem els problemes de vistes-múltiples relacionats amb

la recuperació d’informació utilitzant tècniques de representació en espais de baixa

dimensionalitat. Estudiem les tècniques existents i en proposem unes de noves per

solucionar algunes de les limitacions existents. Presentem formalment el concepte

de recuperació d’informació amb escriptura mixta, el qual tracta les dificultats dels

sistemes de recuperació d’informació quan els textos contenen escriptures en diferents

alfabets per motius tecnològics i socioculturals. Les paraules en escriptura mixta són

representades en un espai de caracteŕıstiques finit i redüıt, composat per n-grames

de caràcters. Proposem els auto-codificadors de vistes-múltiples (CAE, per les seves

sigles en anglès) per modelar aquestes paraules en un espai abstracte, i aquesta

tècnica produeix resultats d’avantguarda.

En aquest sentit, estudiem diversos models per a la recuperació d’informació entre

llengües diferents (CLIR , per les sevas sigles en anglès) i proposem un model basat

en xarxes neuronals composicionals (XCNN, per les sevas sigles en anglès), el qual

supera les limitacions dels mètodes existents. El mètode de XCNN proposat produeix

millors resultats en diferents tasques de CLIR com ara la recuperació d’informació

ad-hoc, la identificació d’oracions equivalents en llengües diferents, i la detecció de

plagi entre llengües diferents. Per a tal efecte, realitzem proves experimentals per

aquestes tasques sobre conjunts de dades disponibles públicament, presentant els
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resultats i anàlisis corresponents.

En aquesta dissertació, també explorem un mètode eficient per utilitzar simil-

itud semàntica de contextos en el procés de selecció lèxica en traducció automàtica.

Espećıficament, proposem caracteŕıstiques extretes dels contextos disponibles a les

oracions fonts mitjançant l’ús d’auto-codificadors. L’ús de les caracteŕıstiques pro-

posades demostra millores estad́ısticament significatives sobre sistemes de traducció

robustos per a les tasques de traducció entre anglès i espanyol, i anglès i hindú.

Finalment, explorem mètodes per avaluar la qualitat de les representacions de

dades de text generades pels auto-codificadors, alhora que analitzem les propietats

de les seves arquitectures. Com a resultat, proposem dues noves mètriques per

quantificar la qualitat de les reconstruccions generades pels auto-codificadors: l’́ındex

de preservació d’estructura (SCI, per les seves sigles en anglès) i l’́ındex d’acumulació

de similitud (SAI, per les seves sigles en anglès). També presentem el concepte de

dimensió cŕıtica de coll d’ampolla (CBD, per les seves sigles en anglès), per sota de

la qual la informació estructural es deteriora. Mostrem que, de manera interessant,

la CBD està relacionada amb la perplexitat de la llengua.
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Chapter 1
Introduction

It has gone beyond the capabilities of a user to keep up with the information in the

age of world wide web (WWW). Information sources on the web are heterogeneous

such as web documents, tweets, news streams, videos, maps, images etc. Especially

to search over these various sources of information, users typically rely on search

technologies. The popularity of web search engines like Google1 and Bing2 is a

clear example of this trend. Information retrieval is a field which studies search

technologies.

With the advent of new input methods, multi-lingual content is increasing much

faster on the web. This also increases the search traffic for multi-lingual content (Laz-

arinis et al., 2007; Hollink et al., 2004). Cross-language information retrieval (CLIR)

approaches caters the task of information need in a language different to that of

the collection. CLIR techniques have found many applications in real-world prob-

lems such as multilingual ad-hoc retrieval (Braschler et al., 1998, 1999; Braschler,

2004), cross-language plagiarism detection (Potthast et al., 2011; Barrón-Cedeño

1https://google.com
2https://bing.com

1

https://google.com
https://bing.com
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et al., 2013; Franco-Salvador et al., 2013), parallel data compilation to aid statistical

machine translation (Adafre and de Rijke, 2006; Fung and Cheung, 2004; Munteanu

and Marcu, 2005) etc.

A large number of languages, including Arabic, Russian, and most of the South

and South East Asian languages, are written using indigenous scripts. However,

due to various socio-cultural and technological reasons, often the websites and the

user generated content in these languages, such as tweets and blogs, are written

using Roman script (Ahmed et al., 2011). Such content creates a monolingual or

multi-lingual space with more than one scripts which we refer to as the mixed-script

space.

Paired instances of data which provide the same information about each datum

in different modalities are referred to as cross-view data. For example, parallel sen-

tences are two different views of a sentence in different languages. A word and its

transliteration3 can be seen as two different views of the same word in different

scripts. In cross-view tasks, instances of different views are not directly comparable.

Under this terminology, CLIR and mixed-script information retrieval (MSIR) can be

seen as cross-view retrieval tasks. Broadly, there are two approaches to cross-view

tasks: (i) translation; and (ii) cross-view projection. In translation approaches, one-

view is translated into the other view using a translation model and the retrieval

is carried using the other view. While, in cross-view projection approaches, data in

both views are projected to an abstract common space using dimensionality reduc-

tion techniques, where they can be compared. Such representation is also referred

to as embeddings. Though translation based approaches provide very rich repres-

entation of the data, such approaches are mainly devised for actual translation task

such as machine translation (MT) of text from one language to the other. On the

other hand, the projection methods provide a representation which may not be inter-

preted clearly, but provide more flexibility in obtaining representation pertaining to

a particular task. For example, it is straight-forward to induce an objective function

3The process of phonetically representing the words of a language in a non-native script is called
transliteration (Knight and Graehl, 1998).
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directly related to the task at hand in the learning mechanism e.g. increase cosine

similarity between similar documents for a retrieval task. In this dissertation, we

explore the cross-view embedding models for cross-view retrieval tasks.

The remaining of this chapter is structured as follows. First, the main contri-

butions of the dissertation are listed in Section 1.1. We formulate main research

questions investigated in this dissertation in Section 1.2. We present the outline of

the thesis along with a brief chapter-wise description of the content in Section 1.3.

1.1 Contributions

The contributions of this dissertation are many-fold. For the first time, we introduce

the concept of MSIR formally (Gupta et al., 2014; Gupta, 2014). We also present the

deep learning based cross-view models which provide the state-of-the-art perform-

ance for modelling mixed-script term equivalents for MSIR. The embedding based

cross-view models: (i) cross-view autoencoder; and (ii) external-data compositional

neural network (XCNN) provide state-of-the-art performance for many cross-view

tasks such as cross-language ad-hoc IR, parallel sentence retrieval, cross-language

plagiarism detection, source context features for machine translation and mixed-

script IR. This dissertation also provides insightful information about the structural

properties of the autoencoder architecture, which helps to analyse the training pro-

cess in a more intuitive way. We provide more details on each of this contributions

in Sections 1.1.1, 1.1.2 and 1.1.3.

1.1.1 Mixed-script information retrieval

Information retrieval in the mixed-script space, which can be termed as mixed-script

IR, is challenging because queries written in either the native or the Roman scripts

need to be matched to the documents written in both the scripts. Transliteration,

especially into Roman script, is used abundantly on the web not only for documents,

but also for user queries that intend to search for these documents. Since there
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are no standard ways of spelling a word in certain non-native scripts, transliterated

content almost always features extensive spelling variations; typically a native term

can be transliterated into Roman script in very many ways (Ahmed et al., 2011).

For example, the word pahala (“first” in Hindi and many other Indian languages)

can be written in Roman script as pahalaa, pehla, pahila, pehlaa, pehala, pehalaa,

pahela, pahlaa and so on.

This phenomenon poses a non-trivial term matching problem for search engines

to match the native-script or Roman-transliterated query with the documents in

multiple scripts taking into account the spelling variations. The problem of MSIR,

although prevalent in web search for users of many languages around the world, has

received very little attention till date. There have been several studies on spelling

variation in queries and documents written in a single (native) script (Hall and

Dowling, 1980; Zobel and Dart, 1996; French et al., 1997) as well as transliteration

of named entities (NEs) in IR (Chen et al., 1998; Udupa and Khapra, 2010b; Zhou

et al., 2012). However, as we shall see in Chapter 5, MSIR presents challenges that the

current approaches for solving mono-script spelling variation and NE transliteration

in IR are unable to address adequately, especially because most of the transliterated

queries (and documents) belong to the long tail of online search activity, and hence

do not have enough clickthrough evidence to rely on.

In this dissertation, we formally introduce the problem of MSIR and related

research challenges (Gupta et al., 2014; Gupta, 2014). In order to estimate the

prevalence of transliterated queries, analyses from a large query log of Bing consisting

of 13 billion queries issued from India is also presented. As many as 6% of the unique

queries have one or more Hindi words transliterated into Roman scripts, of which only

28% queries are pure NEs (people, location and organization). On the other hand,

27% of the queries belong to the entertainment domain (names of movies, song titles,

parts of lyrics, dialogues, etc.), which provide complex examples of transliterated

queries. Hindi music is also one of the most searched items in India4 and thus a

4Zeitgeist 2010: India - http://www.google.com/intl/en

/press/zeitgeist2010/regions/in.html
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practical case for MSIR.

1.1.2 Cross-view models

We present a principled solution to handle the mixed-script term matching and

spelling variation where the terms across the scripts are modelled jointly (Gupta

et al., 2014). We model the mixed-script features jointly in a deep learning architec-

ture in such a way that they can be compared in a low-dimensional abstract space.

The proposed method can find the equivalents of a given query term across the

scripts; the original query is then expanded using the found equivalents. Through

rigorous experiments on MSIR for Hindi film lyrics, we further establish that the

proposed method achieves significantly better results compared to all the compet-

itive baselines with 12% increase in MRR and 29% increase in MAP over the best

performing baseline.

Although cross-view autoencoder provides a good way to model mix-script equi-

valents, it has some limitations in modelling text. In contrast to the most of the ex-

isting models which rely only on the comparable/parallel data, our model (external-

data compositional neural network – XCNN) takes the external relevance signals

such as pseudo-relevance data to initialise the space monolingually and then, with

the use of a small amount of parallel data, adjusts the parameters for different lan-

guages (Gupta et al., 2016a). There are a few approaches which go beyond the use

of only parallel data. The framework also allows the use of clickthrough data, if

available, instead of pseudo-relevance data. Our model, differently from other mod-

els, optimises an objective function that is directly related to an evaluation metric

for retrieval tasks such as cosine similarity. These two properties prove crucial for

XCNN to outperform existing techniques in the cross-language IR setting. We test

XCNN on different tasks of CLIR and it attains the best performance in comparison

to a number of strong baselines including machine translation based models.
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1.1.3 Critical bottleneck dimensionality

Although deep learning techniques are in vogue, there still exist some important

open questions. In most of the studies involving the use of these techniques for

dimensionality reduction, the qualitative analysis of projections is never presented.

Typically, the reliability of the autoencoder is estimated based on its reconstruction

capability.

The dissertation proposes a novel framework for evaluating the quality of the

dimensionality reduction task based on the merits of the application under con-

sideration: the representation of text data in low dimensional spaces. Concretely,

the framework is comprised of two metrics, structure preservation index (SPI) and

similarity accumulation index (SAI), which capture two different aspects of the au-

toencoder’s reconstruction capability (Gupta et al., 2016c). More specifically, these

two metrics focus on assessing the structural distortion and the similarities among

the reconstructed vectors, respectively. In this way, the framework gives better in-

sight of the autoencoder performance allowing for conducting better error analysis

and evaluation. With the help of these metrics, we also define the concept of critical

bottleneck dimensionality which refers to the adequate size of the bottleneck layer

of an autoencoder.

We also conduct a comparative evaluation across different languages of the dimen-

sionality reduction capabilities of deep autoencoders. With this empirical evaluation

we aim at shedding some light on the adequacy of reducing different languages to a

common bottleneck dimension, which is a common practice in the field.

1.2 Research Questions (RQ)

Here, we list the research questions that are investigated in this dissertation.

RQ1 To what extent mixed-script IR is prevalent in web-search and what is the best

way to model terms for it? [Chapter 5]
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RQ2 How effective is text representation obtained using external data composition

neural network for cross-language IR applications? [Chapter 6]

RQ3 How cross-view autoencoder is useful for lexical selection issue in machine trans-

lation? [Chapter 6]

RQ4 How should the number of dimensions in the lowest-dimensional representation

of a deep neural network autoencoder be chosen? [Chapter 7]

1.3 Outline of the dissertation

The dissertation is organised into four broad blocks: (i) we first introduce the back-

ground of the main topics of the thesis (Chapters 2 & 3); (ii) we present the theor-

atical models proposed in this dissertation (Chapter 4); (iii) we present the evalu-

ation results and analyses for the proposed models on cross-view tasks (Chapters 5

& 6); (iv) finally, we present analyses on structural properties for a proposed model

(Chapter 7). More details about the organisation of each chapter is presented below.

Chapter 2 discusses the theoretical background on information retrieval and di-

mensionality reduction. It also presents the main challenges and current state-of-

the-art around these topics.

Chapter 3 presents necessary background on neural networks, Boltzmann ma-

chines, autoencoders and the optimisation methods to understand the technical de-

tails of the proposed models.

Chapter 4 presents the main technical contributions of the dissertation and ex-

plains the necessary details of the proposed models. We present the proposed cross-

view autoencoder based framework to model mixed-script terms and the details of

the external-data compositional neural network (XCNN) model.

Chapter 5 presents the details of the mixed-script information retrieval. We

first formally define the problem of mixed-script information retrieval with research

challenges. We further analyse the query logs of the Bing search engine to understand
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better the mixed-script queries and their distributions. Finally, we present extensive

performance evaluation of the proposed model based on cross-view autoencoder on a

standard collection along with other state-of-the-art methods and present insightful

analyses.

Chapter 6 presents the evaluation results of the proposed models on cross-language

information retrieval tasks such as CL ad-hoc retrieval, parallel sentence retrieval,

cross-language plagiarism detection and source context modelling for machine trans-

lation. For each application, we first give the description of the problem statement

followed by the details of the existing methods. Finally, the comparative evaluation

on standard benchmack collections is presented with necessary analysis.

In Chapter 7, we present two metrics, structure preservation index and similarity

accumulation index. First, we define these metrics and present the underlying intu-

ition capturing the different aspects of the autoencoder’s reconstruction capabilities.

With the help of these metrics we define the notion of critical bottleneck dimensional-

ity for the autoencoder. Finally, through the multilingual analysis on a parallel data

we show that different languages have different critical bottleneck dimensionalities,

which happens to be closely associated with the language grammatical complexities,

measured in terms of n-gram perplexities.

Finally in Chapter 8, we draw the conclusions from the dissertation, discuss

limitations and outline the future work.



Chapter 2
Theoretical background

This chapter aims at providing the necessary technical background for the work

conducted in this dissertation as well as its related work in the literature. Being

the central part of the dissertation, and in the interest of a wider audience, we

first introduce the concepts related to information retrieval (IR) and dimensionality

reduction in Section 2.1 and 2.2 respectively. Later we move to specific and related

topics such as IR across languages and scripts in Section 2.3 and 2.4 respectively,

which discuss the literature survey on the main topics of the dissertation. Finally,

in Section 2.5, we introduce the terminology and framework of cross-view models.

2.1 Information retrieval (IR)

The formal definition of information retrieval as per Manning et al. (2008) is given

below:

“Information retrieval is finding material (usually documents) of an unstructured

nature (usually text) that satisfies an information need from within large collections

9
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(usually stored on computers). ”

The reference to term “material” is quite broad and covers a lot of modalities

and applications such as documents, images, videos, tweets, books, emails, music

etc. In this work, we limit ourselves to text data. There are three different levels of

information retrieval, based on the scale the retrieval is happening1.

1. Web search: The collection comprise of the web content which is enormous.

A few examples are Google, Bing etc.

2. Personal search: In this case, the collection is typically a set of files on a

personal computer of the user. For example, file search in operating systems.

3. Enterprise search: In this case, the collection comprises of a set of documents

from a particular organisation or company. It can be domain specific. For

example, intranet search.

Usually, the information need is described by the user in the form of query –

typically a few words long. Although it is assumed that the user always succeeds

in describing the information need by means of a query, many times this is not

necessarily true. There has been research in assisting users to formulate the query.

The query auto-completion is a strong example of such methods (Bast and Weber,

2006; Bar-Yossef and Kraus, 2011). Lately, research has also focused on session-based

models, which try to satisfy user information need by considering all the user input

queries in the same search session (Raman et al., 2013; Carterette et al., 2014). The

IR system satisfies the user information need in form of a ranklist of offerings.

2.1.1 Vector space model

In vector space model (VSM), documents and queries are represented as vectors in

a high-dimensional space where each dimension is a term of the document (Salton

1This categorisation is only meant for comparing the scale and it should not be confused as a
categorisation of IR applications.
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et al., 1983). Let a document d be represented as ~d = {tw1, tw2, · · · , twn}, where

twi denotes the term weight of ith term in the document. All the terms present in

the document will have a non-zero entry in ~d. There are multiple ways to calculate

these term-weights (Singhal et al., 1996), one popular way is term frequency-inverse

document frequency (TF-IDF).

twdi = tfdi ∗ idfi

where,

tfdi = frequency of ith term in document d

idfi = log

(
total number of documents in collection

number of documents term i appears in

)
The tf term captures the importance of the term in the document while idf

captures the rareness of the term in the collection. In VSM, the definition of term

is abstract as it can be single word, phrase or characters based on the application in

hand. The total number of unique terms in the collection defines the dimensionality

of the vector space.

2.1.2 Indexing and retrieval

The vectors in VSM are usually sparse and storing the complete vector is not always

possible. Hence, only the non-zero entries are stored. It should also be noted that not

all documents are needed to be processed for a particular query. One way to optimise

the complete traversal is to process only those documents which contain at least one

query term. The frequency statistics required for models like TF-IDF are stored in a

data structure called an inverted index. An inverted index has two main components,

the terms present in the index – term-index; and the list of documents they appear

in with necessary statistics – posting-list. An example of inverted index is depicted

in Fig. 2.1. Here, the term-index is a simple array which has time complexity of O(n)
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term1

term2

termn

term3

term4

d2 5 d27 100

Term Index

Posting List

Figure 2.1: Inverted index. The example shows that term t1 is contained in documents
d2 and d27 with frequency 5 and 100 respectively.

while the posting-lists are storing the frequency of the terms in the corresponding

documents. There are many variants of the inverted index, mainly attributed by

their (search) time and space complexity constraints (Zobel and Moffat, 2006).

At the time of retrieval, the similarity between a query and documents (both

represented in the vector space) are estimated by means of the angular distance

between them as shown in Fig. 2.2. The cosine angle provides a similarity metric

which is estimated as described in Eq. 2.1.

sim(~d, ~q) = cos(~d, ~q) =
~d · ~q
‖~d‖‖~q‖

(2.1)

2.1.3 Evaluation

Evaluation for IR systems has been a very active area of research because of the

empirical nature of the field. There have been many evaluation metrics proposed

which capture different aspects of the system performance (Manning et al., 2008).

There are two types of performance evaluations related to effectiveness and efficiency.
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Figure 2.2: Documents and query represented in vector space.

The latter deals with the issues such as query latency and memory requirements.

While the former, the effectiveness, attracts larger research attention. It mainly

dwells around the concept of relevance. Although, relevance is a quite subjective

and abstract concept, it is usually captured by the manual relevance judgements

(qrels). Human judges are presented with a set of queries, document collection and

corresponding relevance judgements and they assign a binary label to the document:

relevant or non-relevant. The label relevant is assigned if the document satisfies the

information need expressed by the query.

Precision captures the ratio of the relevant documents among the retrieved doc-

uments and Recall captures the ratio of retrieved relevant documents among all the

relevant documents available in the collection. Most of the IR systems try to find a

trade-off between Precision and Recall with an extra bias towards either of them, de-

pending on the specific application. For example, web search engines are more keen

on Precision, while medicine or legal aspects related system care more for Recall.

Fβ-measure is a popular way of combining Precision and Recall, where β decides the

bias towards precision or recall. F1 gives equal weight to precision and recall while

F2 gives higher weight to recall and F0.5 gives higher weight to precision.
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Fβ = (1 + β2) · precision× recall

(β2 · precision) + recall
(2.2)

Average precision (AP) calculates precision at every recall point. AP provides a

way to estimate the quality of the ranklist. Sometimes, the relevance is labeled in

higher levels (graded-levels) to quantify better than binary. As the discussed metrics

so far work with binary relevance, we have used normalised discounted cumulative

gain (NDCG) which uses graded relevance as a measure of the usefulness, or gain,

from examining a document (Järvelin and Kekäläinen, 2002). Gain is calculated at

each ranking position and accumulated over all positions with a discount element.

The assumption is the relevant documents at lower position are less useful because

they are quite likely will not be examined by the user. A typical discount function

is 1
log2(rank)

. The cumulative gain cgm for a ranklist of size m is calculated as:

cgm =
m∑
i=1

rel(di) (2.3)

where, rel(di) is graded-relevance of document di. Adding the discount term, dis-

counted cumulative gain dcgm becomes:

dcgm = rel(d1) +
m∑
i=2

rel(di)

log2(i)
(2.4)

dcgm is normalised by the ideal ranklist upto m positions referred as idcgm to obtain

ndcgm.

ndcgm =
dcgm
idcgm

(2.5)

2.1.4 Semantic term-relatedness

Vector space models provide a way to compare documents and queries by means of

keyword matching. However, such lexical matching can be inaccurate due to the

fact that the relevance is often expressed by different vocabularies in documents and
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queries. One of the major hurdles in comparing text in VSM is to deal with problems

like synonymy and polysemy. Usually, in vector space, the documents are composed

of thousands of dimensions resulting in many meaningful associations between terms

being shadowed by large dimensions. There are models which try to handle this

problem in the vector space e.g. pseudo relevance feedback (PRF) (Rocchio, 1971;

Manning et al., 2008) and explicit semantic analysis (ESA) (Xu and Croft, 1996;

Gabrilovich and Markovitch, 2007; Anderka and Stein, 2009). PRF obtains top m

terms from top n documents and adds them to the original query and the expanded

query is used for the retrieval. ESA based approaches leverage on an external collec-

tion, such as Wikipedia, which is referred to as knowledge base. In ESA each word is

represented in the retrieval collection by its corresponding vector of document scores

in the knowledge base. Then, relatedness between two terms is calculated by the

cosine similarity between the corresponding vectors. Word sense disambiguation for

information retrieval has also been an active area of research (Sanderson, 1994; Liu

et al., 2005).

2.2 Dimensionality reduction

A formal definition of dimensionality reduction as per Burges (2010) is given as:

“Dimensionality reduction is the mapping of data to a lower dimensional space

such that uninformative variance in the data is discarded, or such that a subspace

in which the data lives is detected.”

Basically, it is a process of reducing the number of variables under consideration.

Dimensionality reduction techniques are widely popular in learning representation

of data in different modalities such as text, image, audio, video, etc (Fodor, 2002;

Burges, 2010). In this work we would focus concretely on approaches related to text

data.

Dimensionality reduction techniques can be achieved in two ways: (i) feature

selection; and (ii) feature extraction. The feature selection methods reduces the di-
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mensionality by selecting a subset of features from the set of original features. The

feature selection methods of type filter , as defined in Guyon and Elisseeff (2003),

computes the score of each feature as a preprocessing step and the subset of features

are selected based on the scores assigned. In contrast to filter methods, wrapper

methods use the learning algorithms to assign scores to the features. Feature se-

lection techniques are widely used in machine learning based approaches, such as

classification (Dash and Liu, 1997; Yang and Pedersen, 1997; Janecek et al., 2008)

and ranking (Geng et al., 2007; Gupta and Rosso, 2012a).

On the other hand, the goal of the feature extraction based techniques is to

transform high dimensional data (Rn) into a much lower dimension representation

(Rm) pertaining the inherent structure of the original data where m << n. Such

low-dimensional space is commonly referred to as abstract space or latent space.

One such widely used approach is latent semantic indexing (LSI), which extracts

a low rank approximation of text data by means of singular value decomposition

(SVD) (Deerwester et al., 1990).

Dimensionality reduction techniques can broadly be categorised in two classes:

linear and non-linear. Usually, non-linear techniques can find more compact repres-

entations of the data compared to their linear counterparts (Hinton and Salakhutdinov,

2006). If there exists statistical dependence among the principal components of PCA,

or principal components have non-linear dependencies, PCA would require a larger

dimensionality to properly represent the data when compared to non-linear tech-

niques.

On the other hand, although non-linear projection methods such as multidimen-

sional scaling (MDS) give a way to obtain much better representations for mono

and cross-language similarity estimation; it is a transductive method (Cox and Cox,

2000; Banchs and Kaltenbrunner, 2008). It means MDS does not provide an operator

to project the unseen data into the target low dimensional space like the resulting

projection matrix in the case of PCA.

Latent semantic models such as LSI are able to correspond queries and relev-
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ant documents at the semantic level where lexical matching often fails (Deerwester

et al., 1990; Blei et al., 2003; Salakhutdinov and Hinton, 2009b,a; Platt et al., 2010;

Huang et al., 2013). These latent semantic models represent the text in a dense

low-dimensional semantic space, where semantically similar text fragments would be

closer to each other despite the fragments do not share any term. The semantic

representation is learned through the patterns of terms co-occurring in similar con-

texts. LSI extracts a low rank Gaussian approximation of a document-term matrix2

by means of singular value decomposition (SVD) (Deerwester et al., 1990). More

advanced approaches like probabilistic latent semantic analysis (PLSA) and latent

dirichlet allocation (LDA) observe the distribution of latent topics for the given doc-

uments (Hofmann, 1999; Blei et al., 2003).

Lately, dimensionality reduction techniques based on deep learning have become

very popular, especially deep autoencoders (DA). Deep autoencoders can extract

highly useful and compact features from the structural information of the data. Deep

autoencoders have proven to be very effective in learning reduced space representa-

tions of the data for similarity estimation, i.e. similar documents tend to have similar

abstract representations (Hinton and Salakhutdinov, 2006; Salakhutdinov and Hin-

ton, 2009a). Deep-learning is inspired by biological studies, which state the brain has

a deep architecture. Despite their high suitability to the task, deep learning did not

find much audience because of convergence issues until Hinton and Salakhutdinov

(2006) gave a way to initialise the network parameters in a good region for finding

optimal solutions.

However, these models are trained to optimise an objective function which is

only loosely related to the evaluation metric of the retrieval task. To overcome this

limitation, a new family of latent semantic models have emerged that exploits the

clickthrough data for semantic modelling Gao et al. (2010, 2011); Huang et al. (2013).

These models take into account an explicit relevance signal in terms of the query and

2Such matrix is composed by the documents in the collection (rows) and all the unique terms
in the collection (columns). Each entry in the matrix contains the weight of a particular term in a
document e.g. term frequency.
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its clicked document.

2.3 IR across languages

Cross-language information retrieval (CLIR) is a special case of IR, where the query

and the documents are in different languages. Due to the existing needs in different

multi lingual scenarios, various CLIR applications became popular. Cross-language

ad-hoc retrieval, cross-language plagiarism detection and parallel/comparable text

discovery are examples of some popular and important problems.

In general, there are two ways to address the language mismatch between query

and documents: (i) translate either of them to the language of the other and perform

monolingual IR; and (ii) obtain a language agnostic translingual space where both

of them can be compared. The former takes the path of machine translation while

the latter falls under the dimensionality reduction techniques3.

The translation approaches try to normalise language mismatch between query

and documents using various resources such as bilingual dictionaries, multilingual

thesaurus, multilingual semantic network etc. Machine translation systems leverage

on a translation model (estimating segment-level4 translation probabilities) that is

combined with a target language model. The language model helps aligning the

potential segment-level translations to form a valid sentence. Typically, machine

translation based approaches for CLIR do not employ the full MT pipeline, instead

they exploit the translation probabilities to formulate the translated query (Gao

et al., 2001; Ture and Lin, 2014). Moreover, the MT based approaches often employ

lexical, syntactic and semantic linguistic analysis. Though such pipeline ensures the

representation is rich, they are mainly deviced for the MT task and this representa-

tion may not be that helpful for the retrieval task.

Though the MT based language normalisation can be highly accurate, the re-

3Though one can use dimensionality reduction techniques on machine translated text, what we
refer here is to obtain translingual representation using dimensionality reduction techniques.

4Including both single words and multi-word phrases.
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trieval suffers from the issues of VSM such as sparsity, synonymy and polysemy.

Moreover, MT can be very slow, limiting its use on large training datasets (Platt

et al., 2010; Gupta et al., 2016b). Alternatively, the cross-language latent semantic

models provide a way to model cross-language term associations in a latent space.

Such models include LSA based cross-language latent semantic analysis (CL-LSA) (Du-

mais et al., 1997), in which a cross-language document-term matrix is constructed by

concatenating the parallel data. Canonical correlation analysis (CCA) based meth-

ods find projections that maximise the correlation between the projected vectors of

parallel data (Vinokourov et al., 2002). Generative models, such as LDA, are used

to represent bilingual data into hidden topical space (Mimno et al., 2009). Ori-

ented principal component analysis (OPCA) introduces the noise covariance matrix

and solves the generalised eigenvalue problem (Diamantaras and Kung, 1996; Platt

et al., 2010). Deep bilingual autoencoders (BAE) are used to represent bilingual

data in a low-dimensional joint space by optimising the reconstruction error (Lauly

et al., 2014; Chandar A. P. et al., 2014; Gupta et al., 2014). Siamese neural network

based S2Net learns discriminatively the projection matrix from the pairs of related

and unrelated documents (Yih et al., 2011). Except for the S2Net method, all these

models derive cross-language representations in an unsupervised manner by optim-

ising an objective function that is only loosely related to the evaluation metric for

the retrieval task. Some of these models are reviewed in detail in Chapter 6. Another

family of models for cross-language natural language processing applications require

advanced syntactic information in the input, such as syntactic parse trees (Socher

et al., 2012; Hermann and Blunsom, 2013). Similar models sometimes also require

word-alignments during the training (Klementiev et al., 2012; Zou et al., 2013; Miko-

lov et al., 2013). Such requirements limit the use of these approaches to resource

fortunate languages.
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2.4 IR across scripts

Although IR across scripts, which is referred to as mixed-script IR, has attained very

little attention explicitly, many tangentially related problems like CLIR and trans-

literation for IR discuss some of the issues of MSIR. While languages like Chinese

and Japanese use multiple scripts (Qu et al., 2003), they may not illustrate the true

complexity of the MSIR scenario described here because there are standard rules and

preferences for script usage and well defined spellings rules. In Roman translitera-

tion of Hindi, on the other hand, there are no standard rules, which leads to a large

number of spelling variations for a single term. Furthermore, these texts are often

mixed with English, which makes detection of transliterated text quite difficult.

CLIR typically involve translating queries from one language to another. How-

ever, it is often a reasonable choice to transliterate certain OOV words, especially

NEs. There has been a large body of work that specifically targets the problem of

named entity transliteration in CLIR.

However, training and testing transliteration systems requires data and, for Names

Entities, data creation has been typically through mining text corpora. Shared tasks

such as those conducted by NEWS5 and FIRE6 have also been successful to an extent

in both data sharing and bench-marking various machine transliteration techniques

and systems.

In an analysis of the query logs for Greek web users, Efthimiadis et al. (2009) have

shown that 90 percent of the queries are formulated using the Roman alphabet while

only 8% use the Greek alphabet, and the reason for this (Efthimiadis, 2008) is that 1

in 3 Greek navigational queries fail due to the low level of indexing of the Greek web.

Wang et al. (2008) employ a translation based method to classify non-English queries

using an English taxonomy system. Though their method shows some promise,

it is heavily dependent on the availability of translation systems for the language

pairs in question. Ahmed et al. (2011) show that the problem of transliteration is

5http://translit.i2r.a-star.edu.sg/news2012/
6http://www.isical.ac.in/ fire/
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further challenging because of the fact that due to a lack of standardization in the

way a local language is mapped to the Roman script, there is a large variation in

spellings. In their work on query-suggestion for a Bollywood Song Search system Dua

et al. (2011) also stress on the presence of valid variations in spelling Hindi words

in Roman script. Related work by Gupta et al. (2012a) goes into the details of

handling these variations while mining transliterated pairs from Bollywood song

lyric data. Edit-distance based approaches have also been popular for the generation

of such pairs; such as, for instance, English-Telugu (Sowmya and Varma, 2009) and

Tamil-English (Janarthanam et al., 2008). Pal et al. (2008) propose a method for

normalization of transliterated text that combines two techniques: (i) a stemmer

based method that deletes commonly used suffixes (Oard et al., 2001) with rules for

mapping variants to a single canonical form; (ii) a similar method that uses both

stemming and grapheme-to-phoneme conversion is used by Raj and Maganti (2009)

to develop a proof-of-concept for a multilingual search engine that supports 10 Indian

languages. Thus, though there has been some interest in the past, especially with

respect to handling variation and normalization of transliterated text, the challenge

of IR in the mixed-script space is largely neglected.

For languages like Japanese, Chinese, Arabic and most Indian languages, the

challenge of text input in native script has resulted in a proliferation of translit-

erated documents on the web. While the availability of more sophisticated and

user-friendly input methods have helped resolving this for some of these languages

(for example Japanese and Chinese), there is still a large number of languages for

which the English keyboard (and hence the Roman script) remains the main input

medium. Further, as a number of relevant documents are available in both the nat-

ive script and its transliterated form, it also becomes important to deal with not

only cross-language but mixed-script IR for such languages. Social media is another

domain where the use of transliterated text is widespread. Here, text normalization

is complicated further by the presence of SMS-like contractions, interjections and

code-mixing (the switching between languages at phrase, word and morphological
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levels). As IR becomes more pervasive in social media, dealing with the complexities

of transliteration will become more significant for a robust search engine.

2.5 Cross-view models

Retrieval in cross-view setting is central to this dissertation contribution. Many times

the data is represented in two or more different instances, e.g. similar text in different

languages (parallel text), words in different script (transliteration), data in different

modalities (word and an image describing it or text and its audio representation). In

the case two instances of data are available, the data is referred to as cross-view data,

while in the case that more than two instances are available, it will be referred to as

multi-view data. The proposed general framework for a cross-view task is depicted

in Fig. 2.3. Retrieval in a cross-view setting is a task of retrieving similar data items

given some input data from both types of instances.

dataview1 dataview2

Model

datacross−view

Figure 2.3: Framework for a cross-view task.

In this dissertation, we limit ourselves to text modality of the data but consider

different applications of the cross-view setting such as:

1. cross-language ad-hoc retrieval: queries need to be matched with documents

in different languages;

2. cross-language parallel sentence retrieval: sentences that are translations of

each other in different languages need to be retrieved;
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3. cross-language plagiarism detection: plagiarised sections from the suspicious

documents need to be identified from source documents in different languages;

4. mixed-script IR: queries need to be matched with documents written in the

same language but different scripts.

The detailed description of these tasks and experimental framework are presented

in Chapters 6 and 5.





Chapter 3
Neural networks background

This chapter covers the technical background needed to understand the proposed

models in the thesis. First, we will provide an introduction to neural networks and

restricted Boltzmann machines followed by autoencoders. We will also review the

backpropagation algorithm and few relevant optimisation techniques.

3.1 Neural networks

Neural networks or artificial neural networks are a family of models inspired by

biological neural networks. These models are used to approximate complex unknown

functions that usually depend on a large number of inputs. The fundamental unit of

a neural network is the artificial neuron. Fig. 3.1 shows the architecture of a single

artificial neuron with input vector v ∈ Rn, output h ∈ Rm and a parameter set of

weights w and bias b. Such basic processing unit, which is called an artificial neuron,

encodes the input information into a real number output h, as shown in Eq. 3.1;

where g is a non-linear activation function.

25
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h = g

(∑
i

vi ∗ wi + b

)
(3.1)

There are many variants of activation functions, being the most popular choices

the sigmoid function (Eq. 3.2) and the hyperbolic tangent function (Eq. 3.3). It

is important for an activation function to be differentiable, for reasons that will

become clear in Sec. 3.5, where the backpropagation algorithm is discussed. It can

be noticed that the sigmoid function maps any real number into the [0,1] interval,

while the hyperbolic tangent function does it into [-1, 1].

sigm(x) =
1

1 + e−x
(3.2)

tanh(x) =
ex − e−x
ex + e−x

=
1− e−2x

1 + e−2x
(3.3)

b

v1

v2

v3

h

OutputInput

Parameters

w gz

Figure 3.1: Architecture of a neuron

In practice, artificial neurons can be spatially arranged into layers to create a

multi-dimensional processing arrays. These layers can be also combined in sequences

to create a multi-layer processing structure. The input and output layers are gen-

erally referred to as visible layers and the all the intermediate layers are typically

referred to as hidden layers. A simple example of multi-dimensional multi-layer
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neural network is shown in Fig. 3.2.

v1 v2 v3

h1
1 h1

2

h2
1 h2

2

Visible Layer

Hidden Layer 1

Hidden Layer 2

Figure 3.2: Multidimensional hidden layer neural network

For the neural network represented in Fig. 3.2, hidden neuron activities can be

computed as shown in Eq. 3.4. Such network is also referred to as a feedforward

neural network,

z(1) = W (1) ∗ v + b(1)

h(1) = g
(
z(1)
)

z(2) = W (2) ∗ h(1) + b(2)

h(2) = g
(
z(2)
)

(3.4)

where h(k) represents the output of the kth hidden layer, W (k) is weight matrix for

layer k with wij representing the weighting factor between unit i in the previous

layer and hidden unit j in the current layer, b(k) is the bias vector for layer k and

the activation function g is applied to every neuron in the hidden layers.

The output layer of a neural network represents the solution space of the problem

addressed by the network. In case of a binary classification problem, the output layer

can be a single neuron with the sigmoid activation function. The output of such
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neuron can be interpreted as the probability p for the corresponding input datapoint

to belong to a certain class and (1 − p) as the probability to not belong. In case

of a multi-class classification problem, the output layer is usually of size equal to

the number of classes and, often, the softmax normalization function is applied at

output layer. The softmax function allows the output layer of the network to model

a probability distribution in which each neuron represents the probability of one of

the considered classes. The softmax normalization function is shown in Eq. 3.5. For

non-classification tasks such as regression, representation learning or projection, the

output layer represents a multi-dimensional continuous space in which the input data

is projected.

softmax(hj) =
ehj∑K
k=1 e

hk
, for j = 1, 2, .., K (3.5)

3.2 Restricted Boltzmann machines (RBM)

Restricted Boltzmann machines have been used as generative models for many dif-

ferent types of data including images (Hinton and Salakhutdinov, 2006), speech (Mo-

hamed et al., 2012), documents (Salakhutdinov and Hinton, 2009b), and user rat-

ings (Salakhutdinov et al., 2007). A restricted Boltzmann machine is a two-layer

bipartite network with a visible layer (v) and a hidden layer (h). Both layers are

connected through symmetric weights (w). In this kind of models the hidden units

play the role of latent variables. Depending on the type of input data, two different

variants of the visible layer can be selected: binary or multinomial. In case of binary

RBM the visible layer is stochastic binary layer which accepts data in binary form.

While, in case of multinomial RBM, visible layer is multinomial to accept data which

follows multinomial distribution. The multinomial RBM is based on the replicated

softmax model (RSM) (Salakhutdinov and Hinton, 2009b). Following, we present

more details on the two RBM.
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3.2.1 Stochastic binary RBM

In a stochastic binary RBMs both, visible and hidden, layers are stochastic binary

units with sigmoid non-linearity. Let visible units v ∈ {0, 1}n be binary input vari-

ables and hidden units h ∈ {0, 1}m be hidden latent variables. Energy-based models

have an energy value associated to each configuration of the variables (i.e., paramet-

ers) of of the model. Parameters updated through the learning algorithm modify this

energy and usually, the desirable parameters have low energy. RBMs are commonly

explained using energy-based models (LeCun et al., 2006). The energy of the state

{v,h} is defined as follows:

E(v,h) = −
n∑
i=1

aivi −
m∑
j=1

bjhj −
∑
i,j

vihjwij (3.6)

where vi, hj are the binary states of visible unit i and hidden unit j, ai, bj are their

biases and wij is the weight between them.

Then, it is possible to obtain visible and hidden activities in both directions as

shown below,

p(vi = 1|h) = g(ai +
∑
j

hjwij) (3.7)

p(hj = 1|v) = g(bj +
∑
i

viwij) (3.8)

where g(x) = 1/(1 + exp(−x)) is the logistic sigmoid function.

3.2.2 Multinomial RBM

The multinomial RBM is based on the Replicated Softmax model proposed by

Salakhutdinov and Hinton (2009b).

Let v ∈ {1, . . . , K}n, where K is the number of trials parameter of multinomial

distribution, n is the input dimensionality and let h ∈ {0, 1}m be stochastic binary

hidden latent variables. Considering an input with K trials, the energy of the state
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{v,h} is defined as:

E(v,h) = −
n∑
i=1

v̂kak −D
m∑
j=1

bjhj −
∑
k,j

wkijhj v̂
k (3.9)

where vki denotes the count (k) data for the ith term.

In the RSM, the visible layer implements a softmax normalizing function. The

resulting multinomial visible units represent the probability distribution of the word-

counts. In multinomial RBM, the visible and hidden units are updated as shown

below,

p(vki = 1|h) =
exp(bki +

∑
j hjW

k
ij)∑K

q=1 exp(bqi +
∑

j hjW
q
ij)

(3.10)

p(hj = 1|V) = σ(aj +
D∑
i=1

K∑
k=1

vkiW
k
ij) (3.11)

3.3 Text representation

Text can be represented in vector form, popularly referred as bag-of-words. All

possible words from the corpus constitute a vocabulary of unique words. These

words in vocabulary form a high-dimensional vector space where each word refers

to a dimension. A text can be represented as either a binary vector where non-zero

dimension denotes existance of that word in the text or a count vector where non-

zero dimension denotes the count of that word in the text. It is a common practice

to remove stopwords from the vocabulary and apply stemming.
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3.4 Autoencoder

The autoencoder is a neural network architecture that approximates the identity

function by replicating its input as its output. The input and output dimensions of

the network are the same (n). The autoencoder approximates the identity function

in two steps: (i) coding (reduction); and (ii) decoding (reconstruction). The coding

step maps the input x ∈ Rn into an intermediate representation y ∈ Rm where

m < n. The mapping can be seen as a function y = g(x) with g : Rn → Rm. On

the other hand, the decoding step maps the intermediate representation y into the

output x̂ ∈ Rn in such a way that x̂ ≈ x. The decoding step can be seen as a

function x̂ = f(y) with f : Rm → Rn. The two-step autoencoder can be seen as

the composition of an encoding function g(x) and a decoding function f(x), which

approximates the identity function: f(g(x)) ≈ x using reconstruction error:

reconstruction error =
1

2
||f(g(x))− x||2 (3.12)

In an autoencoder, the visible layer corresponds to the input x and the hidden

layer corresponds to the intermediate representation y. Autoencoders can have a

single hidden layer or multiple hidden layers. If there is only one single hidden layer,

the optimal solution remains the PCA projection (Bourlard and Kamp, 1988). In

order to overcome some of the PCA limitations, a common practice is to stack mul-

tiple RBMs, constituting what is called a deep architecture. Those deep architectures

have been proven to produce highly non-linear and powerful reduced space repres-

entation (Hinton and Salakhutdinov, 2006). Autoencoders made up from multiple

RBMs are referred to as deep autoencoders. Both of the considered models differ

in the way they model the text data. While the binary deep autoencoder (bDA)

models the presence of the term into the document (binary), the multinomial deep

autoencoder (rsDA) directly models the count of the term (i.e., term frequency) in

the document. An example of deep architecture is shown in Fig. 3.3.
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3.5 Backpropagation

Backpropagation is an efficient method to train a multi-layered feedforward neural

network (Rumelhart et al., 1986). It is typically used in conjunction with an optim-

isation method, such as gradient descent, which is discussed in more detail in Sec. 3.6.

In backpropagation the gradient of a loss function is calculated with respect to the

network parameters: weights and biases. The information of the gradient is recurs-

ively used to update the parameters in such a way that the specified loss function is

reduced at each iteration step. Backpropagation is a supervised method because it

needs to know the correct output in order to compute the loss function. An important

condition for the use of backpropagation is that all transfer functions at each layer

should be differentiable, otherwise the gradient calculation is not possible. Both, the

errors calculated at the output layer and the corresponding gradient are propagated

backwards through the entire network, hence the name of “backpropagation”.

An important step in neural network training is the definition of the loss function

J(θ), where θ represents the set of network parameters. One popular choice for loss

function is the mean squared error (MSE), which is defined as J(θ) = 1
2
(y − h)2,

where y is label and h is neural network output. Using the terminology introduced

in Fig. 3.1 and considering a neural network with 2-hidden layers with sigmoid activ-

ation function and one single output, the gradient computation at the output layer

is shown in Eq. 3.13.
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Figure 3.3: Sample architecture of a deep autoencoder. The binary and multinomial
deep autoencoders are denoted as bDA and rsDA. |Dimin| is the dimensionality at the
input layer.
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∂
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1

2
(y − h)2 ∂h

∂z

∂z

∂θ

= −(y − h)
∂

∂z
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∂z

∂θ

= −(y − h) h(1− h)
∂

∂θ
z

= −(y − h) h(1− h)
∂

∂θ
(W ∗ v + b)

= −(y − h) h(1− h) ∗ v when θ = W

= −(y − h) h(1− h) when θ = b

(3.13)
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These gradients for parameters W and b can be backpropagated to the previous

layers by using the chain rule. As shown in Eq. 3.14, the gradient at the lth layer

can be computed in terms of the already known gradient of the (l + 1)th layer.

δl =
∂J(θ)

∂θl

=
∂J(θ)

∂zl+1

∂zl+1

∂zl

∂zl
∂θl

= δl+1
∂zl+1

∂hl

∂hl
∂zl

∂zl
∂θl

= δl+1
∂

∂al
(Wl+1 ∗ hl + bl+1)

∂hl
∂zl

∂zl
∂θl

= δl+1 ∗ Wl+1 h(1− h)
∂zl
∂θl

(3.14)

3.6 Optimisation

Neural network parameters can be updated using an optimisation method called

gradient descent. Gradient methods are first-order optimisation algorithms that

converge towards a local optimum of an objective function by taking consecutive

steps that are proportional to the gradient. If the algorithm moves towards local

minima using steps that are proportional to the negative gradient, it is called gradient

descent; and if it moves towards local maxima using steps that are proportional to

positive gradient, it is called gradient ascent. Under gradient descent, parameters of

a model at iteration t are updated as shown in Eq. 3.15:

θ(t+1) = θ(t) − αδ(t) (3.15)

where α is learning rate and δ denotes gradient.

Usually the gradients are accumulated over all the datapoints (m) of the training

set and the weights are updated as shown in Eq. 3.16:
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θ(t+1)
w = θ(t)

w − α
m∑
i=1

(−(yi − ai) · ai · (1− ai) ∗ vi) (3.16)

In practice, sometimes it is not possible to compute the sum of the gradient

over all the datapoints in one pass before update due to computational issues, such

as gradient might overflow, hence the updates are made at each datapoint. It is a

common practice, when using gradient descent, that the dataset is randomly shuffled

to avoid possible bias towards specific regions of the objective function. Then the

updates are made as shown in Algorithm 1. This process is called stochastic gradient

descent.

Algorithm 1: Stochastic gradient descent.

1 initialise θ randomly;

2 shuffle training data randomly;

3 for each training data point i ∈ m do

4 θ(i) = θ(i) − αδ(i)

It is often shown that advanced optimisation methods such as conjugate gradi-

ent (Hestenes and Stiefel, 1952) or L-BFGS (Nocedal, 1980) are faster and are able

to exhibit better convergence. Another common practice is to update the model

parameters with gradients accumulated over a small batch of datapoints, instead of

updating the model parameters after each datapoint or all datapoins. Such batches

are called mini-batches. This kind of updates are also computationally efficient be-

cause they can better use multiple cores of CPUs or GPUs.





Chapter 4
Cross-view models

This chapter aims at describing the main contributions of this thesis . Retrieval

across different continuous space representations is central to the thesis contributions

as described in Chapter 2. In recent years there is a surge and rapid growth in the

neural network community around deep neural networks and deep learning. Data

availability has grown large. This, along with a new break-through in computing re-

search and especially in graphical processing units (GPUs), has allowed for often com-

putationally expensive tasks such as training deep neural networks to become feasible

from the experimental point of view. Most of the current research in deep learning is

focused on single-embedding applications in different languages. This thesis focuses

on the use of deep neural models for cross-embedding applications; more specifically

two different cases are considered: cross-language and cross-script. In this chapter,

we describe two novel techniques to capture similarities across different embeddings

to aid cross-embedding retrieval: (i) cross-view autoencoder for mixed-script IR,

and (ii) external data composition neural networks (XCNN) for cross-language IR.

The cross-view autoencoder uses the RBM pretraining to initialise the network and
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then, the network is tuned using the autoencoder backpropagation. This architec-

ture has shown promise in uncovering the meaningful representations (Hinton and

Salakhutdinov, 2006). Hence, we take that architecture to cross-view setting, es-

pecially at character-level, to model mixed-script terms. On the other hand, there

has been significant progress in terms of learning word-embeddings and representing

text through composition (Mikolov et al., 2013; Hermann and Blunsom, 2014). In

XCNN, we learn bilingual word-embeddings through composition neural networks

addressing some of the limitations of the present models.

4.1 Cross-view autoencoder (CAE) for mixed-script

IR

As discussed in Chapters 2 and 5, the primary challenge in mixed-script retrieval

is to model and match terms across both scripts and spelling variations, which are

especially common in the non-native scripts. We shall refer to the variants of the

same word in the native and other scripts as term equivalent. The term matching

problem can be addressed by using existing approaches such as approximate string

matching (Hall and Dowling, 1980; Zobel and Dart, 1996) and transliteration min-

ing (Udupa and Khapra, 2010a; Kumaran et al., 2010; Kumar and Udupa, 2011).

The former is especially useful to handle spelling variations in a single script, while

the latter can help in matching terms across the scripts. However, these methods

cannot be directly used for term matching over a single and across multiple scripts

at the same time.

In this section, we propose a framework for jointly modelling terms across scripts.

We achieve this by learning a low-dimensional representation of terms in a common

abstract space where term equivalents are close to each other. The concept of com-

mon abstract space for term equivalents is based on the fundamental observation

that words are transliterated into a non-native script in such a way that its sound

or pronunciation is preserved. Thus, if we can represent the pronunciation of words
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in an abstract space, it could faithfully embed terms written in any script in such a

way that term equivalents are close to each other as far as they have similar pronun-

ciations.1

4.1.1 Formulation

In order to build the intended models, we treat the phonemes as character-level “top-

ics” within the terms. There is a good number of examples of word-level topic models

using undirected graphical models like restricted Boltzmann machines (Gehler et al.,

2006; Salakhutdinov and Hinton, 2009a,b). These models are usually based on the

assumption that each document is represented as a mixture of topics, where each

topic defines a probability distribution over words. Similarly, in our proposed model,

we consider the terms to be represented as a mixture of “topics”, where each topic

defines a probability distribution over character n-grams.

Phonemes can be captured by character n-grams. Consider the feature set F =

{f1, . . . , fK} containing character grams of scripts si for all i ∈ {1, ., r} and |F| = K.

Let t1 =
⋃
i=1...r w1,i be a datum from training data T of language l1, where w1,i

represents a word w written in language l1 and script si, and r is the number of

scripts being modelled jointly. The datum can be represented as K-dimensional

feature vector x where xk is the count of kth feature fk ∈ F in datum t1.

We assume that count of character grams within terms follow a Dirichlet-multinomial

distribution. Consider N independent draws from a categorical distribution with K

categories. In the present context, N =
∑K

i xi and {f1, . . . , fK} are K categories,

where the number of times a particular feature fk occurs in the datum t1 is denoted

as xk. Then x = (x1, . . . , xK) follows a multinomial distribution with parameters

N and p, where p = (p1, . . . , pK) and pk is the probability that kth feature takes

1Not all scripts are used to represent the words according to their basic sounds or phonemes.
For example, the Chinese script is a notable exception. However, most of the scripts (including
Roman, Cyrillic, Arabic, Indic and other South Asian scripts) are more or less based on a phonemic
orthography where words are broken down into syllables or phonemes and represented using letters.
Hence, our method is applicable to these scripts.
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value xk. The parameter p in our case is not directly available, hence we give it

a conjugate prior distribution. Therefore, p is drawn from a Dirichlet distribution

with parameter vector α = (α1, . . . , αK). The hyperprior vector α can be seen as

pseudocounts and αk = xk/
(∑K

i=1 xi

)
in a reference collection. Such formulation

can be expressed as follows:

α = (α1, . . . , αk) = hyperprior

p|α = (p1, . . . , pK) ∼ Dir(K,α)

x|p = (x1, . . . , xK) ∼ Mult(K,p)

The proposed model, CAE, is based on the non-linear dimensionality reduction

method that uses a deep autoencoder (Hinton and Salakhutdinov, 2006). As already

described in Sec. 3.4, in a deep autoencoder architecture, RBMs are stacked on top of

each other. The bottom-most RBM of our model, which models the input terms, is a

character-level variant of the replicated softmax model presented in (Salakhutdinov

and Hinton, 2009b). Despite character n-grams follow a Dirichlet-multinomial dis-

tribution, we can model them by means of RSM because during the inference pro-

cess, which uses Gibbs sampling, Dirichlet prior distributions are marginalised out.

Let v ∈ {0, 1, · · · , N}K represent visible multinomial units and let h ∈ {0, 1}m
be stochastic binary hidden latent units. Let v be a K-dimensional input vector

such as feature vector of features xi, h an m-dimensional latent feature vector and

N =
∑K

i=1 xi. The energy of the state {v,h} is defined as:

E(v,h) = −
K∑
i=1

viai −N
m∑
j=1

bjhj −
∑
i,j

W i
jhjv

i (4.1)

where vi is the corresponding count for feature xi, W
i
j is the weight matrix entry

between the ith visible node and the jth hidden node, while ai and bj are the bias terms

of the visible and hidden layers respectively. The resulting conditional distributions
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are given by the softmax and logistic functions, are as below:

p(vi = xi|h) =
exp(ai +

∑
j hjW

i
j )∑K

i=1 exp(ai +
∑

j hjW
i
j )

(4.2)

p(hj = 1|v) = σ(bj +N
K∑
i=1

viW
i
j ) (4.3)

As argued in Salakhutdinov and Hinton (2009a), a single layer of binary features

may not be the best way to capture complex structures in the data, then more layers

are added to create a deep autoencoder (Hinton and Salakhutdinov, 2006). The

further binary RBM’s are stacked on top of each other in such a way that the output

of the bottom RBM is the input to the above RBM. The conditional distributions of

these binary RBMs are given by logistic functions as follows:

p(vi = 1|h) = σ(ai +
∑
j

hjW
i
j ) (4.4)

p(hj = 1|v) = σ(bj +
∑
i

viW i
j ) (4.5)

4.1.2 Closed feature set - finite K

Topic models for documents are usually trained over a subset of vocabulary (top-n

terms) and hence, they have to deal with the non-trivial problem of marginalising

over unobserved terms. On the contrary, our proposed term level topic model is

prune to this problem because the set of phonemes (more specifically, character n-

grams) for a given language is finite and typically small. Hence, enough evidence for

all the phonemes is found even in a small to moderate size training dataset, which

increases the suitability of our approach to the problem.

For example, without loss of generality, consider the total number of scripts in



42 CHAPTER 4. CROSS-VIEW MODELS

m Linear Layer

RSM Layer

Transliterated Form

Code
Layer

Output Layer

Input Layer

(a) (b)

m

Given Term Zero Vector

Code (hq)

Native Form

(c)

x= xq=

Figure 4.1: The architecture of the autoencoder (K-500-250-m) during (a) pre-training
and (b) fine-tuning. After training, the abstract level representation of the given terms
can be obtained as shown in (c).

datum being modelled r = 2 for language Hindi where s1 be the Devanagari script

with 50 letters and s2 be the Roman script (as used in English orthography) with

26 letters. Then, the size of the feature set F , considering uni-gram and bi-gram

character features, is upper bounded by K = 3252 = (26 + 262 + 50 + 502).

4.1.3 Training

The architecture of the proposed mixed-script autoencoder is shown in Fig. 4.1 (a).

The visible layer of the bottom-most RBM is a character level replicated softmax

layer as described in Sec. 4.1.1. The character uni-grams and bi-grams of the training

datum (r = 2) constitute the feature space F . The hidden layer of the top-most RBM

is linear and represents the low-dimensional embedding of terms in the abstract space.

As already described in autoencoder is trained in two phases: (i) greedy layer-wise

pre-training and; (ii) fine-tuning through backpropagation.

(i) Layer-wise pre-training Multilayer neural network training is known to suffer

from the vanishing gradient problem, the gradient at the bottom layer becomes

small because of many small-number multiplications. Greedy layer-wise pre-training

brought a break-through in training deep neural network architectures, where each
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t = 0 t = 1

〈vihj〉data 〈vihj〉model

data reconstruction

Figure 4.2: Contrastive divergence technique to pre-train RBM

layer is trained individually. Each new layer guarantees to increase the lower bound

of the log-likelihood of the data, which in turn improves the model (Hinton and

Salakhutdinov, 2006).

During pre-training, each RBM is trained using contrastive divergence (CD)

learning with n alternating Gibbs sampling (Hinton, 2002). Under this learning,

the update rule becomes simple as shown in Eq. 4.6, where 〈vihj〉data represents

the expectations under the original data distribution and 〈vihj〉model represents the

expectations under the model distribution. In practice, a single alternating Gibbs

sampling gives good results, which can be denoted as CD1 learning. The greedy

pre-training is shown in Fig. 4.2. It is also noted that pre-training helps to ini-

tialise the network parameters in a region with high probability of finding global

optimum (Erhan et al., 2010).

∆wij = ε (〈vihj〉data − 〈vihj〉model) (4.6)

(ii) Fine tuning Once the network is pre-trained, the autoencoder is unrolled as

shown in Fig. 4.1 (b) and the cross-entropy error (Eq. 4.7) between the input and its

reconstruction (output) is minimised by using backpropagation to adjust the weights

of the entire network.

J(θ) = −x log(x̂)− (1− x) ∗ log(1− x̂) (4.7)
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As shown in Fig. 4.1 (a), the autoencoder is jointly trained with a native form

and its transliterated form. In this way, the model is able to learn character level

“topic” distributions over the features of both scripts jointly.

4.1.4 Finding equivalents

Once the model is trained, equivalents discovery involves two steps: (i) preparing the

index of mining lexicon in the abstract space (offline) and; (ii) finding equivalents

for a given query term (online). The lexicon of the reference collection (ideally cross-

script), which is used to find term equivalents is referred to as the mining lexicon.

The former step is a one-time offline process in which the m-dimensional abstract

representation for each term in mining lexicon (of size n) is obtained as shown in

Fig. 4.1 (c) (x1×K → h1×m). These representations are stored in an index against

each term. This index can be seen as an n × m matrix H where h ∈ H. The

latter step involves projecting the query term into the abstract space (xq → hq) and

calculating the similarity with all the terms in the index. The similarity calculation

can be seen as a matrix multiplication operation H hTq , in which the cosine similarity

function is considered. All the terms with sim(h,hq) > θ,h ∈ H are considered as

term equivalents of the query word wq, where θ is similarity threshold.

4.2 External data composition neural networks

The cross-view autoencoder described in the previous section can also be used to

model cross-language documents, although it does not perform as strongly as it does

for modelling mixed-script equivalents. There are other limitations: (i) it does not

provide an explicilt way to incorporate external relevance signals such as clickthrough

data, which is very helpful for information retrieval tasks; and (ii) it learns cross-

language representations by optimising identity function which is loosely related

to the evaluation metric of retrieval. In this section we introduce external data

composition neural networks, which is a novel method to learn term associations
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across languages in a distributed manner to aid cross-language information retrieval.

In contrast to most of the existing models, which rely only on comparable and/or

parallel data, our model takes into account external relevance signals such as pseudo-

relevance or clickthrough data. This external data is used to initialise monolingual

embeddings and then, with the use of a small amount of parallel data, the parameters

for the different languages are jointly adjusted. The proposed framework also allows

for the use of clickthrough data, if available, instead of pseudo-relevance data. Our

model, differently from other models, optimises an objective function that is directly

related to an information retrieval evaluation metric, such as cosine similarity. These

two properties prove crucial for our model to outperform existing techniques in cross-

language IR setting.

Most prior work on learning low-dimensional semantic representations across lan-

guages relies completely on parallel data for training the models (Platt et al., 2010;

Yih et al., 2011; Gupta et al., 2014). Our proposed framework removes this require-

ment by exploiting also monolingual data for model training purposes, and as such

it can be more easily applied to low-resource languages.

Modellang1

Data & external
relevance signals

Embedding space

Modellang2

Parallel data

CL embedding space

Figure 4.3: System overview of training of XCNN model.

In summary, we attempt to incorporate external relevance signals such as pseudo-
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relevance or clickthrough data into the learning framework. Such data might not be

available across languages and is mostly restricted to the monolingual setting, as

most of the present search engines do not perform cross-language retrieval explicitly.

The main idea behind our proposal is that, monolingual models can be intialised from

such largely available external data and then, with the help of a smaller amount of

parallel data, the cross-language model can be trained. This property helps to gain

more confidence for under-represented terms in the parallel data, i.e. terms with

very low frequency. The overview of the XCNN model can be depicted as shown in

Fig. 4.3.

The low dimensional embedding space created through monolingual data and

external relevance signal is then extended cross-lingually as shown in Fig. 4.4. In

Fig. 4.4, text in language-1 (lang1) is represented by symbol � while the correspond-

ing parallel text in language-2 (lang2) is represented by symbol × and the arrows

show the parallel correspondance. Before training, the lang2 text is represented in

the embedding space when the corresponding model is randomly initialised. The

lang2 model parameters are updated to obtain a cross-view embeddings space as

shown in the right hand side of Fig. 4.4.

Before training After training

Figure 4.4: Embedding space before and after cross-lingual extension training.

4.2.1 Monolingual pre-initialisation

The monolingual pre-initialisation can be performed by means of any monolingual

latent semantic modelling approach. In our proposed method, we consider a model
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similar to the deep semantic structured model (Huang et al., 2013) with two modi-

fications: (i) we do not use word-hashing as we will extend this model to the cross-

language framework and we are more interested in word associations, and (ii) we

use a composition function to feed the text into the model rather than a standard

bag-of-word vector representation.

Consider a function f : x → y ∈ Rd, which maps a document vector x into a

distributed semantic representation y. We use a simple additive vector composition

function on top of the deep neural network output. The architecture of the composi-

x1 x2 x3

y

x

Layer l1

Layer l2

Layer lm

ylm1 ylm2 ylm3

Figure 4.5: Composition Model.

tion model with m layers is shown in Fig. 4.5. The input layer accepts the document

vector x and the output layer (lm) provides the semantic representation for the doc-

ument vectors. In our approach, one-hot representation of each term xi is obtained
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from bag-of-words document vector x as shown in Fig. 4.5. The hidden layer activ-

ities and the semantic representation y are obtained by means of Eq. 4.8. As it can

be noticed in Eq. 4.8, an additive composition is performed over the representation

of terms in the output layer (lm).

yl1i = g(W1 ∗ xi + b1)

y
lj
i = g(Wj ∗ ylj−1

i + bj), j = 2, ...,m

y =
n∑
i=1

ylmi

(4.8)

where Wj and bj are the jth layer weights and biases respectively, n is the total

number of terms in the document and g(z) is a non-linear activation function. In

our approach we use the hyperbolic tangent for non-linearity:

g(z) = tanh(z) =
1− e−2z

1 + e−2z
(4.9)

This composition framework is slightly different from the standard bag-of-words rep-

resentation of documents used with feed-forward neural network because the terms

are added after applying the non-linearity.

The architecture of the proposed monolingual pre-initialisation model is depicted

in Fig. 4.6. This model is trained to maximise the following objective function:

J(θ) = cos(yQ, yD+)− cos(yQ, yD−) (4.10)

where cos(yQ, yD) denotes the cosine similarity between the semantic representations

of query (Q) and document (D) as shown below:

sim(yQ, yD) = cos(yQ, yD) =
~yQ
T ~yD

‖ ~yQ‖‖ ~yD‖
(4.11)

Maximising the proposed objective function reinforces the cosine similarity between
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xQ xD+ xD−

CM CM CM

J(θ)

yQ yD+ yD−

Figure 4.6: Relevance backpropagation model for monolingual pre-initialisation of the
latent space using monolingual relevance data.

relevant document (positive sample, D+) and query (Q) to be high and the similarity

between irrelevant document (negative sample, D−) and the query (Q) to be low.

The noise-contrastive component (cos(yQ, yD−)) prevents the model from over-fitting

and helps improving generalisation. During the training, the model parameters are

updated using a gradient method, which was already described in Section 3.6. For

brevity and consistency, the details of the gradient derivation for the objective func-

tion in Eq. 4.10 are given in Appendix A.1.

4.2.2 Cross-language extension

The main idea of the proposed framework is to implement a cross-language repres-

entation in a semi-supervised manner with a limited set of parallel data. To achieve

this, we first project one side of the parallel data by using its corresponding mono-

lingual model. Then, we tune the opposite monolingual model with the use of the

other side of the parallel data. We call the tuned model the cross-language extension
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model.

Consider a 3-tuple (yl1 , y
+
l2
, y−l2), where l1 is the language for which we are training

the cross-language extension model, yl1 denotes the distributed representation of

term vector x in l1. On the other hand, y+
l2

denotes the distributed representation

of the parallel counterpart of x in l2 and y−l2 is a noise component in l2. The overall

architecture of the model is depicted in Fig. 4.7 and the corresponding objective

function is:

Jcl(θ) = cos(yl1 , y
+
l2

)− cos(yl1 , y
−
l2

) (4.12)

xl1 x+
l2
,x−

l2

CMl1 CMl2

Jcl(θ)

yl1 y+l2 , y
−
l2

model
being
trained

Figure 4.7: Cross-lingual extension model.

The composition models CMl2 are obtained through monolingual pre-initialisation.

In the cross-language extension phase, only the model parameters of CMl1 are up-

dated during the training. The details of the gradient derivation for the objective

function presented in Eq. 4.12 are given in Appendix A.2.
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Chapter 5
Mixed-script information retrieval

For many languages that use non-Roman indigenous scripts (e.g., Arabic, Greek

and Indic languages), one can often find a large amount of transliterated user gener-

ated content on the web in the Roman script. Such content creates a monolingual or

multi-lingual space with more than one script which we refer to as the mixed-script

space. IR in this mixed-script space is challenging because queries written in either

the native or the Roman script need to be matched to the documents written in

both scripts. Moreover, transliterated content features extensive spelling variations.

In this chapter, the concept of mixed-script IR is formally introduced (Section 5.1).

Through analysis of the query logs of Bing search engine, the prevalence and im-

portance of this problem is estimated (Section 5.2). Finally, the experiments and

results on a standard dataset are reported with the proposed model in this thesis

and compared to variety of strong baselines in Sec. 5.3.
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5.1 MSIR: Definition & challenges

In this section, the notion of mixed-script IR is formally defined along the lines of

cross-lingual IR (Gupta et al., 2014; Gupta, 2014). A set of research challenges in

the context of MSIR are also presented.

5.1.1 Languages, scripts and transliteration

Let L be a set of (natural) languages {l1, l2, . . . , ln}. Assuming that every language

is generally written using a particular script, which is referred to as the native script

of the language. Let si be the native script for language li. Thus, the set of scripts

S = {s1, s2, . . . , sn} has a one-to-one mapping to L.

Any natural language word w has two attributes: the language it belongs to and

the script it is written in. The notation w ∈ 〈li, sj〉 implies that w is in language li,

written using the script sj. When i = j, word w is considered to be in native script.

Else, in transliterated form, where transliteration can be defined as the process of

loosely or informally representing the sound of a word of one language, li using a

non-native script sj.

Note that a particular language might be traditionally written in more than one

script. For instance, Kurdish is written using the Roman, Cyrillic and Arabic scripts.

However, such cases are rare. On the other hand, it is very common to use a script

for writing several languages. For instance, the Roman script (with slight variations

or additions of diacritics) is used to write English, French, German, Italian, Turkish

and many other languages around the world. Similarly, the Devanagari script is used

for writing Hindi, Sanskrit, Nepali and Marathi languages. Our definition does not

preclude such a possibility, but we would like to emphasise that it is useful to treat

the same script differently when used for writing different languages because the

same sequence of letters might have different pronunciations in different languages.

Consequently, transliterating a word of li (say Hindi) into the scripts sj (say Roman

script as used in English orthography) and sk (say Roman script as used in French
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orthography) could yield very different results, even though the two scripts use almost

an identical alphabet.

5.1.2 Mixed-script IR

Given a query q and a document pool D, the task of an IR engine is to rank the

documents in D such that the ones relevant to q appear at the top of the ranked

list. Depending on the language in which q and D are presented, one can define two

basic kinds of IR settings. Without loss of generality, let us assume that q ∈ 〈l1, s1〉.
In monolingual IR, D = {d1, d2, . . . , dN} consists of only those documents that are

in the same language and script as the query, i.e., for all k, dk ∈ 〈l1, s1〉. This simple

scenario is modified in the context of CLIR, where

D =
⋃

i=1...n

Di

where Di = {d1
i , d

2
i , . . . , d

N
i } are documents in language li, i.e., for all k, dki ∈ 〈li,

si〉. Note that all the documents in a typical CLIR setup are assumed to be written

in the corresponding native scripts.

Based on this fundamental idea of CLIR, a corresponding mixed-script IR setup

can be defined as follows. Let q ∈ 〈l1, sj〉 be a query, where j may or may not be

equal to 1. The document pool,

D =
⋃

k=1...n

Dk1

where Dk1 = {dk,11 , dk,21 , . . . , dk,N1 } are documents in language l1 written in script

sk, i.e., for all m, dk,m1 ∈ 〈l1, sk〉. In other words, in the MSIR setup, the query and

the documents are all in the same language, say l1, but they are written in more

than one different scripts. The task of the IR engine is to search across the scripts.

In the literature, sometimes CLIR is distinguished from multilingual IR in the

sense that the former refers to a case where n = 2, whereas the latter is a gener-
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alization to any n > 2. Likewise, for monolingual IR, n can be assumed to be 1.

One could make a similar distinction between mono-script, cross-Script and mixed-

script IR scenarios, where the query and the documents are in one language, but in

1, 2 or more than 2 scripts respectively. Nevertheless, we will refer to both latter

cases as MSIR. All the experiments involve a single language, namely Hindi, and two

scripts – Devanagari and the Roman script (English orthography) – but the proposed

approach can be easily extended to a larger set of scripts.

One can also further generalise the setup to mixed-script multilingual IR, where

q as well as D can be in one of several languages and written in one of several scripts.

This is also a useful and practical setup, though we will not discuss it any further in

this work.

It should also be noted that, like in CLIR, in the MSIR setting it is possible that

for q ∈ {li, sj}, the information might be available only in a dj
′,k
i where i 6= j′. In

such cases, often the users issuing the query might be able to read and write both sj

and sj′ and hence dj
′,k
i would have solved users information need. However, without

MSIR this would not be possible to achieve.

5.1.3 Mixed and transliterated queries & documents

The definition of the MSIR setup assumes that the entire query and each document

are in a single language and single script. However, in practice, one can find queries

or documents that contain text fragments written in more than one language or script

or both. Furthermore, depending on whether the parts of a query or document are

written in a language using the native or a non-native script, one can have native or

transliterated queries and documents.

A practical way to address the issue of mixed-script within documents could be

to split them into several sub-documents such that each of the sub-documents are in

a single language and single script as discussed in Choudhury et al. (2012), given the

mixing is not at the sub-sentence level which falls under the different case of code-

mixing. Mixed queries, however, cannot be handled through simple splitting because
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matching parts of a query to the documents does not make sense in the context of

IR. Therefore, the MSIR setup is extended to include mixed queries. Let a query q

be defined as a string of words w1w2 . . . wm, where w1 ∈ 〈li1 , sj1〉, w2 ∈ 〈li2 , sj2〉 and

so on can all belong to different languages, scripts or both.

5.1.4 Challenges in MSIR

The two primary challenges in MSIR are: (i) how to tackle the extensive spelling

variations in the transliterated queries and documents during the term matching

phase, and (ii) how to identify, process and represent a mixed query (and also, the

mixed and transliterated documents). In CLIR, there are broadly two approaches:

(i) to model the cross-lingual space, either documents and queries are translated

to bring all words into the same monolingual space, after which monolingual IR

techniques and matching algorithms can be directly applied; or (ii) the cross-lingual

space is modelled jointly as an abstract topic or semantic space, and documents and

queries in all languages are mapped to this common space. Likewise, in MSIR one

can “transliterate” the text to bring everything into a common space and then apply

standard matching techniques in the single-script space, or one can jointly model an

abstract orthographic space for representing the words written in different scripts.

In this thesis, we explore the latter, which we believe is a more robust and generic

solution to the mixed-script space modelling problem, as it can simultaneously handle

spelling variations in a single script and across multiple scripts.

Mixed query processing is another interesting research challenge, which includes

language identification of the query words, which can be either in native or transliter-

ated scripts, and labeling those with semantic or other tags (e.g., entities, attributes).

This is challenging mainly because, depending on the context of the query, the same

string, say “man”, could represent the English word man, a transliterated Hindi word

man meaning “mind”, or another transliterated Hindi word maan meaning “repu-

tation”. In addition, the same word with similar meanings are also used in many

other Indian languages and can have different connotations in other languages (e.g.,
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in Bengali this could also mean “to get offended”). Hence, language identification

seems to be an extremely challenging problem in the MSIR setting, especially when

multiple languages are involved. In this work, we limit our experiments to only two

languages, namely English and Hindi, and describe some initial results with language

identification for transliterated and mixed queries.

Apart from these basic challenges, result presentation in MSIR is also an inter-

esting problem because this requires the information on whether the user can read

all the scripts, or prefer some scripts over others. There are no user studies related

to MSIR, which is ripe with several such open problems.

5.2 Transliterated queries in web search

Although the current web search engines do not support MSIR, they still have to

handle a large traffic of mixed and transliterated queries from linguistic regions that

use non-Roman indigenous scripts. To better understand the distribution of trans-

literated queries across various topics and domains, an analysis of mixed and trans-

literated queries extracted from a large query log of Bing is presented. This could

provide deeper understanding of the MSIR space and its users. This analysis relies

on automatic identification and classification techniques for mixed queries developed

specifically for this task.

5.2.1 Methodology

The analysis is conducted on 13.78 billion queries sampled from the logs of Bing on

real user searches conducted in India. India provides an interesting socio-linguistic

context for studying mixed queries because of the abundance of Roman translitera-

tions and the multiplicity of languages and scripts. This dataset consists of 30 million

unique queries with an average length of 4.32 words per query. Almost all the queries

(99.998%) are in Roman script (but not necessarily in English language). For ease

of computation, we randomly sampled 1% (i.e., 300,000) of the unique queries and
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conducted the study on this smaller sample. The analysis is carried out in successive

steps, which are explained below.

Step-1: Language identification In order to identify the mixed-script queries,

a language identification classifier was trained. The classifier is based on a maximum

entropy model, which uses character n-gram features (n = 1 to 5). Training was

carried out with 5000 labelled words for each language. Hindi words were top trans-

literated words from Bollywood songs lyrics obtained through Gupta et al. (2012a)

and English words from the Leipzig Corpus1. On 2500 unseen words, the accuracy of

the classifier was measured to be 97%. The language identification was carried out

based on a similar word-level identification task in King and Abney (2013). With this

classifier, a query q is considered to be mixed-script or transliterated if it contains

more than 40% words classified as Hindi.

Step-2: Query categories After analysing the transliterated queries identified in

Step-1, six broad categories or topics were identified: Named Entities, Entertainment,

Information Source, Culture, Recipe and Research. Each of these were further refined

into a set of sub-categories; e.g., Named Entities can be of three types people, location

and organisation. Besides, we also observed a few interesting subcategories, which

we put together under a catch-all seventh category – Others. Table 5.1 lists all these

categories and sub-categories along with example queries.

Step-3: Category assignment In order to automatically classify the queries

into these categories, we resort to a simple minimally supervised approach. Through

manual inspection of the transliterated queries, five representative and reasonably

frequent examples for each sub-category were selected. All the queries from the data-

set that have at least one word in common with at least one of the five representative

queries were extracted. Then, the top 100 most frequent words in this set of quer-

ies were populated. The standard English stopwords were removed from these 100

1http://corpora.uni-leipzig.de/

http://corpora.uni-leipzig.de/
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Category Sub-categories Cue words Example query

Named Entity
People mr, ji , guru, dr, swami harmohinder singh

gogia

Organisation ltd, university, bank gandharva

mahavidyalaya ddu

marg

Location nagar , garh, chowk , hotel rajdhani train

timings chappra to

guwhati

Entertainment
Movie movie, film, torrent, video himmatwaala remake

Song/Lyrics/Dialogues album, tune, lyrics, audio ik din ayega lyrics

Tv soaps/serials song, lyrics, tv, serial colors madhubala

ishq ek junoon

Information
Source

Books book, pustak , kitab bade ghar ki beti

premchand

magazines/news patrika, times, vasundhara eenadu

websites blog, com, net , http swayamvaram info

Culture

Religion festival, god, lord ahoi ashtami 2011

Art/Literature yoga, natyam, raaga bharatanaytam dance

kalakshetra

Astrology rashi , horoscope, kundali ashwini nakshatra

mesha raashi

Attire saree, sherwani , lehenga silk bandhni

chaniya choli

Recipe Recipe/Dish/Food curry, biryani , paneer matar panir by

tarala dalal

Research Economic/Agriculture arthik , samaj vishwa arthik mandi

mein bharat

Others - meaning vibhaa meaning

Table 5.1: Classification of transliterated Hindi queries. Transliterated words are it-
alicised.

words. The remaining words constitute what we refer as the cue words for the par-

ticular subcategory. A total of 180 cue words were obtained for each sub-category,

with very few overlaps. Some example cue words for each of the sub-categories are
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reported in Table 5.1.

Let cj1 to cjmj
be the cue words associated with the jth sub-category. For each of

the transliterated queries q = w1w2 . . . wn that we want to categorise, we remove all

the stopwords and cue words. For each of the remaining words in the query, say wi,

we count the number of queries, f ji,k, in the log where wi co-occurs with the cue-word

cjk. Also, let fi be the number of queries in which wi occurs. We compute the score

of q with respect to a sub-category j as:

score(q, j) =
k∑
i=1

mj∑
k=1

f ji,k/fi (5.1)

where, q is assigned to the sub-category j∗ for which this score is maximum.

Category Sub-categories % of Unique % of Total

Named Entity
People 6% 1.04%
Organisation 14% 2.8%
Location 8% 2.13%

Entertainment
Movie 7% 19.56%
Song/Lyrics/Dialogues 18% 12.8%
Tv soaps/serials 2% 0.62%

Information
Source

Books 0.005% 0.02%
Magazines/news 3% 14.52%
Websites 22% 44.18%

Culture

Religion 0.4% 0.02%
Art/Literature 0.3% 0.01%
Astrology 0.3% 0.2%
Attire 0.3% 0.04%

Recipe Recipe/Dish/Food 1.2% 0.16%

Research Economic/Agriculture 0.04% 0.01

Others - 0.01% 0.01%

Table 5.2: The statistics of queries with query-categories in terms of the % of unique
queries and the % of total queries.
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5.2.2 Observations

In our dataset, as much as 6% of the unique queries were identified as transliterated,

which means that at least 40% of the words in these queries are Roman translitera-

tions of Hindi words. The average query length for the transliterated queries is 2.86,

which is less than 4.32 – the average query length of all queries. The frequency of

the transliterated queries are in general less than that of the non-transliterated ones.

Hence, they only constitute about 0.011% of all the queries in our dataset. However,

their frequency distribution follows the same power-law pattern as the regular quer-

ies, albeit spanning mainly the medium and low frequency spectra. This also implies

that a large number of transliterated and mixed queries belong to the long tail of

the overall query distribution and may not have enough clickthrough data to help a

search engine process them accurately. Because of this, they must be processed dif-

ferently, recognizing the fact that they are rare, but together they do form a sizeable

mass of the search traffic.

Table 5.2 presents the distribution statistics of the transliterated queries in each

of the identified sub-categories. The numbers do not add to 100% because a small

fraction of queries, 18% of unique but only 2% of all, could not be mapped to any

of the categories. It is not surprising that a large fraction of the queries are NEs.

Along with Websites, NEs form 50% of the unique queries, though when query fre-

quencies are taken into account NEs only constitute 6% of all queries. Consequently,

processing of transliterated NEs has received some attention from the IR research-

ers (Kumaran et al., 2010). Entertainment is the second largest category (27%), of

which movies and songs are the most searched categories. These queries are typic-

ally longer and more complex than NE queries, and constitute more than 32% of

the transliterated query traffic. Yet, this category has hardly received any special

attention from the researchers (Dua et al., 2011; Gupta et al., 2012a). We believe

that Entertainment is a rich and practically important domain for MSIR, and hence

we conduct our MSIR experiments on Hindi song lyrics dataset (Saha Roy et al.,

2013).
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5.3 Experiments and results

Now we describe the experimental set up for evaluating the effectiveness of the pro-

posed cross-view autoencoder for retrieval in mixed-script space (Gupta et al., 2014).

5.3.1 Dataset

We used the FIRE 2013 shared task collection on Transliterated Search (Saha Roy

et al., 2013) for experiments and training. The dataset comprises of a collection

of documents (D1), a queryset (Q) and their corresponding relevance judgments.

The collection contains 62,888 documents having song title and lyrics in Roman,

Devanagari and mixed-scripts. Some of the Roman-script documents are in ITRANS2

format, which is an ASCII transliteration scheme for Indic scripts. Statistics of

the document collection is given in Table 5.3 (a). The Q contains 25 lyrics search

queries for Bollywood songs in Roman script with mean query length of 4.5 words.

Table 5.3 (b) lists a few examples of queries from Q. The binary Qrels were created

by manually evaluating a pool of runs generated from different systems submitted

to the track. On an average, there were 47.92 relevance judgments and 6.72 relevant

documents per query. The song lyrics documents were created by crawling several

popular lyrics domains like dhingana, musicmaza and hindilyrix.

No. of
Documents 62,888
Tokens 12,738,191
Vocabulary 135,243

(a) Corpus statistics

Sample queries
tumse milke aisa laga

wah tera kya kehna

zindagi ke safar mein

(b) Example of queries

Table 5.3: Details of the dataset.

2http://en.wikipedia.org/wiki/ITRANS
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5.3.2 Experimental setup

The experimental setup is a standard ad-hoc retrieval setting.The document collec-

tion is first indexed to create an inverted index and the index lexicon is used as mining

lexicon. Being this a lyrics retrieval set up, the sequential information among the

terms is crucial for effectiveness evaluation, e.g. “love me baby” and “baby love me”

are completely different songs. In order to capture the word-ordering, we consider

word 2-grams as a unit for indexing and retrieval.

The non-trivial part of MSIR is query-expansion to handle the challenges de-

scribed in Sec. 5.1.4. In order to enrich the query with equivalents, we find the

equivalents of the query terms as described in Section 4.1.4 and the word 2-gram

query is formulated as shown in Table 5.4. The code for the CAE is publicly avail-

able at: http://www.dsic.upv.es/~pgupta/mixed-script-ir.html

Original query ik din ayega

Variants of ik ik, ikk, ek, ik
Variants of din din, didn, diin, Edn
Variants of ayega ayega, ayegaa, aAy�gA,

aAegA
Formulated query∗ ik$din, ik$didn,

ik$diin, ikk$din,
ikk$didn, ikk$diin,
din$ayega, din$ayegaa,
didn$ayega,
didn$ayegaa,
diin$ayega,
diin$ayegaa, ek$Edn,
ik$Edn, Edn$aAy�gA,
Edn$aAegA

Table 5.4: Example of query formulation for transliterated search. ∗Note: $ and , are
added for readability.

http://www.dsic.upv.es/~pgupta/mixed-script-ir.html
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5.3.3 Baseline systems

We consider a variety of baseline systems and compared them with the proposed

method. The query formulation is similar for all the systems including the retrieval

settings like inverted index, retrieval model and mining lexicon, except the method

for finding the equivalents.

1. Naı̈ve: The original query terms are used for the query formulation without

any query-enrichment step.

2. Naı̈ve + Trans: The original query terms and their automatic back-transliteration

obtained from a commercial transliteration engine3 are used for query formu-

lation.

3. CL-LSI: In this system, linear dimensionality reduction technique known as

cross-language latent semantic indexing (Dumais et al., 1997) is used to learn

the low-dimensional embedding of the terms across the scripts. Consider mat-

rix An×K where aij is the count data of jth feature fj ∈ F in ith training

word-pair. Such matrix A is factored using CL-LSI to learn projection matrix

(VK×m) such that hq = xqV . The equivalents of the query term t are obtained

from 50-dimensional abstract space as described in Section 4.1.4. Thus found

equivalents, along with original query terms, are used for query formulation.

4. Editex: An approximate string matching algorithm for IR proposed in Zobel

and Dart (1996) is used to get equivalents of the query term. Editex uses

advanced Phonix and Soundex information to normalise the pronunciation dif-

ferences. The distance between such normalised strings is calculated as edit

distance. Editex can handle strings only in Roman alphabet. Therefore, only

Roman script equivalents of the query terms are found using Editex.

5. CCA: In this case, the problem of finding equivalents is formulated as search

problem across the different views by learning hashing functions (Kumar and

3Yahoo! Transliteration: http://transliteration.yahoo.com/
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Udupa, 2011). The problem of learning hash functions is formulated as a con-

strained minimisation problem over the training data. The training terms are

represented as character bi-gram features and the learning algorithm tries to

minimise the distance between similar terms in a common geometric space. In

the absence of the affinity matrix (i.e., no prior information about similarity

between objects is available) the learning of hash functions becomes a gener-

alised eigenvalue formulation of the canonical correlation analysis (CCA). An

inverted index of hashcodes is prepared for terms in the mining lexicon. The

equivalents for the query term are found from this index according to the score

given by the graph matching algorithm of Udupa and Khapra (2010a).

5.3.4 Results and Analysis

We evaluate the effectiveness of the proposed method, referred as CAE and compare

it with all the baseline systems. The retrieval performance is measured in terms of

mean average precision (MAP) and mean reciprocal rank (MRR). For each query, we

evaluated the ranklist composed of the top 10 documents. The used ranking model is

parameter free divergence from randomness (unsupervised DFR) as described in Am-

ati (2006) which is shown to be suitable for short queries. The results averaged over

Q are presented in Table 5.5. For CAE, the dimensionality selection was based on the

concept of critical bottleneck dimensionality described in Chapter 7. For CL-LSI, we

tried different dimensionalities in the range of [50,200] with step size of 50, but did

not observe any statistical significant difference in performance. For CCA, we used the

implementation from the original authors, optimised for the English-Hindi language

pair. The code for CAE has been made publicly available4.

The results in Table 5.5 are presented after tuning the parameter θ, which is better

explained later in this section. The high MRR score achieved by CAE describes its

ability to fetch the first relevant document at very high ranks, which is a desirable

feature for Web search in addition to better overall ranking measured by MAP.

4http://www.dsic.upv.es/~pgupta/mixed-script-ir.html

http://www.dsic.upv.es/~pgupta/mixed-script-ir.html
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Method MRR MAP θ

Naı̈ve 0.6857 0.2910 NA
Naı̈ve+Trans 0.6590 0.3560 NA
CL-LSI 0.7533 0.3522 0.92
Editex 0.7767 0.3788 NA
Editex+Trans 0.7433 0.4000 NA
CCA 0.7640 0.3891 0.997
CAE-Mono 0.8000 0.4153 0.96
CAE 0.8740 0.5039 0.96

Table 5.5: The results of retrieval performance measured by MAP and MRR. Similarity
threshold θ is tuned for best performance.

N+T CL-LSI Editex CCA Editex+T CAE

Naı̈ve 22.5%/0.09 21%/0.12 30.1%/0.03 33.7%/0.06 37.45%/0.047 73.1%/0.0006
N+T - -0.01%/0.47 6.2%/0.34 9.1%/0.27 12.2%/0.19 41.3%/0.009
CL-LSI - - 7.5%/0.24 10.5%/0.22 13.57%/0.12 43.1%/0.0004
Editex - - - 2.7%/0.42 5.6%/0.28 33.0%/0.002
CCA - - - - 2.8%/0.391 29.5%/0.007
Editex+T - - - - - 26.0%/0.009

Table 5.6: The performance comparison of systems presented as x/y where x denotes %
increase in MAP and y denotes p-value according to paired significance t-test.

Although Editex is devised for English and able to operate only in the Roman script

space, it performs comparably to CCA and CL-LSI. In order to make a fair comparison,

we report two more configurations: CAE-Mono which considers only Roman script

equivalents and Editex+Trans, in which automatic transliteration of terms are added

to enrich Editex. The results clearly outline the superiority of our method for query

enrichment. When compared with linear methods such as PCA and CCA, which have

linear objective functions, the strong performance of CAE suggests that non-linear

and non-convex objective functions are better suited for modelling terms in mixed-

script spaces. A statistical comparison of methods is presented in Table 5.6. There

is no significant difference in performance of Naı̈ve+Trans, CL-LSI, Editex and

CCA, while CAE significantly outperforms all the baselines, as shown with dark-gray

background, which clearly shows that term equivalents found by CAE are better than
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the other methods.

Figure 5.1: Average number of equivalents found in abstract space at similarity
threshold (θ) (c.f. Section 4.1.4).

Finally, we present an analysis on the impact of θ on the resulting number of

equivalents, which is directly related to the query latency. Fig. 5.1 depicts the average

number of equivalents for each query term with respect to corresponding θ. As can

be noticed in Fig. 5.1, CCA shows a steep increase in number of equivalents. This

suggests that CCA has a very dense population in the abstract space and, therefore,

has around ∼40 equivalents even at a strict threshold of 0.99. On the other hand,

CAE and CL-LSI show a moderate increase in the number of equivalents with respect

to θ value.

The effect of θ on the retrieval performance is shown in Fig. 5.2, where the para-

meter sweep for θ is [0.99-0.90] with step of 0.01. CAE exhibits the best performance

throughout the tuning range. For CCA we also considered θ between [0.999-0.99] with

step size of 0.001 to better capture its peak performance as shown in Fig. 5.2 with

CCA∗.

We illustrate the potential of CAE for finding equivalents by showing a snippet
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Figure 5.2: Impact of similarity threshold (θ) on retrieval performance. CCA∗ follows
the ceiling X-axis range [0.999-0.99].

of 20D abstract space as a 2D-view in Fig. 5.3. It can be noticed that mixed-script

equivalents of the terms are very close to each other in small clusters and such clusters

are well separated from each other. The 2D representation is achieved using the t-

SNE algorithm5. We show equivalents of a few terms found using CAE with θ=0.96

in Table 5.7. The category “not sure” depicts the cases where the terms are quite

close to the desired term but not correct, which may be due to a typo e.g. ehaas vs.

ehsaas where the former is not a valid Hindi word.

5.3.5 Scalability

Among the two steps involved in finding equivalents listed in Sec. 4.1.4, the indexing

step, being one-time and offline, is not a major concern. On the contrary, the real

time similarity estimation during the online step while searching for equivalents is

5http://homepage.tudelft.nl/19j49/t-SNE.html
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Figure 5.3: Snippet of mining lexicon projected in abstract space using CAE.

Term Variants

ehsaas ehsas, ehasas, ehsaass, ehsAs,
ehasaas, ?ehaas, ehsaaas

mujhe muhjhe, !mujhme, ?mujhea, m� J�,
!mujheme, mujhee, muhje, muujhe,
!m� Jm�\

bawra bawara, baawra, bavra, !brvA,
bawaraa, baawara, baavra, bAvrA,
barava, !EbrvA

pe p�, !pr�, pee, !Up�, ?pe

Table 5.7: Examples of the variants extracted using CAE with similarity threshold 0.96
(words beginning with ! and ? mean “wrong” and “not sure” respectively).

very crucial for timely retrieval. As the similarity estimation step is essentially a

matrix multiplication operation, it can be easily parallelised using multi-core CPUs

or GPUs. In our case, the size of the mining lexicon was n=135,243 and the abstract
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space dimensionality was m=20. Using a multi-threading framework for matrix

multiplication under normal CPU load, it takes on average 0.238 seconds6 for step

(ii) to find equivalents for each query word. The time taken is directly proportional

to the mining lexicon size n, dimensionality m and the number of CPU/GPU cores.

6We used Intel Xeon CPU E5520 @ 2.27GHz with 4 cores, 8 processors and 12GiB memory.





Chapter 6
Cross-language information retrieval

Cross-language information retrieval refers to the scenario of accepting informa-

tion need in one language and retrieving relevant information in a different language.

An information need can be in form of a document, a natural language question or

simply a search query.

This chapter aims at applying the CAE (c.f. Section 4.1) and XCNN (c.f. Sec-

tion 4.2) models to various task of cross-language information retrieval. First, we give

an overview of a set of existing cross-language text similarity assessment strategies

and then explain a few models that are used in this dissertation in Section 6.1.

The problem statement, experimental setup and results for different CLIR tasks

are presented in the successive sections: cross-language plagiarism detection (Sec-

tion 6.2), cross-language ad-hoc retrieval (Section 6.3), parallel sentence retrieval (Sec-

tion 6.4) and source sentence retrieval for machine translation (Section 6.5).

73



74 CHAPTER 6. CROSS-LANGUAGE INFORMATION RETRIEVAL

6.1 Cross-language text similarity

In general, cross-language text similarity methods can be categorised into following

six categories.

(i) Lexical-based systems rely on vocabulary similarity (e.g. English–French)

and linguistic influence (e.g. English computer → Spanish computadora) between

languages. Similarities across words in different languages can be reflected when

composing short terms; e.g. character n-grams or prefixes. Probably two of the first

similarity models of this kind are cognateness – based on prefixes and other tokens

– (Simard et al., 1992) and dot-plot – based on character 4-grams (Church, 1993).

While originally proposed to align bitexts, these models are useful to measure simil-

arity across languages (Potthast et al., 2011), but still with some limitations (Barrón-

Cedeño et al., 2010).

(ii) Thesauri-based systems map words or concepts, such as named entities,

into a common representation space by means of a multilingual thesaurus, such as

Eurovoc (Steinberger et al., 2002; Gupta et al., 2012b) or EuroWordnet (Vossen,

1998). However, multilingual thesauri are not always a viable solution. For in-

stance, Ceska et al. (2008) found that the incompleteness of the thesaurus (in that

case EuroWordnet) may limit the detection capabilities. Multilingual semantic net-

work – BabelNet (Navigli and Ponzetto, 2012) based cross-language knowledge graph

analysis (CL-KGA) provides a framework to estimate these similarities in the graph

space (Franco-Salvador et al., 2013).

(iii) Comparable corpus-based systems are trained over comparable corpora.

One example is cross-language explicit semantic analysis (Potthast et al., 2008).

Given documents (dq and d′) are represented by a vector of similarities to the doc-

uments of a so-called CL index collection CI , i.e., ~dq = {sim(dq, c1), . . . sim(dq, cI)},
~d′ = {sim(d′, c′1), . . . sim(d′, c′I)}, where, (ci ∈ L and c′i ∈ L′ are comparable docu-
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ments). Here, sim is a monolingual similarity model, such as the cosine measure. ~dq

and ~d′ are then compared to compute sim(dq, d
′).

(iv) Parallel corpus-based systems are trained on parallel corpora, either to

find cross-language co-occurrences (Littman et al., 1998) or to obtain translation

modules. The principles and resources of machine translation are used, but no actual

translations are computed. Cross-language alignment-based similarity analysis is one

of such models and it is discussed in more detail in Section 6.1.3.

(v) Machine translation-based systems simplify the problem by turning it into

a monolingual problem. The main approach is as follows: (i) a language detector is

applied to determine the most likely language of the documents at hand; (ii) if not

written in the comparison language, one of the documents is translated; and (iii) a

monolingual comparison is carried out between the two documents.

(vi) Translingual continuous space systems learn continuous space represent-

ation for text across languages and measure similarity in this space. Models such

as cross-language latent semantic indexing (Dumais et al., 1997) and oriented prin-

ciple component analysis (Platt et al., 2010) learn linear projections for text through

matrix factorization methods. While S2Net (Yih et al., 2011) uses a Siamese neural

network to learn the projections. The models proposed in this thesis, CAE and

XCNN, also fall in this category.

Now, we present a few models that can be used for cross-language text similarity.

6.1.1 Cross-language character n-grams (CL-CNG)

Cross-language character n-grams was originally proposed by Mcnamee and May-

field (2004) for cross-language information retrieval. It is a very simple model that

decomposes the text from two language sources into smaller units such as charac-

ter n-grams. Standard normalisation techniques are applied such as lower-casing
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and diacritics removal. Following Potthast et al. (2011), we used n = 3 for our

experiments. The similarity between text representations is computed using cosine

similarity.

6.1.2 Cross-language explicit semantic analysis (CL-ESA)

Cross-language explicit semantic analysis (Potthast et al., 2008) extends the explicit

semantic analysis model (Gabrilovich and Markovitch, 2007) to work in a cross-

language scenario. This model represents each text by means of its similarities with

a document collection D. Even though the indexing with D is performed at mono-

lingual level, using a multilingual document collections with comparable documents

across languages, e.g. Wikipedia1, allows for the resulting vectors from different

languages to be compared. Formally, having a matrix DL where rows represent

documents of a collection in a language L, a document dL is indexed as follows:

dDL
= DL · dTL, (6.1)

where dDL
denotes the resulting indexed vector of document dL in DL. Docu-

ments represented in dL and DL use a vector representation such as VSM with term

frequency-inverse document frequency (TF-IDF) weighting (Salton et al., 1983). The

similarity between two documents dL and d′L′ is estimated as ϕ(dDL
, d′DL′

), where ϕ

is a vector similarity function, and DL and DL′ are comparable document collections

between L and L′.

6.1.3 Cross-language alignment-based similarity analysis (CL-

ASA)

Cross-language alignment-based similarity analysis (Barrón-Cedeño et al., 2008) meas-

ures the similarity between two documents by on the lines of the Bayes’s rule for

1https://es.wikipedia.org/

https://es.wikipedia.org/
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machine translation — composition of language model and translation model. It

computes the likelihood of d′ to be a translation of d as shown in Eq. 6.2:

S(d, d′) = %(d′) p(d | d′). (6.2)

CL-ASA uses %(d′) component as length model which captures the translation

length factor as defined in (Pouliquen et al., 2003). The translation model depicted

by conditional probability p(d | d′) in Eq. 6.2 is replaced by a statistical bilingual

dictionary score and computed as shown in Eq. 6.3:

ρ(d | d′) =
∑
x∈d

∑
y∈d′

p(x, y) , (6.3)

where ρ(d | d′) no longer represents a probability measure and the dictionary p(x, y)

defines the likelihood of word x of being a valid translation of y. The CL-ASA model

is trained according to the parameters reported in Barrón-Cedeño et al. (2013).

6.1.4 Cross-language knowledge graph analysis (CL-KGA)

Cross-language knowledge graph analysis (Franco-Salvador et al., 2013; Franco-Salvador

et al., 2016) represents documents in a semantic graph space by means of knowledge

graphs. A knowledge graph is created as a subset of a multilingual semantic network,

e.g. BabelNet (Navigli and Ponzetto, 2012), focused on the concepts belonging to a

text. As stated in Franco-Salvador et al. (2016), these graphs have several interesting

characteristics that can be exploited for cross-language similarity estimation. Note,

for instance, that concepts are represented in BabelNet by means of multilingual sets

of synonyms. Therefore, knowledge graphs created from documents in different lan-

guages can be directly compared. Formally, having a pair of graphs (G,G′), G ∈ dL
and G′ ∈ d′L′ , the similarity Sg(G,G

′) between them can be estimated for concepts

and relations independently from each other. The similarity between the concepts is

calculated using the Dice’s coefficient (Jackson et al., 1989):
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Sc(G,G
′) =

2 ·
∑

c∈V(G)∩V(G′)

w(c)∑
c∈V(G)

w(c) +
∑

c∈V(G′)

w(c)
, (6.4)

where V(G) is the set of concepts in the graph and w(c) is the weight of a concept

c. Likewise, the similarity between the relations is calculated as:

Sr(G,G
′) =

2 ·
∑

r∈E(G)∩E(G′)

w(r)∑
r∈E(G)

w(r) +
∑

r∈E(G′)

w(r)
, (6.5)

where E(G) is the set of relations in the graph and w(r) is the weight of a semantic

relation r. Finally, the two above measures of conceptual (Sc) and relational (Sr) sim-

ilarity are interpolated to obtain an integrated measure Sg(G,G
′) between knowledge

graphs:

Sg(G,G
′) = a · Sc(G,G′) + b · Sr(G,G′), (6.6)

where a and b (with a + b = 1) are the parameters depending on the relevance of

concepts and relations respectively.2

Concepts are weighted using their graph outdegree (Navigli and Ponzetto, 2012).

In contrast, relations are weighted using the original weights between relations provided

in BabelNet. These weights were calculated using an extension of the extended gloss

overlap measure (Banerjee and Pedersen, 2003) which weights semantic relations

between WordNet (Fellbaum, 1998) and Wikipedia concepts. For more details about

the CL-KGA model please refer to the original works from (Franco-Salvador et al.,

2013; Franco-Salvador et al., 2016).

2In this work we used the optimal values provided in Franco-Salvador et al. (2016) for concepts
and relations: a = b = 0.5.
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6.1.5 Cross-language latent semantic indexing (CL-LSI)

CL-LSI is cross-language extension of latent semantic indexing, which performs the

singular value decomposition (SVD) of a document-term matrix D (Dumais et al.,

1997). The matrix D is constructed from a parallel corpus, where each parallel coun-

terparts are concatenated as shown in Fig. 6.1. A standard approach to constructing

D is using log(TF)-IDF weighting scheme as shown in Eq. 6.7.

Dij = log2(1 + tfij) ∗ log

(
n

dj

)
(6.7)

where, tfij represents frequency of term j in document i, n is the total number of

documents in the collection and dj represents document frequency of term j.

CL-LSI obtains a decomposition of D into the so called singular vectors and

singular values. The top k singular vectors or, principal components, of D form a

projection space (as shown in Eq. 6.8) in which documents can be compared on a

semantic basis. This decomposition, know as SVD, factorizes D into three matrices

- an m × r term-concept vector matrix U , an r × r singular values matrix Σ, and

a n × r document-concept vector matrix V where r is the rank of the matrix, i.e.

r ≤ min(m,n). Then, the resulting decomposition is reduced to rank k � r keeping

only the k largest principal components. The inherent idea is that semantically

similar terms across languages will be mapped into space representations that are

closer to each other. According to this, semantically similar documents will appear

close to each other in the reduced comparison space.

D = UΣV T

D ≈ Dk

Dk = UkΣkV
T
k

(6.8)

A text fragment is represented as ~y in the latent space as shown in Eq. 6.9:
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Terms

t1 t2 tn
s1
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Term Count
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Parallel
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Figure 6.1: Document-term matrix formulated from a parallel sentences corpus.

~y = ~x ∗ V (6.9)

where ~x is vector space representation of text fragment with TF-IDF weighting

scheme (as shown in Eq. 6.7) and V is document-concept vector matrix.

6.1.6 Oriented principal component analysis (OPCA)

OPCA extends CL-LSI and formulates the problem in a more extended way by intro-

ducing a noise component. It solves the generalised eigenproblem, which maximises

the signal-to-noise ratio (Platt et al., 2010):

Svj = λjNvj, (6.10)

where, S is the covariance matrix of the documents in different languages and N is the

covariance matrix of the differences among parallel documents which are considered

noise.

Specifically, OPCA creates a weighted document-term matrix Dm for each lan-

guage, where m ∈ {1, 2} for a cross-language case. The signal covariance matrix S,

is defined as follows:
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S =
∑
m

DT
mDm

n
− ~µT~µ (6.11)

where, ~µ is the mean of each Dm over its columns. In order to make each Dm of

equal size, their columns refer to the total vocabulary inclusive of all languages.

The noise covariance matrix N, is defined as follwos:

N =
∑
m

(Dm −D)T (Dm −D)

n
+ γI (6.12)

where, D is the mean across all language:

D =
1

M

∑
m

Dm (6.13)

The term γI acts as a regularisation term.

Theoretically, OPCA tries to minimise the distance between the parallel docu-

ments at the same time of maximising the overall variance of the data. The overall

variance of the data refers to variance among different non-parallel documents. The

parameters of OPCA are tuned according to Platt et al. (2010).

6.1.7 Similarity learning via siamese neural network (S2Net)

Following the general Siamese neural network architecture (Bromley et al., 1993),

S2Net trains two identical neural networks concurrently. The S2Net takes in parallel

data with binary or real-valued similarity score and updates the model parameters

accordingly (Yih et al., 2011). It optimises a dynamic objective function which

is directly modelled by using cosine similarity. The projection operation can be

described as follows:

yd = W ∗ xd (6.14)
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where, xd is the input term vector for document d, W is the learnt projection matrix

(represented by the model parameters) and yd is the latent representation of docu-

ment d. The parameters of the S2Net are tuned according to the details provided

in Yih et al. (2011).

6.1.8 Machine translation

Given a source string sJ1 = s1 . . . sj . . . sJ to be translated into a target string tI1 = t1 . . . ti . . . tI ,

a phrase-based statistical MT system aims at choosing, among all possible target

strings, the string that maximises the conditional probability:

t̃I1 = argmax
tI1

P (tI1|sJ1 ) (6.15)

where I and J are the number of words in the target and source sentences, respect-

ively.

The phrase-based system segments the source sentence into phrases, then trans-

lates each phrase by using bilingual dictionary (also referred to as translation table)

containing source and target phrase pairs and their estimated probabilities (s1..sn|||t1..tm).

Incrementally, the system composes the target sentence by exploring different com-

binations of phrase pairs. Standard implementations of the phrase-based system use

several features, or probabilistic models, to estimate the overall translation probabil-

ity in Eq. 6.15. The most common features used by phrase-based translation systems

include: relative frequencies, target language model, word and phrase bonus, source-

to-target and target-to-source lexical models, and reordering model (Koehn et al.,

2007).

In the translation-based approach to CLIR, we train a phrase-based machine

translation system to perform query translations. The translation system is trained

on domain-related parallel data using the standard state-of-the-art Moses toolkit3

with default parameters (Koehn et al., 2007). For the CLIR system implementation,

3http://www.statmt.org/moses/

http://www.statmt.org/moses/
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the query is translated into the language of the document collection and then simil-

arity is calculated using the BM25 measure in a monolingual setting4. Although we

consider this system to be a baseline, we do not expect all cross-language latent ap-

proaches to necessarily outperform it, because this system operates in a monolingual

full-dimensional vector space in contrast to latent semantic models, which operate

in a cross-language low dimensional abstract space.

6.1.9 Hybrid models

The knowledge-based similarity analysis (KBSim) model (Franco-Salvador et al.,

2014) extends CL-KGA in order to combine the benefits of both, the knowledge

graph and the multilingual vector-based representations. Key to this approach is

the weighted combination of these two representations according to the relevance of

the knowledge graphs. This allows to increase the contribution of the multilingual

vector-based representations in case of non-informative knowledge graphs. Given a

source document d and a target document d′, we calculate the similarities between the

respective knowledge graphs and multilingual vector representations, and combine

the two resulting similarities to obtain a knowledge-based similarity as follows:

S(d, d′) = α ∗ Sg(G,G
′) + (1− α) ∗ Sv(~v,~v

′), (6.16)

where Sg(G,G
′) is the knowledge graph similarity of Eq. 6.6, Sv(~v,~v

′) is the vector-

based similarity, and α is an interpolation factor that is calculated as the edge density

of the knowledge graph G:

α =
|E(G)|

|V(G)|(|V(G)| − 1)
(6.17)

Note that, by using the factor α to interpolate the two similarities in Eq. 6.16,

the relative importance of each model is determined.

4We tried different retrieval models like BM25 and divergence from randomness based but the
difference in performance was not statistically significant
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The vector-based similarity Sv(~v,~v
′) computes the cosine similarity between vec-

tors in the continuous space. We adopt this framework to include information

provided by the continuous representation into similarity estimation. We evaluate the

performance of KBSim (S2Net), KBSim (CAE) and KBSim (XCNN) in Section 6.2.4

for cross-language plagiarism detection task.

6.1.10 Continuous word alignment-based similarity analysis

(CWASA)

The aforementioned models allow for learning a real-valued continuous space repres-

entation of texts. All of them combine basic word level representations by summing

over terms in order to model sequences of words. The method presented in this

section provides an alternative way to combine word level vectors by means of align-

ments to represent text. The continuous word alignment-based similarity analysis

model is based on the text-to-text relatedness proposed by (Hassan and Mihalcea,

2011). It estimates the similarity between documents by efficiently aligning their con-

tinuous word representations using directed edges. Formally, the similarity S(d, d′)

between two documents d and d′ is estimated as follows:

S(d, d′) =
1

|Φ|
∑
ck∈Φ

ck, (6.18)

where d = (x1, ..., xn) and d′ = (y1, ..., ym) are represented as lists of continuous word

vectors, and Φ is generated from the list Φ′ = {c′1, ..., c′n+m} that satisfies Eq. 6.19:

c′k =


max

i=k,xi∈d,yj∈d′
ϕ(xi, yj), if k ≤ n

max
j=k−n,xi∈d,yj∈d′

ϕ(xi, yj), otherwise
(6.19)

where 1 ≤ i ≤ n, 1 ≤ j ≤ m, 1 ≤ k ≤ n+m, ϕ is the cosine similarity function, and

being Φ = {c1, ..., cz | max(n,m) ≤ z ≤ n+m}, Φ ⊆ Φ′, the set of cosine similarities
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without pairing repetitions5 that represents the strongest semantic pairing between

the continuous word representations of documents d and d′.

Basically, in Eq. 6.19 each word in d is aligned with the closest one in d′ and vice

versa using directed relationships. Next, the duplicated alignments are removed, i.e.,

those equally aligned in both directions. Finally, the similarity score between d and

d′ is estimated by Eq. 6.18 as the average of the different alignments. More details

on CWASA can be found in (Franco-Salvador et al., 2016).

6.2 Cross-language plagiarism detection

Automatic plagiarism detection entails identifying plagiarised text fragments and

their corresponding original source. The task is defined in Sec. 6.2.1 and also pop-

ularly used in PAN6 track on plagiarism detection at CLEF (Potthast et al., 2009).

There have been many approaches to plagiarism detection (Potthast et al., 2009,

2010, 2011; Barrón-Cedeño, 2012; Barrón-Cedeño et al., 2013; Franco-Salvador et al.,

2013), but, as far as we know, latent semantic methods have not been explored for

this problem yet. We believe semantic similarity assessed by means of latent features

can provide a new interest approach to plagiarism detection.

6.2.1 Problem statement

Let dq be a suspicious document and D a set of potential source documents. The

core problem of plagiarism detection is to identify the set of all fragment pairs {sq, s}
such that fragments sq ∈ dq have a high chance to be borrowed from fragments s ∈ d
(with d ∈ D). After {sq, s} are identified, an expert can determine whether each

fragment pair is indeed a case of plagiarism (no proper citation is provided). From

a cross-language (CL) perspective, dq ∈ L and d′ ∈ L′, where L 6= L′, represent dif-

ferent languages. This problem is referred to as cross-language plagiarism detection

5The same pair of words are not allowed to be aligned twice.
6http://pan.webis.de/

http://pan.webis.de/
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(CLPD).

We follow the general framework of cross-language plagiarism detection intro-

duced in Potthast et al. (2011). The process is divided into the three steps described

below:

(i) Candidate retrieval. A set of candidate documents D∗ is retrieved from D′

(with |D∗| � |D′|). D∗ contains the most similar documents to dq and, there-

fore, the most likely to contain potential cases of re-use.

(ii) Detailed analysis. dq is compared against every d′ ∈ D∗ section-wise. If a

pair {sq, s′} is identified to be more similar than expected for independently

generated texts, it is selected as a candidate of plagiarism.

(iii) Heuristic post-processing. Plagiarism candidates that are not long or do

not have similarity above a threshold are discarded. Additionally, heuristics

are applied to merge nearby candidates.7

Based on this framework, most of the research done on CL similarity estimation

is used for the candidate retrieval and detailed analysis steps, while heuristic post-

processing step mostly incorporates the domain knowledge for the CLPD task.

6.2.2 Detailed analysis method

The step of identifying plagiarised sections in suspicious document dq from source

document d′ is referred to as detailed analysis. A framework for detailed analysis is

presented in Algorithm 2 which is also a contribution of this work (Barrón-Cedeño

et al., 2013). In the detailed analysis, dq and d′ are split into chunks of certain length

w and step size t. We select w = 5 and t = 2 sentences aiming at considering chunks

close to paragraphs (Barrón-Cedeño et al., 2013); sim(sq, s
′) computes the similarity

between the text fragments based on a similarity estimation algorithm discussed

7This step had been originally intended to filter false positives, such as cases of borrowing with
proper citation (Stein et al., 2007).
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Algorithm 2: Detailed analysis and post-processing

1 Given dq and d′;
// Detailed analysis step

2 Sq ← {split(dq, w, t)};
3 S ′ ← {split(d′, w, t)};
4 for each sq ∈ Sq do
5 Psq ,s′ ← argmax5

s′∈S′ sim(sq, s
′)

// Post-processing step

6 until no change;
7 for each combination of pairs pi, pj ∈ Psq ,s′ do
8 if δ(pi, pj) < thres1 then
9 merge fragments(pi, pj);

10 return {p ∈ Psq ,s′ | |p| > thres2}

later in this section. Expression argmax5
s∈S retrieves the 5 most similar fragments

s ∈ S with respect to sq. The resulting candidate pairs {sq, s} are stored into pair-

set Psq ,s′ , which constitutes the input for the post-processing step. If the distance

in characters between two (highly similar) candidate pairs δ(pi, pj) is lower than a

predefined threshold thres1 = 1, 500, pi and pj are merged. Only those candidates

that are composed of at least three of the identified fragments (thres2) are considered

potentially plagiarised (thresholds are defined empirically). This algorithm has been

used for evaluating all the models that are compared in the second experiment of

Sec. 6.2.4.2. The code for this algorithm is publicly available at: https://github.

com/parthg/clpd-kbs

6.2.3 Dataset and experiments

The experimental evaluation of cross-language plagiarism detection is carried out

with the PAN-PC-118 dataset. It was created for the 2011 plagiarism detection

competition of PAN at CLEF9. The dataset consists of Spanish-English (ES-EN)

8http://www.uni-weimar.de/en/media/chairs/webis/corpora/corpus-pan-pc-11/
9http://www.clef-initiative.eu/

https://github.com/parthg/clpd-kbs
https://github.com/parthg/clpd-kbs
http://www.uni-weimar.de/en/media/chairs/webis/corpora/corpus-pan-pc-11/
http://www.clef-initiative.eu/
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Spanish-English documents German-English documents

Suspicious 304 Suspicious 251
Source 202 Source 348

Plagiarism cases {Spanish,German}-English

Case length Obfuscation
– Long length cases 1,506 – Translated automatic obfuscation 5,142
– Medium length cases 2,118 – Translated manual obfuscation 433
– Short length cases 1,951

Table 6.1: Statistics of PAN-PC-11 cross-language plagiarism detection partitions.

and German-English (DE-EN) partitions for CL plagiarism detection. The cross-

language plagiarism cases were generated using with Google translate service10. In

addition, PAN-PC-11 contains also cases of plagiarism with manual obfuscation after

automatic translation which includes paraphrasing. Table 6.1 presents the statistics

of the dataset.

The models are evaluated through two different experimental setup: A & B. In

the experiment A, the whole document dq is plagiarised using document d′ and the

task is to find d′ ∈ D′ for each dq. This setting aims at assessing the power of models

for candidate retrieval. The performance for this experiment is measured in terms of

Recall at position k (R@k) where k = {1, 5, 10, 20}. In the experiment B, for given

dq and d′ the task is to find the plagiarism fragments of dq from d′. This setting aims

at assessing the power of models for the detailed analysis step. The performance

of experiment B is evaluated in terms of the standard plagiarism detection metrics

in the PAN shared task: precision, recall, granularity, and plagdet (Potthast et al.,

2010), described below.

Let S denote the set of plagiarism cases in the suspicious documents, and let R

denote the set of plagiarism detections that the detector reports for these documents.

A plagiarism case s ∈ S is represented by the subset of contiguous characters that

forms it, which is defined in terms of offsets with respect to the beginning of the

document. Likewise, r ∈ R represents a plagiarism detection. Based on these repres-

10https://translate.google.com/

https://translate.google.com/
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entations, the precision and the recall at character level of R under S are measured

as follows:

precision(S,R) =
1

|R|
∑
r∈R

|⋃s∈S(s u r)|
|r| ; (6.20)

recall(S,R) =
1

|S|
∑
s∈S

|⋃r∈R(s u r)|
|s| , (6.21)

where s u r = s ∩ r if r detects s and ∅ otherwise. Note that these definitions of

precision and recall do not account for the fact that plagiarism detectors sometimes

report overlapping or multiple detections for a single plagiarism case. To address

this issue, we also measured the detector’s granularity:

granularity(S,R) =
1

|SR|
∑
s∈SR

|Rs|, (6.22)

where SR ⊆ S are cases detected by detectors in R, and Rs ⊆ R are detections of

S, i.e., SR = {s|s ∈ S ∧ ∃r ∈ R : r detects s} and Rs = {r|r ∈ R ∧ r detects s}.
Granularity can take on value larger than one which indicates one plagiarism case

is identified in multiple parts, which is not ideal. The three previous metrics can

be combined in order to obtain an overall score for plagiarism detection, which is

referred to as plagdet:

plagdet(S,R) =
F1(S,R)

log2(1 + granularity(S,R))
. (6.23)

where F1 is harmonic mean of precision and recall, popularly known as F1 score as

described below:

F1 = 2 ∗ precision ∗ recall

precision + recall
(6.24)
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6.2.4 Results and analysis

In this section we present the results and the corresponding analysis for the exper-

imental evaluation on cross-language plagiarism detection. First, details on specific

experimental settings for each model are presented, followed by the experiments and

their corresponding results.

(i) CL-C3G It is CL-CNG using character 3-grams, as recommended in Potthast

et al. (2011).

(ii) CL-ESA We used 10,000 Spanish-German-English comparable Wikipedia pages

as document collection. All pages contain more than 10,000 characters and were rep-

resented using TF-IDF weighting. The similarities are computed using the cosine

similarity and the IDF of the words is calculated from the complete Wikipedia in

each language.

(iii) CL-ASA We used a statistical dictionary trained using the word-alignment

model IBM-1 (Och and Ney, 2003) on the JRC-Acquis corpus (Steinberger et al.,

2006).

(iv) CL-KGA We used the multilingual semantic network BabelNet (Navigli and

Ponzetto, 2012) to construct the graph and parameter tuning is as per (Franco-

Salvador et al., 2013).

(v) S2Net, CAE, XCNN We trained these models as described in Section 6.3.2.

We present experimental results for each of these models alone and in two differ-

ent settings: (i) when CWASA composition model is applied on embeddings learnt

through continuous models; and (ii) hybrid models using the KBSim framework.

For the readability and ease of comparison of the results, the models are grouped

according to their category: (a) vector space approaches, (b) continuous space mod-
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Spanish-English German-English
Model R@1 R@5 R@10 R@20 R@1 R@5 R@10 R@20

(a) CL-KGA 0.917 0.946 0.956 0.961 0.786 0.865 0.893 0.911
CL-ASA 0.663 0.787 0.819 0.853 0.523 0.693 0.755 0.806
CL-ESA 0.677 0.784 0.824 0.858 0.481 0.611 0.666 0.720
CL-C3G 0.497 0.672 0.743 0.805 0.204 0.393 0.489 0.593

(b) S2Net 0.637 0.763 0.809 0.852 0.508 0.675 0.744 0.799
XCNN 0.468 0.648 0.721 0.786 0.362 0.561 0.647 0.728
CAE 0.509 0.717 0.784 0.836 0.308 0.513 0.607 0.697

(c) CWASA (XCNN) 0.881 0.921 0.937 0.946 0.739 0.823 0.849 0.873
CWASA (S2Net) 0.859 0.909 0.921 0.936 0.601 0.731 0.779 0.818
CWASA (CAE) 0.536 0.695 0.754 0.803 0.543 0.701 0.760 0.806

(d) KBSim (S2Net) 0.920 0.949 0.956 0.961 0.809 0.878 0.901 0.921
KBSim (CAE) 0.917 0.945 0.956 0.962 0.791 0.870 0.893 0.911
KBSim (XCNN) 0.858 0.907 0.924 0.935 0.741 0.843 0.872 0.897

Table 6.2: ES-EN and DE-EN performance analysis in terms of R@k , where k = {1, 5,
10, 20}. Best results within each category are highlighted in bold-face.

els, (c) continuous space models with CWASA composition, and (d) model combin-

ations using KBSim.

6.2.4.1 Experiment A: Cross-language similarity ranking

In this experiment, the models are evaluated using R@k , which captures the recall

of plagiarism cases within k positions in the rank-list. The results for ES-EN and

DE-EN language pairs are presented in Table 6.2. In general, results for DE-EN are

lower than its ES-EN counterpart but the overall ranking of the models does not

change. The coverage of the vocabulary is calculated by finding the average number

of words in a document present in the vocabulary, and averaged over the corpus.

English has around 82% of coverage and Spanish and German have 72% and 42%,

respectively. Low word coverage in German is mainly due to its agglutinative nature

and justifies the overall low results for German.

Compared to vector space models in group (a), the continuous space models of

group (b) offered sub-optimal performance. Among group (b), the S2Net obtained
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the best results. It should be noted that S2Net and CAE directly learn representa-

tions of text using the bag-of-words approach. In contrast, XCNN learns word-level

embeddings and hence when modeling documents, which are large fragments of text

(∼1000 words), the summation of such a large number of word-level representations

affects the discriminative power of the model, affecting XCNN performance. The

advantages of XCNN will be more clear in Experiment B, where the fragments being

compared are small and this effect is less severe.

The use of a different composition method with continuous representation, such

as CWASA, boosts the performance of all continuous space models. Particularly,

XCNN benefits the most and becomes the best performing model in the correspond-

ing category (c). This also reaffirms the fact that XCNN can learn discriminative

representations. However, the simple addition of word-level representations limits

its full potential, especially when the text fragment is large. It should also be noted

that CWASA (XCNN) is not comparable to CL-KGA. While the former is trained

on a limited parallel corpus and operates on 20k dimensional vocabulary, CL-KGA

leverages on a large sophisticated multilingual resource such as BabelNet with more

than 9M concepts.

The hybrid models in group (d) which combine knowledge graphs and continuous

space models, produce the best results; even outperforming a strong model such as

CL-KGA. This gives evidence that continuous space models are a good complement

to discrete models. The high performance of these models suggests that latent se-

mantic models provide powerful features for the candidate retrieval task of plagiarism

detection.

6.2.4.2 Experiment B: Cross-language plagiarism detection

This second experiment aims at evaluating the detection of plagiarism cases at the

fragment level. Different cross-language similarity estimation models are used in

Algorithm 2 for fragment identification. The performance is evaluated on stand-

ard metrics for plagiarism detection task, such as precision, recall, granularity and
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Spanish-English German-English
Model Plag Prec Rec Gran Plag Prec Rec Gran

(a) CL-KGA 0.620 0.696 0.558 1.000 0.520 0.601 0.460 1.004
CL-ASA 0.517 0.690 0.448 1.071 0.406 0.604 0.344 1.113
CL-ESA 0.471 0.535 0.448 1.048 0.269 0.402 0.230 1.125
CL-C3G 0.373 0.563 0.324 1.148 0.115 0.316 0.080 1.166

(b) S2Net 0.514 0.734 0.440 1.098 0.379 0.669 0.304 1.148
XCNN 0.386 0.738 0.310 1.189 0.270 0.664 0.196 1.174
CAE 0.440 0.736 0.360 1.142 0.212 0.482 0.150 1.120

(c) CWASA (XCNN) 0.609 0.686 0.547 1.001 0.492 0.611 0.430 1.037
CWASA (S2Net) 0.607 0.693 0.542 1.002 0.408 0.585 0.353 1.111
CWASA (CAE) 0.354 0.546 0.296 1.121 0.237 0.478 0.176 1.122

(d) KBSim (XCNN) 0.644† 0.765† 0.556 1.000 0.561† 0.723† 0.463 1.010
KBSim (S2Net) 0.623 0.701 0.560 1.000 0.536 0.614 0.477† 1.002
KBSim (CAE) 0.622 0.704 0.557 1.000 0.521 0.592 0.468 1.004

Table 6.3: ES-EN and DE-EN performance analysis in terms of plagdet (Plag), precision
(Prec), recall (Rec) and granularity (Gran). The best results within each category are
highlighted in bold-face and † represents statistical significance, as measured by a paired
t-test (p-value<0.05).

plagdet. These metrics were already described in Section 6.2.3.

The overall results are presented in Table 6.3. Similar to Experiment A, in

general, performances over the DE-EN task are lower than the performances over

the ES-EN task. Among the vector space models, grouped in category (a), CL-KGA

produced the best results.

The continuous models grouped in category (b) interestingly exhibit very high

precision. S2Net is the best among them as evidenced by plagdet, which com-

bines precision, recall and granularity. As discussed before, the CWASA compos-

ition method in group (c) enhances the performance, especially for XCNN, making

CWASA (XCNN) comparable to CL-KGA. Interestingly, CWASA (CAE) is worse

than CAE, which suggests that CWASA is best suitable for models like XCNN that

inherently produce word embeddings.

Finally, the hybrid models grouped in category (d) produce the best results.

Specifically, KBSim (XCNN) performs the best among all models for both language
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pairs. This observation (similar to the corresponding one in Experiment A) confirms

that knowledge graphs and continuous space models capture different aspects of text

and complement each other.

6.3 Cross-language ad-hoc retrieval

Cross-language ad-hoc retrieval addresses the situation where a system is presented

with an information need in form of a few keywords. The system has to produce a

ranked list of documents that are relevant to the provided information need. The

CAE and XCNN models are evaluated on the standard ad-hoc retrieval task in the

cross-language setting. Current search engines do not employ CLIR systems for web

search because of several user-experience aspects such as presentation of results and

query formulation. The most suitable use-cases are the following:

1. A bilingual user issuing a query in one language and assessing the results in a

different language, where the relevant information is only available in the latter

language.

2. A mono-lingual user issuing a query in one language and assessing results in

the same language with the help of automatic translation systems, where the

relevant information is only available in a different language.

An example of these scenarios are: a Spaniard with a limited knowledge of Eng-

lish, who visits U.K. and formulates a query in Spanish; or a Briton (who only knows

English) who visits Spain and formulates a query in English. In case the user is not

acquainted with the language of the retrieved documents, an automatic machine

translation system can be used to present results in the language of user preference.

6.3.1 Problem statement

Let D denote a collection of documents in language L1 and information need is

expressed by query q in language L2. The task is to generate a ranked list (R) of
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documents from D in decreasing order of relevance.

6.3.2 Methods

There are two main approaches to cross-language information retrieval: (i) machine-

translation, and (ii) cross-language latent semantic projections. In machine trans-

lation based approaches, an MT system from L2 → L1 is used to represent query q

in L1, and then, mono-lingual IR is carried out. In latent semantic projection based

approaches, a cross-language projection function is used to represent both D ∈ L1

and q ∈ L2 in a low-dimensional abstract, where semantic similarity is estimated.

6.3.3 Datasets and experiments

Our CLIR experimental evaluation is carried out on the FIRE 2011-12 En-Hi CLIR

track corpus11. It contains 100 English queries (topics), 331,599 news articles in

Hindi and their corresponding relevance judgments (qrels). The corpus contains

news articles that cover different domains including entertainment, politics, busi-

ness, popular culture etc. The topics are formulated by browsing the corpus and

refined further based on initial retrieval results to ensure the minimum number of

relevant documents per query. This is to make a balance between easy, medium and

hard queries. The collection contains binary relevance judgments generated through

a pool of submitted runs (Palchowdhury et al., 2011). The retrieval results are eval-

uated by the standard IR metrics, more specifically, we used mean reciprocal rank

(MRR), mean average-precision (MAP) and normalised discounted cumulative gain

(nDCG) (Järvelin and Kekäläinen, 2002). MRR is described in Eq. 6.25 and nDCG

is described in Sec. 2.1.3.

MRR =
1

|Q|

|Q|∑
i=1

1

ranki
(6.25)

11http://www.isical.ac.in/~fire/

http://www.isical.ac.in/~fire/
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where Q is the query-set and ranki is the rank of the first relevant document for

query i.

For training the latent semantic models and the MT system, the En-Hi parallel

corpus available from WMT 201412 (Bojar et al., 2014b) was used. In total, 100k

parallel sentences from the corpus were used, which at least contained 3 terms from

the selected vocabulary. The selected vocabulary consisted of 20k (10+10) most

frequent terms, which were selected after removing stopwords. A stemmer is used

applied to represent text.

6.3.4 Results and analysis

Here, we present the results and analysis of XCNN for the task of cross-language ad-

hoc retrieval (Gupta et al., 2016a). In order to step-by-step analyse XCNN learning,

the monolingual pre-initialisation is evaluated first, because that makes the basis for

the cross-language extension. We compare its performance with a standard BM25

baseline to ensure reliability of the model, referred as mono-XCNN. At this stage

mono-XCNN is not expected to outperform the vector space model because the final

objective of the model is to learn cross-language associations. Naturally, the FIRE

collection does not provide click-through data. In absence of click-through data,

we use pseudo-relevance data as positive samples for training data. Concretely, the

sentence with the highest BM25 score w.r.t. the input sentence is chosen as positive

sample for it. The document collection is in Hindi, hence we report results with Hindi

queries in monolingual setting. The code for the XCNN model is publicly available

at: https://github.com/parthg/jDNN

The results using Hindi queries are presented in Table 6.4. In the table, BM25

and mono-XCNN are evaluated using a limited vocabulary of size 10k. Interestingly,

for the top rank-position related metrics like nDCG@1 and MRR, mono-XCNN per-

forms better than BM25. For other metrics which involve lower rank positions, the

performance of mono-XCNN is sub-optimal to the VSM approach. This is not sur-

12ACL 2014 ninth workshop on statistical machine translation http://www.statmt.org/wmt14/.

https://github.com/parthg/jDNN
http://www.statmt.org/wmt14/
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prising because, in our experimental setting, pseudo relevance data comes from the

BM25 scores and mono-XCNN is trained to optimise it; hence it is ought to be

upper-bounded by the BM25 scores for lower dimensions. We also expect this gain

to be much higher if clickthrough data is used instead of pseudo relevance data. This

result is also consistent with other works, in which it is shown that using only latent

models in monolingual setting might hurt the ranking performance, especially for the

case of very low dimensional latent space (Manning and Schütze, 1999; Gao et al.,

2011).

Method nDCG@1 nDCG@5 nDCG@10 MAP MRR
BM25 0.2800 0.2814 0.2758 0.0957 0.3851
mono-XCNN 0.3000 0.2472 0.2233 0.0794 0.4173

Table 6.4: Results for the monolingual ad-hoc retrieval task measured in nDCG, MAP
and MRR.

For the cross-language setting, the retrieval performance is presented in Table 6.5.

It can be noticed that XCNN outperforms all the models. The difference between

XCNN results and those from the rest of the models is statistically significant, as

measured by a paired t-test (p-value<0.05). The linear projection based techniques:

CL-LSI, OPCA and S2Net, perform close to each other with non-significant differ-

ences. Also, as seen from the table, the overall results for this task are low. This

is mainly because of two reasons: (i) the selected vocabulary does not cover all

the query and document terms, resulting in many out-of-vocabulary (OOV) terms

in both the queries and the articles, and (ii) the parallel training data is not large

enough13 and contains a mixture of domains different from the one of the FIRE

corpus. However, this situation affects equally all the models, which provides a fair

ground for comparison.

In order to alleviate this problem, new experiments are conducted by considering

only those queries for which at least 80% of terms are present in the vocabulary14.

13Hindi is a resource-constrained language and the largest parallel corpus is a few hundred thou-
sand sentences, while other resource rich languages have parallel data of a few millions sentences.

14In total, there are 80 such queries out of 100.
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The results are presented in Table 6.6.

Method nDCG@1 nDCG@5 nDCG@10 MAP MRR
CL-LSI 0.1200 0.0544 0.0420 0.0062 0.1471
OPCA 0.1300 0.0806 0.0663 0.0254 0.1573
S2Net 0.1263 0.0823 0.0734 0.0278 0.1837
CAE 0.1588 0.1136 0.1057 0.0310 0.2136
MT 0.1800 0.1333 0.1273 0.0418 0.2537
XCNN 0.2200† 0.1525† 0.1312† 0.0386 0.3128†

Table 6.5: Results for the ad-hoc retrieval task measured in nDCG, MAP and MRR for
title topic field. The best results are highlighted in bold-face and † represents statistical
significance, as measured by a paired t-test (p-value<0.05).

Method nDCG@1 nDCG@5 nDCG@10 MAP MRR
CL-LSI 0.1463 0.0591 0.0416 0.0069 0.1639
OPCA 0.1524 0.0914 0.0762 0.0291 0.1790
S2Net 0.1603 0.1003 0.0826 0.0334 0.2103
CAE 0.1690 0.1129 0.1067 0.0354 0.2332
MT 0.1707 0.1278 0.1224 0.0411 0.2538
XCNN 0.2683† 0.1787† 0.1535† 0.0459† 0.3711†

Table 6.6: Results for the ad-hoc retrieval task measured in nDCG, MAP and MRR
for title topic field considering only those queries for which more than 80% query-terms
appear in the vocabulary. The best results are highlighted in bold-face and † represents
statistical significance, as measured by a paired t-test (p-value<0.05).

It has been reported that S2Net parameters can be initialised randomly or from

CL-LSI or OPCA projection matrices (Yih et al., 2011). Similarly, it is possible

to initialise XCNN parameters easily with the parameters obtained through autoen-

coders. In this work, we initialised these models’ param eters randomly. This is done

because of two reasons: (i) we are primarily interested in comparing XCNN with

S2Net and we wanted to study the abilities of these models to learn semantically

plausible representations without dependence on any external method, and (ii) the

complexity of computing the matrix factorization required by CL-LSI and OPCA

scales quadratically with the vocabulary size, which makes such dependence com-
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putationally impractical for high dimensional applications such as ad-hoc retrieval.

Interestingly, as seen in the tables, XCNN is also able to outperform the MT based

method. This confirms that XCNN is able to capture useful cross-language semantic

representations within a very low dimensional space.

6.4 Cross-language parallel sentence retrieval

With the advent of the web, cross-language information retrieval becomes important

not only to satisfy the information need across languages but to mine resources across

multiple languages, such as for example parallel or comparable documents. Such

mined resources aid training machine translation systems (Munteanu and Marcu,

2005; Türe and Lin, 2012). In this sense, the aim of cross-language parallel sentence

retrieval is to find parallel counterparts across different languages for a given sentence,

or text fragment.

6.4.1 Problem statement

Let S denote a collection of sentences in language L1 and q, an input sentence in

language L2. The task of parallel sentence retrieval is to find potential translations

for input sentence q in S.

6.4.2 Datasets and experiments

The En-Hi parallel corpus available from WMT 201415 is used for training and evalu-

ation. The parallel sentences come from various sources like news articles, comment-

aries, Wikipedia, TED talks etc. More details on the corpus is available in Bojar

et al. (2014b). The corpus contains a total of 274k parallel sentences. The working

vocabulary was extracted by removing stopwords, applying stemming and keeping

the most frequent 20k words (10k for each language). Finally, 122k parallel sentences,

15ACL 2014 ninth workshop on statistical machine translation http://www.statmt.org/wmt14/.

http://www.statmt.org/wmt14/
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which at least contained 3 terms from the vocabulary, were used for training (100k)

and evaluation (the remaining 22k).16 For a fair comparison, all the models were

trained and evaluated over the same training and evaluation partitions and with the

same vocabulary.

6.4.3 Results and analysis

The results for the sentence retrieval task are presented in Table 6.7. The retrieval

quality for each test sentence is assessed by considering its parallel counterpart’s

reciprocal rank in the rank-list. For this, we have used the MRR as evaluation

metric.

In general, the models including a noise-contrastive component outperform the

ones without it; e.g. OPCA vs. CL-LSI, and {XCNN, S2Net} vs. CAE. It suggests

that having such component lead to better representation learning. It should also be

noted that models such as S2Net and XCNN, which directly optimise the evaluation

metric (cosine similarity) outperform the rest of latent space models such as CL-LSI,

OPCA and CAE. It can be noticed from Table 6.7, that the proposed method clearly

outperforms the other methods. Moreover, the observed difference is statistically

significant (p-value less than 0.01) according to the paired t-test. It should also be

noted that each non-linear model outperforms its corresponding linear counterparts;

e.g. CAE vs. {CL-LSI, OPCA}, and XCNN vs. S2Net.

6.5 Source context for machine translation

In this section, we present the problem of lexical selection in machine translation.

Such problem is handled with source context features. First, we describe the source

context features and then show how the continuous space model CAE (c.f. Sec. 4.1)

is used to provide such feature (Gupta et al., 2016b).

Source context is usually very relevant when translating texts. However, standard

16Many sentences were just one word being named entities extracted from Wikipedia page titles.
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Method MRR

CL-LSI 0.2620
OPCA 0.4349
CAE 0.4789
S2Net 0.4638
MT 0.4876
XCNN 0.5328†

Table 6.7: Results for the parallel sentence retrieval task measured in MRR. The best
results are highlighted in bold-face and † represents statistical significance, as measured
by a paired t-test (p-value<0.01).

phrase-based statistical machine translation systems use a source context that is

limited to the span of the used translation units. The source context information

becomes specially necessary when using the same translation system for translating

texts from different domains. Also, the source-context information is important

for dealing with both polysemy and morphology, in which the source language has

words with the same form (spelling) that can be translated into different forms in

the target language. In this task, our CAE model is used to provide source context

information to a standard phrase-base machine translation system. The proposed

feature is explained in Section 6.5.1 and the effectiveness of the method is evaluated

on a machine translation task.

6.5.1 Source-context feature

The main idea behind the proposed source context feature is an extended concept of

translation unit or phrase (p), which is defined by a unit of three elements: phrase-

source (ps), phrase-target (pt) and source-sentence (ss).

p = {ps|||pt|||ss} (6.26)

From this definition, identical source-target phrase pairs that have been extracted

from different training sentence pairs are regarded as different translation units.
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According to this, the relatedness of contexts can be considered as an additional

feature function (scf ) for each phrase and input sentence.

The source-context feature function consists of a similarity measurement between

the input sentence to be translated and the source context component of the available

translation units as illustrated in Fig. 6.2.

S1: it was difficult to park the car

T1:es dif́ıcil aparcar el coche

S2: the flowers are beautiful in the park

T2:las flores son hermosas en el parque

Input: children are playing in the park

park : parque

park : aparcar

S2

S1

Input

Figure 6.2: Illustration of the proposed similarity feature to help choosing translation
units.

This scf is included for each phrase within the translation table in addition to the

standard feature functions: conditional (cp) and posterior (pp) probability, lexical

weights (l1, l2) and phrase bonus (pb). This schema was originally proposed by

Banchs and Costa-jussà (2011). In our proposed implementation, the calculation of

scf is carried with our model CAE. The work-flow of our proposed implementation

is depicted in Fig. 6.3.

6.5.2 Datasets and experiments

We used an English-to-Spanish parallel corpus extracted from the Bible. It consti-

tutes an excellent corpus for experimenting with and testing the proposed method-

ology as it provides a rich variety of contexts. The corpus contains around 30,000
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source target

Autoencoder

Parallel Corpus Phrase Table

Lexical
Selector

- - - .. -
- - - .. -
. .
- - - .. -

Input Source Sentence

p = {ps|||pt|||ss}

ps pt ss

Source Projection Hs

hinput

scf = cosine(Hs, hinput)

One-time Indexing

Figure 6.3: Workflow of the system.

sentences for training with around 800,000 words, and 500 sentences for each devel-

opment and test sets. Additionally, for testing the system over a large size dataset,

we used the English-to-Hindi corpus available from WMT 2014 (Bojar et al., 2014b).

In this case, the dataset comprises 300,000 sentences, with 3,500,000 words, 429

sentences for development and 500 sentences for test. We evaluated the effect of

incorporating scf by using different menthods and estimated the quality of machine

translation in terms of bilingual evaluation understudy (BLEU) metric. BLEU cal-

culates a modified version of precision in n-gram space to measure similarity of the

generated translations with that of the reference translations. It is an average n-gram

precision score with some smoothing factors and length penaltiesusing geometric av-

erages (Papineni et al., 2002).
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6.5.3 Results and analysis

Tables 6.8 shows the improvements in terms of BLEU of adding the proposed source

context feature to the baseline system for English-to-Spanish (En2Es) and English-to-

Hindi (En2Hi), respectively. As shown in the tables, the proposed method performs

significantly better than the baseline for both translation tasks. (Durrani et al., 2014)

depicts the best published results for En2Hi translation task on WMT dataset (Bojar

et al., 2014a).

En2Es En2Hi
Dev Test Dev Test

baseline 36.81 37.46 9.42 14.99
(Durrani et al., 2014) NA NA NA 12.83
+CL-LSI 37.20∗ 37.84∗ 9.83∗ 15.12∗

+CAE 37.28∗† 38.19∗† 10.40∗† 15.43∗†

Table 6.8: BLEU scores for En2Es and En2Hi translation tasks. ∗ and † depicts statistical
significance (p-value<0.05) wrt Baseline and LSA respectively.

It can be noticed that the results from En2Es and En2Hi are consistently im-

proved. Both, Hindi and Spanish, have a higher vocabulary variation compared to

English, with richer morphology. The improvements in BLEU suggests that the

continuous space representation helps finding the adequate contextual similarities

among the training and test sentences. BLEU scores show improvement over all

tasks and translation directions. Further analysis of the translation outputs, using

ASIYA17, revealed some examples of how the translation is improved in terms of

lexical selection. The examples are shown in Table 6.9.

Table 6.10 presents in further detail the feature values involved in the phrase

selections of the examples in Table 6.9. From it, the role of scf in lexical selection

can be clearly appreciated, which reflects the main reasons for improvement. It can

be noticed from the Table 6.10 that the most probable sense of bands in our considered

17http://www.asiya.lsi.upc.edu
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System Translation
Source but he brake the bands
CL-LSI pero él rompió las tropas
CAE pero él rompió las cuerdas
Reference pero él rompió las ataduras
Source soft cry from the depth
CL-LSI ghrAiyo\ s� m� lAym ron� lgt�
CAE ghrAiyo\ s� m� lAym cFK
Reference ghrAiyo\ s� koml cFK

Table 6.9: Manual analysis of translation outputs. Adding the source context similarity
feature allows for a more adequate lexical selection.

cp pp scf
bands|||tropas 0.31 0.17 0.01
bands|||cuerdas 0.06 0.07 0.23

cry|||ronA 0.23 0.06 0.85
cry|||cFK 0.15 0.04 0.90

Table 6.10: Probability values (conditional and posterior as standard features in a phrase-
based system) for the word bands and two Spanish translations; and the word cry and two
Hindi translations.

dataset is tropas, which literally means “troups”. However, for the specific context

under consideration “troups” does not provide a correct translation option, which is

clearly discriminated by scf as seen in Table 6.10. Therefore, given the entire input

sentence (in): And he was kept bound with chains and in fetters; and he brake the

bands , the method is be able to infer the correct sense for the word bands (i.e., in

this case cuerdas, which literally means “ropes”, a synonym of the reference ataduras,

which literally means “tying with ropes”) by considering its similarity to the training

sentences: (s1) and the lord sent against him bands of the chaldees, and bands of the

syrians and (s2) they shall put bands upon thee , and shall bind thee with them. In

this case, ω(s2, in) > ω(s1, in) as seen in Table 6.10. Similarly, in the Hindi example,

the most frequent sense of word cry is ronA, which literally means “to cry” while the
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example in Table 6.9 refers to the sense of cry as cFK, which means to scream. Our

method could identify the context and hence the scf(cry|||cFK) > scf(cry|||ronA).

6.5.4 Scalability

There are two components of this method: (i) incorporation of source-context fea-

tures during the tuning phase of MT and projection of training sentences in the

latent space; and (ii) similarity estimation of the input sentence with the training

sentences in the latent space. The former step is computationally expensive but it

being one-time and offline, it is not a big concern. On the other hand, the similarity

estimation is online. It can be efficiently implemented by using a multi-core CPU or

GPU as it is essentially a matrix multiplication.
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Chapter 7
Bottleneck dimensionality for autoencoders

Lately, dimensionality reduction techniques based on deep learning have become

very popular, especially deep autoencoders (Hinton and Salakhutdinov, 2006). Deep

autoencoders can extract highly useful and compact features from the structural

information of the data. Deep autoencoders have proven to be very effective in

learning reduced space representations of the data for similarity estimation (Hinton

and Salakhutdinov, 2006; Salakhutdinov and Hinton, 2009a). Deep learning is in-

spired by biological studies, which state the brain has a deep architecture. Despite

their high suitability to the task, deep learning did not find much audience until

Hinton and Salakhutdinov (2006) proposed a pre-training method to initialise the

network parameters in a good region for finding optimal solutions.

Although deep learning techniques are in vogue, there still exist some important

open questions. In most of the studies involving the use of these techniques for dimen-

sionality reduction, the qualitative analysis of the obtained projections is seldomly

presented. This makes the assessment of the reliability of learning very difficult.
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Typically, the reliability of the autoencoder is estimated based on its reconstruction

capability.

The first objective of this chapter is to introduce a novel framework for evaluat-

ing the quality of the low-dimensional embeddings produced by a deep autoencoder

based on the merits of the application under consideration. Concretely, the frame-

work is comprised of two metrics, structure preservation index (SPI) and similarity

accumulation index (SAI), which capture different aspects of the autoencoder’s re-

construction capabilities, including the structural distortion and similarities among

the reconstructed vectors (Gupta et al., 2016c). In this way, the framework gives

better insight of the autoencoder performance allowing for conducting better error

analysis and evaluation. The adequacy of the bottleneck dimension, referred to as

critical bottleneck dimensionality here, is rarely addressed in the literature. These

metrics also provide a better means for estimating the adequate size of critical bot-

tleneck dimensions.

The second objective is to conduct a comparative evaluation about the dimen-

sionality reduction capabilities of deep autoencoders across different languages. With

this empirical evaluation, we aim at shedding some light regarding the adequacy of

using the same number of dimensions when computing low-dimensional embeddings

for different languages, which is a common practice in the field.

The dimensionality reduction experiments presented in this chapter are carried

out on text at sentence level. The suitability of two types of deep autoencoders

(c.f. Section 3.4) is assessed: (i) deep autoencoder with stochastic RBM (bDA); and

(ii) deep autoencoder with multinomial RBM (rsDA). We report some interesting

findings at the architectural level with regards to the specific problem of modelling

text at the sentence level.

The chapter is structured as follows. Section 7.1 gives details about the analysis

framework of the autoencoder learning, experiments and results. The discussion on

critical bottleneck dimensionality and an automatic way to estimate it is given in

Section 7.2. In Section 7.3, we attempt to see whether any correlation exists between
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the critical bottleneck dimensionality for a particular language and its perplexity.

7.1 Qualitative analysis and metrics

In this section, the metrics used for comparing the two considered autoencoder mod-

els (bDA and rsDA) are described. Subsequently, we present the comparative analysis

of the two models.

The quality of the projections and the sufficiency of a given dimensionality m

are measured by the autoencoder’s reconstruction ability. Unfortunately, the mean

squared error between the input x and its reconstruction x̂, referred to as recon-

struction error 3.12, is a poor measure of the quality of the obtained projections. It

neither gives any details about the quality of the reconstructions in terms of text data

representation nor the degree to which the structure of the data is preserved in the

reconstruction space. Moreover, it is difficult to justify the adequacy of bottleneck

dimensionality m by simply using the reconstruction error.

In the literature, when autoencoders are used for dimensionality reduction of text

data, the quality is measured in terms of the accuracy of the end-task, which may be

text categorisation (Hinton and Salakhutdinov, 2006), information retrieval (Salakhutdinov

and Hinton, 2009a), topic modeling (Salakhutdinov and Hinton, 2009b), term mod-

eling across scripts (Gupta et al., 2014) or sentiment prediction (Socher et al., 2011).

A shortcoming of this approach is that there is no way to estimate the full potential,

or upper bound, of the algorithm performance. On the other hand, in the case of

poor results, it becomes difficult to determine whether the training was proper or

not.

7.1.1 Metrics

In this chapter we introduce two new metrics, which are intended to capture differ-

ent aspects of the autoencoder’s reconstruction capability: (i) structure preservation

index (SPI), and (ii) similarity accumulation index (SAI). These two metrics focus
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their attention on the structural distortion and semantic similarity of the recon-

structed vectors with respect to the original ones. These two metrics, along with the

reconstruction error , allow for a much better assessment of confidence regarding the

quality of the network training process and its performance.

(i) Structure preservation index Consider the input data as X where each

row Xi corresponds to the vector space representation of the ith document and

X̂ is its corresponding reconstruction. X and X̂ are p × n matrices where p

is the total number of documents and n is the vocabulary size. Compute the

p × p matrix D for X such that Dij is the cosine similarity score between ith

and jth rows of X. Similarly calculate the p × p matrix D̂ for X̂. D and D̂

can be seen as similarity matrices of the original data and its reconstruction,

respectively, where Dij = D̂ij = 1,∀i = j. The SPI is calculated as follows:

SPI =
1

p2

∑
ij

||Dij − D̂ij||2 (7.1)

Notice that according to this definition, SPI captures the structural distortion in-

curred by the encoding and decoding processes. Ideally, SPI should be zero.

(ii) Similarity accumulation index Different from SPI, which assesses struc-

tural distortion, SAI attempts to capture the quality of the reconstructed vectors by

measuring the cosine similarity between each original vector and its reconstructed

version. Indeed, this metric assesses how well aligned are the vector-dimensions in

the reconstruction with respect to the original vectors.

SAI is computed by the normalised accumulation of cosine similarities between

each input document and its reconstruction. Ideally, SAI should be one:

SAI =
1

p

p∑
i=1

cosine(xi, x̂i) (7.2)
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7.1.2 Comparative evaluation of models

In this section, we present an experimental comparison between the bDA and the

rsDA models when conducting dimensionality reduction of texts at the sentence level,

where data sparseness plays a more critical role than in the case of full documents.

This study aims at exploring the use of autoencoder techniques for sentence-centered

applications, such as machine translation, text summarization and automatic dia-

logue response.

For the experiments presented in this chapter, we use the Bible dataset, which

contains 25122 training and 995 test sentences. All sentences were processed by a

term-pipeline of stopword-removal and stemming to obtain the vocabulary which is

referred as Vocab1. In addition, we also kept only those terms which were non-

numeric, at least 3-characters long and appeared in at least 5 training sentences. We

refer to this filtered vocabulary as Vocab2. For the English partition of the dataset,

Vocab1 and Vocab2 sizes are 8279 and 3100, respectively.

We train the autoencoder models for English as described in Section 4.1.3 and

evaluated the the quality of the reconstructions in terms of the reconstruction er-

ror (RC) and the two proposed metrics SPI and SAI. The results are presented in

Table 7.1.

Model RC SPI SAI

rsDA (pt) 0.1192 0.7258 0.2132
rsDA (bp) 0.0834 0.0049 0.5768
bDA (pt) 8.0012 0.0712 0.3528
bDA (bp) 5.4829 0.0035 0.6667

Table 7.1: The performance of bDA and rsDA in terms of different metrics. RC, SPI
and SAI denote reconstruction error , structure preservation index and similarity accumu-
lation index while pt and bp denote if the model is only pre-trained or fine-tuned after
pre-training, respectively.
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7.1.3 Analysis and discussion

When constructing low-dimensional embeddings for representing a dataset, it is im-

portant to understand the amount of distortion incurred by the network on the

structure of the data during the process of encoding and decoding. During the train-

ing phase, the network uses the reconstruction error to update its parameters but

the reconstruction error does not give much insight about the quality of the resulting

low-dimensional representations. Another limitation of the reconstruction error is

that it is not bounded and then not comparable across different models e.g. bDA vs.

rsDA (see Table 7.1).

The two proposed metrics, SPI and SAI are both bounded and then comparable

across the models. SPI measures how the similarity structure of sentences among

each other is preserved in the reconstruction space, which in turn gives a measure of

trustworthiness of the network for similarity estimation. Although both models show

similar performance in terms of SPI after backpropagation, bDA is 28.57% better

than rsDA according to SPI.

It is also important to assess the similarity between each input vector and its

corresponding reconstruction. This is captured by SAI. According to SAI, bDA is

15.59% better than rsDA. This is better illustrated in Fig. 7.1, where the histograms

of cosine similarity between the original and reconstructed samples are presented for

both bDA and rsDA. As it can be noticed in the figure, in the case of rsDA, for

more than half of the test samples, the cosine similarity with their reconstruction

is ≤ 0.6. Although rsDA has been reported in the literature to better perform at

the document level, our results demonstrate that bDA is a more suitable model to

be used when using autoencoder representations at the sentence level. This can be

explained by the fact that rsDA uses multinomial sampling to model the word-counts,

which happens not to be suitable at the sentence level for three reasons: (i) most

of the terms typically appear only once in a sentence, (ii) sampling the distribution

of terms by text length D is less reliable when D is small (e.g. sentence vs. full

document, and (iii) the gradients at the output layer (softmax) in rsDA are very
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Figure 7.1: Histogram of cosine similarity between test samples and their reconstruc-
tions for bDA and rsDA.

small as they are calculated over a probability distribution.

Finally, as argued by Erhan et al. (2010), pre-training helps to initialise the

network parameters in a good region that is close to the optimal solution. It can

clearly be noticed that pre-training is necessary but itself is not enough to put aside

backpropagation.

7.2 Critical bottleneck dimensionality

In this section we explore the implications of the size of bottleneck layer in the

reconstruction quality of a given autoencoder. Later, we extend the analysis to

a multilingual scenario and describe an automatic method to estimate the critical

bottleneck dimensionality for different languages.

The central hidden layer of an unrolled autoencoder is commonly referred to as

the bottleneck layer. The reconstruction ability of the autoencoder is highly related

to the size of the bottleneck layer, in the sense that the smaller the size of the

bottleneck layer, the higher the loss of information.
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The reduction step of autoencoders is also called hashing , and because similar

sentences in the projected space are near to each other, this technique is also referred

to as semantic hashing. It is important to choose a proper size of the bottleneck layer

because of two reasons: (i) large dimensionalities may lead to redundant dimensions

and limited abstraction capabilities, and (ii) small dimensionalities might lead to an

excess of information loss.

The best compromise between information loss and abstraction power in terms

of the bottleneck dimension, which we refer to as critical bottleneck dimensionality

here, is rarely addressed in the literature. In this section, we present an analysis on

the effects of choosing different sizes for the bottleneck layer, as well as we provide

an empirical method to choose the critical bottleneck dimensionality.

7.2.1 Metric selection

In our exploratory experiments the bottleneck layer of the autoencoder is squeezed to

identify whether there is a dimensionality region at which the reconstruction error ,

SPI and SAI metrics exhibit a clear change in behaviour. Typically, this region is

referred to as the “elbow region”. The autoencoder is trained by varying down the

size of the bottleneck layer from 100 to 10 with step-sizes of 10. Fig. 7.2 shows

the values of reconstruction error , SPI and SAI for the different considered sizes of

bottleneck layer.

As it becomes evident from the figure, SPI is the metric exhibiting the clearest

“elbow region” pattern. Indeed, it can be noticed that both the reconstruction er-

ror and SAI show a quasi-linear behaviour with almost constant slope, while SPI

clearly captures that below m = 40, the network starts losing information about the

structure of the data at a faster rate. This result shows that care must be taken to

select a proper bottleneck dimensionality, as well as it is important not to choose the

bottleneck dimensionality below the point where SPI changes its behaviour.
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Figure 7.2: Reconstruction error, SPI and SAI metrics when varying the bottleneck
layer size from 100 to 10 are shown in (a), (b) and (c), respectively.
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7.2.2 Multilingual analysis

Typically, in cross- and multi-language dimensionality reduction techniques, the doc-

uments are projected to a common abstract space for which the dimensionality is

selected regardless the involved languages. Based on the analysis presented in the

previous section addressing the importance of properly identifying the critical bot-

tleneck region, we want to further explore the following question: does a common

dimension suit all the languages?

To understand this phenomenon, we conduct a comparative study by considering

different-language partitions of the same English dataset described in Section 7.1.2.

Due to language pre-processing capabilities, we restricted our study to 5 different lan-

guages: English (Indo-European/Germanic), Spanish (Indo-European/Italic), Rus-

sian (Indo-European/Balto-Slavic), Turkish (Turkic) and Arabic (Afro-Asiatic). We

repeated the experiment described in Section 7.2.1 for all these 5 languages. The

vocabulary sizes of these languages are depicted in Table 7.2. The fundamental idea

Language |Vocab1| |Vocab2|
English (en) 8279 3100
Spanish (es) 9398 3581
Russian (ru) 18285 4504
Turkish (tk) 17087 4502
Arabic (ar) 18703 3012

Table 7.2: Vocabulary sizes of the Bible dataset.

behind this experiment is to see whether the same information in different languages

can be represented on a reduced dimensionality space of the same size. We anticip-

ated that the critical bottleneck dimensionality of each language can be affected by

different parameters like: its vocabulary size, its syntactic structure and its semantic

complexity.

To identify the critical bottleneck dimensionality for each language, the percent-

age difference between the slopes connecting consecutive bottleneck sizes in the SPI

curve is calculated. This captures the point in the “elbow region” of the SPI curve
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with steepest slope. Consider three points in the SPI plot: a1, a2 and a3. Let s2
1 and

s3
2 be the slopes of the lines connecting a1 − a2 and a2 − a3, respectively. Then the

percentage difference between s2
1 and s3

2 gives the steepness of the curve at point a2.

We calculate this value for every point in the range in order to identify the critical

dimensionality , as the point in which the percentage difference is the largest. This

method enables us to automatically find the adequate bottleneck dimension for a

particular language. The algorithmic implementation of this method is described in

Algorithm. 3.

Algorithm 3: Estimation of critical dimension

Input : A = set of bottleneck dimensions
B = set of SPI values, where bi = SPI(ai) ∈ A

Output: C = set of steepness values at each point
1 for each ai−1, ai, ai+1 ∈ A do
2 get bi−1, bi, bi+1 ∈ B;

3 calc. sii−1, si+1
i where, sii−1 = slope((ai−1, bi−1), (ai, bi));

4 calc. ci = % diff (sii−1,si+1
i ) ;

5 add ci to C;

6 plot C;
7 critical dim. = right-most large peak

For providing a better graphical representation on how the critical bottleneck

dimensionality is identified, Fig. 7.3 shows the second derivative approximation of

the SPI curve. This is computed for all the different languages under consideration

by using the proposed method. For some languages, there is a clear single peak where

the SPI curve changes its behaviour drastically e.g. English, Spanish and Turkish.

However, for some other languages, there exist multiple large peaks e.g. Russian

and Arabic. In the latter cases, the right-most large peak is the one considered

indicative of the critical bottleneck dimensionality. This is mainly because further

below that point the network drastically loses the capacity for recovering the original

data structure information.

Finally, it should be mentioned that the critical bottleneck dimensionality might
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Figure 7.3: The percentage difference in slope of the SPI curve at each dimension.

not be easily spotted directly from the slope of the SPI curve, but plotting the

percentage difference, which approximates the SPI’s second derivative, clearly cap-

tures it. It is evident from the results presented in this section that different lan-

guages exhibit different critical bottleneck dimensionalities. This provides a much

more principled criterion for the selection of the target dimensionalities in cross- and

multi-language applications that use dimensionality reduction techniques.
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7.3 Critical dimensionality and perplexity

It has been discussed that the neocortex of the brain works in multiple layers where

each layer captures some specific type of information (Quartz and Sejnowski, 1997;

Utgoff and Stracuzzi, 2002). This presents a strong analogy to the computational

deep learning framework. Inspired on this evidence, we anticipated that the crit-

ical bottleneck dimensionality of each language can be affected by their different

structural and semantic characteristics.

We want to explore whether there is a relation between the grammatical com-

plexity of a particular language and its critical dimensionality. According to this,

and as an additional empirical analysis, we used the word trigram perplexities of

each considered language as a proxy to its grammatical complexity, and we evalu-

ated whether such a proxy correlates with the critical bottleneck dimensionalities

obtained in the previous section.

Perplexity is often used as a metric for evaluating the quality of a language

model. A word n-gram perplexity of value V indicates that the considered model

found V alternatives for the following term; therefore, the better a model is, the

lower the resulting perplexity. In the limit, the lowest perplexity achievable by

a language model indicates the actual information content (entropy) of the given

language (Brown et al., 1992).

Lang. Crit. Dim. PPL-T PPL-S
en 40 64.0018 59.6428
es 45 113.075 89.4268
tk 50 322.315 177.117
ru 40 218.634 159.588
ar 70 741.115 296.663

Table 7.3: The word trigram perplexities for each language considering tokens (PPL-T)
and stems (PPL-S) along with critical bottleneck dimensionality.

In order to establish whether the language information content and its critical

bottleneck dimensionality correlate to each other, the Pearson’s correlation coeffi-
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Mode Correlation p-value
tokens 0.95797 0.10339
stems 0.88834 0.04168∗

Table 7.4: The correlation between critical dimensionality for a language and its word
trigram perplexity. The p-value represents the two-tailed TTest values. ∗ denotes the
statistical significance p < 0.05.

cient between the word trigram perplexity and the critical bottleneck dimensional-

ities obtained in the previous section is calculated. Table 7.3 presents the obtained

perplexities for both, token and stem based, trigram models along with the crit-

ical bottleneck dimensionalities for each of the five languages under consideration;

and Table 7.4 presents the resulting correlation coefficients and their corresponding

p-values.

As observed from Table 7.4, although both correlation coefficients are high, only

the correlation coefficient between the stem-based perplexity and the critical di-

mensionalities is statistically significant (this is not surprising as autoencoders were

actually trained with stems rather than tokens). This result implies that there is ac-

tually a strong correspondence between the perplexity of a language and its critical

bottleneck dimensionality.
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Chapter 8
Conclusions & future work

In this Chapter we present the concluding remarks of the main finding of this

dissertation (Section 8.1), discuss limitations (Section 8.2) and outline the potential

future work (Section 8.4).

8.1 Conclusions

This dissertation deals with cross-view projection techniques for cross-view inform-

ation retrieval tasks. In the exploration, a very important and prevalent problem

of mixed-script IR is formally defined and investigated. The deep learning based

neural cross-view models proposed in this dissertation provide state-of-the-art per-

formance for various cross-language and cross-script applications. The dissertation

also explored the architectural properties of the autoencoders which has attained less

attention and establishes the notion of critical bottleneck dimensionality.

In this dissertation, the problem of mixed-script IR is introduced formally and

motivated as a cross-view problem and the involved research challenges are presented.
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We also conducted a quantitative analysis on how much web search traffic is actually

affected by MSIR through a large-scale empirical study of a commercial search engine

query logs. This analysis has provided a lot of insight on the prevalence and impact

of the MSIR behaviour on the web (RQ1). A principled solution to address the

primary challenge of MSIR, the term variations across the scripts, is proposed in

form of a cross-view autoencoder. The proposed mixed-script joint model learns

abstract representation of terms across the scripts through deep learning architecture

such that term equivalents are close to each other. The deep autoencoder based

approach provides highly discriminative and powerful representation for terms with

as low as 20 dimensions. An extensive empirical analysis is presented on a practical

and important use-case: ad-hoc retrieval of songs lyrics. The experiments suggest

that the state-of-the-art methods for handling spelling variation and transliteration

mining have strong effect on the performance of IR in mixed-script space but the

cross-view autoencoder significantly outperforms them (RQ1).

Cross-view autoencoders provide the best way to model terms across scripts be-

cause of the small and finite feature space as discussed in Section 4.1.2. They do

not perform as strongly for modelling of cross-language documents which involve

unbounded and large feature space. The external data composition neural network

(XCNN) model, proposed in this dissertation, overcomes such limitations of the

cross-view autoencoder for modelling cross-language text. We have presented and

evaluated the XCNN framework on different cross-language tasks and found it to

be statistically superior in performance to other strong baselines (RQ2). These two

attributes of the XCNN model prove crucial for its performance in the retrieval tasks:

(i) the learning framework proposed in this work gives a natural way to extend ex-

ternal relevance signals available in the form of pseudo relevance or clickthrough data

to cross-language embeddings with the help of a small subset of parallel data, and

(ii) the non-linear composition model optimises an objective function that directly

relates to the considered task evaluation metric. These properties allow for the model

to perform better than other latent semantic models which rely only on parallel data
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for training.

The gradient based learning provides a way to scale up to large training data-

sets more easily than linear methods that depend on matrix factorization, such as

CL-LSI and OPCA. For XCNN, the time and space complexity grow linearly with

the size of the vocabulary and the amount of training datapoints, while complexity

grows quadratically for models based on matrix factorization. The XCNN model also

outperforms the S2Net model, the only latent semantic model that optimises a loss

function directly related to the evaluation metric. The use of non-linearity allows the

model to learn interesting dependence between the terms across languages compared

to their linear counterparts.

We have also explored a novel methodology to effectively include a deep learn-

ing based contextual similarity estimation, which handles source context for ma-

chine translation (RQ3). This feature is successfully incorporated in an end-to-end

SMT system. The method shows statistically significant improvements compared to

strong baseline systems in English-to-Spanish and English-to-Hindi translation tasks.

Manual analysis confirmed the advantages of choosing the appropriate translation

unit by taking into account the information of the input sentence context and the

relation with the training sentences evidenced by the deep source context feature.

Finally, we have presented a comprehensive study on the use of autoencoders for

modelling text data at the sentence level. Particularly, we explored the suitability

of two different models, binary deep autoencoder (bDA) and replicated softmax

deep autoencoder (rsDA), for constructing deep autoencoder representations of text

data. In order to evaluate the quality of autoencoder generated representations,

we defined and evaluated two novel metrics related to the reconstruction property

of an autoencoder: structure preservation index (SPI) and similarity accumulation

index (SAI). We also introduced the concept of critical bottleneck dimensionality

(CBD) below which the structural information is lost for text representation with

autoencoders. We have also proposed an automatic method to find the CBD using the

SPI metric, which allows for a better discrimination and identification of CBD (RQ4).
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Our analysis of CBD across different languages has suggested there is a correlation

between the critical bottleneck dimensionality and language perplexity.

8.2 Limitations

In this section we list the limitations of the methods presented in this dissertation.

Parallel/comparable data: Most of the models discussed in this dissertation

assume that parallel or comparable data are available. In reality, such resources are

very limited and almost non-existent for many languages. Small amounts of parallel

data lead to poor performance for bilingual models especially in case of resource-poor

languages. Although we have tried to address this issue in the XCNN model where

it is initialised using monolingual data and then fine-tuned using small amount of

cross-lingual data, such models are not applicable to language pairs for which no

parallel data are available.

External relevance signals: In the XCNN model, we need external relevance sig-

nals such as relevance judgements or clickthrough data. The former is more expens-

ive to obtain than the latter. Although we have tried to generate pseudo-relevance

signals using standard retrieval models, they are not as effective as actual signals.

Computational resources: Training large neural networks on large datasets re-

quire heavy computational resources. Modelling all the terms present in the corpus is

also a big challenge through neural networks because of enormously large and sparse

visible layers. In order to perform such experiments, we used GPU’s and assumed

their availability. Although there are approaches like word-hashing where the terms

are coded by their character n-grams to reduce the feature space, their suitability

for cross-language models is still to be investigated.
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Mixed-script data: Being a relatively new area, there is negligible amount of

public data available for mixed-script IR. We have developed the first such datasets

for Hindi and made available through FIRE shared task on mixed-script IR (Saha Roy

et al., 2013; Choudhury et al., 2014). Similarly, the training data for modelling

mixed-script terms is also very scarce. Although traditional transliteration data are

available, they do not represent the spelling variations within the script well. The

CAE model assumes the availability of such data.

Evaluation metrics for mixed-script terms: Currently MSIR is being evalu-

ated by the quality of retrieval in ad-hoc retrieval setting. We believe there is a need

to device evaluation metrics which capture how close is the transliterated query term

to the actual term in order to allow qualitative analysis.

8.3 Code

In order to promote replicability, we have made the code publicly available as much

as possible. The code also contains details on parameter tuning details. The code

related to cross-view autoencoder for mixed-script IR is available at: http://users.

dsic.upv.es/~pgupta/mixed-script-ir.html, the code for XCNN is available at:

https://github.com/parthg/jDNN

8.4 Future work

8.4.1 Mixed-script IR

In this dissertation, we have conducted some initial research in the emerging area of

mixed-script IR. Future work in this area must also deal with the related problem

of code-mixing in queries and documents. Code-mixing is a growing phenomenon in

the user-generated content and provide additional challenges for MSIR. Similarly, one

http://users.dsic.upv.es/~pgupta/mixed-script-ir.html
http://users.dsic.upv.es/~pgupta/mixed-script-ir.html
https://github.com/parthg/jDNN


130 CHAPTER 8. CONCLUSIONS

should also extend the MSIR framework to a more general setup such as mixed-script

multilingual IR.

8.4.2 Composition neural networks

The external relevance composition neural network (XCNN) model provides a state-

of-the-art performance for many CLIR applications. This model provides a natural

way of incorporating semantic compositional models. One can extend this model

with such techniques to obtain richer representation of text data depending on the

requirement of the application. We believe such techniques may provide very effect-

ive performance for more sophisticated tasks such as semantic textual entailment

compared to information retrieval.

8.4.3 Source context features

Interesting future work on source context features using deep autoencoder as presen-

ted in this work should focus on better integrating the dynamic feature into trans-

lation decoding at the architecture level. In its current form, it lies as an additional

layer to the existing phrase-based machine translation system. This also increases

the search time. To speed-up search, one can divide the feature space in chunks and

search hierarchically, perform clustering or use kd-trees like data structures.

8.4.4 Qualitative metrics

One possible extension of our study on suitability of the proposed metrics, especially

SPI, should focus on using the proposed metrics as error metrics during the autoen-

coder fine tuning stage. If this metric can be used along with back-propagation, we

envisage a new generation of text-oriented autoencoders that will be able to provide

a much better characterization of the linguistic phenomenon in text data. Another

future extension will be to validate the impact of the proposed metrics using extrinsic

evaluation.
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8.4.5 More applications

We also want to extend the models from this thesis to more cross-view applications

such as: (i) enriching bilingual dictionaries (Dubey et al., 2014); (ii) discovering

parallel and reused text in news stories (Gupta et al., 2013b); and (iii) cross-language

text categorisation (Klementiev et al., 2012).
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Türe, F. and Lin, J. J. (2012). Why not grab a free lunch? mining large cor-

pora for parallel sentences to improve translation modeling. In Human Language

Technologies: Conference of the North American Chapter of the Association of

Computational Linguistics, Proceedings, June 3-8, 2012, Montréal, Canada, pages
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Appendix

A. Gradient derivation

In this appendix, we derive the gradient calculations for the objective functions in

Eq. 4.10 and Eq. 4.12. We first show the gradient derivation for the monolingual

pre-initialisation, and then, it is extended for the cross-language extension model.

A.1 Monolingual pre-initialisation

The parameters of the monolingual pre-initialisation model are shared among the

data points: xQ, xD+ and xD− as shown in Fig. 4.6. As each of them contribute to

the objective function in Eq. 4.10, the gradient can be derived as follows:

∂J(θ)

∂θ
=
∂J(θ)

∂θQ
+
∂J(θ)

∂θD+

+
∂J(θ)

∂θD−
(1)

where
∂J(θ)

∂θQ
=
∂ cos(yQ, yD+)

∂θQ
− ∂ cos(yQ, yD−)

∂θQ
(2)

In the deep neural network architecture, the θ is composed of multiple layer

parameters (weights and biases). For example, the gradient of the cosine similarity

153



154 BIBLIOGRAPHY

terms in Eq. 2 at the output layer (Lm) w.r.t. the weight matrix Wm with tanh

activation can be obtained as follows considering query Q and a document D:

∂ cos(yQ, yD)

∂θWm
Q

=
∂

∂θWm
Q

yTQyD

‖yQ‖‖yD‖
= [(1− yQ). ∗ (1 + yQ). ∗ δWm

Q ] y
Lm−1

Q

(3)

where .∗ represents element-wise multiplication, and

δWm
Q =

1

‖yD‖
∂

∂θQ

yTQyD

‖yQ‖

=
1

‖yD‖

(‖yQ‖yD − (yTQyD)
yQ
‖yQ‖

‖yQ‖2

)
=

1

‖yD‖
1

‖yQ‖
yD − yTQyD

1

‖yD‖
1

‖yQ‖3
yQ

(4)

For clear representation, let scalars yTQyD, 1
‖yQ‖

and 1
‖yD‖

as a, b and c respectively.

Then,

∂ cos(yQ, yD)

∂θWm
Q

= [(1− yQ). ∗ (1 + yQ). ∗ (bc yD − acb3 yQ)] y
Lm−1

Q (5)

Similarly, the gradient computation w.r.t. document D is:

∂ cos(yQ, yD)

∂θWm
D

= [(1− yD). ∗ (1 + yD). ∗ (bc yQ − ac3b yD)] y
Lm−1

D (6)

Putting all together, Eq. 2 becomes:

∂J(θ)

∂θWm
Q

= [(1−yQ).∗(1+yQ).∗(bcp yD+−apcpb3 yQ−bcn yD−+ancnb
3 yQ)] y

Lm−1

Q (7)
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where ap = yTQyD+ , cp = 1
‖yD+‖ , an = yTQyD− , cn = 1

‖yD−‖
.

and, w.r.t. D:

∂J(θ)

∂θWm

D+

= [(1− yD+). ∗ (1 + yD+). ∗ (bcp yQ − apcpb3 yD+)] y
Lm−1

D+

∂J(θ)

∂θWm

D−

= −[(1− yD−). ∗ (1 + yD−). ∗ (bcn yQ − ancnb3 yD−)] y
Lm−1

D−

(8)

Similarly for hidden layers, the gradients can be obtained through backpropaga-

tion.

A.2 Cross-lingual extension

The parameters of CMl2 are fixed during the cross-lingual extension training, only

the parameters of CMl1 contribute to the objective function in Eq. 4.12. Hence, the

derivative of the objective function is obtained as follows:

∂Jcl(θ)

∂θ
=
∂Jcl(θ)

∂θl1

=
∂ cos(yl1 , y

+
l2

)

∂θl1
− ∂ cos(yl1 , y

−
l2

)

∂θl1

(9)

According to Eq. 7, the gradient at the output layer (Lm) of CMl1 w.r.t. Wm can

be obtained as follows:

∂Jcl(θ)

∂θWm
l1

= [(1− yl1). ∗ (1 + yl1). ∗ (bcp y
+
l2
− apcpb3 yl1 − bcn y−l2 + ancnb

3 yl1)] y
Lm−1

l1

where ap = yTl1y
+
l2

, cp = 1
‖y+l2‖

, an = yTl1y
−
l2

, cn = 1
‖y−l2‖

.
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